ALTERNATIVAS BIOLÓGICAS

PARA EL CONTROL DE GARRAPATAS Rhipicephalus microplus

MSc. Roberth Marín Barico Universidad Nacional Experimental Francisco de Miranda Veroes – Estado Yaracuy, Venezuela Correo electrónico: mvroberthbarico@gmail.com

RESUMEN

La garrapata Rhipicephalus microplus es un ectoparásito hematófago obligado, considerado como uno de los factores sanitarios limitante para la ganadería por sus efectos directos e indirectos sobre el animal (reducción de la productividad, anemia y en casos graves, hasta la muerte); y su papel como vector de importantes agentes infecciosos como Babesia spp. y Anaplasma spp., entre otras, ocasionando como consecuencia, pérdidas económicas importantes por reducción de la productividad del animal y las incurridas para mitigar los signos clínicos y controlar las poblaciones del vector, con la posibilidad de la inducción de resistencia en el mismo y la pérdida de efectividad de los ixodicidas usados. Es por ello, la creciente necesidad de implementar estrategias eficientes de control, capaces de no inducir resistencia, no representar riesgo para la salud pública, ni al ambiente. El presente artículo responde a una revisión documental que compila algunas experiencias efectivas del uso de biocontroladores como lo son Pheidole megacephala, Heterorhabditis indica, Beauveria bassiana y Metarhizium anisopliae; de los cuales se ha reportado tasas de efectividad similares a las obtenidas con el uso de productos químicos tradicionalmente aplicados para su control, sobre indicadores como: efecto ixodicida en fases larvales, de ninfas y adultas; acción inhibidora de la reproducción (inhibición de la oviposición y de la eclosión de huevos).

Palabras Clave: garrapata, entomopatógeno, biocontrolador, ixodicida

Recibido: 11/06/2021 Aceptado: 27/09/2021

Revista In Situ/ISSN 2610-8100/Vol. 5 N°5/ Año 2022. San Felipe, Venezuela/Universidad Nacional Experimental del Yaracuy, pp 269 - 282.

BIOLOGICAL ALTERNATIVES

FOR TICK CONTROL Rhipicephalus microplus

MSc. Roberth Marín Barico Universidad Nacional Experimental Francisco de Miranda Veroes – Estado Yaracuy, Venezuela Correo electrónico: mvroberthbarico@gmail.com

ABSTRACT

The tick Rhipicephalus microplus is an obligate hematophagous ectoparasite, considered as one of the limiting sanitary factors for livestock due to its direct and indirect effects on the animal (reduction of productivity, anemia and in severe cases, even death); as well as, its role as a vector of important infectious agents such as Babesia spp., and Anaplasma spp, among others, causing as a consequence, important economic losses due to the reduction of animal productivity and those incurred to mitigate clinical signs and control vector populations, with the possibility of inducing resistance in the vector and the loss of effectiveness of the used ixodicides. Therefore, there is a growing need to implement efficient control strategies that do not induce resistance and do not pose a risk to public health or the environment. This article responds to a documentary review that compiles some effective experiences with the use of biocontrollers such as Pheidole megacephala, Heterorhabditis indica, Beauveria bassiana and Metarhizium anisopliae; which have reported effectiveness rates similar to those obtained with the use of chemical products traditionally applied for their control, on indicators such as: ixodicidal effect in larval, nymphal and adult stages; inhibitory action of reproduction (inhibition of oviposition and egg hatching).

Keywords: ticks, entomopathogenic, biocontroller, ixocide.

INTRODUCCIÓN

Las garrapatas son unos parásitos externos que se alimentan de la sangre de mamíferos, aves y reptiles, como resultado, transmiten una gran variedad de patógenos (Quiroz, 2007) entre las que se pueden contar enfermedades de importancia económica, como anaplasmosis y piroplasmosis bovina; consideradas también como transmisoras de enfermedades zoonóticas (Galon *et al.*, 2019).

En el caso de la garrapata del ganado bovino, del orden Acari, familia Ixodidae, son ectoparásitos hematófagos estrictos, de un solo hospedero y se reconocen como importantes ectoparásitos obligados al necesitar sangre durante una parte fundamental de su ciclo de vida (Eisen *et al.*, 2017). Estas son consideradas como uno de los factores sanitarios más importantes que restringen la producción ganadera en el trópico, afectando a nivel global al 80% de los bovinos (Organización de las Naciones Unidas para la Agricultura y la Alimentación, 2004).

Según Quiroz (citado) para la década de los años 90, Rhipicephalus microplus (anteriormente Boophilus microplus) se consideraba la garrapata con mayor impacto económico en México, Centroamérica, Suramérica y Australia; situación confirmada por Grissi *et al.* (2014) los cuales consideran que es una especie con importancia económica a escala mundial, por las pérdidas que ocasiona en la producción pecuaria.

El artrópodo R. microplus representa un factor económicamente negativo a la ganadería, esto se debe a efectos directos e indirectos (Lima *et al.*, 2000). Lo que se traduce, en consecuencias negativas para el animal, ya que, disminuyen notablemente su capacidad productiva (por efecto de disminución de la volemia, dados los hábitos de consumo de este parasito, así como por la reacción inmunológica local que produce la picada del insecto en la piel del animal), en su capacidad reproductiva (por disminución del bienestar) cónsono con lo descrito por Rocha *et al.* (2019) como efecto directo y por la posibilidad de que éstas hayan servido de vector a hemoparásitos que provocaran signos subclínicos y clínicos en el hospedero, descrito como efecto indirecto por Rodríguez et al. (2014).

Evitar que se instauren tales efectos negativos en la producción es de gran importancia para mantener márgenes productivos y económicos rentables, siendo necesario recurrir a estrategias de manejo integrado para el control de estos ectoparásitos, donde tradicionalmente se recurre a productos químicos para uso externo en el rebaño, fármacos para la aplicación parenteral en el animal y otras estrategias culturales como la segregación de rebaños y la rotación de potreros.

Los métodos químicos se basan en gran medida en el uso intensivo de acaricidas sintéticos, los mismos se emplean en diferentes dosis y formas: concentrados, baños, sprays y presentaciones de uso parenteral (Patarroyo *et al.*, 2009). Sin embargo, la aplicación frecuente de estos puede generar resistencia en los organismos que se combaten (Torrents et al. 2020), además de que producen efectos colaterales como intoxicaciones subclínicas, que el animal deberá enfrentar junto con la enfermedad.

Es necesario destacar, que la presencia del ectoparásito en los rebaños, representa pérdidas económicas por su efecto directo sobre los animales y de los desembolsos acarreados para la adquisición de productos químicos, mano de obra para su aplicación y tratamiento de los animales con signos clínicos. Según Grissi *et al.* (citado) las pérdidas

económicas ocasionadas por las ectoparasitosis en Brasil representan un total de US\$ 3,24 billones Dólares Americanos. Por su parte la Agencia Informativa Conayt (2016) reporta que en México estas pérdidas son de US\$ 574 millones al año.

Es por ello, que se hace necesario buscar estrategias cónsonas con nuestras necesidades productivas y condiciones agroclimáticas; las cuales deben representar alternativas técnicas eficientes, de fácil aplicabilidad en el campo, ecológicamente amigables y que no influyan negativamente en la inocuidad de los productos y subproductos de origen animal que van a la mesa de los consumidores.

En la actualidad, existe gran inquietud en la búsqueda de estas alternativas entre las cuales se pueden mencionar diferentes organismos vivos como las hormigas (Pheidole megacephala) (Rijo et al., 2000), nematodos (Heterorhabitis sp., Steinernema sp.) (Carvajal, 2012) y hongos entomopatógenos como Beauveria sp. y Metarhiziun sp. (Aguilera et al., 2020), dichos métodos han mostrado en estudios controlados, eficacia en el control de ectoparásitos que afectan a animales de producción.

Importancia de la Garrapatas Rhipicephalus microplus

Según Quiroz (citado) los artrópodos son el grupo más numeroso de especies animales que habitan en la tierra, representando el 85% de ellas, con más de un millón de especies; siendo muchos de gran beneficio para la humanidad por su acción polinizadora o como fuente alimentaria, sin embargo, un reducido número ejercen un parasitismo temporal o permanente.

Así mismo, según Encinas et al. (1999), la referencia etimologica del nombre Artrópodo, proviene del nombre Arthron: articulacion y Podos: pie; son individuos unisexuales y la reproduccion sexual es la norma; durante su ciclo de vida cambian varias veces de cutícula (capa externa que recubre el cuerpo, en la que se puede distinguir tres capas denominadas endocutícula, exocutícula y epicutícula, cuyos componentes esenciales son la quitina y proteinas) que sustituyen por otra mas grande con la finalidad de permitir su desarrollo corporal.

Taxonómicamente las garrapatas duras están clasificadas en el Phylum Arthropoda, Subphylum Chelicerata, clase Aracnida, subclase Acari, orden Acarina, suborden Ixodida (Metastigmata) y familias Ixodidae (Gunn y Pitt, 2012; citado por Pulido et al., 2016). Estos artrópodos se caracterizan por presentar escudo, pequeños en las hembras (ver figura 1 A y B), grandes en los machos (ver figura 1 C), y el capítulo o gnastosoma se encuentra en posición anterior en todos los estados evolutivos según lo descrito por Quiroz (citado).

Recientes estudios moleculares y morfológicos de los géneros Rhipicephalus y Boophilus indicaron que las cinco especies de Boophilus forman el género paraphyletico Rhipicephalus, resultando en una reclasificación de Boophilus como subgénero del Rhipicephalus, sin que esto suponga la pérdida del género Boophilus (Barker y Murrell, 2004).

Se destaca que la garrapata Rhipicephalus microplus es la especie con mayor incidencia en el corredor biológico del Caribe principalmente en Colombia y Venezuela (Guglielmone et al. 2006).

pág 272

Alternativas biolo

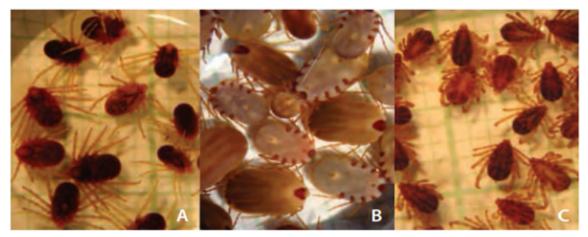


Figura 1. Adultos de la Garrapata Rhipicephalus (Boophilus) microplus en Diversos Estados de Desarrollo.

Nota: A: Hembras recién mudadas. B: Hembras parcialmente ingurgitadas. C: Machos. Fuente: Benavides, Romero y Villamil (2016)

Este ectoparásito genera consecuencias importantes al hospedero que parasita, las cuales pueden agruparse en directas e indirectas. Mencionándose entre los daños directos: (a) la pérdida de sangre asociada a la cargas parasitarias, lo que causa anemia, considerando que cada garrapata adulta extrae 0,5 - 1,2 ml de sangre o más de sus hospedadores, siendo este último el consumo de una hembra adulta ingurgitada; (b) la inflamación de la piel, estrés general y pérdida de bienestar; (c) respuestas tóxicas y alérgicas causadas por antígenos y coagulantes en la saliva de los ectoparásitos; (d) aumento del gasto energético por incremento del movimiento del animal, asociado a lo descrito en el punto b (Estrada y Venzal, 2007).

Entre las consecuencias indirectas se describe la transmisión de enfermedades zoonóticas como Babesia bovis, Babesia bigemina, Anaplas mamarginale, según Galon et al. (citado). Estos microorganismos antes nombrados son conocidos como agentes hemotrópicos, ya que "son parásitos microscópicos que viven y se reproducen a nivel de vasos sanguíneos, por fuera o dentro de glóbulos rojos o blancos" (Domínguez, 2011, p. 5).

Entre los síndromes clínicos más importantes ocasionados por hemotrópicos cuyo vector es la R. microplus, se destaca la Fiebre de la Garrapata, la cual según Benavides, Romero y Villamil (citado), se describe como:

Una enfermedad febril del ganado bovino causada por los parásitos protozoarios Babesia bigemina y Babesia bovis y por la rickettsia Anaplasma marginale, que son organismos transmitidos en el continente americano, principalmente por la garrapata común del ganado Rhipicephalus (Boophilus) microplus. Estos organismos que se multiplican en la sangre, también conocidos como hemoparásitos, se multiplican y destruyen los glóbulos rojos. Clínicamente se expresan en su forma aguda por fiebre y anemia, con efectos complementarios, como bajo consumo de alimentos, baja en producción de leche, pérdida de peso, y riesgo de muerte de animales, entre otros. (p. 19)

La babesiosis (ver figura 2) y anaplasmosis bovinas (ver figura 3) son enfermedades específicas de los bovinos y búfalos, que se mencionan de forma específica en el listado de enfermedades de la Organización Mundial de Sanidad Animal (OIE, 2014 y 2015)

Es de resaltar que la cantidad de garrapatas presentes en un bovino sirve para determinar el límite de beneficio económico (umbral), el cual es de 50 garrapatas por animal (Fernández, s/f)

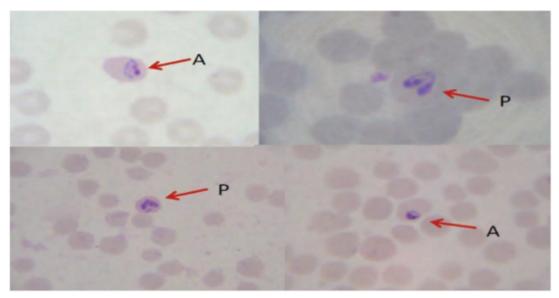


Figura 2. Formas parasitarias de Babesia bigemina observadas en Frotis Sanguíneos.
Nota: A = trofozoíto anular; P = trofozoíto piriforme doble. Fuente: Benavides et al. (2012).

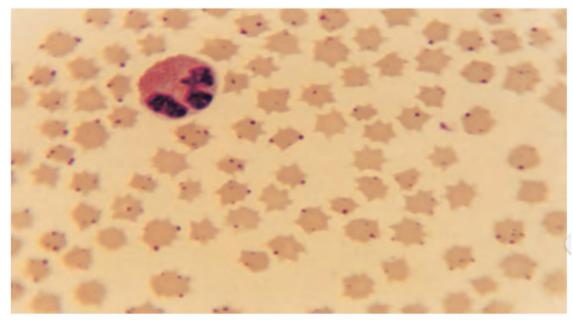


Figura 3. Anaplasma marginale en Frotis Sanguíneo

Revista In Situ/ISSN 2610-8100/Vol. 5 $N^{\circ}5/$ $A\tilde{n}o$ 2022.

Extendido sanguíneo donde se observa la presencia de la rickettsia Anaplasma marginale, observada como un punto en el borde de los glóbulos rojos. Fuente: Benavides (2002).

Alternativas de Control

Según Fernández (citado) desde el punto de vista de la economía agropecuaria, un enemigo natural efectivo es aquel que puede provocar la disminución de la población de la plaga de interés y mantenerla en niveles por debajo del umbral económico establecido para un determinado parásito. También destaca que para que una especie pueda considerarse enemigo de otra, debe cumplir con ciertas características. A continuación, se mencionan las más importantes: (a) adaptabilidad a los cambios en las condiciones físicas del medio ambiente; (b) ser controlador especifico de la plaga de interés; (c) de mayor eficiencia reproductiva que la plaga a controlar; (d) mostrar eficiencia en la depredación de la plaga, aun cuando la densidad poblacional de la misma se encuentra disminuida; (e) mostrar densidad-dependencia; y (f) sobrevivencia aun en ausencia del hospedero.

Según Salas y Larraín (2007), el control biológico de plagas es posible agruparlos en tres grandes grupos: depredadores, parasitoides y microorganismos patógenos; como se mencionan a continuación:

Depredadores

Se pueden mencionar aves como la gallina domestica (*Gallus domesticus*) y la gallina de Guinea o pintada común (*Numida meleagris*) (Gonzales, 2012); insectos como la hormiga de fuego (Solenopsis spp.), la hormiga león (*Pheidole megacephala*) y hormigas del género Camponotus, según lo reportado por Rijo *et al.* (citado); sin embargo, los mencionados no son depredadoras específicas.

Parasitoides

En este grupo se describen a las avispas himenópteras de la familia de los Encírtidos, del género Ixodiphagus; en Venezuela asociadas al control de estadios ninfales de garrapatas Rhipicephalus sanguineus (Mujica *et al.*, 2007) y en Eslovaquia asociada al control de estadios ninfales de garrapatas Ixodes ricinus y Haemaphysalis concinna (Buczek et al., 2021).

Microorganismos Patógenos

Entre los cuales se mencionan, a los hongos como Metarhizium flavoviridae, Metarhizium anisopliae, Beauveria bassiana y Verticillium lecanii, los cuales han presentado resultados prometedores tanto en ensayos in vitro y de campo, controlando varias especies de ixodidos. También se puede mencionar a nematodos de los géneros Steinermena y Heterorhabditis; en pruebas con Steinermena carpocapsae contra Boophilus annulatus, se obtuvieron niveles de mortalidad aceptables. Sin embargo, la eficacia mostrada contra ixodidos del género *Amblyomma y Rhipicephalus*, no se ha conseguido contra *Rhipicephalus Boophilus microplus* (Pensamiento y Duran, 2018; Rijo *et al.* citado).

La creciente inquietud por los efectos nocivos sobre la salud causados por las prácticas de la agricultura tradicional intensiva que involucra el uso de insecticidas sintéticos y

la aparición de resistencia a los insecticidas químicos en algunos insectos de importancia económica, hacen que haya un interés cada vez mayor en el uso de insecticidas de origen biológico (Glare et al. 2012).

Experiencias de Control Biológico en Latinoamérica

Como antecedente del uso de depredadores se menciona a Rijo et al. (citado), en su estudio "Pheidole megacephala (F.), hormiga depredadora de la garrapata Boophilus microplus (Canestrini)" realizado en La Habana - Cuba, ejecutó experimentos en campo, en los cuales utilizó como parámetro la introducción de 15 colonias/ha de hormiga Pheidole megacephala, concluyendo que la acción depredadora de las hormigas fue del 96% en huevos y de 63% larvas y adultas, en contraste con los grupos controles.

También se destaca la experiencia de Gonzales (citado), cuyo trabajo se titula "Boophiluus microplus Canestrini, 1887 (Acarina: Ixodidae) como vector de Babesia spp en Bovinos y su control en fincas del Municipio Monagas, Estado Guárico" en Venezuela, reportó que la garrapata Rhipicephalus microplus, tiene entre sus depredadores naturales en las fincas evaluadas a la garcita reznera (Bubulcus ibis), el garrapatero común (Crotophaga ani) y a la gallina domestica (Gallus gallus).

Así mismo, se menciona a continuación experiencias en el uso de microorganismos entomopatógenos con acción acaricida:

Según Carvajal (citado) en su trabajo "Heterorhabditis indica, una alternativa para el control biológico de Boophilus microplus", llevado a cabo en la provincia Villa Clara - Cuba. Probó el uso del nematodo Heterorhabditis en larvas y adultas teleoginas de garrapatas; concluyendo que esta especie de garrapatas es susceptible al tratamiento con este nematodo, reportando tasas de mortalidad por encima de 60% en todos los experimentos. Considerando así, la dosis letal 50 (DL50) de 62,5 y 6,5 nematodos/garrapata en larvas y adultas respectivamente. También la dosis usada generó una reducción de la oviposición del 50% en las hembras.

Pensamiento y Durán (citado) en su estudio titulado "Evaluación de la efectividad de tres agentes entomopatógenos: Beauveria bassiana, Metarhizium anisopliae y Heterorhabditis bacteriophora como control biológico de la garrapata Boophilus microplus en ganado lechero", reportan que el uso del nematodo entomopatógeno H. Bacteriophora cepa HP88 en concentración de 1,2 x 103 por garrapata, presentó una mortalidad total de las unidades de experimentación en los ensayos in vitro 116 horas de establecidos los ensayos, mostrando un comportamiento similar al tratamiento testigo (control químico).

Bautista et al. (2017), en su trabajo titulado: "Control biológico de Rhipicephalus (Boophilus) microplus con hongos entomopatógenos"; cuya finalidad fue determinar la capacidad patógena de dos cepas de Metarhizium anisopliae a dosis de 1x108 conidias/ml y 1,2x1012 conidias/ml y una cepa de Beauberia bassiana a una dosis de 1,3x1012 conidias/ml en las unidades de producción bovina doble propósito, en los Municipios Emiliano Zapata Tabasco y la Cuenca Lechera de Catazajà, Chiapas, México. Reportando la mayor patogenicidad contra el vector con la cepa de Beauveria bassiana de 1,3x1012 conidias/ml, en contraste con Metarhizium anisopliae quien presentó tasas similares de eficacia, pero en mayor tiempo, concluyendo que el uso de hongos entomopatógenos son alternativas para el control de garrapatas adultas en el mencionado país, ya que Metarhizium anisopliae y Beauveria bassiana

son patogénicos en estado adulto de garrapatas Rhipicephalus (Boophilus) microplus.

Así mismo, Sepúlveda et al. (2017), en su trabajo titulado: "Eficiencia in vitro de hongos entomopatógenos y productos químicos sobre *Rhipicephalus microplus*"; en el estudio se evaluó la eficiencia en condiciones de laboratorio de los entomopatógenos Cordyceps bassiana (cepa BbF2011), *Metarhizium anisopliae* (cepa MAF1309) y productos químicos en la fase adulta de R. microplus. Concluyéndose, que el control de garrapatas adultas de R. microplus en condiciones de laboratorio fue favorables para los tratamientos con M. anisopliae y C. bassiana, verificándose la eficacia ixodicida de los microrganismos usados, tanto en estadio adulto de esta garrapata, sino que además tienen gran eficacia sobre su reproducción.

Según Ruela et al. (2019) en su estudio titulado: "Evaluación *in vitro* de hongos entomopatógenos en el control de la garrapata del ganado bovino", probó la eficacia de tres concentraciones de cepas venezolanas de M. anisopliae y B. bassiana bajo condiciones de laboratorio, para conocer su eficacia en el control de la fase adulta de la garrapata R. *microplus*. La investigación concluyó aseverando que los aislamientos fúngicos resultaron superiores al testigo; siendo la cepa de *M. anisopliae* la que presentó mayor porcentaje de mortalidad y eficacia, en contraste a la B. bassiana en el control de R. *microplus*. Así mismo, ambos aislados, redujeron significativamente los índices reproductivos.

Así mismo, Aguilera et al. (citado) en su trabajo "Identificación y virulencia de Metarhizium anisopliae (Hypocreales: Clavicipitaceae) como agente de control biológico de Rhipicephalus microplus (Acari: Ixodidae) en Panamá". Para este estudio, se usaron 3 aislados nativos identificados como Mt1, Mt2, Mt5, dosificados en cuatro concentraciones de 1x105; 1x106; 1x107; 1x108 conidias/ml-1, para el control de larvas de R. microplus; cada tratamiento se conformó con cuatro repeticiones a los cuales se les inoculó la suspensión de conidias según la concentración antes mencionada. Dicho estudio demostró que el aislado Mt5 resultó el más virulento con una concentración letal media (CL50) de 1,17x105 conidias/ ml-1, considerándose así, como potencial agente para el control de R. microplus en unidades de producción pecuaria de Panamá.

Cada una de estas investigaciones es fundamento técnico, siendo necesario la fase de prueba en campo, la verificación de efectividad según condiciones agroclimáticas y de aplicación; para estandarizar patrones de uso los cuales implantar a posterior en el productor. Estos resultados permitirán la planificación de estrategias de manejo integrado para el control de garrapatas, que formarán líneas de guía para la implantación de programas de Estado.

CONCLUSIÓN

El artrópodo *Rhipicephalus microplus*, es un ectoparásito hematófago obligado del ganado bovino; parasito que provoca importantes efectos negativos sobre el animal entre los que se mencionan la disminución de la volemia, caída de la productividad, disminución del valor de las pieles. Adicionalmente, es un agente transmisor de hemoparásitos de gran importancia sanitaria que agravan las consecuencias antes mencionadas, pudiendo llevar hasta la muerte del animal. Dichos efectos para ser controlados, generan pérdidas económicas por concepto de adquisición de fármacos ixodicidas para el control del vector, y terapéuticos para remediar los estados carenciales, subclínicos y clínicos en el hospedero; así como, el pago de honorarios médico veterinarios y de mano de obra para su aplicación. Sin mencionar que dichos fármacos, suponen un riesgo a la salud pública por presencia de

trazas en productos y subproductos de origen animal provenientes de rebaños bovinos; y riesgos ecológicos por la acción inespecífica residual en el agroecosistema sobre especies saprofitas.

Se destaca también, la posibilidad de uso de agentes biocontroladores, como depredadores (Pheidole megacephala) dada las evidencias en campo como consumidores de fase de vida libre de este ectoparásito; y microorganismos (Heterorhabditis indica, Beauveria bassiana y Metarhizium anisopliae) para el control de la garrapata Rhipicephalus microplus, y de las evidencias in vitro de acción ixodicida en fases larvales, de ninfas y adultas; acción inhibidora de la reproducción (inhibición de la oviposición y de la eclosión de huevos); las cuales son similares a los efectos de los productos químicos usados tradicionalmente para su control; sin la consecuente inducción de resistencia del agente, daños al ambiente y presencia de agrotóxicos en productos y subproductos provenientes de la actividad agropecuaria.

Así mimo, es necesario realizar verificaciones de campo con el propósito de identificar posibles enemigos naturales autóctonos, o introducidos ya adaptados a la plaga y la condición agroclimática; así como, pruebas de eficacia en campo, debidamente protocolizadas y supervisadas por el órgano rector en materia de sanidad agrícola, realizadas en las diversas áreas agroclimáticas del país, con el fin de generar patrones, definir dosis de uso de acuerdo a cada zona y situación, y emitir las certificaciones de uso a estos productos.

REFERENCIAS

- Agencia Informativa Conacyt. (2016, noviembre 30). Control biológico de garrapatas y nematodos. Noticias. http://www.cienciamx.com/index.php/ciencia/salu-Cienciamx d/11775-control-biologico-de-garrapatas-y-nematodos.
- Aguilera, V., Jaén, M., Ávila, L., Herrera, J., Jaén, J. y Barba, A. (2020). Identificación y virulencia de Metarhizium anisopliae (Hypocreales: Clavicipitaceae) como agente de control biológico de Rhipicephalus microplus (Acari: Ixodidae) en Panamá. IDESIA (Chile), 38(1), 59-65. https://www.scielo.cl/pdf/idesia/v38n1/0718-3429-idesia-38-01-59. pdf.
- Barker, S. y Murrell, A. (2004). Systematics and evolution of ticks with a list of valid genus species names. Parasitology, 129:15-36. https://doi.org/10.1017/ S0031182004005207.
- Bautista, A., Pimentel, R. y Gómez, A. (2017). Control biológico de Rhipicephalus (Boophilus) microplus con hongos entomopatógenos. Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias, 6(12). https://doi.org/10.23913/ciba.v6i12.68.
- Benavides, E. (2002). Epidemiología y control de los hematozoarios y parásitos tisulares que afectan al ganado. Carta Fedegan, 72, 112-134.
- Benavides, E., Polanco, N., Vizcaíno, O. y Betancur, O. (2012). Criterios y protocolos para el diagnóstico de hemoparásitos en bovinos. Revista Ciencia Animal, 1(5), 31-49. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1047&context=ca.
- Benavides, E., Romero, J. y Villamil, L. (2016). Las garrapatas del ganado bovino y los agentes de enfermedad que transmiten en escenarios epidemiológicos de cambio climá-

pág 278
Alternativas 1: 10

- tico. Instituto Interamericano de Cooperación para la Agricultura (IICA). Costa Rica. ISBN: 978-92-9248-655-6. http://repiica.iica.int/docs/B4212e/B4212e.pdf.
- Buczek, A., Buczek, W., Bartosk, K., Kulisz, J. y Stanko M. (2021). Ixodiphagus hookeri wasps (Hymenoptera: Encyrtidae) in two sympatric tick species Ixodes ricinus and Haemaphysalis concinna (Ixodida: Ixodidae) in the Slovak Karst (Slovakia): ecological and biological considerations. Scientific Reports, 11(11310). https://doi.org/10.1038/s41598-021-90871-7.
- Carvajal, E. (2012). Heterorhabditis indica, una alternativa para el control biológico de Boophilus microplus. [Trabajo de Diploma, Universidad Central "Marta Abreu" de las Villas]. Repositorio Institucional. https://dspace.uclv.edu.cu/bitstream/hand-le/123456789/1860/Elena%20Carvajal.pdf?sequence=1&isAllowed=y
- Domínguez, G. (2011). Prevalencia e identificación de hemoparásitos (Ehrlichia canis, Babesia canis y Anaplasma phagocytophilum) en perros de la ciudad de Cuenca. [Tesis de grado, Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Ecuador]. Repositorio Institucional. http://dspace.ucuenca.edu.ec/handle/123456789/3024
- Encinas, A., Oleaga, A. y Perez, R. (1999). Artrópodos. En Cordero del Campillo, M., Rojo, F., Martinez, A., Sanchez, M., Hernandez, S., Navarrete, I., Diaz, P., Quiroz, H. y Carvalho, M. Parasitologia Veterinara (págs. 134-150). McGraw Hill Interamericana de España. ISBN: 84-486-0236-6. (original publicado 1999).
- Eisen, R. J., Kugeler, K. J., Eisen, L., Beard, C. B. y Paddock, C. D. (2017). Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health. ILAR Journal, 58(3), 319–35. https://doi.org/10.1093/ilar/ilx005.
- Estrada, A. y Venzal, J. (2007). Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change. J Med Entomol, 44(6),1130-1138. https://pubmed.ncbi.nlm.nih.gov/18047215/.
- Fernández, M. (s.f.). Garrapata bajo control biológico. Revista de Divulgación Científico-Tecnológica del Gobierno del Estado de Morelos. Hypatia. Consultado: 08 de octubre del 2020. https://www.revistahypatia.org/~revistah/index.php?option=com_content&view=article&id=193&Itemid=312.
- Galon, E., Adjou, M., Ybanez, R., Ringo, A., Efstratiou, A., Lee, S., Liu, M., Guo, H., Gao, Y., Li, J., Salces, C., Maurillo, B., Boldbaatar, D., Ybanez, A. y Xuan, X. (2019). First molecular detection and characterization of tick-borne pathogens in water buffaloes in Bohol, Philippines. Ticks and Tick-borne Diseases, 10(4), 815-821. https://doi.org/10.1016/j.ttbdis.2019.03.016.
- Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J. y Stewart, A. (2012). Have biopesticides come of age. Trends in biotechnology, 30 (5), 250-258. DOI: 10.1016/j.tibtech.2012.01.003.
- Gonzales, Y. (2012). Boophilus microplus Canestrini, 1887 (Acarina: Ixodidae) como vector de Babesia spp en Bovinos y su control en fincas del Municipio Monagas, Estado

- Guárico. [Tesis Doctoral, Universidad Central de Venezuela]. Repositorio Institucional. http://saber.ucv.ve/bitstream/123456789/1988/1/T026800004416-0-Defensa_Final_Tesis_YG_de_Wilinski-000.pdf
- Grissi, L., Cerqueira, R., de Souza Martins, J., Medeiros de Barros, A., Andreotti, R., Duarte, P., Pérez de León, A., Barros, J. y Silva, H. (2014). Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinária, 23(2), 150-156. https://www.redalyc.org/pdf/3978/397841492006.pdf.
- Guglielmone, A., Beati, L., Barros-Battesti, D., Labruna, M., Nava, S., Venzal, J., Mangold, A., Szabó, M., Martins, J., González-Acuña, D. y Estrada-Peña, A. (2006). Ticks (Ixodidae) on humans in South America. ExpApplAcarol, 40(2), 83-100. https://doi.org/10.1007/s10493-006-9027-0.
- Gunn, A. y Pitt, S. (2012). Parasitology: An Integrated Approach. Wiley-Blackwell. p 137-179.
- Lima, W., Ribeiro, M. y Guimaraes, M. (2000). Seasonal variation of Boophilus microplus (Canestrini, 1887) (Acari: Ixodidae) in cattle in Minas Gerais State, Brazil. Trop Anim Health Prod 32(6), 375-380. DOI: 10.1023/a:1005229602422.
- Mujica, F., Coronado, A., Forlano, R. y Barrios, N. (2007). Prevalencia de Ixodiphagus hookeri (Hymenoptera: Encyrtidae) en Rhipicephalus sanguineus (Acari: Ixodidae). Gaceta de Ciencias Veterinarias, 13(1), pp 40-44. http://www.ucla.edu.ve/dveterin/departamentos/CienciasBasicas/gcv/2530int2530er2530no/articulos/documas-p/~r2qe4rkh.pdf.
- Organización Mundial de Sanidad Animal OIE. (2014). Babesiosis bovina. Manual de las pruebas de diagnóstico y vacunas para los animales terrestres. Capítulo 3.4.2. París, Francia. p. 1-18. https://www.oie.int/fileadmin/Home/esp/Health_standards/tahm/3.04.02_Babesiosis%20bovina.pdf.
- Organización Mundial de Sanidad Animal OIE. (2015). Anaplasmosis bovina. Manual de las pruebas de diagnóstico y vacunas para los animales terrestres. Capítulo 3.4.1. París, Francia. p. 1-16. https://www.oie.int/fileadmin/Home/esp/Health_standards/tahm/3.04.01_Anaplasmosis_bovina.pdf
- Organización de las Naciones Unidas para la Agricultura y la Alimentación FAO (2004). Guideline resistence management and integrated parasite control in ruminants. Agriculture Department. Module 1. Ticks: Acaricide resistance, diagnosis, management and prevention. Animal Production and Health Division, Rome. 1, 32 pp. http://www.fao.org/3/ag014e/ag014e.pdf
- Patarroyo, J., Vargas, M., Gonzáles, C., Guzmán, F., Martins, O., Alfonso, L., Valente, F., Peconick, A., Marciano, A., Patarroyo, V. y Sossai, S. (2009). Immune response of bovines stimulated by synthetic vaccine SBm7462® against Rhipicephalus (Boophilus) microplus. Veterinary Parasitology, 166(3-4), 333–339. https://www.sciencedirect.com/science/article/pii/S030440170900569X
- Pensamiento, D. y Duran, J. (2018). Evaluación de la efectividad de tres agentes entomopatógenos Beauveria bassiana, Metarhizium anisopliae y Heterorhabditis bacteriophora

pág 280
Alternation

- como control biológico de la garrapata Boophilus microplus en ganado lechero Zamorano, Honduras. [Trabajo de Grado, Escuela Agrícola Panamericana, Honduras]. Repositorio Institucional, Zamorano Biblioteca Wilson Popenoe. https://bdigital.zamorano.edu/bitstream/11036/6354/1/CPA-2018-T073.pdf
- Pulido, A., Castañeda, R., Ibarra, H., Gómez, L. y Barbosa, A. (2016). Microscopía y Principales Características Morfológicas de. Rev Inv Vet Perú, 27(1), 91-113. https://revistasin-vestigacion.unmsm.edu.pe/index.php/veterinaria/article/view/11449
- Quiroz, H. (2007). Parasitología y Enfermedades Parasitarias de Animales domésticos. México. Edit. Limusa S.A.
- Rijo, E., Rodríguez, T., Vitorte, E. y Gómez, M. (2000). Pheidole megacephala (F.), hormiga depredadora de la garrapata Boophilus microplus (Canestrini). Fitosanidad, 4(3-4), 89-91. https://www.redalyc.org/pdf/2091/209118243019.pdf
- Rocha, J. F., Martínez, R., López-Villalobos, N. y Morris, S. T. (2019). Tick burden in Bos Taurus cattle and its relationship with heat stress in three agroecological zones in the tropics of Colombia. Parasites Vectors, 12(73), 2-11. https://doi.org/10.1186/s13071-019-3319-9.
- Rodríguez-Vivas, R., Rosado-Aguilar, J., Ojeda-Chi, M., Pérez-Cogollo, L., Trinidad-Martínez, I. y Bolio-González, M. (2014). Control integrado de garrapatas en la ganadería bovina. Ecosistemas y Recursos Agropecuarios, 1(3), 295-308. http://www.scielo.org.mx/pdf/era/v1n3/v1n3a9.pdf
- Ruela, P., Barrios, R., Silva, R. y Romero, G. (2019). Evaluación in vitro de hongos entomopatógenos en el control de la garrapata del ganado bovino. AGROBIO-LOGIA. Saber, Universidad de Oriente, Venezuela. 31, 283-293. https://www.researchgate.net/profile/Guillermo-Marcano/publication/348785987_EVALUA-CION_IN_VITRO_DE_HONGOS_ENTOMOPATOGENOS_EN_EL_CONTROL_DE_LA_GARRAPATA_DEL_GANADO_BOVINO/links/6010456ca6fdcc071b944f90/EVALUACION-IN-VITRO-DE-HONGOS-ENTOMOPATOGENOS-EN-EL-CONTROL-DE-LA-GARRAPATA-DEL-GANADO-BOVINO.pdf
- Salas, C. y Larraín, P. (2007). Alternativas de control biológico de la mosca doméstica en explotaciones pecuarias. Revista INIA Tierra Adentro, 76, 44-47. http://biblioteca.inia.cl/medios/biblioteca/ta/NR34462.pdf
- Sepúlveda, A., Pulido, M., Rodríguez, J. y García, D. (2017), Eficiencia in vitro e hongo entomopatógenos y productos químicos sobre Rhipicephalus microplus. Revista de Veterinaria y Zootecnia, 11(2), 67-80. DOI:10.17151/vetzo.2017.11.2.6
- Torrents, J., Morel, N., Rossner, M., Martínez, N., Toffaletti, J. y Nava, S. (2020). In vitro diagnosis of resistance of the cattle tick Rhipicephalus (Boophilus) microplus to fipronil in Argentina. Exp Appl Acarol, 82(3), 397–403. https://doi.org/10.1007/s10493-020-00554-7.

Roberth Marín: Médico Veterinario, Universidad Centroccidental "Lisandro Alvarado" (UCLA), Master en Nutrición Animal, Mención Nutrición de Monogástricos. Cursante del Programa Nacional de Formación Avanzada en Biotecnología, Universidad Politécnica Territorial del Estado Yaracuy "Arístides Bastidas" (UPTYAB). Instructor Docente del Programa Nacional de Formación y Municipalización de la Universidad Nacional Experimental "Francisco de Miranda" (UNEFM), CABLO Veroes – Yaracuy.