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Resumen:

La deteccion de fallas en equipos utilizados por pacientes que padecen diabetes tipo I,
quienes requieren terapias continuas de infusion de insulina, es de vital importancia. Las
fallas en los equipos de infusién de insulina (FEII) traen como consecuencia que la dosis de
insulina requerida no sea administrada eficientemente, esto conlleva a la elevacion de niveles
de glucosa en sangre conocida hiperglucemia. La hiperglucemia prolongada esta relacionada
con complicaciones que pueden producir dafios graves e irreversibles en los pacientes.
Existen diversos enfoques utilizados en la de deteccion de fallas, entre los que se incluyen
métodos basados en modelos cualitativos y cuantitativos del sistema y métodos basados en el
historial de datos del sistema, que han permitido avances importantes en el area. Por ejemplo,
el empleo de metodos estadisticos ha demostrado ser una herramienta con gran potencial en
la deteccion de FEII. Sin embargo, siguen existiendo fallas que no son detectadas o0 no son
detectadas antes de que las concentraciones de glucosa en plasma alcancen valores que
provoguen complicaciones en los pacientes. Teniendo esto en cuenta, se puede considerar
que un enfoque enmarcado en el campo de la computacion inteligente basado en el sistema
inmune bioldgico podria ser utilizado para lograr esta tarea. En particular, un método como el
Algoritmo de Seleccion Negativa (ASN) que pertenece a los denominados Sistemas Inmunes
Artificiales (SIA) y que ha sido ampliamente utilizado en aplicaciones de ingenieria
relacionadas con reconocimiento de patrones y deteccion de fallas. En este trabajo se propone
implementar el Algoritmo de Seleccion Negativa (ASN) usando datos provenientes de
pacientes simulados que estan recibiendo la dosis adecuada de insulina y datos provenientes
de los mismos pacientes en momentos en los que se presentan fallas que afectan la
administracion de insulina para que, a partir de la clasificacion de los mismos, se pueda
detectar la FEII. Los datos son obtenidos del simulador UVA/PADOVA de pacientes con
diabetes tipo | y clasificados por el ASN en dos categorias: valores normales y anormales,
estos Ultimos se interpretan como la ocurrencia de alguna falla en el mecanismo de infusion



de insulina del paciente. Finalmente, se evalla su desempefio al comparar los resultados
obtenidos con investigaciones anteriores que emplean el enfoque de deteccion de fallas
usando el andlisis estadistico multivariable.
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Capitulol Introduccion

La diabetes tipo | es un desorden metabdlico provocado por un defecto en la
secrecion de insulina, lo cual conlleva a una elevacién de los niveles de glucosa en sangre y
alteraciones en el metabolismo de carbohidratos, grasas y proteinas. Ya que no existe cura
para la diabetes tipo I, es necesaria la administracion de insulina y el monitoreo de los niveles
de glucosa en sangre de por vida. Es vital contar con regimenes efectivos de terapia de
insulina que permitan minimizar las fluctuaciones de glucosa en sangre (valores de glucosa
en sangre muy elevados o muy bajos, conocidas como hiperglicemia o hipoglicemia
respectivamente). La terapia de insulina puede ser aplicada en inyecciones multiples diarias o
por infusion subcutanea continua. La infusion subcutanea continua de insulina implica la
conexion, a través de un catéter, a una bomba de insulina que permita administrar la dosis
requerida por un individuo (Fundacion Mayo para la investigacion y educacién médica,

2019).

Un problema comdn encontrado en pacientes bajo terapia continua de insulina es la
falla del equipo de infusion cuando el catéter de teflon o la aguja de acero se usan durante
periodos de tiempo mayores a tres dias. Las causas comunes de fallas en el equipo de
infusion de insulina (FEII) incluyen equipos bloqueados, inflamacion o fuga de insulina

hacia la superficie de la piel. Estas fallas pueden hacer que la glucosa aumente a niveles



hiperglucémicos, incluso cuando el algoritmo de control (o el individuo) ha administrado la
dosis de infusion de insulina requerida, ya que la misma no se esta entregando de manera
efectiva. La hiperglucemia prolongada se asocia con complicaciones a largo plazo en los
0jos, rifiones, nervios, corazon y vasos sanguineos (Rojas, R., Garcia-Gabin, W., & Bequette,
B. W., 2011). La importancia de contar con un sistema de deteccion de fallas eficiente en los
sistemas de infusion continua de insulina que alerten al paciente que sus niveles de glucosa

se estan elevando, es evidente.

Una falla se puede definir como un alejamiento del rango aceptable de una variable
observada o de un parametro calculado asociado con un proceso. La deteccion de fallas es
un area de gran importancia en procesos de ingenieria en general. Los métodos de deteccion
de fallas se pueden clasificar en tres categorias generales: métodos basados en modelos
cuantitativos, métodos basados en modelos cualitativos y metodos basados en el historial de
proceso. Los enfoques basados en modelos se limitan a manejar modelos lineales y, en casos
especificos, algunos modelos no lineales. Para un modelo no lineal en general, las
aproximaciones lineales pueden ser deficientes y la efectividad de métodos de deteccion
basados en estos modelos puede verse bastante reducida (Venkatasubramanian,
Rengaswamy, Yin, Kvuri., 2003). EI método seleccionado para el disefio de un sistema de
deteccidn y diagndstico de fallas, se apoya en el campo de aplicacion. Por ejemplo, en el area
industrial, algunos enfoques aplicados incluyen métodos basados en el historial de proceso,
especificamente, métodos estadisticos como el analisis de componente principal (ACP)

(Garcia A., Diego, 2009). El enfoque inmune, es un método basado en el historial de proceso,



ya que no requiere el manejo del modelo matematico del sistema para su utilizacion, sino que
contando con un historial de datos que describan el comportamiento del sistema, es posible
disefiar un mecanismo para detectar cualquier cambio que equivalga a un distanciamiento del
comportamiento aceptable. Los algoritmos inmunes han sido ampliamente utilizados en la
deteccion de fallas en distintos campos, ofreciendo importantes ventajas, tales como,

elevadas tasas de deteccion, bajas tasas de falsos positivos y cortos tiempos de deteccion.

Tomando en cuenta que el sistema objeto de estudio, es un sistema fisioldgico y que
se dispone del historial de datos que describen el comportamiento del sistema (registro de
datos correspondientes a los valores de glucosa en sangre de pacientes simulados que
padecen diabetes tipo 1), se considera pertinente utilizar un enfoque de deteccion basado en el
historial de proceso para detectar FEIl. Concretamente, se propone el uso de uno de los
algoritmos inmunes mas utilizados en deteccion de fallas, el Algoritmo de Seleccidn

Negativa (ASN).

1.1 Antecedentes

El desarrollo de un pancreas artificial en lazo cerrado, el cual incluye un monitor
continuo de glucosa en sangre, una bomba de infusion continua de insulina subcutanea y un
algoritmo de control en lazo cerrado es objeto de una investigacion continua. Esta tecnologia
ha sido revisada por Bequette (2005), Doyle (2007), Kumareswaran (2009), Cobelli (2009) y
Bequette (2010). Estos estudios han permitido la mejora de los algoritmos de control del

pancreas artificial cuyo desarrollo se ha acelerado en los Gltimos afios gracias a la simulacién



por computadores. En 2008 un modelo computacional fue aceptado por primera vez por la
Administracién de Alimentos y Medicamentos (FDA) de EE.UU. como un sustituto para
pruebas preclinicas de ciertos tratamientos con insulina, incluyendo algoritmos en lazo
cerrado (Kovatchev BP, Breton M, Dalla Man C, Cobelli,2009). El primer simulador de
diabetes tipo I, conocido como UVA/PADOVA, emulé los aspectos alimenticios e incluy6
una poblacién de 300 sujetos (100 adultos, 100 adolescentes y 100 nifios). En el cada sujeto
virtual es representado por un vector de parametros extraido aleatoriamente de una
distribucion de parametros adecuada (Visentin, R., Campos-Nafez, E., Schiavon, M., Lv, D.,
Vettoretti, M., Breton, M., & Cobelli, C. 2018).

Sin embargo, dichos dispositivos no se encuentran libres de fallas, en tal sentido,
Guilhem et al. (2006) realizaron una investigacion sobre los riesgos técnicos en la infusion
subcutanea de insulina. En estudios utilizados por ellos como referencia, se reportan varios
tipos de fallas en los equipos de infusion: obstruccion del equipo, fugas en el sitio de
infusion, fugas en la conexion del equipo y fugas en el tubo de infusion. Los autores
concluyen que aunque la terapia de infusion de insulina continua es eficaz en el tratamiento
de pacientes diabéticos, los riesgos técnicos de esta terapia no deben ser subestimados.

Kolle et al. (2018) realizan una categorizacion de los métodos de deteccion de fallas
y diagndstico en sistemas de control de glucosa publicados con la finalidad de aportar una
revision del trabajo disponible a otros investigadores. Afirman que, frecuentemente, el primer
paso para probar nuevos algoritmos de deteccion de fallas es realizar simulaciones en
computadora. Sin embargo, los métodos publicados han sido probados en diferentes

condiciones, incluyendo diferentes simuladores, lo que impide que los métodos puedan ser



comparados directamente unos con otros. Ademas, reportan que fallas como la interrupcion
en la infusién de insulina tienen efectos menos obvios y requieren métodos de deteccion
complejos. Comparado con el nimero de estudios orientados a algoritmos de control de
glucosa, existen pocas publicaciones relativas a deteccion y diagnéstico de fallas.

Una falla no detectada en el equipo de infusion de insulina puede conducir a una
hiperglucemia y la cual de mantenerse a una cetoacidosis en unas horas. Rojas, Garcia y
Bequette (2011), utilizan métodos estadisticos para detectar este tipo de fallas. Aplican
clasificacion bivariante, analisis de componentes principales (ACP) y un enfoque combinado.
Sus estudios preliminares indican que el algoritmo de clasificacion bivariante es sensible a
cambios en la pendiente de glucosa en plasma, pero arroja una tasa de falsos positivos
elevada. El segundo algoritmo propuesto, el ACP, permite obtener las menores tasas de
falsos positivos, sin mayores cambios en el tiempo de deteccion. Por ultimo, el enfoque
combinado permite obtener menores tiempos de deteccion, pero la tasa de falsos positivos es
elevada.

Herrero et al. (2012) proponen un sistema de deteccion de fallas robusto. Para
probar el desempefio del sistema, utilizaron un simulador de pacientes con diabetes tipo |
aceptado por la FDA. EIl algoritmo se basa en un modelo de intervalos para manejar las
incertidumbres en los pardmetros del modelo, medidas y entradas. De 100 pruebas realizadas,
ocurrieron solo dos falsos negativos y un falso positivo. Aunque los intervalos de deteccion
son largos (media de 200 minutos), las fallas son detectadas antes de que los niveles de
glucosa plasmatica alcancen un maximo de 300 mg/dl (limite de seguridad predefinido). La

técnica propuesta permite detectar solo un tipo de falla, la cual consiste en la desconexién del



equipo de infusion de insulina, es decir, casos en los que ocurre una supresion total de la
infusion de insulina. Baysal et al. (2013), presentan enfoques que permiten detectar fallas en
los equipos de infusion de insulina. Aplican un analisis estadistico multivariable que utiliza la
pendiente del nivel de glucosa (aporte que reconocen a sus colegas Winston Garcia y Ruben
Rojas). En otro enfoque, proponen un umbral para el nivel de glucosa de 350 mg/dL. Para
evitar exceso de falsos positivos, imponen un retraso de seis horas entre las alarmas de falla
establecidas. Para evitar falsas alarmas, las alarmas se retienen hasta que el nivel de glucosa
sea inferior a 250 mg/dL. Las medias de los tiempos de deteccion alcanzan 240 minutos.

Cescon et al. (2016), proponen un algoritmo para la deteccion temprana de fallas. En
el estudio participaron 23 sujetos, evaluados una vez a la semana durante 3 semanas. Debido
a que el sensor de glucosa y el equipo de infusion fueron cambiados al mismo tiempo en la
segunda semana del estudio, el algoritmo recibio inicialmente como entrada un flujo de datos
proveniente de dispositivos mal calibrados, lo que afecté negativamente su desempefio. No se
tomo6 ninguna medida para corregir este problema y lo dejaron pendiente para proximas
investigaciones. EI método se basa en tres componentes: segmentacion de los datos, el
calculo de tendencia lineal del monitoreo de glucosa continuo y conteo de insulina. Los
autores plantean la necesidad de realizar estudios clinicos a largo plazo para disminuir la tasa
de falsos positivos. Los resultados, al evaluar el algoritmo retrospectivamente, corresponden
a 50% de sensibilidad, 66% de especificidad y 55% de precision.

Como parte de las investigaciones dirigidas a resolver problemas de ingenieria en
general, es pertinente tomar en consideracién los avances en biologia y genética molecular

por medio de los cuales se ha logrado comprender como funciona el sistema inmune. Esto



resulta de gran interés no solo desde el punto de vista biolégico, sino también desde una
perspectiva computacional. Asi como el sistema nervioso inspird el desarrollo de redes
neuronales artificiales (RNA), el sistema inmune ha permitido el desarrollo de sistemas
inmunes artificiales (SIA) como un nuevo campo de investigacion de la inteligencia
computacional (De Castro, L. N., & Timmis, J. I., 2002). De los métodos alli desarrollados,
el algoritmo de seleccién negativa (ASN) es uno de los métodos mas utilizados y las
aplicaciones donde se utiliza con mayor frecuencia incluyen: deteccion de cambios,
deteccion de fallas y deteccion de intrusion en redes (Li T. ,Computer immunology, 2004).

Dasgupta y Forrest (1996,199) presentan un algoritmo de deteccion de anomalias,
para aplicaciones industriales, inspirado en mecanismos de seleccién negativa del sistema
inmune, el cual discrimina entre lo propio y no propio. Definen propio a patrones de datos
normales y no propio es cualquier desviacion que excede una variacion permitida

Aguilar, Araujo y Aponte (2003) plantean un sistema de deteccion de fallas en
pozos de gas basado en el ASN. Concluyen que el modelo desarrollado puede ser utilizado en
sistemas de alto riesgo y sistemas reales, donde es deseable detectar algiin comportamiento
anormal rapidamente.

Dasgupta y Ji (2004), proponen una versién del ASN para datos de valores reales
con detectores de tamafio variable. En su investigacion proponen que un parametro variable
sea el tamafio de los detectores en un espacio de valores reales. Demostraron
experimentalmente en su investigacion que el esquema planteado es mas efectivo, utilizando

una menor cantidad de detectores, debido a su tamafio variable. Una de las ventajas que



ofrece esta version del algoritmo es que el tiempo de ejecucion, durante el proceso de
generacién de detectores y el proceso de deteccion, se reduce debido a la menor cantidad de
detectores.

Mohammadi et al. (2016), proponen un sistema de deteccidn de intrusiones, basado
en anomalias, en redes de computadoras utilizando SIA, capaz de reconocer nuevos ataques.
Los resultados experimentales demostraron que los algoritmos propuestos tienen una
respuesta rapida, bajas tasas de falsas alarmas, altas tasas de deteccién, y son rapidos al

identificar nuevas muestras.

1.2 Planteamiento del Problema

Se han utilizado diferentes métodos y enfoques en la deteccion de fallas de equipos de
infusion de insulina. Los resultados obtenidos en diversas investigaciones resaltan el
potencial de los algoritmos desarrollados y apuntan a la necesidad de continuar realizando
pruebas con el fin de perfeccionar su desempefio. En algunos casos, los algoritmos logran
detectar solo fallas que implican una interrupcion total de la infusion de insulina, en otros
casos se reportan elevadas tasas de falsos positivos o bajas tasas de deteccion. El tiempo de

deteccidn también es un aspecto que requiere ser mejorado.

Partiendo del hecho de que se esta realizando una investigacion orientada a un
sistema fisiologico y que se cuenta con el registro de datos que describen el comportamiento

del sistema, se opta por proponer un enfoque basado en el historial de proceso para detectar



fallas en los equipos de infusion de insulina utilizados por estos pacientes. Es de gran
importancia mencionar que la deteccion de la falla debe producirse en un tiempo que le
permita al paciente tomar acciones antes de que la concentracién de glucosa en plasma
alcance valores que pongan en riesgo su vida. En este sentido, el presente trabajo de
investigacion propone el empleo de un enfoque basado en Sistemas Inmunes Artificiales
(SIA). Especificamente, se propone emplear el Algoritmo de Seleccién Negativa (ASN) para
determinar, si los valores de glucosa en sangre de un grupo de pacientes simulados estan
alcanzando niveles superiores a los normales, ain cuando el algoritmo de control del sistema
estd calculando la dosis de insulina adecuada que deberian estar recibiendo. Se busca
comprobar si el ASN es capaz de mejorar el desempefio conseguido por otros métodos

aplicados para la deteccion de fallas en este tipo de equipos.

1.3 Objetivos

1.3.1 Objetivo General

Detectar fallas en equipos de infusion de insulina utilizado por pacientes con diabetes
tipo I, en un tiempo que permita al paciente tomar acciones correctivas, utilizando el

algoritmo de seleccion negativa (ASN).

1.3.2 Objetivos Especificos

e Estudiar el funcionamiento del simulador de pacientes diabéticos UVA/PADOVA.
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e Estudiar las modificaciones realizadas a los modelos para simular fallas de equipos de

infusion de insulina en el simulador de pacientes seleccionado, UVA/PADOVA.

e Estudiar la estructura de los conjuntos de datos generados a partir de simulaciones de

las fallas que serén utilizados en diversas pruebas.

e Realizar la revision bibliografica de los algoritmos de los sistemas inmunes

artificiales.

e Implementar el algoritmo de seleccion negativa segun la literatura.

e Comparar los resultados, obtenidos empleando el ASN, con resultados obtenidos en
otras investigaciones orientadas a la deteccion de fallas en equipos de infusion de

insulina.

1.4 Justificacion

Actualmente, existen investigaciones orientadas al desarrollo de algoritmos para la
deteccidn de fallas en equipos de infusion de insulina. Sin embargo, a pesar de haberse
obtenido resultados favorables, en algunos casos, los algoritmos detectan solo fallas que
implican la interrupcion total de la infusion de insulina, mas no casos de interrupcion
gradual. En otros casos, los algoritmos arrojan elevadas tasas de falsos positivos, bajas tasas
de deteccidn, o la deteccion no es realizada en un tiempo suficientemente corto como para
evitar complicaciones en la salud del paciente.

Los Algoritmos de Seleccion Negativa (ASN) de los Sistemas Inmunes Artificiales

(SIA), han sido ampliamente utilizados en casos de deteccion de fallas en aplicaciones
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industriales, seguridad de redes, entre otras, demostrando que son una herramienta efectiva y
con gran potencial en el area. El propdsito de este trabajo de investigacion es presentar un
enfoque alternativo, basado en los SIA, para realizar la deteccion de fallas en equipos de
infusién continua de insulina antes de que la concentracion de glucosa en sangre alcance

valores que pongan en riesgo la salud o la vida del paciente que lo utiliza.

1.5 Metodologia
En la primera etapa, se estudia el simulador de pacientes UVA/PADOVA. Se

estudian las modificaciones que son necesarias hacer en el simulador que permitan obtener
dos conjuntos de datos: un conjunto de datos de pacientes sometidos a terapia continua de
infusion de insulina en momentos en los que el equipo de infusion no falla y un segundo
conjunto de datos, que corresponde a datos de los mismos pacientes cuando se simulan fallas
en el equipo de infusion. También se realiza un estudio de la estructura de los datos

obtenidos, los cuales son utilizados como entrada al algoritmo detector de fallas.

Posteriormente, se realiza la revision bibliografica necesaria para obtener informacion
relevante respecto a la diabetes tipo I, pancreas artificial, equipos de infusion de insulina y
las fallas mas comunes que se presentan en el uso de este tipo de equipos, asi como también
para conocer los conceptos béasicos del sistema inmune. Se estudian los aspectos
fundamentales de los SIA y algoritmos empleados en la deteccion de fallas, especificamente

el algoritmo de seleccion negativa (ASN).
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El ASN se implementa en MATLAB®. Luego, se valida utilizando para esto un
conjunto de datos apropiado que permita evaluar su desempefio (tasa de falsos positivos y
tasa de deteccidn). Seguidamente, los datos generados con el simulador de pacientes
UVA/PADOVA son utilizados como la entrada del ASN para determinar si es capaz de
detectar las fallas simuladas en un tiempo pertinente para tomar acciones antes de que
ocurran dafios irreversibles al paciente. Finalmente, se comparan los resultados con
resultados obtenidos en otras investigaciones en las cuales se utiliza un enfoque estadistico

multivariable para la deteccion de fallas.

1.6 Alcance de la investigacion

Se propone aplicar un enfoque inmune para la deteccion de fallas en equipos de
infusion de insulina utilizado por pacientes que padecen diabetes tipo | y reciben terapia
continua de infusion de insulina. La deteccion debe producirse en un tiempo que permita al
paciente tomar acciones antes de que su salud se vea afectada. Para tal fin, se utilizan datos
provenientes del simulador de pacientes diabéticos UVA/PADOVA. Se implementan en
MATLAB® dos versiones del ASN de los SIA y se utilizan los datos anteriormente
mencionados como entradas a los algoritmos. Finalmente, se realiza una comparacion con
resultados obtenidos aplicando el enfoque estadistico multivariable. Debido a que en ambas
investigaciones se utiliza el mismo simulador de pacientes y el mismo tipo de falla, la

comparacion es pertinente.



Capitulo 2

Marco Tedrico

En este capitulo se presentan descripciones y conceptos teoricos relevantes para
comprender queé son las Fallas de Equipos de Infusion de Insulina (FEII) y los Algoritmos de

Seleccion Negativa (ASN) con los que se propone realizar la deteccion de las mismas.

2.1 Diabetes tipo |

La diabetes tipo I, anteriormente conocida como diabetes juvenil o diabetes insulina
dependiente, es una condicién cronica en la cual el pancreas produce muy poca o no produce
insulina. El papel de la insulina es transportar la glucosa desde el torrente sanguineo hasta el
musculo, grasa y otras células, donde puede almacenarse o utilizarse como fuente de energia.
La glucosa (azucar) es la fuente principal de energia para las células que forman los
musculos y otros tejidos. La glucosa utilizada por el cuerpo proviene de dos fuentes
principales: alimentacion y el higado. El aztcar se absorbe en el torrente sanguineo, donde
ingresa a las células con la ayuda de la insulina. El higado almacena glucosa en forma de
glucdgeno. Cuando los niveles de glucosa estan bajos, el higado descompone el glucdégeno

almacenado en glucosa para mantener los niveles de glucosa dentro de un rango normal. En
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la diabetes tipo I, como existe poca 0 no existe produccion de insulina, la glucosa no puede
entrar a las células y se acumula en el torrente sanguineo. A pesar de que existe una
investigacion activa en este campo, hasta los momentos, la diabetes tipo | no tiene cura. El
tratamiento se enfoca en manejar los niveles de azlcar en la sangre con insulina, dieta y
estilo de vida que permitan prevenir complicaciones. La causa exacta de la diabetes tipo I es
desconocida. Usualmente, el propio sistema inmune del cuerpo, el cual normalmente lucha
contra elementos dafiinos, erradamente destruye las células productoras de insulina en el
pancreas. Una vez que un numero significativo de células productoras de insulina del
pancreas son destruidas, se produce muy poca 0 no se produce insulina (Fundacion Mayo
para la investigacion y educacion médica, 2019). Con el tiempo, las complicaciones de la
diabetes tipo | pueden afectar érganos importantes en el cuerpo, incluyendo el corazon, vasos
sanguineos, nervios, 0jos y rifiones. Mantener un nivel normal de azucar en la sangre puede
reducir dramaticamente el riesgo de muchas complicaciones. Las complicaciones de la
diabetes pueden ser incapacitantes e incluso potencialmente mortales (Rojas, R., Garcia-

Gabin, W., & Bequette, B. W., 2011).

El tratamiento para la diabetes tipo | incluye: recibir insulina; conteo de
carbohidratos, grasas y proteinas; monitoreo continuo de niveles de azlcar en sangre;
alimentacion saludable, ejercicio y mantenimiento de un peso saludable. La meta es mantener
los niveles de azUcar en sangre los mas cercano posible a valores normales para prevenir
complicaciones. Generalmente, esto incluye niveles de azlcar durante el dia antes de las

comidas entre 80 y 130 mg/dL y, después de las comidas, valores no mayores a 180 mg/dL.
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Las personas con diabetes tipo | necesitan terapia de insulina de por vida. Debido a que las
enzimas digestivas destruyen la insulina, interrumpiendo su accion, la insulina no puede ser
administrada via oral. Por lo tanto es necesario recibir insulina de una forma alternativa, para
lo cual es posible utilizar uno de los siguientes mecanismos: inyecciones de insulina, bombas
de infusion de insulina o una combinacion de bombas de infusién de insulina, monitor de
glucosa continuo y algoritmo de control en lazo cerrado (pancreas artificial en lazo cerrado).
Un buen algoritmo de control para la administracion de insulina en pacientes con diabetes
tipo | debe incluir todas las variables, para asi lograr normalizar los valores de glucosa en
sangre. Después de prescribir una dosis inicial, la dosis debe ajustarse y basarse en el nivel de
glucosa en la sangre. Este método de administracion de insulina presenta un riesgo continuo
de hiper e hipoglucemia porque las fluctuaciones de la glucosa momento a momento no se
tratan adecuadamente con inyecciones de insulina subcutaneas intermitentes. El protocolo
optimo de administracion de insulina es, por lo tanto, uno en el que el monitoreo de la
glucosa en sangre y la dosificacion de insulina se gestionen continuamente en tiempo real

(Bequette, B. W., 2005).

2.1.1 Pancreas artificial en lazo cerrado

Los tres componentes principales del sistema en lazo cerrado son: bomba de insulina
continua, sensor de glucosa continuo y un controlador para ajustar la tasa de infusién de
insulina basada en la sefial de glucosa. Las principales limitaciones para desarrollar un

pancreas artificial, son la disponibilidad de un sensor de glucosa robusto y confiable y un



16

algoritmo de control para regular glucosa en sangre bajo un amplio rango de escenarios de

estados del paciente (Bequette, B. W., 2005).

Setpoint

u Bomba Paciente Sensor
Controlador
+
Modelo =
Modelo \ 4
— : -

Paciente del

Diabético Sl

Figura 2. 1. Diagrama de bloques del control por realimentacion aplicado en un pancreas artificial.

El principio basico del control por realimentacion aplicado a un pancreas artificial se
muestra en el diagrama de bloques de la figura 2.1. El valor de glucosa deseado es conocido
como setpoint, r. La sefial de salida (glucosa), y. El algoritmo de control esta basado en la
sefial de error, e, la cual corresponde a la diferencia entre el setpoint y la sefial de salida.

e=r—y

La sefial manipulada (tasa de infusion de insulina) o salida del controlador es u.
El controlador también puede tomar acciones de control si se utiliza una perturbacion
conocida para cambiar la entrada manipulada antes de que la perturbacion afecte a la salida
medida. Para el pancreas artificial, esta accién podria consistir en un bolo de insulina en

anticipacion a una comida, por ejemplo. Uno de los retos del control de glucosa en sangre es



17

el efecto de una comida, el cual puede ser visto como una perturbacion al sistema. Algunas
técnicas de control desarrolladas para el pancreas artificial, asumen que las perturbaciones
ocurren como cambios en forma de escalon o rampa. Otro aspecto que se toma en cuenta
para el desarrollo de los algoritmos de control, es la incertidumbre respecto a la cantidad de
glucosa que es consumida en cada comida. También es importante mencionar que la
sensibilidad a la insulina en cada individuo puede variar en periodos largos de tiempo, debido

a cambios en su condicion fisica y salud (Bequette, B. W., 2005).

Obviamente, el control de un pancreas artificial es mucho més que un simple
algoritmo. EIl dispositivo debe ser facil de programar y de usar para los especialistas medicos
y para el paciente. Debe contar con una interfaz amigable, con un controlador facil de
configurar, el sensor debe ser facil de calibrar y debe contar con un sistema de deteccidn de

fallas eficiente.

2.1.2 Fallas en los Sistemas de Infusion de Insulina Continua

En los sistemas de infusion de insulina se reportan varios tipos de fallas, entre ellas,
obstruccién del equipo de infusién, fugas en el sitio de infusion donde la aguja es colocada
en el tejido subcutaneo, fugas en el lugar de conexion del equipo de infusion o fugas en el
tubo de infusién. Generalmente, el sistema de alarma de los equipos de infusion no detecta
las fugas. Mas aun, en mas de 85% de los eventos de oclusion, ocurre un deterioro
metabolico antes de que se activen las alarmas de alta presion (Guilhem, 1., Leguerrier, A.

M., Lecordier, F., Poirier, J. Y., & Maugendre, D., 2006). Las complicaciones metabdlicas
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relacionadas con fallas en los equipos de infusion de insulina incluyen, cetoacidosis, hiper e
hipoglicemia. La efectividad de las terapias de infusion continua de insulina subcutanea ha
sido ampliamente probada en el control de glicemia en pacientes con diabetes tipo 1. Por lo
tanto, son mundialmente utilizadas en el tratamiento clinico de esta enfermedad. Sin
embargo, los riesgos técnicos de esta terapia estdn presentes. De aqui la importancia de
conducir investigaciones que permitan desarrollar mecanismos de deteccion de fallas

eficientes.

2.2 Simulador UVA/PADOVA

El simulador de pacientes diabéticos fue desarrollado por las Universidades de
Virginia y Padova y aceptado por Administracion de Alimentos y Drogas de los EE.UU,
como sustitucion de pruebas preclinicas para ciertos tratamientos con insulina, incluyendo
algoritmos en lazo cerrado para el pancreas artificial (Visentin, R., Campos-Nafiez, E.,
Schiavon, M., Lv, D., Vettoretti, M., Breton, M., & Cobelli, C., 2018). El simulador ha sido
utilizado exitosamente por grupos de investigacion académicos, asi como también por
compaiiias activas en el campo de la diabetes tipo I. El sistema ha demostrado que puede
representar de forma adecuada los cambios de glucosa observados durante las comidas en

pacientes con diabetes tipo I.

El simulador estd implementado en MATLAB®. Incluye, entre otros mddulos, un
sensor para el monitoreo continuo de glucosa, el cual provee series de tiempo de

observaciones consecutivas sobre el proceso de variaciones de de glucosa en sangre. Otro
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mddulo importante es la bomba de insulina, la cual se utiliza para aproximar la entrega
subcuténea de insulina tomando en cuenta el tiempo y dindmicas del transporte de insulina
desde el tejido subcutaneo a la sangre. También cuenta con una interfaz de usuario que
permite definir escenarios de prueba (horarios de comidas con las cantidades de
carbohidratos correspondientes, etc.), permite seleccionar el grupo de individuos objeto de
estudio y un conjunto de mediciones de salida (Visentin et al., 2018). En la figura 2.2 se
presenta un esquema simplificado de los principales componentes del ambiente de

simulacién en el cual se basa el simulador UVA/PADOVA.

Modelo Humano

Comida =57 \
Tracta \; Sensor
Gatro-Intestinal !

q
Glucosa en plasma i . |

Siste S Tejida
Higada {;: ma ¥ muscular Controlador
glucose v adiposo

il LI}
[ — A o — e — e 4 3
] '
e o o L i - Bomba
Entrega M L
1 de f— Insulina
RIS | o Insuling &n plasme

Figura 2. 2. Componentes principales del ambiente de simulacién: modelo de glucosa-insulina (modelo
humano), modelo del sensor, controlador y modelo de la bomba de insulina.

2.2.1. Escenario del simulador UVA/PADOVA

El simulador de pacientes diabéticos UVA/PADOVA cuenta con una interfaz de
usuario que permite seleccionar el escenario en el cual se quieren hacer las simulaciones. Se
incluyen tres opciones de escenario: escenario de una comida, escenario de un dia y
escenario de una semana. El escenario también puede ser creado en un archivo ASCII que

puede ser cargado directamente desde la interfaz. El simulador carga el escenario
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reconociendo algunas etiquetas en el archivo y transfiere la informacion para ser utilizada

durante la simulacién. En el escenario seleccionado para realizar las simulaciones, se incluye

la siguiente informacion:

Duracion de la simulacion.

Unidades de tiempo de simulacion.

Tiempo del dia en el que empieza la simulacion (en minutos a partir de la
medianoche).

Tiempo de inicio del lazo cerrado.

Unidad de tiempo del inicio del lazo cerrado.

Un vector del tiempo de comidas.

Unidad de tiempo del vector de comidas.

Vector de la cantidad de comidas en gramos.

Tiempo del bolo de insulina durante el lazo abierto.

Unidad de tiempo del bolo de insulina.

Cantidad del bolo de insulina (unidades de insulina) durante la etapa de lazo
abierto.

Tasa basal de insulina especifica para cada paciente.

Bolo 6ptimo, el cual es calculado en funcién de la cantidad de comida
ingerida. Es especifico para cada paciente.

Inyeccidn de insulina basal durante el lazo abierto.
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En la figura 2.3 se muestra una imagen de la interfaz de usuario del simulador desde

la cual puede ser directamente seleccionado el escenario en el cual se desea hacer las

simulaciones, o en su defecto, desde donde puede ser cargado el archivo contentivo del

escenario creado por el usuario.

user_interface = e ==
Lead Scenarkb
Enter scenario ASCI file (.scn) _| Load File_ ]
[Lead Muitiple Files)
sommon Scenar
— Simut ) Parametes
Qoen looo basal IVhri na End of commutaSon /start of requiation [mn] fn
| start af cinsed han Imin! o} iznath of simalation Inin! 1440 (clear acenano)
Single Meal
enter amnint of cabohvicates fal [20)) ah
7 3 ? ‘"'?‘ '""?‘ (create lical)
enter amount of inssin bolus U1 4 duration [minl [ 15
Neda Manl hadmaa vil anhe ha dalivarad dnrinn anan inan caneal
~ MuRiple Neals
breakfast 7am) lunch (ncon) snack (4pm) dnnei(Gpm) snack(fipn}
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hadie NN 3_1 47 0 s3 0 (create 1 week
Nata Maal hakiaas wdl ands ke dalvarad dision anan Inan cantal
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l

Choose hardware | [ defne metabolic test ] !

Figura 2. 3. Interfaz de usuario del simulador UVA/PADOVA.

2.2.2 Seleccion de los sujetos y mediciones de salida

El usuario puede seleccionar un grupo de sujetos (nifios, adolescentes, adultos)

agregando la categoria correspondiente en la interfaz de usuario de la figura 2.3. De igual

manera, el simulador permite seleccionar las mediciones de salida y graficas. El simulador
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cuenta con ocho pantallas de graficas y 15 mediciones. Las gréficas incluyen la simulacion
completa y las medidas de salida son calculadas en la fase de regulacion. La siguiente figura

corresponde a la ventana donde pueden ser seleccionadas las mediciones de salida.

u choose_outcome

— Outcome hieasur
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) [ SD of BG rate of changs
|:| Post Prandial AUC per gram of CHO

Figura 2. 4Seleccion de mediciones de salida y graficos.

2.2.3 Plataforma de Pruebas

El archivo de plataforma de pruebas incluye el modelo de Simulink de la figura 4.5.
El bloque color naranja contiene el controlador. En este modelo, el usuario puede reemplazar
el bloque por su propio controlador y afadir el script de configuracion desarrollado y
cualquier funcién necesaria en la carpeta correspondiente del controlador. Si cualquier script
o funciones son afiadidas a una carpeta diferente, no sera visible para el simulador y, por lo
tanto, no podréa ser utilizada. De igual manera, es posible incluir nuevos bloques al modelo

para simular, por ejemplo, algun tipo de falla.
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Figura 2. 5 Modulo correspondiente a la plataforma de pruebas del simulador UVA/PADOVA.

2.2.4 Generacion de los datos

Los datos se almacenan en estructuras clasicas de MATLAB®. Para cada simulacion
la estructura de datos estd compuesta por los resultados y el escenario. La estructura del
escenario incluye los datos correspondientes a la configuracion del escenario de pruebas:
vector de cantidad de comidas en gramos, inyeccidn de insulina basal durante el lazo abierto,
duracion de la simulacion, tiempo en el que inicia el lazo cerrado, entre otras caracteristicas
especificas del escenario seleccionado. La estructura de los resultados incluye vector de
valores de glucosa en sangre del paciente, vector de estados del sistema, vector de valores

obtenidos del sensor de monitoreo continuo de glucosa, vector de dosis de inyeccion de
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insulina, identificacion del paciente y vector de tiempo de simulacion. En la figura 2.6 se
muestra un ejemplo de la estructura que tiene cada uno de los conjuntos de datos que fueron

obtenidos con el simulador UVA/PADOVA.

data =
results: [1xl struct] >> data
scenario: [1x1 struct] data =
+» data.scenario results: [1xl struct]
ans = scenario: [1xl struct]
5Q _insulin: [1xl struect] »» data.results
meals: [142x2 double] ans =
meal announce: [1xl struct] G: [1x1 struct]
dose: [1x36 double] states: [1xl struct]
Tdose: [1x36 double] time: [1xl struct]
Cmeals: O injection: [1x1 struct]
Tsimul: 10080 CEM: [1xl struct]
Tclosed: 15000 ID: 'child#on2!
BGinit: [] J% vy
Treg: O
CR: 'off’
3imToD: O
basal: 0
fE Ckbasal: 'guest'

Figura 2. 6 Ejemplo de la estructura de los datos.

2.3 Sistema Inmune Biologico (Nino, F y otros 2008)

El sistema inmune es una red compleja de tejidos, Organos, células y quimicos
especializados. Su funcion principal es reconocer la presencia de elementos extrafios en el
cuerpo y responder para eliminarlos o neutralizarlos. Todo ser vivo estd expuesto a
microorganismos (pat6genos) que son capaces de causar enfermedades. Las sustancias que
estimulan una respuesta inmunoldgica especifica se conocen como antigenos, en otras

palabras, los patdgenos actian como antigenos. El sistema inmune debe responder solo a
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antigenos extrafos, es decir, debe ser capaz de distinguir entre lo “propio” (células, proteinas
y cualquier molécula que pertenece o es producida por el cuerpo) y lo “no propio”. En este
sentido, las células que originalmente pertenecen a nuestro cuerpo y son inofensivas para su
funcionamiento son llamadas propias, mientras que los elementos que causan enfermedades
se denominan no propios. Una caracteristica esencial del sistema inmune es el proceso de
discriminacion entre elementos propios y no propios, para lo cual cuenta con mecanismos
sofisticados de reconocimiento de patrones y respuesta que utilizan una extensa red de
mensajeros quimicos. El sistema inmune es capaz de reconocer una variedad casi ilimitada de

celulas infecciosas (elementos no propios).

El sistema inmune estda compuesto por una gran variedad de moléculas, células y
Organos que estan esparcidos por todo el cuerpo. No existe un Unico organo central
controlando el funcionamiento del sistema inmune, sino que existen diferentes elementos
transitando o en ubicaciones especificas que desempefian roles complementarios. Los
organos que componen el sistema inmune se clasifican en 6rganos linfoides centrales
(médula 6sea y timo) y 6rganos linfoides periféricos (ganglios linfaticos, bazo, tejido mucoso
del tracto respiratorio y digestivo). El propdésito de los 6rganos linfoides centrales es generar
y ayudar en el proceso de maduracién de las células linfoides (linfocitos). Los 6rganos

linfoides periféricos facilitan la interaccion entre los linfocitos y los antigenos.
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Figura 2. 7 Anatomia del sistema inmune (de Castro y Zuben, 1999).

Los linfocitos o globulos blancos son constituyentes importantes del sistema inmune.
Estas células inmunes se producen en la médula Osea, circulan en la sangre y el sistema
linfatico, y residen en los 6rganos linfaticos para desempefiar funciones inmunologicas. La
mayor poblacién de linfocitos esta constituida por linfocitos B y T. Los linfocitos T son
células especializadas que maduran en el timo. Por otra parte, los linfocitos B son células

especializadas capaces de reconocer antigenos particulares.

Desde la perspectiva del reconocimiento de patrones, una de las caracteristicas mas
importantes del sistema inmune es la presencia de moléculas receptoras en la superficie de
las células inmunes, capaces de reconocer una gama casi ilimitada de patrones antigénicos.
Los dos tipos de células inmunes (linfocitos B y T) son bastante similares, pero difieren en

cdmo reconocen los antigenos y en sus roles funcionales. Las células B son capaces de
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reconocer antigenos libres en solucion (por ejemplo, en el torrente sanguineo), mientras que
las células T requieren que los antigenos sean presentados por otras células accesorias. En la
figura 2.8 se observa que los antigenos estdn cubiertos con moléculas llamadas epitopes.
Estas moléculas permiten que los antigenos sean reconocidos por los receptores (anticuerpos)
ubicados en la superficie de los linfocitos B. Por otra parte, se observa que el antigeno debe
ser procesado y presentado por una célula accesoria para que éste sea reconocido por los

receptores de los linfocitos T.

Antigeno

; Celula
| Receptores de células B —_—
- Accesoria / "75:{-’ .
— - ___I_E_Eitopes | ? Ry
| . _J’______‘\/ III f&\ ,/J{T:.\- |
Antigeno ‘. \ / je =]
< S 0/
- > r CélulaT g\ &

o*: "}q Presentacion a

\ ! la célulaT

Figura 2. 8 Patron de reconocimiento en el sistema inmune. Izquierda: Célula B reconociendo un antigeno.
Derecha: Célula T reconociendo un antigeno presentado por una célula accesoria.

El reconocimiento de antigenos es el primer requisito para que el sistema inmune se
active y se produzca una respuesta. El reconocimiento debe satisfacer ciertos criterios;
primero, el receptor debe reconocer el antigeno con cierta afinidad, segundo, la unién entre el
receptor y el antigeno debe ocurrir con una fuerza proporcional a esta afinidad. Si la afinidad
es mas grande que un umbral determinado (umbral de afinidad), entonces, el sistema inmune

es activado.
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Uno de los érganos linfoides centrales es el timo. El timo estd ubicado detrés del
esternon y desempefia un rol muy importante en la maduracion de los linfocitos T. Una vez
que los linfocitos T son generados, migran al timo para ser sometidos al proceso de
maduracion denominado seleccion negativa, en el cual, los linfocitos T que reconocen
elementos propios son eliminados. Este proceso es la base del ASN implementado en los SIA

y que ha sido ampliamente utilizado en distintos campos computacionales.

2.3.1 Discriminacion entre lo propio y no propio

Las células T maduran en el timo. Alli, atraviesan por un proceso de seleccion que
asegura que son capaces de reconocer solo células no propias. Este proceso es denominado
seleccion negativa. El proposito de la seleccion negativa es realizar pruebas de tolerancia a
células propias. Las celulas T que reconocen celulas propias, fallan en esta prueba, y solo
aquellas células T que no reconocen células propias son conservadas. Este proceso puede ser
visto como un filtrado de la gran diversidad de células T. Las células receptoras de los
linfocitos T que son capaces de discriminar entre propio/no propio, son llamadas detectores.
Entre las principales funciones del sistema inmune biolégico se distinguen reconocer y

categorizar antigenos (Nino, F., & Dasgupta, D., 2008).

2.3.2 Aspectos computacionales del sistema inmune

Desde un punto de vista del procesamiento de informacion, el sistema inmune
biolégico ofrece caracteristicas interesantes, como por ejemplo:
e Coincidencia de patrones: el sistema inmune es capaz de reconocer antigenos

especificos y generar respuestas apropiadas. Esto se logra a partir de un mecanismo
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de reconocimiento que se basa en uniones quimicas entre receptores y antigenos.
Estas uniones dependen de la forma de las moléculas y de la carga electrostatica.
Extraccion de caracteristicas: Generalmente, los receptores inmunes no se unen al
antigeno completo, mas bien lo hacen a porciones (péptidos) de los mismos. De esta
manera, el sistema inmune puede reconocer un antigeno solo coincidiendo con
segmentos de él. Los péptidos son presentados a los receptores de los linfocitos por
las células presentadoras de antigenos. Estas células actian como filtros que pueden
extraer la informacion importante y remover el ruido molecular.

Procesamiento distribuido: el sistema inmune no posee un controlador central. La
deteccidn y respuesta puede ser ejecutada local e inmediatamente sin comunicacion
con algan drgano central. Este comportamiento distribuido es logrado por billones de
moléculas inmunes y células que circulan por los sistemas linfatico y sanguineo y
son capaces de tomar decisiones en un ambiente de colaboracion local.

Aprendizaje y memoria: una caracteristica importante del sistema inmune es su
habilidad para aprender de la interaccion con el ambiente. La primera vez que un
antigeno es detectado, una respuesta primaria es inducida e incluye la proliferacion
de linfocitos. Algunos de estos linfocitos son conservados como células de memoria.
La proxima vez que el mismo antigeno es detectado, las células de memoria generan

una respuesta mas rapida e intensa.
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2.4 Sistema Inmune Artificial

Los sistemas inmunes artificiales (SIA) pueden ser vistos como abstracciones
computacionales de los sistemas inmunes biolégicos, por lo tanto, muchas de las técnicas
utilizadas estdn basadas en los modelos teodricos del sistema inmune natural. Se han
desarrollado algoritmos basados en los procesos de maduracién y censado de las células T,
principalmente en el proceso de seleccion negativa que permite la discriminacion de lo
propio/no propio. A partir de este proceso se desarrolla el Algoritmo de Seleccién Negativa
(ASN) del cual existen diferentes variaciones. También, se han desarrollado algoritmos
inspirados en la respuesta antigénica llevada a cabo por las células B, el algoritmo de
seleccion clonal y redes inmunes artificiales. La teoria de seleccion clonal se utiliza para
explicar la proliferacion de células inmunes ante la presencia de un estimulo antigénico. Los
algoritmos basados en la teoria de seleccion clonal son cominmente utilizados en
optimizacién y reconocimiento de patrones. La teoria de las redes inmunes fue desarrollada
para explicar como se forma la memoria inmune, algunos de los campos de aplicacion de los
algoritmos basados en redes inmunes incluyen robotica y control. Se han explorado y
aprovechado muchas de las caracteristicas de los mecanismos SIA en distintas areas de
aplicacion. En general, las técnicas de computacion inmunoldgica han sido utilizadas para
resolver problemas en un amplio rango de dominios tales como: optimizacion, clasificacion,
deteccién de anomalias, aprendizaje automatico, control adaptativo, mineria de datos,
reconocimiento de de imdagenes y patrones, entre otros. Incluso han sido utilizados
combinados con otros métodos como algoritmos genéticos, redes neuronales y logica difusa.

Aplicar un modelo basado en sistemas inmunes artificiales para resolver un problema
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particular, requiere seleccionar el algoritmo inmune dependiendo del tipo de problema que se
necesita resolver. Se deben identificar los elementos involucrados en el problema y como
pueden ser modelados como entidades en un algoritmo inmune particular. Con base en sus
caracteristicas, algunas técnicas de los SIA se consideran mas adecuadas para ciertas
aplicaciones comparadas con otros enfoques. Se ha comprobado que los algoritmos de
seleccién negativa han sido ampliamente usados en deteccion de fallas y seguridad
computacional utilizando especialmente la propiedad de reconocimiento de lo propio y no

propio (Nino, F., & Dasgupta, D., 2008).

2.4.1 Algoritmos basados en seleccion negativa

El algoritmo de seleccion negativa (ASN) consiste en dos fases: la etapa de
generacion y la etapa de deteccion. En la fase de generacion, los detectores son creados
aleatoriamente y sometidos a un proceso de prueba en el cual son eliminados si coinciden
con alguna muestra propia (la finalidad es generar detectores que no coincidan con datos
considerados propios y solo coincidan con datos que describen un comportamiento anormal
del sistema). El criterio de coincidencia esta basado en la representacion de los datos. Luego
de tener un numero suficiente de detectores, determinado por el criterio de parada, la fase de
generacion termina. Los datos desconocidos, los cuales describen el comportamiento del
sistema en estudio, son comparados uno a uno con el conjunto de detectores para ser
clasificados como propios 0 no propios. Si un dato desconocido coincide con algun detector,

es clasificado como no propio. Si el dato no es reconocido por algin detector, es asumido
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como un miembro del conjunto propio (Nino, F., & Dasgupta, D., 2008) (Ji, Z., 2006). En la

figura 2.9 se presenta un esquema general de las dos etapas del ASN.

Conjunto de
detectores

Generar — Conjunto de Datos {_\
detectores ’ No. detectores Uevos —> ¢c0|nC|de? /
l Si l

propio
detectado

Conjunto
propio

Figura 2. 9 Etapa de generacion de detectores del ASN (izquierda). Etapa de deteccién (derecha).

El propésito fundamental del algoritmo de seleccion negativa es clasificar datos, por
lo tanto el algoritmo es definido por el esquema de representacion de los datos. Este estudio
se enfoca en la representacion de datos en valores reales. Para la representacion de datos en
vectores de valores reales, solo se han implementado esquemas de generacion aleatoria de
detectores. Otro aspecto importante en el desempefio del ASN, es la seleccion de la regla de
coincidencia utilizada en el reconocimiento de datos. La seleccion de la regla de coincidencia
o el umbral utilizado debe depender de la aplicacion especifica y de la representacion de los
datos. La regla de coincidencia es una medida de distancia, afinidad o similitud que dos datos
comparten. Para una representacion de los datos en vectores de valores reales, la regla de
coincidencia comun consiste en una medida de distancia matematica. El calculo de una

medida de distancia matematica arroja un numero real que es asignado como afinidad,
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permitiendo una comparacion simplificada con el umbral de coincidencia asignado. La

medida de distancia cominmente implementada es la distancia Euclidiana.

La representacion de los datos y las reglas de coincidencia definen cada algoritmo de
seleccidn negativa, sin embargo, existen otros factores que afectan su desempefio. EI nimero
de detectores generado afecta la eficiencia de generacion y deteccion y, en consecuencia, la
velocidad del algoritmo. El criterio de parada y los esquemas de generacién de detectores son
parametros de control tipicos para determinar un adecuado nimero de detectores y cobertura

(Ji, Z., 2008).

2.4.2 Algoritmo de seleccion negativa de valores reales

En el ASN de valores reales, por definicion, los datos y los detectores son
representados por datos de valor real (Nino, F., & Dasgupta, D., 2008). La representacion del
espacio propio/no propio corresponde a un subconjunto de R™. Se han desarrollado diferentes
versiones del ASN de valores reales, las cuales incluyen:

e Algoritmo heuristico para generar detectores hiperesféricos.

e Seleccion negativa con reglas de deteccion (algoritmo para generar detectores
hipercubicos).

e Seleccion negativa de valores reales aleatoria (genera detectores utilizando un
proceso aleatorio para optimizar la distribucion de los detectores).

e Algoritmos con detectores de tamafio fijo y variable.

e Seleccion negativa con regla de deteccion difusa.
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En los ASN de valores reales, un detector es definido como un vector n-dimensional
que corresponde al centro y un valor real que representa su radio. La regla de coincidencia
entre un detector y un dato anormal (antigeno), es expresada por una funcion miembro del
detector, la cual es una funcion de la distancia entre el dato anormal y el detector. Existen
distintas reglas de coincidencia (medidas de distancia), distintos mecanismos de generacion
de detectores y esquemas de deteccion que han sido implementados. Este estudio se enfoca
en el empleo de la distancia Euclidiana (Ecuacién (2.1)), como medida de distancia y la
generacion de detectores de tamafio fijo y variable.

Distancia Euclidiana:

2 (= ¥)? (2.1)

Los ASN de radio fijo y radio variable de valores reales tienen como objetivo
principal generar un conjunto de detectores que cubran el espacio no propio. Por lo tanto, en
el caso de ASN de valores reales, una buena aproximacién del nimero de detectores

necesarios para tal fin es obtenida a partir de la siguiente descripcion:

VnoPTopio
Ndetectores - Va (2-2)

VnoPropio: corresponde al volumen del espacio no propio.

;. corresponde al volumen que ocupa un solo detector.

El volumen que ocupa un detector, V;, se describe como el volumen de un hipercubo

inscrito. Se toma esta definicion porque es posible cubrir un espacio n-dimensional utilizando
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hipercubos sin dejar espacios u hoyos. Por lo tanto, el volumen efectivo cubierto por un

detector de radio r se calcula de la siguiente forma:

v, = (%)n 2.3)

Para utilizar la ecuacion (2.2) es necesario conocer el volumen del espacio no propio.
Para este propdsito, se parte del hecho de que el espacio total propio/no propio corresponde a
un hipercubo unitario [0,1]™. El volumen del espacio propio/no propio es igual a 1, por lo

tanto, el volumen del espacio no propio se define como:

VnoPropio =1- Vpropio (2.4)

Un modelo para el espacio propio, S, puede ser definido asumiendo que si un
elemento estd suficientemente cercano a un dato propio, puede ser considerado también
como un dato propio. Esta cercania se especifica por un umbral, u, que define la distancia
minima entre un elemento x y un dato propio, tal que este elemento x pueda ser considerado

parte del conjunto propio, esto es:

§:={xEU|E|sES,

|s — x|| < u}
Se define el volumen del espacio propio (V,,opio) cOmo el volumen de S, el cual se calcula

como:
Vpropio =Vs= fXg(x)dx
U

X¢(x), corresponde a la funcion caracteristica del conjunto S definida por:

_( 1six €8
XS(x)_{Osixno € §
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Utilizando muestreo aleatorio se puede estimar el volumen del conjunto propio, Vs. El

valor esperado de X¢(x) es también una estimacion de Vs:

E[Xs(x)] = fUXg(x)dx =Vs
Ya que una buena estimacion de la media de una variable aleatoria (valor esperado)
es la media de un conjunto de muestras, se puede usar un promedio de {X¢(x;)}i=1 _,» COMO
un estimado del volumen del espacio propio:

Tt Xs(xp)
m

Vpropio ~ Vs = (2.5)

La estimacion de la integral definida, utilizando el promedio de la variable aleatoria

se conoce como la integracion de Monte Carlo (Nino, F., & Dasgupta, D., 2008).

2.4.3 ASN con detectores de radio fijo

El ASN consiste principalmente en dos fases. Primero, se genera un conjunto de
detectores en la fase de entrenamiento o generacion. Luego, en la fase de deteccion, los datos
nuevos son examinados utilizando los detectores. En el ASN con detectores de tamafo
constante, los detectores candidatos son generados aleatoriamente. Aquellos detectores que
coinciden con los datos propios, utilizando como medida de coincidencia la distancia
Euclidiana, son eliminados. La fase de generacion finaliza cuando el nimero preestablecido
de detectores es generado. El radio de deteccion en este caso es el mismo radio del detector,

el representa la distancia permitida al conjunto propio (Zhou, Ji, et al. 2004).
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2.4.4 ASN con detectores de radio variable.

En esta version del ASN, se parte del hecho que el umbral utilizado como criterio de
coincidencia define el radio de los detectores, y por lo tanto, es una buena opcién hacerlo
variable considerando que es probable que la region no propia cubierta por detectores sea de
tamafio variable. La primera ventaja es que se puede cubrir mayor area del espacio no propio
con menos detectores. Los pequefios espacios entre detectores y puntos propios no pueden
llenarse con detectores de tamafio constante, sin embargo, utilizando detectores de tamafio
variable, se pueden generar detectores de menor tamafio para cubrir los pequefios huecos,
mientras detectores mas grandes cubren el espacio no propio mas amplio. Otra ventaja es que
se puede utilizar la cobertura estimada como parametro de control, en lugar de utilizar el
nimero de detectores. Con el conjunto detector generado, el algoritmo puede
automaticamente evaluar la cobertura estimada, proporcionando un criterio de parada util.
Primero, un conjunto de parametros de control preestablecidos deben ser inicializados. El
parametro mas influyente es el umbral o radio propio i, el cual constituye un importante
mecanismo de balance entre la tasa de deteccion y la tasa de falsos positivos, en otras
palabras, la sensibilidad y precision del algoritmo. Debido a que los detectores no comparten
el mismo radio fijo, se debe realizar una distincion entre el radio propio y el radio variable de
los detectores r,;. Los otros dos pardmetros de control que determinan el criterio de parada
son: la cobertura estimada c, y el nimero maximo de detectores D,,,,. La cobertura
estimada es utilizada como uno de los criterios de parada, pero el parametro que se toma en
cuenta en la ejecucion del algoritmo es m, el cual se relaciona con la cobertura estimada de la

siguiente forma. Si se muestrean m puntos en el espacio considerado y solo un punto no es
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. . -, - - 1
cubierto, asumiendo que 1 es la cobertura total, la region no cubierta estimada es — Por lo

. 1 . p - .
tanto, la cobertura estimada es ¢, =1 — — Asi, el nimero de intentos (m) necesarios para

asegurar la cobertura estimada, c, es:

m=— (2.6)

1—C0

La fase de generacion del algoritmo comienza generando aleatoriamente detectores
candidatos, pero en lugar de generar un conjunto completo determinado por un parametro de
control fijo, los detectores se generan uno a la vez. Cada candidato individual es comprobado
utilizando el criterio de coincidencia determinada por la medida de distancia seleccionada. Si
la distancia al punto propio mas cercano es menor que el valor del radio propio, el detector es
eliminado y se genera un nuevo candidato. Si la distancia minima a cualquier punto propio es
mayor que el radio propio, entonces el detector es almacenado temporalmente y la distancia
es guardada como el radio r,;. Luego el detector candidato es chequeado para determinar si
puede ser detectado por otro detector candidato almacenado previamente. Debido a que no es
posible cubrir un volumen dado con detectores esféricos sin que exista solapamiento, se
permite un porcentaje de solapamiento entre detectores. Si el detector coincide con otro, es
eliminado, y el intento es almacenado en un contador que sera utilizado para estimar la
cobertura. Si el detector no coincide con algin detector previamente almacenado, es
almacenado permanentemente para la fase de deteccién y el contador es llevado a cero. Si el
namero de detectores alcanza su nimero maximo, o el contador de intentos consecutivos que
caen en puntos cubiertos alcanza un limite maximo (cobertura estimada), la fase de

generacion termina y en este ultimo caso se estima con confianza que la cobertura es
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suficiente para el espacio no propio. La fase de deteccion del algoritmo es similar a la del
algoritmo de detectores de tamafio fijo. La Unica diferencia es que el umbral detector
utilizado para la data desconocida se basa en el radio variable asignado a cada detector (Nino,

F., & Dasgupta, D., 2008).

Detectores de tamafio fijo Detectores de tamafio variable

Figura 2. 11 Comparacion de la cobertura de los detectores para los dos esquemas.



Capitulo 3

Metodologia

En este capitulo se presenta la metodologia aplicada para el desarrollo del mecanismo
de deteccion de Fallas en Equipos de Infusion de Insulina (FEII) utilizando el enfoque
inmunolégico. En primer lugar, se presentan consideraciones con respecto al simulador de
pacientes diabéticos UVA/PADOVA en el cual se simulan las FEII y se obtiene el conjunto
de datos objeto de estudio. También, se explica el proceso de generacion y la estructura de
los mismos. Posteriormente, se presenta la implementacion de dos versiones del Algoritmo
de Seleccion Negativa (ASN). Antes de utilizar los ASN en la deteccion de FEII es pertinente
realizar un proceso de validacion de los mismos. Luego, se ejecutan los ASN en la deteccion
de FEII y los resultados son comparados con los obtenidos al aplicar el enfoque estadistico

multivariable.

3.1 Simulador UVA/PADOVA

A continuacidn, se describen los pasos que permiten replicar los casos de estudio

utilizados por Rojas y su equipo (Rojas, R. et al., 2011).
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Ya que en el simulador de pacientes diabéticos UVA/PADOVA se cuenta con una
variedad de opciones para realizar pruebas, tales como: seleccion del escenario de pruebas,
pacientes objeto de estudio, mediciones de salida, entre otras, se comienza por seleccionar un
escenario de tres dias con tres comidas regulares cada dia. Del grupo de pacientes incluidos
en el simulador, se selecciona un grupo de 10 nifios y el paciente considerado como paciente

promedio, para un total de 11 casos de estudio.

Debido a que se necesita obtener dos conjuntos de datos: un conjunto de datos de
pacientes sometidos a terapia continua de infusion de insulina en momentos en los que el
equipo de infusion no presente fallas y un segundo conjunto de datos, que corresponde a
datos de los mismos pacientes cuando el equipo de infusion falla, en el subsistema de la
bomba de insulina del simulador se realizan modificaciones para simular las FEII. Las fallas
se generan durante el segundo dia del escenario. Se simulan como una degradacion en rampa,
de 100% a 0%, de la entrega de insulina en un periodo de 6 horas y sin entrega de bolo de
insulina después de la falla. Para obtener la degradacion en rampa se hacen modificaciones al
archivo simulink correspondiente a la plataforma de pruebas del simulador UVA/PADOVA
(figura 2.5). Especificamente, en el subsistema correspondiente a la bomba de infusion
(pump) se agrega una sefial tipo rampa, la cual se multiplica por la salida del modulo que
calcula la dosis de insulina justo antes de que esta sefial pase a la bomba de inyeccion. De
esta manera, luego de que el algoritmo de control calcule la dosis de insulina, ocurre
degradacion de la misma, no aplicandose la dosis adecuada al subsistema que representa al

paciente (Human Model).
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La degradacién en rampa de la infusion de insulina se genera a medianoche (12:00
a.m.) cuando no se presenta ninguna comida, al mediodia (12:00 p.m.) simultaneamente con
el almuerzo y a las 4:00 p.m., dos horas antes de la cena. Se realiza una simulacion por falla,
es decir para cada paciente se realizan tres simulaciones, una correspondiente a la falla de
medianoche, una segunda simulacién, correspondiente a la falla del mediodia y, finalmente,
la simulacién correspondiente a la falla de la tarde. Adicionalmente, se realiza una

simulacion en ausencia de fallas para cada paciente.

Luego de tener definidos el escenario de prueba, el grupo de pacientes objeto de
estudio y las fallas, se generan los datos. De las estructuras de datos del simulador, se extraen
vectores con valores del monitoreo continuo de glucosa, valores correspondientes a la dosis
de inyeccion de insulina, asi como también el vector de tiempos de simulacién. Se considera
un periodo de muestreo de 5 minutos para simular el muestreo real de los monitores

continuos de glucosa, CGM.

3.2 Implementacion del ASN

En esta seccion se describen los pasos a seguir para la implementacion y validacion
de las dos versiones originales del algoritmo de seleccion negativa y el procedimiento para

seleccion de parametros necesarios para la ejecucion de los mismos.

3.2.1 ASN con radio de deteccidn fijo

Este algoritmo es implementado en MATLAB® basado en lo descrito en el marco

teorico. Inicialmente, los datos utilizados son normalizados en el intervalo [0,1]. Para este
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proposito se programa una rutina en la que se emplea el comando norm de MATLAB®
aplicando la norma infinita. A continuacién, se define el conjunto propio a partir del conjunto
de datos que presentan caracteristicas similares. Los datos que conforman el conjunto propio
son seleccionados de forma aleatoria utilizando el comando randsample de MATLAB® que
permite obtener k-valores aleatorios muestreados uniformemente y sin reemplazo a partir del
conjunto dado. Se genera aleatoriamente el conjunto de tamafo prefijado de "posibles
detectores”, este proceso se realiza utilizando el comando rand de MATLAB® que devuelve
una matriz de la dimension requerida contentiva de valores aleatorios de una distribucion
uniforme estandar en el intervalo establecido, en este caso [0,1]. Luego, se procede a
determinar si cada detector generado coincide con algun dato del conjunto propio. Utilizando
estructuras de repeticion y decision se calcula, la distancia Euclidiana entre cada posible
detector y cada dato del conjunto propio. Si la distancia es menor al radio de deteccion
predefinido, el detector es descartado y se genera aleatoriamente uno nuevo. Este bucle
finaliza cuando se alcanza el namero de detectores predefinido, el cual es obtenido a partir de
la ecuacidn 2.2. Si la distancia es mayor al radio de deteccion, el detector es almacenado para
la siguiente fase del algoritmo (fase de deteccidon). Una vez generado el conjunto de
detectores, utilizando estructuras de repeticion, cada dato del universo de datos objeto de
estudio es comparado con cada detector y, con base en la distancia Euclidiana, se clasifica
como propio o no propio. Si la distancia entre el dato y el detector es menor al radio de
deteccidn, el dato es clasificado como no propio, si la distancia es mayor, se clasifica como
propio. En cada iteracion se va llenando el arreglo de clasificacion. Si el i-ésimo dato es

clasificado no propio, se establece “cero” en la posicion i del arreglo vy, si el dato es
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clasificado como propio, entonces, en esa posicion se fija el valor “uno”. Este arreglo es
utilizado para el calculo de tasas de deteccion y falsos positivos. La tasa de deteccion es la
suma de los puntos no propios detectados. La tasa de falsos positivos es la cantidad de puntos

propios detectados incorrectamente durante la ejecucion.

3.2.2 ASN con radio de deteccion variable

En el caso del ASN con radio de deteccion variable, se implementa un pseudocodigo
generado a partir de la descripcion del algoritmo y luego, es codificado en MATLAB®. De
igual manera que en el ASN de radio fijo, los datos utilizados son normalizados en el
intervalo [0,1] utilizando el comando norm de MATLAB® Yy aplicando la norma infinita.
Haciendo uso del conjunto definido como propio, un porcentaje de datos es elegido
aleatoriamente utilizando también el comando randsample. Los detectores se generan
aleatoriamente, uno a la vez, utilizando el comando rand de MATLAB®. Luego, se
comprueba que se mantienen a la distancia minima permitida del conjunto propio. Si la
distancia es menor, entonces el detector es eliminado y se genera uno nuevo. De lo contrario,
el detector se almacena junto a la distancia calculada, la cual representa su radio variable. A
su vez, se incrementa un contador de detectores. Haciendo uso de estructuras de repeticion y
decision, de la formula de distancia Euclidiana (ecuacion 2.1) y tomando en cuenta el
porcentaje de solapamiento permitido, se comprueba que el nuevo detector se encuentra
también a una distancia minima permitida de otros detectores (se utiliza como umbral el
radio variable del detector previo almacenado). Si la distancia es menor a la distancia

minima, se genera un nuevo detector. Si no, se incrementa un contador que indica que el
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nuevo detector no ha sido detectado por otro y se almacena para la etapa de deteccion. En
cada iteracion se va incrementando el contador de cobertura (m). Cuando el valor de este
contador mpmax €s alcanzado, el cual es obtenido utilizando la ecuacion 2.6 y estableciendo un
porcentaje de cobertura estimada deseado (c,), culmina la etapa de generacion de detectores.
La fase de deteccidn es similar a la del ASN con detectores de radio fijo, pero en este
caso el umbral o minima distancia permitida hasta cada punto del conjunto propio, se basa en
el radio variable asignado a cada detector. Cada dato desconocido cuya distancia hasta el
conjunto de detectores sea menor al radio de deteccion, se clasifica como no propio. En cada
iteracion se va asignando uno o cero en la posicion actual del arreglo de salida dependiendo

de si el dato es clasificado como propio 0 no propio, respectivamente.

3.2.3 Validacion del ASN

Para validar el funcionamiento de estos algoritmos, se utilizan los resultados
presentados por Zhou, Ji. et al., 2004 donde implementan las dos versiones del ASN. Zhou,
Ji. et al., ejecutan los ASN con el conjunto de datos Fisher’s Iris Dataset (Statlib datasets
archive, 2009) ampliamente utilizado en analisis que implican clasificacion. El conjunto de
datos incluye 150 muestras de tres tipos de flores (50 muestras por cada especie): Iris Setosa,
Iris Virginica, Iris Versicolor. Para cada especie de flor se utilizan medidas de cuatro
caracteristicas, largo y ancho del pétalo y del sépalo. Los investigadores se plantean estudiar
las propiedades y posibles ventajas que ofrece el ASN con detectores de radio variable. En la
fase de generacion de ambas versiones del ASN utilizan los datos de una de las especies de

flores como conjunto propio, mientras los otros dos son considerados como conjunto no
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propio. Los datos propios son utilizados completa y parcialmente en la fase de generacion de
detectores. El uso de una parte del conjunto propio permite demostrar la capacidad de los
algoritmos de reconocer datos propios desconocidos. Los resultados presentados son
obtenidos a partir de 100 pruebas repetidas para cada método. El radio de deteccion utilizado
es 0.1, un 99% de cobertura estimada y el maximo de detectores generados es 1000. Para
validar los ASN implementados en este trabajo de grado, se utilizan los mismos valores de
parametros. La media y desviacion estandar de las tasas de deteccion, tasas de falsos
positivos y nimero de detectores se muestran en la tabla correspondiente para su analisis y
poder determinar si la implementacion presentada es valida. El criterio utilizado para validar
los ASN consiste en calcular el valor medio porcentual de la diferencia entre las tasas

obtenidas y las publicadas y comprobar que es inferior al 10%.

3.2.4 Ajuste de parametros
3.2.4.1 ASN con radio de deteccion fijo

Los principales pardmetros del ASN con detectores de radio fijo son el radio de
deteccién y el nimero maximo de detectores. Ambos son parametros de disefio que el
investigador puede fijar segun sus criterios. En nuestro caso, el radio de deteccion se
obtendra a partir de la distancia Euclideana maxima entre centroide del conjunto propio y
cada elemento de este conjunto. Esta distancia maxima, es el punto de partida para el analisis
de sensibilidad que permita seleccionar el radio de deteccion adecuado. EI nlmero maximo
de detectores se calcula a partir de la ecuacion 2.2 y del procedimiento descrito en la seccion

24.2.
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El andlisis de sensibilidad para la seleccion del radio de deteccion se aplica sobre el
conjunto "Fisher’s Iris Dataset". Esta fase determina el efecto de la variacion de los valores
del radio de deteccion en el desempefio del ASN. Se selecciona el conjunto de datos flores
Virginica como conjunto propio. Se escoge como radio de deteccion base Rdb, la distancia
maxima obtenida entre el conjunto de datos propios y el centroide. Luego, se ejecuta el
algoritmo variando el radio de deteccion (se considera el 75%, 100%, 150% y 200% del
valor de Rdb). Finalmente, se determina el radio de deteccion a utilizar, basados en las

mejores tasas de deteccion y falsos positivos.

3.2.4.2 ASN con radio de deteccion variable

En la version del ASN con detectores de radio variable se utilizan los siguientes
parametros de disefio: nimero maximo de detectores, radio de deteccion, cobertura maxima
estimada y porcentaje de solapamiento permitido. Igual que en el caso del ASN de radio fijo,
estos parametros pueden ser fijados por el investigador. En nuestro caso, el radio se obtiene
determinando el centroide del conjunto de datos propios y calculando la distancia Euclidiana
que existe entre cada dato de ese conjunto y el centroide. A partir de este procedimiento se
obtiene el valor de radio base, Rdb, sobre el cual se realiza el anlisis de sensibilidad. El
nimero maximo de detectores se calcula utilizando la ecuacion 2.2 y del procedimiento
descrito en la seccion 2.4.2. Para establecer el valor del parametro adicional requerido en esta
version, se decide utilizar una cobertura estimada de 99%, ya que se requiere cubrir la mayor

parte del espacio no propio. A partir de la ecuacion (2.6) se calcula el valor del pardmetro m
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relacionado con la cobertura estimada y el cual, junto al nimero méaximo de detectores es

utilizado como criterio de parada del algoritmo.

Utilizando el conjunto “Fisher’s Iris Dataset” se determina el efecto de la variacion

de los valores del Rdb en el desempefio del ASN. Se considera el conjunto datos flores
Virginica como conjunto propio. Se ejecuta el algoritmo variando el valor del Rdb, se utiliza
75%, 150%, 200% y 250% de este valor. Luego de seleccionar el radio que permita obtener
mayores tasas de deteccion y menores tasas de falsos positivos, se varia el porcentaje de
solapamiento permitido entre detectores (25%, 15% y 5%) para estudiar su efecto en el
desempefio del algoritmo. Al concluir la etapa de pruebas, se seleccionan los valores

definitivos del radio de deteccion y el porcentaje de solapamiento.

3.2.4.3 Desempefio del ASN utilizando nuevos parametros

Luego de validar los ASN vy fijar nuevos valores para los pardmetros, obtenidos a
partir de los procedimientos descritos en la seccion anterior, se realizan pruebas considerando
los datos de cada una de las especies de flores como conjunto propio y los conjuntos de las
dos especies restantes como conjunto no propio. Con la finalidad de obtener un mejor
desempefio, la inicializacion de los pardmetros es independiente para cada conjunto de datos.
Se realizan 100 pruebas consecutivas en cada caso. La media y desviacion estandar de las
tasas de falsos positivos y deteccion se muestran en tablas correspondientes. La evaluacion
del desempefio de los ASN se realiza con base en los valores de parametros que permitan

obtener un balance entre altas tasas de deteccidn y bajas tasas de falsos positivos.
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3.2.5 ASN en la deteccion de FEII

Para la deteccion de Fallas en los equipos de Infusion de Insulina, FEII, utilizados por
pacientes que padecen diabetes tipo I, mediante ASN debemos acondicionar el algoritmo que
mostro el mejor desempefio en las pruebas de clasificacion de datos como detector de fallas.
En este caso la fuente de datos corresponde al monitoreo de glucosa del grupo de pacientes
in silico, en condiciones normales y en momentos en los que se simulan FEII, generados en

el simulador UVA/PADOVA.

Es necesario establecer una diferencia entre la aplicacion del ASN en la clasificacion
de datos (primera etapa de pruebas con el conjunto de flores Iris) y la aplicacion del ASN
como detector de FEII. La deteccion de FEII implica el manejo de datos de serie de tiempo.
La estructura de datos de los pacientes simulados incluyen el vector de datos del monitoreo
continuo de glucosa y el vector de tiempos de simulacion. Los datos de interés para nuestra
investigacion, generados en el simulador, tienen la estructura de un vector columna
contentivo de valores correspondientes al monitoreo de glucosa en plasma en periodos de
simulacion predefinidos. Se considera un periodo de muestreo de 5 minutos para simular el
muestreo real de los monitores continuos de glucosa. En este contexto, para la ejecucién del
ASN es necesario considerar vectores que contengan los Gltimos 45 minutos de datos para

glucosa en plasma y tiempo (10 datos).

Los datos requieren ser normalizados antes de ser utilizados en el algoritmo. La rutina

de normalizacion utilizada para este propdsito es la misma utilizada en la etapa de pruebas
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con el conjunto de flores Iris, realizando las adaptaciones necesarias debido a que la
dimensién del conjunto es distinta. Se selecciona el valor del radio de deteccion base, Rdb,
obteniendo el centroide del conjunto de datos normales (conjunto propio) y calculando la
distancia desde cada dato del conjunto hasta el centroide. Se elige como radio de deteccion
base (Rdb) la distancia minima calculada. Posteriormente, se realiza un analisis de
sensibilidad, utilizando los datos correspondientes al paciente promedio, variando el Rdb (se
utilizan el 50%, 75% 100% y 150% de este valor). El radio de deteccion se elige tomando en
cuenta las menores tasas de falsos positivos y mayores tasas de deteccion. EI ASN,
dependiendo de la version que se implemente, requiere que se asigne valores a los
parametros: nimero maximo de detectores, cobertura estimada, porcentaje de solapamiento
permitido entre detectores y radio de deteccion. La seleccion de estos valores se realiza
replicando el procedimiento utilizado el conjunto de datos de flores Iris. En caso de aplicar la
version de radio variable, se establece una cobertura estimada de 99.99% ya que se requiere
cubrir la mayor parte del espacio no propio, a partir de este valor, se calcula el parametro m
(utilizado como criterio de parada del algoritmo). El valor del porcentaje de solapamiento
permitido seleccionado es el que mejores tasas de deteccion y menores tasas de falsos
positivos genera en el andlisis de sensibilidad, en el cual se varia este valor (25%, 15% y
5%). ElI numero maximo de detectores se calcula a partir de la ecuacion 2.2. Una vez

establecidos los parametros a utilizar, se procede a ejecutar el ASN.

La primera fase del ASN, etapa de generacion de detectores, es una etapa en la que un

porcentaje del conjunto total de datos normales es seleccionado, aleatoriamente, para formar
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el conjunto propio. Se utiliza el 75% de los datos en condiciones normales. Para la seleccion
aleatoria, hacemos uso de la rutina implementada en MATLAB® utilizada en las pruebas
anteriores, nuevamente tomando en consideracién que las dimensiones de los conjuntos de
datos son diferentes. Cada dato de este conjunto propio es comparado con el conjunto de
detectores generado aleatoriamente. Esta comparacion consiste en calcular la distancia
Euclidiana entre cada punto propio y cada detector y si la misma es menor que la distancia
minima permitida, el detector es descartado y se genera uno nuevo, de lo contrario el detector
es almacenado. En el caso de ejecutarse la version de radio variable, el detector se almacena
junto a la distancia calculada, que se asigna como su radio variable. Se incrementa el
contador de detectores. Tomando en cuenta el porcentaje de solapamiento, se comprueba que
este nuevo detector se encuentra también separado de otros detectores. Si la distancia es
menor a la distancia minima, se genera un nuevo detector. Si no, éste se almacena para la
etapa de deteccion. En cada iteracion se va incrementando el contador de cobertura (m).

Cuando el valor de este contador mpax €s alcanzado, culmina la fase de generacion.

En la fase de deteccion se consideran los datos muestreados a partir del monitoreo
continuo de glucosa en momentos en los que se simulan las FEII. Se selecciona una banda de
valores de glucosa en plasma entre cero y 500 mg/dL. Cada valor muestreado es comparado
con cada dato del conjunto de detectores generado en la etapa anterior. La comparacion se
realiza calculando la distancia Euclidiana entre cada dato y si esta es menor al radio de
deteccidn definido, el dato es clasificado como no propio, de lo contrario es clasificado como

propio. En cada iteracion se va almacenando “uno” o “cero” en la posicion actual del arreglo
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de salida segin el dato sea clasificado como propio 0 no propio, respectivamente. Este
arreglo se utiliza para el célculo de tasas de deteccion y falsos positivos. Ademas, se genera
un arreglo contentivo de los datos clasificados como no propios y un arreglo de datos
clasificados como propios. Cada dato debe pasar por el proceso inverso a la normalizacion
inicial para hallar su equivalente en valor de glucosa en plasma y posteriormente ser utilizado
en la generacion de las gréficas correspondientes. En este contexto, clasificar el dato como
propio 0 no propio, es equivalente a detectar un punto normal o un punto de falla,

respectivamente.

3.3 Comparacion entre ASN y Enfoque Estadistico Multivariable

La comparacion entre los resultados obtenidos aplicando el ASN de radio variable y
los de la literatura (Rojas, Garcia y Bequette, 2011) obtenidos aplicando un enfoque
estadistico multivariable se realiza con base en la tasa de falsos positivos por hora y tiempo
de deteccion. Para esto se organizan dos tablas resumen, donde se muestran los resultados de

esta investigacion y los publicados.



Capitulo 4

Analisis de resultados

En este capitulo se presentan los resultados obtenidos al manejar el simulador
UVA/PADOVA para generar el conjunto de datos utilizados. De igual manera, se presentan
los resultados obtenidos al implementar y validar el ASN, por ultimo, se presentan los

resultados obtenidos al utilizar el ASN como método detector de FEII.
4.1 Simulador UVA/PADOVA

En figura 4.1, se observa la grafica correspondiente a los valores de insulina para el
paciente promedio simulado. En negro se aprecia la curva que describe un comportamiento normal
de los niveles de insulina. NOtese que los momentos en los que ocurre una elevacion de los
valores de insulina, son justamente en las horas donde el paciente consume alimentos
(desayuno, almuerzo y cena), lo que ocurre con la finalidad de mantener los valores de
glucosa en plasma dentro de los valores normales, los cuales se alteran con la ingesta
alimenticia. En color verde se observa la degradacion en rampa que ocurre a la dosis de
insulina en el momento en el que se genera la falla de medianoche, los valores de insulina
comienzan a degradarse con el transcurso. En rojo se presenta la degradacion que ocurre en
la dosis de insulina cuando se genera la falla del mediodia y en color azula la degradacion

de la dosis que ocurre al generar la falla de las cuatro de la tarde.
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Figura 4. 1 Degradacion en rampa de la dosis de insulina para el paciente promedio simulado

A continuacion, se presenta la grafica correspondiente a los datos obtenidos al

realizar las simulaciones del paciente #4. Se grafica, simultaneamente, la sefial del sensor

de monitoreo continuo de glucosa en momentos en los que no estaban ocurriendo FEII y la

sefial en momentos en los que se presentan las fallas. En la grafica color negro se aprecian

los valores de glucosa en plasma en ausencia de FEIIl. En color verde, rojo y azul, los

valores de glucosa en plasma después de producirse las fallas de medianoche, mediodia y

4:00 de la tarde, respectivamente.
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Figura 4. 2 Respuesta de la glucosa en plasma para las tres fallas simuladas. Paciente simulado #4.
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En la figura 4.3 se presenta el médulo de la bomba de insulina donde se incluye la
rampa de degradacion de la infusion de insulina. Como se puede observar, se agrega al
mddulo una sefal tipo rampa (observar el recuadro rojo) la cual es multiplicada por la sefial
de insulina total (dosis calculada) y el producto obtenido corresponde a la sefial que recibe
la bomba de infusion de insulina. La bomba de insulina recibe, por lo tanto, una sefial que

va siendo atenuada al transcurrir el tiempo.
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Figura 4. 3 Mddulo correspondiente a la bomba de infusion de insulina del simulador UVA/PADOVA incluyendo la rampa
de degradacion de insulina.

4.2 Implementacion del ASN

4.2.1 ASN con radio de deteccién fijo

El pseudocddigo obtenido para el ASN con detectores de radio fijo es el siguiente.

Cargar conjunto total de datos
Cargar conjunto propio

Seleccion tamafio conjunto propio
Ejecutar rutina de normalizacion
Ejecutar rutina de seleccion aleatoria
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Parametros predefinidos: 7y, Dy ax
Inicio
Mientras (i < Dyqx )

Generar aleatoriamente el conjunto de detectores, d;

Para cada muestra propia
Calcular la distancia a cada detector, dist
Si (dist < 1y)
Generar aleatoriamente un nuevo de detector, d;

Sino
Almacenar detector como d;
Incrementar i+1
Fin Si
Fin Para
Fin Mientras

Fin
Para cada dato desconocido d;
Hacer dist_min igual a infinito
Para cada punto del conjunto de detectores, d;
Calcular la distancia (dist) a cada dato desconocido
Si (dist < dist_min)
Almacenar dist como la nueva dist_min
Si (dist_min <
Almacenar 0 en posicion j del vector conjunto_propio
Sino
Almacenar 1 en posicién j del vector conjunto_propio
Fin Si
Fin Si
Fin Para
Fin Para
Fin

4.2.2 ASN con radio de deteccion variable
El pseudocodigo utilizado para implementar el ASN con detectores de radio variable

es el siguiente:

Cargar conjunto de datos propios
Seleccion tamafio conjunto propio
Ejecutar rutina de normalizacion
Ejecutar rutina de seleccion aleatoria
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Parametros de control predefinidos: 7y, My ax, Dimax
Inicio
Mientras (M < Myqx) || (I < Dinax )
Generar aleatoriamente el conjunto de detectores, d;
Calcular la distancia més corta a cada punto propio, dist_min
Si (dist_min < ry)
Retornar al inicio
Sino
Si (i=1)
Almacenar detector como d; y r4;= dist_min
Incrementar i+1
Sino
Calcular la distancia minima para cada detector anterior, dist_min2
Si (dist_min2 < ry;)
m=m+1
Sino
Almacenar detector como d; y r ;= dist_min
Incrementar i+1
m=0
Fin Si
Fin Si
Fin Si
Fin Mientras
Fin
Para cada dato desconocido d;
Hacer dist_min igual a infinito
Para cada punto del conjunto de detectores, d;
Calcular la distancia (dist) a cada dato desconocido
Si (dist < dist_min)
Almacenar dist como la nueva dist_min
Si (dist_min < rgj
Almacenar 0 en posicion j del vector conjunto_propio

Sino
Almacenar 1 en posicion j del vector conjunto_propio

Fin Si
Fin Si
Fin Para
Fin Para
Fin
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4.2.3 Validacion del ASN

A continuacion, se presenta la distribucion de los datos correspondientes al conjunto
de datos Fisher’s Iris (figuras 4.4 y 4.5). Inicialmente, se grafican las dos primeras dos
caracteristicas de cada tipo de flor (largo y ancho del sépalo) y, posteriormente, se grafican la
tercera y cuarta caracteristica de cada tipo de flor (largo y ancho del pétalo). Como se puede
apreciar en las graficas, los datos de la flor Iris Setosa estan claramente diferenciados del
resto de los datos, hecho que no se aprecia en el caso de las otras dos especies donde la

distribucion es menos definida.

Distribucidn conjunte flores Iris.
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Figura 4. 4 Distribucion del ancho y largo del sépalo. Conjunto de datos Iris.
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Figura 4. 5 Distribucion del ancho y largo del pétalo. Conjunto de datos Iris.
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En la tabla 4.1 se muestran los resultados obtenidos por Zhou, Ji et al., y los
resultados obtenidos en esta investigacion al aplicar el ASN con detectores de radio fijo
utilizando los mismos valores de los pardmetros (radio de deteccién: 0.1 y nimero méaximo
de detectores: 1000). Como se puede apreciar, en ambas implementaciones, las mayores tasas
de deteccion se obtienen al utilizar una parte del conjunto propio en la fase de generacion (25
datos). El error absoluto calculado entre las tasas publicadas y las obtenidas es inferior al

2.5% en todos los casos, llegando incluso a valores por debajo del 0.2%.

Tabla 4. 1 Tasa de deteccion obtenida al aplicar el ASN de radio fijo utilizando conjunto de datos flores Iris.

Numerode  Tasa de deteccion Tasa de deteccion Error absoluto

Conjunto datos (Zhou, Ji 2004) (%) Obtenida (%) %
de Datos Propios  Media DE Media DE

Setosa 50 100.00 0.00 99.40 1.51 0.60
Virginica 50 92.51 0.74 94.77 3.88 2.44
Versicolor 50 95.67 0.69 94.26 2.92 1.47

Setosa 25 100.00 0.00 99.55 0.90 0.45
Virginica 25 97.18 0.71 96.87 2.83 0.32
Versicolor 25 96.00 0.45 96.18 3.01 0.19

Tabla 4. 2 Tasa de falsos positivos obtenidas al ejecutar el ASN de radio fijo, utilizando conjunto de datos flores Iris.

NUmero de  Tasa de falsos positivos ~ Tasa de falsos Error absoluto
Conjunto datos (Zhou, Ji 2004) positivos obtenida %
de Datos Propios
Media DE Media DE
Setosa 50 0.00 0.00 0.00 0.00 0.00
Virginica 50 0.00 0.00 0.00 0.00 0.00
Versicolor 50 0.00 0.00 0.00 0.00 0.00
Setosa 25 11.18 217 10.78 6.48 3.58
Virginica 25 33.26 0.96 34.48 5.77 3.67

Versicolor 25 22.20 1.25 22.40 7.84 0.90
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Los resultados que se presentan en la tabla 4.2 corresponden a las tasas de falsos
positivos obtenidas al ejecutar el ASN con detectores de radio fijo. Igual que en el caso
anterior, los valores de los pardmetros utilizados son: radio de deteccién: 0.1, nimero total de
detectores generados: 1000. Las tasas de falsos positivos son mayores cuando se utilizan 25
datos como conjunto propio. El error absoluto porcentual obtenido entre los valores

publicados y los obtenidos es inferior al 5% en todos los casos.

Tabla 4. 3 Tasa de deteccion obtenida al ejecutar el ASN de radio variable. Utilizando conjunto de datos flores Iris.

NUmero de Tasa de deteccion Tasa de deteccion Error absoluto
Conjunto datos (Zhou, Ji 2004) obtenida %
de Datos Propios Media DE Media DE
Setosa 50 99.98 0.14 99.92 0.40 0.06
Virginica 50 81.87 2.78 89.19 5.52 8.94
Versicolor 50 85.95 244 84.16 5.49 2.08
Setosa 25 99.97 0.17 99.96 0.31 0.01
Virginica 25 93.58 2.33 9553 4.59 2.08
Versicolor 25 88.30 2.77 83.49 4,79 5.45

Los resultados que se presentan en la tabla 4.3 corresponden a las tasas de deteccion
obtenidas al ejecutar el ASN con detectores de radio variable. Se muestran los resultados
obtenidos por Zhou, Ji et al., y los obtenidos en esta investigacion. Los valores de los
parametros utilizados son: radio de deteccion: 0.1, nimero total de detectores generados:
1000, cobertura estimada: 99% y porcentaje de solapamiento: 5%. El porcentaje de

solapamiento permitido no es un dato aportado en la publicacion, por tal razon fue necesario
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ajustar el valor de este parametro para obtener tasas cercanas a las publicadas. Utilizando el
conjunto de flores Virginica y 25 datos como conjunto propio, el error absoluto porcentual es
el més elevado (superior al 8%), en los otros casos se mantiene inferior al 5%. Los valores
del error absoluto porcentual mas elevados en esta version del algoritmo son atribuibles al
desconocimiento del wvalor real del porcentaje de solapamiento utilizado por los

investigadores.

Tabla 4. 4 Tasa de falsos positivos obtenidas al ejecutar el ASN de radio variable. Utilizando conjunto de datos flores Iris.

Conjunto Namero de Tasa de falsos positivos Tasa de falsos Error absoluto
de Datos | datos propios (Zhou, Ji 2004) positivos obtenida %
Media DE Media DE

Setosa 50 0.00 0.00 0.00 0.00 0.00
Virginica 50 0.00 0.00 0.00 0.00 0.00
Versicolor 50 0.00 0.00 0.00 0.00 0.00

Setosa 25 1.32 0.95 2.14 0.70 6.21
Virginica 25 13.18 3.24 12.16 5.67 7.74
Versicolor 25 8.42 2.12 7.40 3.65 12.11

Los resultados que se presentan en la tabla 4.4 corresponden a las tasas de falsos
positivos obtenidas al ejecutar el ASN con detectores de radio variable. Los valores de los
parametros utilizados son los mismos que en el caso anterior. En la version del ASN con
detectores de radio variable ejecutada en esta investigacion, la tasa de falsos positivos fue
cero en todos los casos en los que se utilizd el total de datos del conjunto propio (50 datos),
igual que en el estudio publicado. Las tasas de falsos positivos son mayores cuando se

utilizan 25 datos como conjunto propio. En el caso del conjunto de flores Versicolor y
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utilizando 25 datos como conjunto propio, el error absoluto porcentual es el mas elevado

(superior al 12%), en los otros casos se mantiene inferior al 8%.

Tabla 4. 5 Numero de detectores generados al ejecutar el ASN de radio variable. Utilizando conjunto de datos flores Iris.

Conjunto Nimero de Nimero de detectores Nimero de detectores Error absoluto
de Datos | datos propios (Zhou, Ji 2004) obtenidos %
Media DE Media DE

Setosa 50 20.00 7.87 16.34 5.43 18.30
Virginica 50 218.36 66.11 261.09 37.35 19.56
Versicolor 50 153.24 38.8 161.19 33.11 5.19

Setosa 25 16.44 5.63 14.00 2.09 14.84
Virginica 25 108.12 30.74 112.72 22.65 4.25
Versicolor 25 110.08 22.61 118.21 33.24 7.38

En la tabla 4.5 se resumen los resultados obtenidos al aplicar el ASN con detectores
de radio variable, los resultados corresponden a la cantidad de detectores generados. Se
muestran los resultados obtenidos en la publicacién de Zhou, Ji et al., y los obtenidos en
muestra investigacion. El error absoluto porcentual entre la cantidad de detectores generados
alcanza un valor de casi 20%. La cantidad de detectores generados tiene relacion directa con
el porcentaje de solapamiento que se permita, como este dato no es aportado por los
investigadores en su publicacion, el error absoluto porcentual puede atribuirse al ajuste que

fue necesario hacer para determinar el valor de este parametro.

Analizando las tablas correspondientes a las tasas de deteccion y falsos positivos
(tablas 4.1 a 4.4), es importante mencionar que el promedio de error absoluto porcentual para

las tasas de deteccion utilizando 50 datos es 2.60%, utilizando 25 datos como conjunto
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propio, este promedio es 2.01%. En el caso de las tasas de falsos positivos, el promedio de
error absoluto para los casos en los que se utilizé 50 datos es 0%. Cuando se utilizan 25 datos
el promedio de error es 5.71%. Finalmente, se puede concluir que los algoritmos
implementados en esta investigacidn son validos, ya que cumplen con el criterio propuesto en
el cual se acepta un error absoluto porcentual, entre tasas de deteccion y falsos positivos

publicadas y obtenidas, menor al 10%.

4.2.4 Ajuste de parametros
4.2.4.1 ASN con detectores de radio fijo

A continuacion se presentan los resultados obtenidos al realizar el procedimiento para
el ajuste de parametros. Se aplica el ASN de radio fijo haciendo variaciones en el radio de

deteccidn base, Rdb, y utilizando el conjunto de flores Virginica como conjunto propio.

Tabla 4. 6 Resultados obtenidos al ejecutar el ASN con detectores de radio fijo utilizando el conjunto Iris Virginica como
conjunto propio. Variacion del radio base de deteccion. Tasas de deteccion.

Conjunto de NuUmero de datos Tasa de Deteccion % Radio de
Datos Propios Media DE deteccidn base
50 98.78 0.70 75
50 98.05 1.00 100
50 96.12 2.33 150
50 94.84 4.92 200
Iris Virginica 25 99.62 0.56 75
25 99.05 0.96 100
25 97.73 1.89 150
25 97.44 3.08 200
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En la tabla 4.6 se muestran los valores de media y desviacion estdndar de las tasas de
deteccion al variar el radio de deteccion base. Las tasas de deteccion se mantienen en todas
las pruebas por encima del 94% y son mayores mientras menos datos se usen como conjunto
propio.

Tabla 4. 7 Resultados obtenidos al ejecutar el ASN con detectores de radio fijo utilizando el conjunto Iris Virginica como
conjunto propio. Variacion del radio de deteccion base (Rdb). Tasas de falsos positivos.

Conjunto de Numero de datos  Tasa de falsos positivos % Radio de
Datos Propios Media DE deteccion base
50 8.06 11.78 75
50 13.70 6.02 100
50 9.12 18.84 150
50 15.92 25.76 200
Iris Virginica 25 34.04 13.63 75
25 24.14 15.50 100
25 26.14 19.80 150
25 16.38 8.64 200

En la tabla 4.7 se muestra los resultados correspondientes a la media y desviacion
estandar de la tasa de falsos positivos obtenidos al aplicar el ASN de radio fijo, variando el
radio de deteccion base. El nimero de datos utilizados como conjunto propio y las
variaciones del radio base, causan que las tasas de falsos positivos varien desde un valor
superior al 34%, cuando se utiliza el 75% del radio de deteccidn base y se utilizan 25 datos
como conjunto propio, hasta un minimo de 8.06% cuando se utiliza el 75 % del Rdb y se usa
el total de datos como conjunto propio (50 datos). Las tasas de falsos positivos son inferiores

mientras mas datos se usen como conjunto propio.
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4.2.4.2 ASN con detectores de radio variable

A continuacién se presentan los resultados correspondientes a media y desviacion

estandar de las tasas de deteccion y de falsos positivos, respectivamente, obtenidas al aplicar

el ASN de radio variable utilizando el conjunto de flores Virginica como conjunto propio,

cambiando el radio de deteccidn base y manteniendo el porcentaje de solapamiento en 25%.

Tabla 4. 8 Resultados obtenidos al ejecutar el ASN con detectores de radio variable utilizando el conjunto Iris Virginica
como conjunto propio. Variacion del Rdb. Tasas de deteccion.

Numero de datos Tasa de Deteccion % Radio de
Conjunto de Datos Propios Media DE  deteccién base
50 98.57 0.62 75
Iris Virginica 50 99.07 0.77 100
50 97.17 1.16 150
50 95.80 2.17 200
25 99.50 0.67 75
25 98.00 0.63 100
25 98.30 155 150
25 98.20 1.05 200

Tabla 4. 9 Resultados obtenidos al ejecutar el ASN con detectores de radio variable utilizando el conjunto Iris Virginica
como conjunto propio. Variacion del Rdb. Tasas de falsos positivos.

NuUmero de datos

Tasa de Falsos

% Radio de

Conjunto de Datos Propios positivos deteccidn base
Media DE
50 0.00 0.00 75
Iris Virginica 50 0.00 0.00 100
50 0.00 0.00 150
50 0.00 0.00 200
25 26.93 6.71 75
25 22.27 6.10 100
25 15.60 5.30 150
25 9.40 3.27 200
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Analizando los resultados mostrados en las tablas 4.8 y 4.9, las variaciones del radio
de deteccion base y el nimero de datos utilizados como conjunto propio causan que las tasas
de falsos positivos varien desde un valor medio superior al 26%, cuando se utiliza el 75% del
radio base y 25 datos como conjunto propio, hasta una media minima de 9.40% cuando se
utiliza el doble del radio de deteccion base y se utilizan 25 datos. Las tasas de falsos positivos
pueden reducirse al 0% cuando se utiliza el total de datos del conjunto propio en la fase de
generacién del algoritmo. La tasa de deteccidén se mantiene en todas las pruebas por encima
del 95%. Las mayores tasas de deteccion se obtienen al utilizar menos datos como conjunto

propio.

En las tablas 4.10 y 4.11 se muestran la media y desviacion estandar de las tasas de
deteccidn y falsos positivos, respectivamente, obtenidas al aplicar el ASN con detectores de
radio variable. En este caso se utiliza el doble del radio de deteccion base (Rdb) y se varia el
porcentaje de solapamiento permitido para evaluar su efecto en el desempefio del algoritmo.
Se utiliza el doble del radio de deteccion base ya que fue el radio que permitié lograr
menores tasas de falsos positivos y mayores tasas de deteccion. En este sentido, debido a que
el 5 % de solapamiento ofrece mejores tasas de deteccién y menores tasas de falsos positivos,
se establece este valor para la siguiente fase de pruebas. La seleccion del valor de los
parametros obedece a la finalidad con la que se utilice el algoritmo. Si la prioridad es que la
deteccidn sea totalmente precisa, es posible lograrlo a costa de una tasa mayor de falsos
positivos. Por otro lado, si un alto porcentaje de falsos positivos no es conveniente, es posible

lograr un valor adecuado, permitiendo tasas de deteccion menores.
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Tabla 4. 10 Resultados obtenidos ejecutando el ASN con detectores de radio variable utilizando el conjunto Virginica como
conjunto propio. Variacion del porcentaje de solapamiento. Tasa de deteccion.

Ndmero de datos Tasa de Deteccion % Radio de
Conjunto de Datos Propios Media DE solapamiento
50 95.80 2.17 25
Iris Virginica 50 94.70 2.37 15
50 93.17 4.37 5
25 98.20 1.05 25
25 97.73 1.98 15
25 96.00 4.30 5

Tabla 4. 11 Resultados obtenidos ejecutando el ASN con detectores de radio variable utilizando el conjunto Iris Virginica
como conjunto propio. Variacion del porcentaje de solapamiento. Tasa de falsos positivos.

Conjunto de Datos NUmero de datos ~ Tasa de Falsos positivos % Radio de
Propios Media DE solapamiento
50 0.00 0.00 25
Iris Virginica 50 0.00 0.00 15
50 0.00 0.00 5
25 9.40 3.27 25
25 10.00 4.87 15
25 8.47 6.23 5

4.2.4.3 Desempenio del ASN utilizando nuevos parametros

En esta seccidn se presentan resultados correspondientes a la ejecucion de los ASN
utilizando los parametros seleccionados con base en los analisis realizados en la seccion
inmediata anterior. Se presentan los resultados correspondientes a los mejores desempefios

de ambas versiones el ASN.
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ASN variando el radio de deteccian.
Conjunto propio: Flores Virginica (25 datos).
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Figura 4. 6 . Efectos de la variacion del radio de deteccidn sobre las tasas de deteccion y falsos positivos.

En la figura 4.6 se muestran las graficas correspondientes a los resultados obtenidos al
ejecutar el ASN con detectores de radio fijo y variable cambiando el radio de deteccion. El
conjunto de flores Virginica conforma el conjunto propio y se utiliza la mitad del conjunto
(25 datos) en la fase de generacion de detectores. Se observa que las tasas de falsos positivos
son menores cuando se ejecuta el ASN con detectores de radio variable, pero, al aumentar el
radio de deteccion, las tasas de falsos positivos disminuyen para ambas versiones del
algoritmo. Las tasas de deteccion disminuyen conforme se utiliza un radio de deteccion
mayor.

En la tabla 4.12 se presentan los resultados al ejecutar ambas versiones del ASN
utilizando el conjunto de datos de las flores Iris, pero seleccionando los pardmetros a partir

de la descripcion detallada en la seccion relativa al ajuste de parametros (seccion 3.2.4).



69

Como se puede observar, las tasas de deteccidn se mantienen por encima 96%, lo cual
representa una mejora con respecto a la ejecucién de los algoritmos con valores de
pardmetros propuestos en la investigacion de Zhou, Ji et al., en la que la tasa de deteccion
puede llegar a una media minima de 81.87%. Las tasas de falsos positivos (tabla 4.13)
pueden llegar a 0% cuando se utiliza el total de datos del conjunto propio, cosa que también
se observa en los resultados publicados por Zhou, Ji et al. Cuando se usan menos datos como

conjunto propio, las tasas de falsos positivos se elevan.

Tabla 4. 12 Resultados obtenidos aplicando ASN de radio fijo y variable. Utilizando conjunto de datos flores Iris y los
parametros calculados. Tasas de deteccion.

Ndmero de Tasa de Deteccion Tasa de Deteccion
Conjunto datos Radio Fijo Radio Variable
de Datos Propios Media DE Media DE
Setosa 50 100.00 0.00 100.00 0.00
Virginica 50 98.03 1.22 96.60 1.54
Versicolor 50 98.96 1.02 96.40 1.56
Setosa 25 100.00 0.00 100.00 0.00
Virginica 25 98.99 1.03 98.23 1.23
Versicolor 25 99.51 0.77 98.13 1.63

Tabla 4. 13 Resultados obtenidos aplicando ASN de radio fijo y variable. Utilizando conjunto de datos flores Iris y los
pardmetros calculados. Tasas de falsos positivos.

Conjunto Numero de Tasa de falsos positivos Tasa de falsos positivos
de Datos datos Radio Fijo Radio Variable
Propios Media DE Media DE
Setosa 50 9.16 3.44 0.00 0.00
Virginica 50 6.92 1.18 0.00 0.00
Versicolor 50 9.96 3.35 0.00 0.00
Setosa 25 18.18 2.13 6.53 3.10
Virginica 25 22.50 1.58 14.20 7.05
Versicolor 25 36.94 1.69 21.53 6.30
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En la tabla 4.14 se muestran la cantidad de detectores generados en ambas versiones del ASN
utilizando los parametros calculados en la seccidon inmediata anterior. La version del ASN

con detectores de radio variable genera una cantidad menor de detectores.

Tabla 4. 14 Resultados obtenidos aplicando ASN de radio fijo y variable. Utilizando conjunto de datos flores Iris y los
parametros calculados. Nimero de detectores.

Conjunto de Datos Numero de datos Numero de detectores Numero de detectores
Propios ASN radio variable ASN radio fijo

Media DE  Media DE
Setosa 50 131.64 21.97 1212 166.37
Virginica 50 121.54 22.89 1154 143.66
Versicolor 50 122.52 32.58 1174 180.67
Setosa 25 121.39 21.75 1227 158.47
Virginica 25 121.11 23.13 1233 118.42
Versicolor 25 119.21 32.97 1260 180.00

En este contexto, habiendo determinado que el desempefio del ASN con detectores de
radio variable ofrece ventajas en cuanto a menores tasas de falsos positivos y tasas mayores
de deteccidn, ademas de ser una version mas eficiente ya que requiere una menor cantidad de
detectores, lo que aumenta la velocidad de ejecucién del algoritmo, se decide implementar

esta version del algoritmo en la fase de deteccion de FEII.

4.2.5 ASN en la deteccion de FEII

Con base en los resultados obtenidos en la seccidn anterior, se utiliza el ASN con

detectores de radio variable para la deteccion de FEII.
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En la tabla 4.15 se presentan los resultados obtenidos al variar el radio de deteccion
base, aplicando el ASN con los datos correspondientes al paciente promedio cuando se
simulan las tres fallas. Se puede observar que las mayores tasas de deteccion y menores tasas
de falsos positivos se obtienen utilizando el 50% del Rbd. Por lo tanto, este valor es

seleccionado para la siguiente etapa de pruebas.

Tabla 4. 15 Efectos de la variacion del Rbd en las tasas de deteccion y falsos positivos.

Caso de estudio Falla 12:00 a.m. Falla 12:00 p.m. Falla 12:00 p.m. Rbd (%)
Tasa Tasa falsos Tasa Tasa falsos Tasa Tasa falsos
deteccion positivos  deteccion positivos  deteccion positivos
96.43 3.57 100.00 7.14 88.89 22.32 50
Paciente 92.86 7.29 92.31 14.29 77.78 25.16 75
Promedio 89.29 1071 92.31 2143 66.67 26.32 100
84.88 7.14 92.31 12.94 44.44 21.16 150

En la tabla 4.16 se presentan los resultados al variar el porcentaje de solapamiento
utilizando el valor del Rdb calculado en la fase anterior. Se ejecuta el ASN con los datos del
paciente promedio en momentos en los que se simulan las tres fallas. Se puede observar que
permitiendo el 25 % de solapamiento se obtienen las mayores tasas de deteccion y menores

tasas de falsos positivos.

Tabla 4. 16 Efectos de la variacion del porcentaje de solapamiento en las tasas de deteccion y falsos positivos.

Caso de estudio Falla 12:00 a.m. Falla 12:00 p.m. Falla 12:00 p.m. Solapamiento
Tasa Tasa falsos Tasa Tasa falsos Tasa Tasa falsos (%)
deteccion positivos  deteccion positivos  deteccion positivos
96.43 3.57 100.00 7.14 88.89 22.32 25

Paciente 82.14 17.86 92.31 14.29 100.00 26.32 15
Promedio | 7g 57 2143 9231 2857  100.00 36.32 5
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En la tabla 4.17 se presentan los resultados correspondientes a las tasas de deteccion
obtenidas al aplicar el ASN de radio variable en la deteccion de las FEII en el grupo de 11
pacientes simulados con los parametros seleccionados (50% del Rdb, 25% de solapamiento
permitido). Los resultados son obtenidos utilizando los datos de cada paciente en el momento
en el que se simularon tres fallas (a medianoche, a las 12:00 del mediodia y a las 4:00 de la

tarde).

Tabla 4. 17 Tasa de deteccion porcentuales aplicando ASN para cada paciente simulado (%).

Caso de estudio FEII de medianoche FEIl de mediodia FEII 4 de la tarde
(12:00 a.m.) (12:00 p.m.) (4:00 p.m.)
Paciente #1 98.75 92.31 72.22
Paciente #2 92.86 76.75 81.11
Paciente #3 89.29 92.15 77.78
Paciente #4 75.00 68.54 84.44
Paciente #5 96.43 100.00 78.89
Paciente #6 78.57 92.31 72.22
Paciente #7 96.42 91.13 75.56
Paciente #8 93.47 86.39 77.67
Paciente #9 89.28 93.08 77.78
Paciente #10 98.25 71.54 82.14
Paciente promedio 94.73 75.57 93.68

En la tabla 4.18 se muestran las tasas de falsos positivos porcentual al ejecutar el ASN con
los datos pertenecientes a los 11 pacientes simulados en los momentos en los que ocurre la
falla del mediodia y la falla de las 4 de la tarde. También se observan los resultados
obtenidos al ejecutar el ASN cuando no se presenta ninguna falla. La falla de medianoche no
se toma en cuenta debido a que se esta considerando un periodo de 24 horas para las

simulaciones, el cual comienza justamente con esta falla.
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Tabla 4. 18 Tasa de falsos positivos porcentuales aplicando ASN para cada paciente simulado (%).

Caso de estudio Sin FEII FEIl de mediodia FEIIl 4 de la tarde
(12:00 p.m.) (4:00 p.m.)

Paciente #1 0.00 28.57 21.05
Paciente #2 7.14 7.14 5.26
Paciente #3 10.71 14.29 21.05
Paciente #4 25.00 0.00 15.79
Paciente #5 13.57 7.14 26.32
Paciente #6 21.43 14.29 15.79
Paciente #7 3.57 7.14 15.79
Paciente #8 0.00 28.57 14.89
Paciente #9 10.71 14.29 21.05
Paciente #10 0.00 7.14 5.26
Paciente promedio 5.26 7.14 26.32

Paciente simulado #9. Falla de 4:00 p.m.
500 T
Glucosa en sangre normal

Falla simulada
Puntos de falla detectados
400 - Primer falso positiva
Punto de falla detectade correctamente

450 -

350

300

250

200

Glucosa en plasma (mgfdL)

150

100

50

0
12:00 a.m. 06:00 a.m. 12:00 p.m. 06:00 p.m. 12:00 a.m.
Tiempo (h:mm})

Figura 4. 7 VValores de glucosa en plasma paciente simulado #9 FEII 4:00 p.m. al utilizar ASN.

En la figura 4.7 se observan las curvas correspondientes a valores normales de
glucosa y valores cuando se simula la falla de las 4:00 p.m. para el caso del paciente #9. La

deteccidn correcta del primer punto de falla se produce 40 minutos después de haberse
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comenzado a simular la falla. Se puede observar que un periodo de 16 horas se detectan

erroneamente 2 puntos como puntos de falla (falsos positivos).

Paciente simulade #4. Falla de las 4:00 p.m.

500 T T T
Glucosa en sangre normal
L PTTTTTTTTTTTmT T me sy Falla simulada M
; : Puntos de falla detectados
400 - oo P 9 Primer falso positivo I
9 Punto de falla detectado correctamente

Glucosa en plasma (mg/dL)

0
12:00 a.m. 06:00 a.m. 12:00 p.m. 06:00 p.m. 12:00 a.m.
Tiempo (h:mm})

Figura 4. 8 Valores de glucosa en plasma paciente simulado #4. Falla 4:00 p.m.

En la figura 4.8 se presentan las curvas correspondientes a los valores de glucosa en
plasma del paciente simulado #4 en momentos en los que no se presenta FEII y cuando se
presenta la falla de las 4:00 p.m. Como se observa, el primer punto de falla se detecta
correctamente 30 minutos después de haberse comenzado a simular la falla. Se observa que

se detectan erroneamente cuatro puntos de falla antes de que la misma empiece a simularse.
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Paciente simulado #3. Falla de las 4:00 p.m.

500 T T T
450 Glucosa en sangre normal | i
Falla simulada H H
400 H Puntos de falla detectados e _
9 Primer falso positivo
%‘ 350 @ Punio de falla detectado comectamente |- .- o oo _
E’ T
= 300
@
E
o
= 290
=
5
@ 200
o
s
@ 150
100
50 .
i

0 1 1
12:00 am. 06:00 a.m. 12:00 p-m. 06:00 p-m. 12:00 a.m.
Tiempo {(h:mm)

Figura 4. 9 Glucosa en plasma. Paciente simulado #3 Falla de las 4:00 p.m.

En la figura 4.9 se presentan las curvas correspondientes a valores de glucosa en
plasma normales y valores cuando se presenta la FEIl de las 4:00 p.m. en el paciente
simulado #3. Como se observa ocurren un total de cinco detecciones anteriores a la falla, que
corresponden a falsos positivos en un periodo de 16 horas de simulacion. De igual manera, se
aprecia que la deteccion del primer punto de falla correctamente, ocurre 30 minutos luego de

haberse comenzado a simular la falla.

Paciants samulsdo #1

500
Ghucosa en sangre nomal —
450 |~| = Falla simadada B T T PR T P PR SPTETE
Punics de falla detectades : p g
200b| @  Primesfalso positie ek msmsmsasmmsmsmeesEessmsmenssssmsmsissesnanessasnsanennsnsnsneglensasnaneissnsasan]
o Primes punto de falla comecta : : ‘
a 50 T -
2
£ 300 -
=
E
- -~
= 250
=
s
o 200p-
o
g
& 10
[T E—
9 i i i
12 am 0600 am 12:00 pm 0500 pm 20 am

Figura 4. 10Glucosa en plasma. Paciente simulado #1 Falla de las 12:00 p.m



76

En la figura 4.10 se presentan las curvas correspondientes a los valores normales de
glucosa en plasma y los valores correspondientes a las concentraciones de glucosa cuando se
simula la FEII de las 12:00 p.m. en el paciente #1. Se puede observar que el primer punto de
falla se detecta 20 minutos despues del comienzo de la simulacion de la falla. De igual

manera, se puede observar que ocurren cuatro falsos positivos en un periodo de 12 horas de

simulacién.

Paciente simulado #2. Falla de mediodia.

o
=1
=}

T
Glucosa en sangre normal
Falla simulada
Puntos de falla detectados
@ Primer falso positivo

.

o

=
T

=

=

=]
T

@ Primer punto de falla correcto

)

o

=
T

[
=
=1

]
o
=}

[
=
=]

150

Glucosa en plasma (mg/dL)

100

50

0
12:00 a.m. 06:00 a.m. 12:00 p.m. 06:00 a.m. 12:00 a.m.
Tiempo (h:mm})

Figura 4. 11Glucosa en plasma. Paciente simulado #2 Falla de las 12:00 p.m

En la figura 4.11 se presentan las curvas correspondientes a los valores normales de
glucosa en plasma y los valores correspondientes a las concentraciones de glucosa cuando se
simula la FEII de las 12:00 p.m. en el paciente #2. Se puede observar que el primer punto de
falla se detecta 30 minutos después del comienzo de la simulacién de la falla. De igual

manera, se puede observar que ocurre un falso positivo en un periodo de 12 horas de

simulacién
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Paciente simulado #6. Falla del mediodia.

500 I T
Glucosa en sangre normal
450 Falla simulada
Puntos de falla detectados
400~ @ Primer falso positiva
@ Primer punto de falla correcto
O B
=]
S
= 300
@
£
@
£ 250
=
7
= 200
o
E
© 180F-
100
50
0 | | |
12:00 am. 06:00 a.m. 12:00 p.m. 06:00 p.m. 06:00 p-m.

Tiempo (h:mm)
Figura 4. 12 Glucosa en plasma. Paciente simulado #6. Falla del mediodia.

En la figura 4.12 se presentan las curvas correspondientes a los valores normales de
glucosa en plasma y los valores correspondientes a las concentraciones de glucosa cuando se
simula la FEII de las 12:00 p.m. para el paciente #6. Se puede observar que el primer punto
de falla se detecta 30 minutos después del comienzo de la simulacion de la falla. De igual

manera, se puede observar que ocurren tres falsos positivos en un periodo de 12 horas de

simulacion.
Paciente simulado #5. Falla de las 4:00 p.m.
500 T T
Glucosa en sangre normal
450 - Falla simulada ~ feemreerem e e =

Puntos de falla detectados

400-1 @ Primerfalso positivo o b —
9 Punto de falla detectade correctamente

Glucosa en plasma img/dL)

0 |
12:00 am. 06:00 a.m. 12:00 pm. 06:00 p.m. 12:00 am.
Tiempo (h:mm)

Figura 4. 13Glucosa en plasma paciente simulado #5. Falla de las 4:00 p.m.
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En la figura 4.13 se presentan las curvas correspondientes a los valores normales de
glucosa en plasma y los valores correspondientes a las concentraciones de glucosa cuando se
simula la FEII de las 4:00 p.m. para el paciente #5. Se puede observar que el primer punto de
falla se detecta 40 minutos después del comienzo de la simulacion de la falla. También, se

puede observar que ocurren tres falsos positivos en un periodo de 12 horas de simulacion.

4.3 Comparacion entre ASN y Enfoque Estadistico Multivariable

A continuacion se presentan dos tablas resumen en las que se muestran los resultados
obtenidos por Rojas et al. en la deteccion de FEII utilizando tres métodos estadisticos y los
resultados obtenidos utilizando el ASN con detectores de radio variable. Para comparar los
dos enfoques (estadistico e inmune) se toman en cuenta la tasa de falsos positivos por hora 'y

los tiempos de deteccion.

Tabla 4. 19 Tasa de falsos positivos (# fp/hora, Media (Desviacion Estandar)).

Caso Algoritmo Algoritmo Algoritmo ASN ASN (75%
Experimental ACP combinado CB (100% datos  datos propios)
propios)
Sin falla presente 0.04 (0.05) 0.08 (0.08) 0.21(0.13) 0.00 (0.00) 0.23 (0.09)
Falla de mediodia 0.00 (0.00) 0.05 (0.08) 0:13 (0.06) 0.00 (0.00) 0.45 (0.24)
Falla de 4 de la 0.02 (0.03) 0.07 (0.08) 0.02 (0.04) 0.00 (0.00) 0.33(0.11)
tarde

En la tabla 4.19 se muestran las tasas de falsos positivos por hora obtenidas al ejecutar los

algoritmos basados en un enfoque estadistico multivariable y el ASN de radio variable. Se
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observa que al ejecutar el ASN con el conjunto total de datos esta tasa se reduce a cero. Pero,

utilizando un porcentaje del conjunto de datos propios (75%), las tasas de falsos positivos

son mayores a las reportadas por Rojas, et al. (2011).

Tabla 4. 20Tiempo de deteccion (HH:MM, Media [Desviacion Estandar]).

Caso Algoritmo Algoritmo combinado Algoritmo ASN detectores de
Experimental CB PCA tamafio variable
Falla de medianoche 7:26 (0:50) 6:04 (2:03) 6.04 [2:03] 1:21[0:25]
(12:00 a.m.)
Falla de mediodia 1:04 (0:11) 2:05 (2:00) 3:04 [2:24] 0:30 [0:07]
(4:00 p..m.)
Falla de 4 de la tarde 2:45 (0:51) 3:09 (1:35) 3:49[0.48] 1:47 [0:35]
(4:00 p.m.)

En la tabla 4.20 se presentan los resultados correspondientes a los tiempos de

deteccidn obtenidos al aplicar algoritmos basados en el enfoque estadistico multivariable y el

algoritmo inmune implementado en nuestra investigacion. Se puede observar que el ASN

ofrece los menores tiempos de deteccion. En el caso de la falla simulada a medianoche la

deteccidn correcta del primer punto de falla ocurre, en promedio, una hora y 21 minutos

después de haber comenzado la simulacion de la FEII. En cuanto a la falla de mediodia, la

deteccidn ocurre, en promedio, 30 minutos después de haberse detectado la falla y en el caso

de la falla de las 4:00 p.m. la media del tiempo de deteccion es de 1 hora 47 minutos. Esto

representa una clara ventaja sobre los algoritmos basados en enfoques estadisticos, los cuales

arrojan medias de tiempos de deteccion mayores para las tres fallas simuladas.
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Es importante mencionar que el hecho de que las tasas de falsos positivos son
mayores, cuando se ejecuta el ASN con 75% de los datos del conjunto propio (ver tabla
4.19), constituye una desventaja de este algoritmo con respecto a los algoritmos basados en
enfoques estadisticos, ya que antes de producirse la primera deteccion correcta utilizando el

ASN, se detectan equivocadamente datos normales como falla.
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Conclusiones

El propdsito de esta investigacion fue estudiar el desempefio del algoritmo de seleccion
negativa de valores reales en la deteccién temprana de fallas de equipos de infusion de insulina
que son utilizados por pacientes que padecen diabetes tipo I. La investigacion se enfocO en
realizar pruebas preliminares a dos versiones del ASN y evaluar su desempefio utilizando para
ello un conjunto de datos apropiado. Se demostré experimentalmente, utilizando un conjunto de
datos ampliamente utilizados para probar algoritmos de clasificacion, que el ASN de valores
reales con detectores de tamafio variable representa la implementacion mas eficiente. Al utilizar
el ASN con detectores de radio fijo, se pudo observar que las tasas de falsos positivos son
mayores, mientras que en el caso del ASN con detectores de radio variable es posible reducir esta
tasa a cero. La cantidad de detectores generados en la version de radio variable es mucho menor a
la generada en la version de radio fijo, lo cual aumenta la velocidad de ejecucion del algoritmo.
La implementacién propuesta en nuestro trabajo fue comparada con una investigacion publicada
por Zhou, Ji et al. (2004), y se pudo determinar que es valida ya que cumple con el criterio de
error absoluto porcentual entre las tasas de deteccion y de falsos positivos publicadas y obtenidas,

inferior a 10%.

Luego de validar el ASN y determinar que la version que ofrece mayores ventajas es la

version de radio variable, se procedié a utilizar el ASN con detectores de radio variable en la
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deteccion de FEII en el grupo de pacientes in silico. Para este propdsito se ajustaron valores de
parametros y se hizo un pre-procesamiento a datos obtenidos del simulador de pacientes para
poder ser utilizados por el ASN. Finalmente, se compararon los resultados obtenidos con los
resultados de otras investigaciones orientadas a la deteccion de FEII, pero que utilizan algoritmos
basados en enfoques estadisticos. Se pudo demostrar que el ASN con detectores de radio variable
ofrece una ventaja que tiene que ver con el tiempo de deteccion. Resultados publicados, en los
que se utiliza el enfoque estadistico multivariable para la deteccion de FEII, muestran que la
media de tiempos de deteccién es mayor, para todos los casos estudiados, que la media de
tiempos de deteccion obtenida al ejecutar el ASN. Recordemos que, en este caso, es de gran
importancia que la deteccion de la falla ocurra en un tiempo adecuado para que se tomen
acciones correctivas antes de que las concentraciones de glucosa en sangre alcancen valores que
pongan en riesgo al paciente que utiliza este tipo de sistemas de infusidn continua de insulina. La
tasa de falsos positivos por hora y el tiempo de deteccion son los dos puntos clave tomados en
cuenta para realizar la comparacién entre los algoritmos presentados. En tal sentido, se determind
que los algoritmos inmunes ofrecen ventajas en cuanto al tiempo de deteccidn, pero en cuanto a
las tasas de falsos positivos por hora, los algoritmos basados en enfoques estadisticos, ofrecen
tasas menores. El proposito de la implementacion de estos algoritmos, es obviamente la deteccion
de las fallas, es decir, que sean eficientes al momento de clasificar correctamente los datos como
normales o anormales, pero si esta tarea no es realizada en el tiempo requerido, resulta poco
efectiva. Es por eso que se consideran los algoritmos inmunes como una herramienta con gran
potencial en el campo de investigacion relacionado con la deteccion de fallas en equipos de

infusién de insulina.
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Este estudio puede ser considerado como un aporte a investigaciones orientadas a la
deteccidn de este tipo de fallas, ya que no existe evidencia publicada de que el ASN haya sido
utilizado para este propdsito. El area de investigacion relacionada con los sistemas inmunes
artificiales y con la deteccion de FEII sigue siendo objeto de estudio y en futuras investigaciones
podrian emplearse el ASN con reglas de coincidencia distintas a la distancia Euclidiana para
realizar la clasificacion de los datos. De igual manera, es conveniente realizar pruebas con los
otros grupos de pacientes incluidos en el simulador UVA/PADOVA. Otro aspecto que podria
incluirse en futuros trabajos es utilizar distintas técnicas para el pre-procesamiento de los datos
gue van a ser utilizados y finalmente, se recomienda hacer pruebas con datos obtenidos de

pacientes reales.
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