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Resumen: 

 La detección de fallas en equipos utilizados por pacientes que padecen diabetes tipo I, 

quienes requieren terapias continuas de infusión de insulina, es de vital importancia. Las 

fallas en los equipos de infusión de insulina (FEII) traen como consecuencia que la dosis de 

insulina requerida no sea administrada eficientemente, esto conlleva a la elevación de niveles 

de glucosa en sangre conocida hiperglucemia. La hiperglucemia prolongada está relacionada 

con complicaciones que pueden producir daños graves e irreversibles en los pacientes. 

Existen diversos enfoques utilizados en la de detección de fallas, entre los que se incluyen 

métodos basados en modelos cualitativos y cuantitativos del sistema y métodos basados en el 

historial de datos del sistema, que han permitido avances importantes en el área. Por ejemplo, 

el empleo de métodos estadísticos ha demostrado ser una herramienta con gran potencial en 

la detección de FEII. Sin embargo, siguen existiendo fallas que no son detectadas o no son 

detectadas antes de que las concentraciones de glucosa en plasma alcancen valores que 

provoquen complicaciones en los pacientes. Teniendo esto en cuenta, se puede considerar 

que un enfoque enmarcado en el campo de la computación inteligente basado en el sistema 

inmune biológico podría ser utilizado para lograr esta tarea. En particular, un método como el 

Algoritmo de Selección Negativa (ASN) que pertenece a los denominados Sistemas Inmunes 

Artificiales (SIA) y que ha sido ampliamente utilizado en aplicaciones de ingeniería 

relacionadas con reconocimiento de patrones y detección de fallas. En este trabajo se propone 

implementar el Algoritmo de Selección Negativa (ASN) usando datos provenientes de 

pacientes simulados que están recibiendo la dosis adecuada de insulina y datos provenientes 

de los mismos pacientes en momentos en los que se presentan fallas que afectan la 

administración de insulina para que, a partir de la clasificación de los mismos, se pueda 

detectar la FEII. Los datos son obtenidos del simulador UVA/PADOVA de pacientes con 

diabetes tipo I y clasificados por el ASN en dos categorías: valores normales y anormales, 

estos últimos se interpretan como la ocurrencia de alguna falla en el mecanismo de infusión 
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de insulina del paciente. Finalmente, se evalúa su desempeño al comparar los resultados 

obtenidos con investigaciones anteriores que emplean el enfoque de detección de fallas 

usando el análisis estadístico multivariable.     

 

Palabras clave: 

Diabetes tipo 1, fallas en equipo de infusión de insulina, detección de fallas, sistema inmune 

artificial, algoritmo de selección negativa. 
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Capítulo 1 Introducción 

 La diabetes tipo I es un desorden metabólico provocado por un defecto en la 

secreción de insulina, lo cual conlleva a una elevación de los niveles de glucosa en sangre y 

alteraciones en el metabolismo de carbohidratos, grasas y proteínas. Ya que no existe cura 

para la diabetes tipo I, es necesaria la administración de insulina y el monitoreo de los niveles 

de glucosa en sangre de por vida.  Es vital contar con regímenes efectivos de terapia de 

insulina que permitan minimizar las fluctuaciones de glucosa en sangre (valores de glucosa 

en sangre muy elevados o muy bajos, conocidas como hiperglicemia o hipoglicemia 

respectivamente). La terapia de insulina puede ser aplicada en inyecciones múltiples diarias o 

por infusión subcutánea continua. La infusión subcutánea continua de insulina implica la 

conexión, a través de un catéter, a una bomba de insulina que permita administrar la dosis 

requerida por un individuo (Fundación Mayo para la investigación y educación médica, 

2019). 

      

  Un problema común encontrado en pacientes bajo terapia continua de insulina es la 

falla del equipo de infusión cuando el catéter de teflón o la aguja de acero se usan durante 

períodos de tiempo mayores a tres días. Las causas comunes de fallas en el equipo de 

infusión de insulina (FEII) incluyen equipos bloqueados, inflamación o fuga de insulina 

hacia la superficie de la piel. Estas fallas pueden hacer que la glucosa aumente a niveles 
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hiperglucémicos, incluso cuando el algoritmo de control (o el individuo) ha administrado la 

dosis de infusión de insulina requerida, ya que la misma no se está entregando de manera 

efectiva. La hiperglucemia prolongada se asocia con complicaciones a largo plazo en los 

ojos, riñones, nervios, corazón y vasos sanguíneos (Rojas, R., Garcia-Gabin, W., & Bequette, 

B. W., 2011). La importancia de contar con un sistema de detección de fallas eficiente en los 

sistemas de infusión continua de insulina que alerten al paciente que sus niveles de glucosa 

se están elevando, es evidente. 

 

 Una falla se puede definir como un alejamiento del rango aceptable de una variable 

observada o de un parámetro calculado asociado con un proceso.  La detección de fallas es 

un área de gran importancia en procesos de ingeniería en general. Los métodos de detección 

de fallas se pueden clasificar en tres categorías generales: métodos basados en modelos 

cuantitativos, métodos basados en modelos cualitativos y métodos basados en el historial de 

proceso. Los enfoques basados en modelos se limitan a manejar modelos lineales y, en casos 

específicos, algunos modelos no lineales. Para un modelo no lineal en general, las 

aproximaciones lineales pueden ser deficientes y la efectividad de métodos de detección 

basados en estos modelos puede verse bastante reducida (Venkatasubramanian, 

Rengaswamy, Yin, Kvuri., 2003). El método seleccionado para el diseño de un sistema de 

detección y diagnóstico de fallas, se apoya en el campo de aplicación. Por ejemplo, en el área 

industrial, algunos enfoques aplicados incluyen métodos basados en el historial de proceso, 

específicamente, métodos estadísticos como el análisis de componente principal (ACP) 

(García A., Diego, 2009). El enfoque inmune, es un método basado en el historial de proceso, 
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ya que no requiere el manejo del modelo matemático del sistema para su utilización, sino que 

contando con un historial de datos que describan el comportamiento del sistema, es posible 

diseñar un mecanismo para detectar cualquier cambio que equivalga a un distanciamiento del 

comportamiento aceptable. Los algoritmos inmunes han sido ampliamente utilizados en la 

detección de fallas en distintos campos, ofreciendo importantes ventajas, tales como, 

elevadas tasas de detección, bajas tasas de falsos positivos y cortos tiempos de detección.  

 

 Tomando en cuenta que el sistema objeto de estudio, es un sistema fisiológico y que 

se dispone del historial de datos que describen el comportamiento del sistema (registro de 

datos correspondientes a los valores de glucosa en sangre de pacientes simulados que 

padecen diabetes tipo I), se considera pertinente utilizar un enfoque de detección basado en el 

historial de proceso para detectar FEII. Concretamente, se propone el uso de uno de los 

algoritmos inmunes más utilizados en detección de fallas, el Algoritmo de Selección 

Negativa (ASN).          

1.1 Antecedentes 

 El desarrollo de un páncreas artificial en lazo cerrado, el cual incluye un monitor 

continuo de glucosa en sangre, una bomba de infusión continua de insulina subcutánea y un 

algoritmo de control en lazo cerrado es objeto de una investigación continua. Esta tecnología 

ha sido revisada por Bequette (2005), Doyle (2007), Kumareswaran (2009), Cobelli (2009) y 

Bequette (2010). Estos estudios han permitido la mejora de los algoritmos de control del 

páncreas artificial cuyo desarrollo se ha acelerado en los últimos años gracias a la simulación 
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por computadores. En 2008 un modelo computacional fue aceptado por primera vez por la 

Administración de Alimentos y Medicamentos (FDA) de EE.UU. como un sustituto para 

pruebas preclínicas de ciertos tratamientos con insulina, incluyendo algoritmos en lazo 

cerrado (Kovatchev BP, Breton M, Dalla Man C, Cobelli,2009). El primer simulador de 

diabetes tipo I, conocido como UVA/PADOVA, emuló los aspectos alimenticios e incluyó 

una población de 300 sujetos (100 adultos, 100 adolescentes y 100 niños). En el cada sujeto 

virtual es representado por un vector de parámetros extraído aleatoriamente de una 

distribución de parámetros adecuada (Visentin, R., Campos-Náñez, E., Schiavon, M., Lv, D., 

Vettoretti, M., Breton, M., & Cobelli, C. 2018).  

 Sin embargo, dichos dispositivos no se encuentran libres de fallas, en tal sentido, 

Guilhem et al. (2006) realizaron una investigación sobre los riesgos técnicos en la infusión 

subcutánea de insulina. En estudios utilizados por ellos como referencia, se reportan varios 

tipos de fallas en los equipos de infusión: obstrucción del equipo, fugas en el sitio de 

infusión, fugas en la conexión del equipo y fugas en el tubo de infusión. Los autores 

concluyen que aunque la terapia de infusión de insulina continua es eficaz en el tratamiento 

de pacientes diabéticos, los riesgos técnicos de esta terapia no deben ser subestimados.  

  Kölle et al. (2018) realizan una categorización de los métodos de detección de fallas 

y diagnóstico en sistemas de control de glucosa publicados con la finalidad de aportar una 

revisión del trabajo disponible a otros investigadores. Afirman que, frecuentemente, el primer 

paso para probar nuevos algoritmos de detección de fallas es realizar simulaciones en 

computadora. Sin embargo, los métodos publicados han sido probados en diferentes 

condiciones, incluyendo diferentes simuladores, lo que impide que los métodos puedan ser 
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comparados directamente unos con otros. Además, reportan que fallas como la interrupción 

en la infusión de insulina tienen efectos menos obvios y requieren métodos de detección 

complejos. Comparado con el número de estudios orientados a algoritmos de control de 

glucosa, existen pocas publicaciones relativas a detección y diagnóstico de fallas. 

 Una falla no detectada en el equipo de infusión de insulina puede conducir a una 

hiperglucemia y la cual de mantenerse a una cetoacidosis en unas horas. Rojas, García y 

Bequette (2011), utilizan métodos estadísticos para detectar este tipo de fallas. Aplican 

clasificación bivariante, análisis de componentes principales (ACP) y un enfoque combinado. 

Sus estudios preliminares indican que el algoritmo de clasificación bivariante es sensible a 

cambios en la pendiente de glucosa en plasma, pero arroja una tasa de falsos positivos 

elevada. El segundo algoritmo propuesto, el ACP, permite obtener las menores tasas de 

falsos positivos, sin mayores cambios en el tiempo de detección. Por último, el enfoque 

combinado permite obtener menores tiempos de detección, pero la tasa de falsos positivos es 

elevada.  

 Herrero et al. (2012) proponen un sistema de detección de fallas robusto. Para 

probar el desempeño del sistema, utilizaron un simulador de pacientes con diabetes tipo I 

aceptado por la FDA. El algoritmo se basa en un modelo de intervalos para manejar las 

incertidumbres en los parámetros del modelo, medidas y entradas. De 100 pruebas realizadas, 

ocurrieron solo dos falsos negativos y un falso positivo. Aunque los intervalos de detección 

son largos (media de 200 minutos), las fallas son detectadas antes de que los niveles de 

glucosa plasmática alcancen un máximo de 300 mg/dl (límite de seguridad predefinido). La 

técnica propuesta permite detectar solo un tipo de falla, la cual consiste en la desconexión del 
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equipo de infusión de insulina, es decir, casos en los que ocurre una supresión total de la 

infusión de insulina. Baysal et al. (2013), presentan enfoques que permiten detectar fallas en 

los equipos de infusión de insulina. Aplican un análisis estadístico multivariable que utiliza la 

pendiente del nivel de glucosa (aporte que reconocen a sus colegas Winston García y Ruben 

Rojas). En otro enfoque, proponen un umbral para el nivel de glucosa de 350 mg/dL. Para 

evitar exceso de falsos positivos, imponen un retraso de seis horas entre las alarmas de falla 

establecidas. Para evitar falsas alarmas, las alarmas se retienen hasta que el nivel de glucosa 

sea inferior a 250 mg/dL. Las medias de los tiempos de detección alcanzan 240 minutos. 

  Cescon et al. (2016), proponen un algoritmo para la detección temprana de fallas. En 

el estudio participaron 23 sujetos, evaluados una vez a la semana durante 3 semanas. Debido 

a que el sensor de glucosa y el equipo de infusión fueron cambiados al mismo tiempo en la 

segunda semana del estudio, el algoritmo recibió inicialmente como entrada un flujo de datos 

proveniente de dispositivos mal calibrados, lo que afectó negativamente su desempeño. No se 

tomó ninguna medida para corregir este problema y lo dejaron pendiente para próximas 

investigaciones. El método se basa en tres componentes: segmentación de los datos, el 

cálculo de tendencia lineal del monitoreo de glucosa continuo y conteo de insulina. Los 

autores plantean la necesidad de realizar estudios clínicos a largo plazo para disminuir la tasa 

de falsos positivos. Los resultados, al evaluar el algoritmo retrospectivamente, corresponden 

a 50% de sensibilidad, 66% de especificidad y 55% de precisión. 

 Como parte de las investigaciones dirigidas a resolver problemas de ingeniería en 

general, es pertinente tomar en consideración los avances en biología y genética molecular 

por medio de los cuales se ha logrado comprender cómo funciona el sistema inmune. Esto 

C.C. Reconocimiento

www.bdigital.ula.ve



  7 

 

resulta de gran interés no solo desde el punto de vista biológico, sino también desde una 

perspectiva computacional. Así como el sistema nervioso inspiró el desarrollo de redes 

neuronales artificiales (RNA), el sistema inmune ha permitido el desarrollo de sistemas 

inmunes artificiales (SIA) como un nuevo campo de investigación de la inteligencia 

computacional (De Castro, L. N., & Timmis, J. I., 2002). De los métodos allí desarrollados, 

el algoritmo de selección negativa (ASN) es uno de los métodos más utilizados y las 

aplicaciones donde se utiliza con mayor frecuencia incluyen: detección de cambios, 

detección de fallas y detección de intrusión en redes (Li T. ,Computer immunology, 2004). 

 Dasgupta y Forrest (1996,199) presentan un algoritmo de detección de anomalías, 

para aplicaciones industriales, inspirado en mecanismos de selección negativa del sistema 

inmune, el cual discrimina entre lo propio y no propio. Definen propio a patrones de datos 

normales y no propio es cualquier desviación que excede una variación permitida 

 Aguilar, Araujo y Aponte (2003) plantean un sistema de detección de fallas en 

pozos de gas basado en el ASN. Concluyen que el modelo desarrollado puede ser utilizado en 

sistemas de alto riesgo y sistemas reales, donde es deseable detectar algún comportamiento 

anormal rápidamente. 

 Dasgupta y Ji (2004), proponen una versión del ASN para datos de valores reales 

con detectores de tamaño variable. En su investigación proponen que un parámetro variable 

sea el tamaño de los detectores en un espacio de valores reales. Demostraron 

experimentalmente en su investigación que el esquema planteado es más efectivo, utilizando 

una menor cantidad de detectores, debido a su tamaño variable. Una de las ventajas que 
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ofrece esta versión del algoritmo es que el tiempo de ejecución, durante el proceso de 

generación de detectores y el proceso de detección, se reduce debido a la menor cantidad de 

detectores. 

  Mohammadi et al. (2016), proponen un sistema de detección de intrusiones, basado 

en anomalías, en redes de computadoras utilizando SIA, capaz de reconocer nuevos ataques. 

Los resultados experimentales demostraron que los algoritmos propuestos tienen una 

respuesta rápida, bajas tasas de falsas alarmas, altas tasas de detección, y son rápidos al 

identificar nuevas muestras.   

 

1.2 Planteamiento del Problema 

 Se han utilizado diferentes métodos y enfoques en la detección de fallas de equipos de 

infusión de insulina. Los resultados obtenidos en diversas investigaciones resaltan el 

potencial de los algoritmos desarrollados y apuntan a la necesidad de continuar realizando 

pruebas con el fin de perfeccionar su desempeño. En algunos casos, los algoritmos logran 

detectar solo fallas que implican una interrupción total de la infusión de insulina, en otros 

casos se reportan elevadas tasas de falsos positivos o bajas tasas de detección. El tiempo de 

detección también es un aspecto que requiere ser mejorado.  

  

 Partiendo del hecho de que se está realizando una investigación orientada a un 

sistema fisiológico y que se cuenta con el registro de datos que describen el comportamiento 

del sistema, se opta por proponer un enfoque basado en el historial de proceso para detectar 
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fallas en los equipos de infusión de insulina utilizados por estos pacientes. Es de gran 

importancia mencionar que la detección de la falla debe producirse en un tiempo que le 

permita al paciente tomar acciones antes de que la concentración de glucosa en plasma 

alcance valores que pongan en riesgo su vida. En este sentido, el presente trabajo de 

investigación propone el empleo de un enfoque basado en Sistemas Inmunes Artificiales 

(SIA). Específicamente, se propone emplear el Algoritmo de Selección Negativa (ASN) para 

determinar, si los valores de glucosa en sangre de un grupo de pacientes simulados están 

alcanzando niveles superiores a los normales, aún cuando el algoritmo de control del sistema 

está calculando la dosis de insulina adecuada que deberían estar recibiendo. Se busca 

comprobar si el ASN es capaz de mejorar el desempeño conseguido por otros métodos 

aplicados para la detección de fallas en este tipo de equipos.    

 

1.3 Objetivos 

1.3.1 Objetivo General 

 

 Detectar fallas en equipos de infusión de insulina utilizado por pacientes con diabetes 

tipo I, en un tiempo que permita al paciente tomar acciones correctivas, utilizando el 

algoritmo de selección negativa (ASN). 

1.3.2 Objetivos Específicos 

 

 Estudiar el funcionamiento del simulador de pacientes diabéticos UVA/PADOVA. 
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 Estudiar las modificaciones realizadas a los modelos para simular fallas de equipos de 

infusión de insulina en el simulador de pacientes seleccionado, UVA/PADOVA.  

 Estudiar la estructura de los conjuntos de datos generados a partir de simulaciones de 

las fallas que serán utilizados en diversas pruebas.  

 Realizar la revisión bibliográfica de los algoritmos de los sistemas inmunes 

artificiales. 

 Implementar el algoritmo de selección negativa según la literatura.  

 Comparar los resultados, obtenidos empleando el ASN, con resultados obtenidos en 

otras investigaciones orientadas a la detección de fallas en equipos de infusión de 

insulina.  

1.4 Justificación  

 Actualmente, existen investigaciones orientadas al desarrollo de algoritmos para la 

detección de fallas en equipos de infusión de insulina. Sin embargo, a pesar de haberse 

obtenido resultados favorables, en algunos casos, los algoritmos detectan solo fallas que 

implican la interrupción total de la infusión de insulina, más no casos de interrupción 

gradual. En otros casos, los algoritmos arrojan elevadas tasas de falsos positivos, bajas tasas 

de detección, o la detección no es realizada en un tiempo suficientemente corto como para 

evitar complicaciones en la salud del paciente.     

 Los Algoritmos de Selección Negativa (ASN) de los Sistemas Inmunes Artificiales 

(SIA), han sido ampliamente utilizados en casos de detección de fallas en aplicaciones 
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industriales, seguridad de redes, entre otras, demostrando que son una herramienta efectiva y 

con gran potencial en el área. El propósito de este trabajo de investigación es presentar un 

enfoque alternativo, basado en los SIA, para realizar la detección de fallas en equipos de 

infusión continua de insulina antes de que la concentración de glucosa en sangre alcance 

valores que pongan en riesgo la salud o la vida del paciente que lo utiliza. 

1.5 Metodología 

 En la primera etapa, se estudia el simulador de pacientes UVA/PADOVA. Se 

estudian las modificaciones que son necesarias hacer en el simulador que permitan obtener 

dos conjuntos de datos: un conjunto de datos de pacientes sometidos a terapia continua de 

infusión de insulina en momentos en los que el equipo de infusión no falla y un segundo 

conjunto de datos, que corresponde a datos de los mismos pacientes cuando se simulan fallas 

en el equipo de infusión. También se realiza un estudio de la estructura de los datos 

obtenidos, los cuales son utilizados como entrada al algoritmo detector de fallas.  

  

 Posteriormente, se realiza la revisión bibliográfica necesaria para obtener información 

relevante respecto a la diabetes tipo I, páncreas artificial, equipos de infusión de insulina y 

las fallas más comunes que se presentan en el uso de este tipo de equipos, así como también 

para conocer los conceptos básicos del sistema inmune. Se estudian los aspectos 

fundamentales de los SIA y algoritmos empleados en la detección de fallas, específicamente 

el algoritmo de selección negativa (ASN).  

C.C. Reconocimiento

www.bdigital.ula.ve



  12 

 

 El ASN se implementa en MATLAB®. Luego, se valida utilizando para esto un 

conjunto de datos apropiado que permita evaluar su desempeño (tasa de falsos positivos y 

tasa de detección). Seguidamente, los datos generados con el simulador de pacientes 

UVA/PADOVA son utilizados como la entrada del ASN para determinar si es capaz de 

detectar las fallas simuladas en un tiempo pertinente para tomar acciones antes de que 

ocurran daños irreversibles al paciente. Finalmente, se comparan los resultados con 

resultados obtenidos en otras investigaciones en las cuales se utiliza un enfoque estadístico 

multivariable para la detección de fallas.  

1.6 Alcance de la investigación 

 Se propone aplicar un enfoque inmune para la detección de fallas en equipos de 

infusión de insulina utilizado por pacientes que padecen diabetes tipo I y reciben terapia 

continua de infusión de insulina. La detección debe producirse en un tiempo que permita al 

paciente tomar acciones antes de que su salud se vea afectada. Para tal fin, se utilizan datos 

provenientes del simulador de pacientes diabéticos UVA/PADOVA. Se implementan en 

MATLAB® dos versiones del ASN de los SIA y se utilizan los datos anteriormente 

mencionados como entradas a los algoritmos. Finalmente, se realiza una comparación con 

resultados obtenidos aplicando el enfoque estadístico multivariable. Debido a que en ambas 

investigaciones se utiliza el mismo simulador de pacientes y el mismo tipo de falla, la 

comparación es pertinente.     
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Capítulo 2  

Marco Teórico 

 En este capítulo se presentan descripciones y conceptos teóricos relevantes para 

comprender qué son las Fallas de Equipos de Infusión de Insulina (FEII) y los Algoritmos de 

Selección Negativa (ASN) con los que se propone realizar la detección de las mismas.  

 

2.1 Diabetes tipo I 

 La diabetes tipo I, anteriormente conocida como diabetes juvenil o diabetes insulina 

dependiente, es una condición crónica en la cual el páncreas produce muy poca o no produce 

insulina. El papel de la insulina es transportar la glucosa desde el torrente sanguíneo hasta el 

músculo, grasa y otras células, donde puede almacenarse o utilizarse como fuente de energía. 

La glucosa (azúcar) es la fuente principal de energía para las células que forman los 

músculos y otros tejidos. La glucosa utilizada por el cuerpo proviene de dos fuentes 

principales: alimentación y el hígado. El azúcar se absorbe en el torrente sanguíneo, donde 

ingresa a las células con la ayuda de la insulina. El hígado almacena glucosa en forma de 

glucógeno. Cuando los niveles de glucosa están bajos, el hígado descompone el glucógeno 

almacenado en glucosa para mantener los niveles de glucosa dentro de un rango normal. En 
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la diabetes tipo I, como existe poca o no existe producción de insulina, la glucosa no puede 

entrar a las células y se acumula en el torrente sanguíneo. A pesar de que existe una 

investigación activa en este campo, hasta los momentos, la diabetes tipo I no tiene cura. El 

tratamiento se enfoca en manejar los niveles de azúcar en la sangre con insulina, dieta y 

estilo de vida que permitan prevenir complicaciones. La causa exacta de la diabetes tipo I es 

desconocida. Usualmente, el propio sistema inmune del cuerpo, el cual normalmente lucha 

contra elementos dañinos, erradamente destruye las células productoras de insulina en el 

páncreas. Una vez que un número significativo de células productoras de insulina del 

páncreas son destruidas, se produce muy poca o no se produce insulina (Fundación Mayo 

para la investigación y educación médica, 2019). Con el tiempo, las complicaciones de la 

diabetes tipo I pueden afectar órganos importantes en el cuerpo, incluyendo el corazón, vasos 

sanguíneos, nervios, ojos y riñones. Mantener un nivel normal de azúcar en la sangre puede 

reducir dramáticamente el riesgo de muchas complicaciones. Las complicaciones de la 

diabetes pueden ser incapacitantes e incluso potencialmente mortales (Rojas, R., Garcia-

Gabin, W., & Bequette, B. W., 2011).  

 

 El tratamiento para la diabetes tipo I incluye: recibir insulina; conteo de 

carbohidratos, grasas y proteínas; monitoreo continuo de niveles de azúcar en sangre; 

alimentación saludable, ejercicio y mantenimiento de un peso saludable. La meta es mantener 

los niveles de azúcar en sangre los más cercano posible a valores normales para prevenir 

complicaciones. Generalmente, esto incluye niveles de azúcar durante el día antes de las 

comidas entre 80 y 130 mg/dL y, después de las comidas, valores no mayores a 180 mg/dL. 
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Las personas con diabetes tipo I necesitan terapia de insulina de por vida. Debido a que las 

enzimas digestivas destruyen la insulina, interrumpiendo su acción, la insulina no puede ser 

administrada vía oral. Por lo tanto es necesario recibir insulina de una forma alternativa, para 

lo cual es posible utilizar uno de los siguientes mecanismos: inyecciones de insulina, bombas 

de infusión de insulina o una combinación de bombas de infusión de insulina, monitor de 

glucosa continuo y algoritmo de control en lazo cerrado (páncreas artificial en lazo cerrado). 

Un buen algoritmo de control para la administración de insulina en pacientes con diabetes 

tipo I debe incluir todas las variables, para así lograr normalizar los valores de glucosa en 

sangre. Después de prescribir una dosis inicial, la dosis debe ajustarse y basarse en el nivel de 

glucosa en la sangre. Este método de administración de insulina presenta un riesgo continuo 

de hiper e hipoglucemia porque las fluctuaciones de la glucosa momento a momento no se 

tratan adecuadamente con inyecciones de insulina subcutáneas intermitentes. El protocolo 

óptimo de administración de insulina es, por lo tanto, uno en el que el monitoreo de la 

glucosa en sangre y la dosificación de insulina se gestionen continuamente en tiempo real 

(Bequette, B. W., 2005). 

2.1.1 Páncreas artificial en lazo cerrado 

 Los tres componentes principales del sistema en lazo cerrado son: bomba de insulina 

continua, sensor de glucosa continuo y un controlador para ajustar la tasa de infusión de 

insulina basada en la señal de glucosa. Las principales limitaciones para desarrollar un 

páncreas artificial, son la disponibilidad de un sensor de glucosa robusto y confiable y un 
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algoritmo de control para regular glucosa en sangre bajo un amplio rango de escenarios de 

estados del paciente (Bequette, B. W., 2005).  

 

 

Figura 2. 1. Diagrama de bloques del  control por realimentación aplicado en un páncreas artificial. 

. 

 El principio básico del control por realimentación aplicado a un páncreas artificial se 

muestra en el diagrama de bloques de la figura 2.1. El valor de glucosa deseado es conocido 

como setpoint, r. La señal de salida (glucosa), y. El algoritmo de control está basado en la 

señal de error, e, la cual corresponde a la diferencia entre el setpoint y la señal de salida. 

      

 La señal manipulada (tasa de infusión de insulina) o salida del controlador es u.  

El controlador también puede tomar acciones de control si se utiliza una perturbación 

conocida para cambiar la entrada manipulada antes de que la perturbación afecte a la salida 

medida. Para el páncreas artificial, esta acción podría consistir en un bolo de insulina en 

anticipación a una comida, por ejemplo. Uno de los retos del control de glucosa en sangre es 
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el efecto de una comida, el cual puede ser visto como una perturbación al sistema. Algunas 

técnicas de control desarrolladas para el páncreas artificial, asumen que las perturbaciones 

ocurren como cambios en forma de escalón o rampa. Otro aspecto que se toma en cuenta 

para el desarrollo de los algoritmos de control, es la incertidumbre respecto a la cantidad de 

glucosa que es consumida en cada comida. También es importante mencionar que la 

sensibilidad a la insulina en cada individuo puede variar en períodos largos de tiempo, debido 

a cambios en su condición física y salud (Bequette, B. W., 2005).  

 

 Obviamente, el control de un páncreas artificial es mucho más que un simple 

algoritmo. El dispositivo debe ser fácil de programar y de usar para los especialistas médicos 

y para el paciente. Debe contar con una interfaz amigable, con un controlador fácil de 

configurar, el sensor debe ser fácil de calibrar y debe contar con un sistema de detección de 

fallas eficiente.  

2.1.2 Fallas en los Sistemas de Infusión de Insulina Continua 

 En los sistemas de infusión de insulina se reportan varios tipos de fallas, entre ellas, 

obstrucción del equipo de infusión, fugas en el sitio de infusión donde la aguja es colocada 

en el tejido subcutáneo, fugas en el lugar de conexión del equipo de infusión o fugas en el 

tubo de infusión. Generalmente, el sistema de alarma de los equipos de infusión no detecta 

las fugas. Más aún, en más de 85% de los eventos de oclusión, ocurre un deterioro 

metabólico antes de que se activen las alarmas de alta presión (Guilhem, I., Leguerrier, A. 

M., Lecordier, F., Poirier, J. Y., & Maugendre, D., 2006). Las complicaciones metabólicas 
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relacionadas con fallas en los equipos de infusión de insulina incluyen, cetoacidosis, hiper e 

hipoglicemia. La efectividad de las terapias de infusión continua de insulina subcutánea ha 

sido ampliamente probada en el control de glicemia en pacientes con diabetes tipo I. Por lo 

tanto, son mundialmente utilizadas en el tratamiento clínico de esta enfermedad. Sin 

embargo, los riesgos técnicos de esta terapia están presentes. De aquí la importancia de 

conducir investigaciones que permitan desarrollar mecanismos de detección de fallas 

eficientes.    

2.2 Simulador UVA/PADOVA 

 El simulador de pacientes diabéticos fue desarrollado por las Universidades de 

Virginia y Padova y aceptado por Administración de Alimentos y Drogas de los EE.UU, 

como sustitución de pruebas preclínicas para ciertos tratamientos con insulina, incluyendo 

algoritmos en lazo cerrado para el páncreas artificial (Visentin, R., Campos-Náñez, E., 

Schiavon, M., Lv, D., Vettoretti, M., Breton, M., & Cobelli, C., 2018). El simulador ha sido 

utilizado exitosamente por grupos de investigación académicos, así como también por 

compañías activas en el campo de la diabetes tipo I. El sistema ha demostrado que puede 

representar de forma adecuada los cambios de glucosa observados durante las comidas en 

pacientes con diabetes tipo I.  

 

 El simulador está implementado en MATLAB®. Incluye, entre otros módulos, un 

sensor para el monitoreo continuo de glucosa, el cual provee series de tiempo de 

observaciones consecutivas sobre el proceso de variaciones de de glucosa en sangre. Otro 
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módulo importante es la bomba de insulina, la cual se utiliza para aproximar la entrega 

subcutánea de insulina tomando en cuenta el tiempo y dinámicas del transporte de insulina 

desde el tejido subcutáneo a la sangre. También cuenta con una interfaz de usuario que 

permite definir escenarios de prueba (horarios de comidas con las cantidades de 

carbohidratos correspondientes, etc.), permite seleccionar el grupo de  individuos objeto de 

estudio y un conjunto de mediciones de salida (Visentin et al., 2018). En la figura 2.2 se 

presenta un esquema simplificado de los principales componentes del ambiente de 

simulación en el cual se basa el simulador UVA/PADOVA. 

 

Figura 2. 2. Componentes principales del ambiente de simulación: modelo de glucosa-insulina (modelo 

humano), modelo del sensor, controlador y modelo de la bomba de insulina. 

2.2.1. Escenario del simulador UVA/PADOVA   

 El simulador de pacientes diabéticos UVA/PADOVA cuenta con una interfaz de 

usuario que permite seleccionar el escenario en el cual se quieren hacer las simulaciones. Se 

incluyen tres opciones de escenario: escenario de una comida, escenario de un día y 

escenario de una semana. El escenario también puede ser creado en un archivo ASCII que 

puede ser cargado directamente desde la interfaz. El simulador carga el escenario 
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reconociendo algunas etiquetas en el archivo y transfiere la información para ser utilizada 

durante la simulación. En el escenario seleccionado para realizar las simulaciones, se incluye 

la siguiente información: 

 Duración de la simulación. 

 Unidades de tiempo de simulación. 

 Tiempo del día en el que empieza la simulación (en minutos a partir de la 

medianoche). 

 Tiempo de inicio del lazo cerrado. 

 Unidad de tiempo del inicio del lazo cerrado. 

 Un vector del tiempo de comidas. 

 Unidad de tiempo del vector de comidas. 

 Vector de la cantidad de comidas en gramos. 

 Tiempo del bolo de insulina durante el lazo abierto. 

 Unidad de tiempo del bolo de insulina. 

 Cantidad del bolo de insulina (unidades de insulina) durante la etapa de lazo 

abierto. 

 Tasa basal de insulina específica para cada paciente. 

 Bolo óptimo, el cual es calculado en función de la cantidad de comida 

ingerida. Es específico para cada paciente. 

 Inyección de insulina basal durante el lazo abierto. 
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 En la figura 2.3 se muestra una imagen de la interfaz de usuario del simulador desde 

la cual puede ser directamente seleccionado el escenario en el cual se desea hacer las 

simulaciones, o en su defecto, desde donde puede ser cargado el archivo contentivo del 

escenario creado por el usuario.    

 

Figura 2. 3. Interfaz de usuario del simulador UVA/PADOVA. 

  

2.2.2 Selección de los sujetos y mediciones de salida 

 El usuario puede seleccionar un grupo de sujetos (niños, adolescentes, adultos) 

agregando la categoría correspondiente en la interfaz de usuario de la figura 2.3. De igual 

manera, el simulador permite seleccionar las mediciones de salida y gráficas. El simulador 
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cuenta con ocho pantallas de gráficas y 15 mediciones. Las gráficas incluyen la simulación 

completa y las medidas de salida son calculadas en la fase de regulación. La siguiente figura 

corresponde a la ventana donde pueden ser seleccionadas las mediciones de salida.  

 

 

Figura 2. 4Selección de mediciones de salida y gráficos. 

 

2.2.3 Plataforma de Pruebas 

 El archivo de plataforma de pruebas incluye el modelo de Simulink de la figura 4.5. 

El bloque color naranja contiene el controlador. En este modelo, el usuario puede reemplazar 

el bloque por su propio controlador y añadir el script de configuración desarrollado y 

cualquier función necesaria en la carpeta correspondiente del controlador. Si cualquier script 

o funciones son añadidas a una carpeta diferente, no será visible para el simulador y, por lo 

tanto, no podrá ser utilizada. De igual manera, es posible incluir nuevos bloques al modelo 

para simular, por ejemplo, algún tipo de falla.  
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Figura 2. 5 Módulo correspondiente a la plataforma de pruebas del simulador UVA/PADOVA. 

 

2.2.4 Generación de los datos 

 Los datos se almacenan en estructuras clásicas de MATLAB®. Para cada simulación 

la estructura de datos está compuesta por los resultados y el escenario. La estructura del 

escenario incluye los datos correspondientes a la configuración del escenario de pruebas: 

vector de cantidad de comidas en gramos, inyección de insulina basal durante el lazo abierto, 

duración de la simulación, tiempo en el que inicia el lazo cerrado, entre otras características 

específicas del escenario seleccionado. La estructura de los resultados incluye vector de 

valores de glucosa en sangre del paciente, vector de estados del sistema, vector de valores 

obtenidos del sensor de monitoreo continuo de glucosa, vector de dosis de inyección de 
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insulina, identificación del paciente y vector de tiempo de simulación. En la figura 2.6 se 

muestra un ejemplo de la estructura que tiene cada uno de los conjuntos de datos que fueron 

obtenidos con el simulador UVA/PADOVA. 

 

 

Figura 2. 6 Ejemplo de la estructura de los datos. 

 

2.3 Sistema Inmune Biológico (Nino, F y otros 2008) 

 El sistema inmune es una red compleja de tejidos, órganos, células y químicos 

especializados. Su función principal es reconocer la presencia de elementos extraños en el 

cuerpo y responder para eliminarlos o neutralizarlos. Todo ser vivo está expuesto a 

microorganismos (patógenos) que son capaces de causar enfermedades. Las sustancias que 

estimulan una respuesta inmunológica específica se conocen como antígenos, en otras 

palabras, los patógenos actúan como antígenos. El sistema inmune debe responder solo a 
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antígenos extraños, es decir, debe ser capaz de distinguir entre lo “propio” (células, proteínas 

y cualquier molécula que pertenece o es producida por el cuerpo) y lo “no propio”. En este 

sentido, las células que originalmente pertenecen a nuestro cuerpo y son inofensivas para su 

funcionamiento son llamadas propias, mientras que los elementos que causan enfermedades 

se denominan no propios. Una característica esencial del sistema inmune es el proceso de 

discriminación entre elementos propios y no propios, para lo cual cuenta con mecanismos 

sofisticados de reconocimiento de patrones y respuesta que utilizan una extensa red de 

mensajeros químicos. El sistema inmune es capaz de reconocer una variedad casi ilimitada de 

células infecciosas (elementos no propios). 

 

 El sistema inmune está compuesto por una gran variedad de moléculas, células y 

órganos que están esparcidos por todo el cuerpo. No existe un único órgano central 

controlando el funcionamiento del sistema inmune, sino que existen diferentes elementos 

transitando o en ubicaciones específicas que desempeñan roles complementarios. Los 

órganos que componen el sistema inmune se clasifican en órganos linfoides centrales 

(médula ósea y timo) y órganos linfoides periféricos (ganglios linfáticos, bazo, tejido mucoso 

del tracto respiratorio y digestivo). El propósito de los órganos linfoides centrales es generar 

y ayudar en el proceso de maduración de las células linfoides (linfocitos). Los órganos 

linfoides periféricos facilitan la interacción entre los linfocitos y los antígenos.  
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Figura 2. 7 Anatomía del sistema inmune (de Castro y Zuben, 1999). 

 

 Los linfocitos o glóbulos blancos son constituyentes importantes del sistema inmune. 

Estas células inmunes se producen en la médula ósea, circulan en la sangre y el sistema 

linfático, y residen en los órganos linfáticos para desempeñar funciones inmunológicas. La 

mayor población de linfocitos está constituida por linfocitos B y T. Los linfocitos T son 

células especializadas que maduran en el timo. Por otra parte, los linfocitos B son células 

especializadas capaces de reconocer antígenos particulares. 

 

 Desde la perspectiva del reconocimiento de patrones, una de las características más 

importantes del sistema inmune es la presencia de moléculas receptoras en la superficie de 

las células inmunes, capaces de reconocer una gama casi ilimitada de patrones antigénicos. 

Los dos tipos de células inmunes (linfocitos B y T) son bastante similares, pero difieren en 

cómo reconocen los antígenos y en sus roles funcionales. Las células B son capaces de 
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reconocer antígenos libres en solución (por ejemplo, en el torrente sanguíneo), mientras que 

las células T requieren que los antígenos sean presentados por otras células accesorias. En la 

figura 2.8 se observa que los antígenos están cubiertos con moléculas llamadas epítopes. 

Estas moléculas permiten que los antígenos sean reconocidos por los receptores (anticuerpos) 

ubicados en la superficie de los linfocitos B. Por otra parte, se observa que el antígeno debe 

ser procesado y presentado por una célula accesoria para que éste sea reconocido por los 

receptores de los linfocitos T.    

 

 

Figura 2. 8 Patrón de reconocimiento en el sistema inmune. Izquierda: Célula B reconociendo un antígeno. 
Derecha: Célula T reconociendo un antígeno presentado por una célula accesoria. 

 

  

 El reconocimiento de antígenos es el primer requisito para que el sistema inmune se 

active y se produzca una respuesta. El reconocimiento debe satisfacer ciertos criterios; 

primero, el receptor debe reconocer el antígeno con cierta afinidad, segundo, la unión entre el 

receptor y el antígeno debe ocurrir con una fuerza proporcional a esta afinidad. Si la afinidad 

es más grande que un umbral determinado (umbral de afinidad), entonces, el sistema inmune 

es activado. 
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 Uno de los órganos linfoides centrales es el timo. El timo está ubicado detrás del 

esternón y desempeña un rol muy importante en la maduración de los linfocitos T. Una vez 

que los linfocitos T son generados, migran al timo para ser sometidos al proceso de 

maduración denominado selección negativa, en el cual, los linfocitos T que reconocen 

elementos propios son eliminados. Este proceso es la base del ASN implementado en los SIA 

y que ha sido ampliamente utilizado en distintos campos computacionales. 

2.3.1 Discriminación entre lo propio y no propio 

 Las células T maduran en el timo. Allí, atraviesan por un proceso de selección que 

asegura que son capaces de reconocer solo células no propias. Este proceso es denominado 

selección negativa. El propósito de la selección negativa es realizar pruebas de tolerancia a 

células propias. Las células T que reconocen células propias, fallan en esta prueba, y solo 

aquellas células T que no reconocen células propias son conservadas. Este proceso puede ser 

visto como un filtrado de la gran diversidad de células T. Las células receptoras de los 

linfocitos T que son capaces de discriminar entre propio/no propio, son llamadas detectores. 

Entre  las principales funciones del sistema inmune biológico se distinguen reconocer y 

categorizar antígenos (Nino, F., & Dasgupta, D., 2008).   

2.3.2 Aspectos computacionales del sistema inmune 

 Desde un punto de vista del procesamiento de información, el sistema inmune 

biológico ofrece características interesantes, como por ejemplo:  

 Coincidencia de patrones: el sistema inmune es capaz de reconocer antígenos 

específicos y generar respuestas apropiadas. Esto se logra a partir de un mecanismo 
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de reconocimiento que se basa en uniones químicas entre receptores y antígenos. 

Estas uniones dependen de la forma de las moléculas y de la carga electrostática.  

 Extracción de características: Generalmente, los receptores inmunes no se unen al 

antígeno completo, más bien lo hacen a porciones (péptidos) de los mismos. De esta 

manera, el sistema inmune puede reconocer un antígeno solo coincidiendo con 

segmentos de él. Los péptidos son presentados a los receptores de los linfocitos por 

las células presentadoras de antígenos. Estas células actúan como filtros que pueden 

extraer la información importante y remover el ruido molecular. 

 Procesamiento distribuido: el sistema inmune no posee un controlador central. La 

detección y respuesta puede ser ejecutada local e inmediatamente sin comunicación 

con algún órgano central. Este comportamiento distribuido es logrado por billones de 

moléculas inmunes y células que circulan por los sistemas linfático y sanguíneo y 

son capaces de tomar decisiones en un ambiente de colaboración local. 

 Aprendizaje y memoria: una característica importante del sistema inmune es su 

habilidad para aprender de la interacción con el ambiente. La primera vez que un 

antígeno es detectado, una respuesta primaria es inducida e incluye la proliferación 

de linfocitos. Algunos de estos linfocitos son conservados como células de memoria. 

La próxima vez que el mismo antígeno es detectado, las células de memoria generan 

una respuesta más rápida e intensa.  
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2.4 Sistema Inmune Artificial         

 Los sistemas inmunes artificiales (SIA) pueden ser vistos como abstracciones 

computacionales de los sistemas inmunes biológicos, por lo tanto, muchas de las técnicas 

utilizadas están basadas en los modelos teóricos del sistema inmune natural. Se han 

desarrollado algoritmos basados en los procesos de maduración y censado de las células T, 

principalmente en el proceso de selección negativa que permite la discriminación de lo 

propio/no propio. A partir de este proceso se desarrolla el Algoritmo de Selección Negativa 

(ASN) del cual existen diferentes variaciones. También, se han desarrollado algoritmos 

inspirados en la respuesta antigénica llevada a cabo por las células B, el algoritmo de 

selección clonal y redes inmunes artificiales. La teoría de selección clonal se utiliza para 

explicar la proliferación de células inmunes ante la presencia de un estímulo antigénico. Los 

algoritmos basados en la teoría de selección clonal son comúnmente utilizados en 

optimización y reconocimiento de patrones. La teoría de las redes inmunes fue desarrollada 

para explicar cómo se forma la memoria inmune, algunos de los campos de aplicación de los 

algoritmos basados en redes inmunes incluyen robótica y control. Se han explorado y 

aprovechado muchas de las características de los mecanismos SIA en distintas áreas de 

aplicación. En general, las técnicas de computación inmunológica han sido utilizadas para 

resolver problemas en un amplio rango de dominios tales como: optimización, clasificación, 

detección de anomalías, aprendizaje automático, control adaptativo, minería de datos, 

reconocimiento de de imágenes y patrones, entre otros. Incluso han sido utilizados 

combinados con otros métodos como algoritmos genéticos, redes neuronales y lógica difusa. 

Aplicar un modelo basado en sistemas inmunes artificiales para resolver un problema 

C.C. Reconocimiento

www.bdigital.ula.ve



  31 

 

particular, requiere seleccionar el algoritmo inmune dependiendo del tipo de problema que se 

necesita resolver. Se deben identificar los elementos involucrados en el problema y cómo 

pueden ser modelados como entidades en un algoritmo inmune particular. Con base en sus 

características, algunas técnicas de los SIA se consideran más adecuadas para ciertas 

aplicaciones comparadas con otros enfoques. Se ha comprobado que los algoritmos de 

selección negativa han sido ampliamente usados en detección de fallas y seguridad 

computacional utilizando especialmente la propiedad de reconocimiento de lo propio y no 

propio (Nino, F., & Dasgupta, D., 2008).   

2.4.1 Algoritmos basados en selección negativa   

 El algoritmo de selección negativa (ASN) consiste en dos fases: la etapa de 

generación y la etapa de detección. En la fase de generación, los detectores son creados 

aleatoriamente y sometidos a un proceso de prueba en el cual son eliminados si coinciden 

con alguna muestra propia (la finalidad es generar detectores que no coincidan con datos 

considerados propios y solo coincidan con datos que describen un comportamiento anormal 

del sistema). El criterio de coincidencia está basado en la representación de los datos. Luego 

de tener un número suficiente de detectores, determinado por el criterio de parada, la fase de 

generación termina. Los datos desconocidos, los cuales describen el comportamiento del 

sistema en estudio, son comparados uno a uno con el conjunto de detectores para ser 

clasificados como propios o no propios. Si un dato desconocido coincide con algún detector, 

es clasificado como no propio. Si  el dato no es reconocido por algún detector, es asumido 
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como un miembro del conjunto propio (Nino, F., & Dasgupta, D., 2008) (Ji, Z., 2006). En la 

figura 2.9 se presenta un esquema general de las dos etapas del ASN. 

 

 

Figura 2. 9 Etapa de generación de detectores del ASN (izquierda). Etapa de detección (derecha). 

 

 El propósito fundamental del algoritmo de selección negativa es clasificar datos, por 

lo tanto el algoritmo es definido por el esquema de representación de los datos. Este estudio 

se enfoca en la representación de datos en valores reales. Para la representación de datos en 

vectores de valores reales, solo se han implementado esquemas de generación aleatoria de 

detectores. Otro aspecto importante en el desempeño del ASN, es la selección de la regla de 

coincidencia utilizada en el reconocimiento de datos. La selección de la regla de coincidencia 

o el umbral utilizado debe depender de la aplicación específica y de la representación de los 

datos. La regla de coincidencia es una medida de distancia, afinidad o similitud que dos datos 

comparten. Para una representación de los datos en vectores de valores reales, la regla de 

coincidencia común consiste en una medida de distancia matemática. El cálculo de una 

medida de distancia matemática arroja un número real que es asignado como afinidad, 
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permitiendo una comparación simplificada con el umbral de coincidencia asignado. La 

medida de distancia comúnmente implementada es la distancia Euclidiana.  

 

 La representación de los datos y las reglas de coincidencia definen cada algoritmo de 

selección negativa, sin embargo, existen otros factores que afectan su desempeño. El número 

de detectores generado afecta la eficiencia de generación y detección y, en consecuencia, la 

velocidad del algoritmo. El criterio de parada y los esquemas de generación de detectores son 

parámetros de control típicos para determinar un adecuado número de detectores y cobertura 

(Ji, Z., 2006). 

 2.4.2 Algoritmo de selección negativa de valores reales 

 En el ASN de valores reales, por definición, los datos y los detectores son 

representados por datos de valor real (Nino, F., & Dasgupta, D., 2008). La representación del 

espacio propio/no propio corresponde a un subconjunto de   . Se han desarrollado diferentes 

versiones del ASN de valores reales, las cuales incluyen: 

 Algoritmo heurístico para generar detectores hiperesféricos. 

 Selección negativa con reglas de detección (algoritmo para generar detectores 

hipercúbicos). 

 Selección negativa de valores reales aleatoria (genera detectores utilizando un 

proceso aleatorio para optimizar la distribución de los detectores). 

 Algoritmos con detectores de tamaño fijo y variable. 

 Selección negativa con regla de detección difusa. 
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 En los ASN de valores reales, un detector es definido como un vector n-dimensional 

que corresponde al centro y un valor real que representa su radio. La regla de coincidencia 

entre un detector y un dato anormal (antígeno), es expresada por una función miembro del 

detector, la cual es una función de la distancia entre el dato anormal y el detector. Existen 

distintas reglas de coincidencia (medidas de distancia), distintos mecanismos de generación 

de detectores y esquemas de detección que han sido implementados. Este estudio se enfoca 

en el empleo de la distancia Euclidiana (Ecuación (2.1)), como medida de distancia y la 

generación de detectores de tamaño fijo y variable.  

Distancia Euclidiana: 

          
 
               (2.1) 

 

 Los ASN de radio fijo y radio variable de valores reales tienen como objetivo 

principal generar un conjunto de detectores que cubran el espacio no propio. Por lo tanto, en 

el caso de ASN de valores reales, una buena aproximación del número de detectores 

necesarios para tal fin es obtenida a partir de la siguiente descripción: 

            
         

  
        (2.2) 

         : corresponde al volumen del espacio no propio. 

  : corresponde al volumen que ocupa un solo detector. 

 

 El volumen que ocupa un detector,   , se describe como el volumen de un hipercubo 

inscrito. Se toma esta definición porque es posible cubrir un espacio n-dimensional utilizando 
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hipercubos sin dejar espacios u hoyos. Por lo tanto, el volumen efectivo cubierto por un 

detector de radio r se calcula de la siguiente forma: 

    
  

  
 
 

           (2.3) 

 

 Para utilizar la ecuación (2.2)  es necesario conocer el volumen del espacio no propio. 

Para este propósito, se parte del hecho de que el espacio total propio/no propio corresponde a 

un hipercubo unitario       . El volumen del espacio propio/no propio es igual a 1, por lo 

tanto, el volumen del espacio no propio se define como: 

                           (2.4) 

 

 Un modelo para el espacio propio,   , puede ser definido asumiendo que si un 

elemento está suficientemente cercano a un dato propio, puede ser considerado también 

como un dato propio. Esta cercanía se especifica por un umbral, u, que define la distancia 

mínima entre un elemento x y un dato propio, tal que este elemento x pueda ser considerado 

parte del conjunto propio, esto es: 

                         

 Se define el volumen del espacio propio (       ) como el volumen de   , el cual se calcula 

como:  

                     
 

 

         ,  corresponde a la función característica del conjunto    definida por: 
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 Utilizando muestreo aleatorio se puede estimar el volumen del conjunto propio,    . El 

valor esperado de        es también una estimación de    : 

                    
 

     

 Ya que una buena estimación de la media de una variable aleatoria (valor esperado) 

es la media de un conjunto de muestras, se puede usar un promedio de                como 

un estimado del volumen del espacio propio: 

            
        

 
   

 
        (2.5) 

 

 La estimación de la integral definida, utilizando el promedio de la variable aleatoria 

se conoce como la integración de Monte Carlo (Nino, F., & Dasgupta, D., 2008).   

2.4.3 ASN con detectores de radio fijo 

 El ASN consiste principalmente en dos fases. Primero, se genera un conjunto de 

detectores en la fase de entrenamiento o generación. Luego, en la fase de detección, los datos  

nuevos son examinados utilizando los detectores. En el ASN con detectores de tamaño 

constante, los detectores candidatos son generados aleatoriamente. Aquellos detectores que 

coinciden con los datos propios, utilizando como medida de coincidencia la distancia 

Euclidiana, son eliminados. La fase de generación finaliza cuando el número preestablecido 

de detectores es generado. El radio de detección en este caso es el mismo radio del detector, 

el representa la distancia permitida al conjunto propio (Zhou, Ji, et al. 2004).   
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2.4.4 ASN con detectores de radio variable. 

 En esta versión del ASN, se parte del hecho que el umbral utilizado como criterio de 

coincidencia define el radio de los detectores, y por lo tanto, es una buena opción hacerlo 

variable considerando que es probable que la región no propia cubierta por detectores sea de 

tamaño variable. La primera ventaja es que se puede cubrir  mayor área del espacio no propio 

con menos detectores. Los pequeños espacios entre detectores y puntos propios no pueden 

llenarse con detectores de tamaño constante, sin embargo, utilizando detectores de tamaño 

variable, se pueden generar detectores de  menor tamaño para cubrir los pequeños huecos, 

mientras detectores más grandes cubren el espacio no propio más amplio. Otra ventaja es que 

se puede utilizar la cobertura estimada como parámetro de control, en lugar de utilizar el 

número de detectores. Con el conjunto detector generado, el algoritmo puede 

automáticamente evaluar la cobertura estimada, proporcionando un criterio de parada útil. 

Primero, un conjunto de parámetros de control preestablecidos deben ser inicializados. El 

parámetro más influyente es el umbral o radio propio   , el cual constituye un importante 

mecanismo de balance entre la tasa de detección y la tasa de falsos positivos, en otras 

palabras, la sensibilidad y precisión del algoritmo. Debido a que los detectores no comparten 

el mismo radio fijo, se debe realizar una distinción entre el radio propio y el radio variable de 

los detectores   . Los otros dos parámetros de control que determinan el criterio de parada 

son: la cobertura estimada    y el número máximo de detectores     . La cobertura 

estimada es utilizada como uno de los criterios de parada, pero el parámetro que se toma en 

cuenta en la ejecución del algoritmo es m, el cual se relaciona con la cobertura estimada de la 

siguiente forma. Si se muestrean m puntos en el espacio considerado y solo un punto no es 
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cubierto, asumiendo que 1 es la cobertura total, la región no cubierta estimada es  
 

 
. Por lo 

tanto, la cobertura estimada es       
 

 
  Así, el número de intentos (m) necesarios para 

asegurar la cobertura estimada,    es:  

m=
 

    
           (2.6) 

 La fase de generación del algoritmo comienza generando aleatoriamente detectores 

candidatos, pero en lugar de generar un conjunto completo determinado por un parámetro de 

control fijo, los detectores se generan uno a la vez. Cada candidato individual es comprobado 

utilizando el criterio de coincidencia determinada por la medida de distancia seleccionada. Si 

la distancia al punto propio más cercano es menor que el valor del radio propio, el detector es 

eliminado y se genera un nuevo candidato. Si la distancia mínima a cualquier punto propio es 

mayor que el radio propio, entonces el detector es almacenado temporalmente y la distancia 

es guardada como el radio   . Luego el detector candidato es chequeado para determinar si 

puede ser detectado por otro detector candidato almacenado previamente. Debido a que no es 

posible cubrir un volumen dado con detectores esféricos sin que exista solapamiento, se 

permite un porcentaje de solapamiento entre detectores.  Si el detector coincide con otro, es 

eliminado, y el intento es almacenado en un contador que será utilizado para estimar la 

cobertura. Si el detector no coincide con algún detector previamente almacenado, es 

almacenado permanentemente para la fase de detección y el contador es llevado a cero. Si el 

número de detectores alcanza su número máximo, o el contador de intentos consecutivos que 

caen en puntos cubiertos alcanza un límite máximo (cobertura estimada), la fase de 

generación termina y en este último caso se estima con confianza que la cobertura es 
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suficiente para el espacio no propio. La fase de detección del algoritmo es similar a la del 

algoritmo de detectores de tamaño fijo. La única diferencia es que el umbral detector 

utilizado para la data desconocida se basa en el radio variable asignado a cada detector (Nino, 

F., & Dasgupta, D., 2008).  

 

Figura 2. 11 Comparación de la cobertura de los detectores para los dos esquemas. 
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Capítulo 3  

Metodología  

 En este capítulo se presenta la metodología aplicada para el desarrollo del mecanismo 

de detección de Fallas en Equipos de Infusión de Insulina (FEII) utilizando el enfoque 

inmunológico. En primer lugar, se presentan consideraciones con respecto al simulador de 

pacientes diabéticos UVA/PADOVA en el cual se simulan las FEII y se obtiene el conjunto 

de datos objeto de estudio. También, se explica el proceso de generación y la estructura de 

los mismos. Posteriormente, se presenta la implementación de dos versiones del Algoritmo 

de Selección Negativa (ASN). Antes de utilizar los ASN en la detección de FEII es pertinente 

realizar un proceso de validación de los mismos. Luego, se ejecutan los ASN en la detección 

de FEII y los resultados son comparados con los obtenidos al aplicar el enfoque estadístico 

multivariable.   

3.1 Simulador UVA/PADOVA  

 A continuación, se describen los pasos que permiten replicar los casos de estudio 

utilizados por Rojas y su equipo (Rojas, R. et al., 2011).  
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 Ya que en el simulador de pacientes diabéticos UVA/PADOVA se cuenta con una 

variedad de opciones para realizar pruebas, tales como: selección del escenario de pruebas, 

pacientes objeto de estudio, mediciones de salida, entre otras, se comienza por seleccionar un 

escenario de tres días con tres comidas regulares cada día. Del grupo de pacientes incluidos 

en el simulador, se selecciona un grupo de 10 niños y el paciente considerado como paciente 

promedio, para un total de 11 casos de estudio. 

 

 Debido a que se necesita obtener dos conjuntos de datos: un conjunto de datos de 

pacientes sometidos a terapia continua de infusión de insulina en momentos en los que el 

equipo de infusión no presente fallas y un segundo conjunto de datos, que corresponde a 

datos de los mismos pacientes cuando el equipo de infusión falla, en el subsistema de la 

bomba de insulina del simulador se realizan modificaciones para simular las FEII. Las fallas 

se generan durante el segundo día del escenario. Se simulan como una degradación en rampa, 

de 100% a 0%, de la entrega de insulina en un período de 6 horas y sin entrega de bolo de 

insulina después de la falla. Para obtener la degradación en rampa se hacen modificaciones al 

archivo simulink correspondiente a la plataforma de pruebas del simulador UVA/PADOVA 

(figura 2.5). Específicamente, en el subsistema correspondiente a la bomba de infusión 

(pump) se agrega una señal tipo rampa, la cual se multiplica por la salida del módulo que 

calcula la dosis de insulina justo antes de que esta señal pase a la bomba de inyección. De 

esta manera, luego de que el algoritmo de control calcule la dosis de insulina, ocurre 

degradación de la misma, no aplicándose la dosis adecuada al subsistema que representa al 

paciente (Human Model).  
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 La degradación en rampa de la infusión de insulina se genera a medianoche (12:00 

a.m.) cuando no se presenta ninguna comida, al mediodía (12:00 p.m.) simultáneamente con 

el almuerzo y a las 4:00 p.m., dos horas antes de la cena. Se realiza una simulación por falla, 

es decir para cada paciente se realizan tres simulaciones, una correspondiente a la falla de 

medianoche, una segunda simulación, correspondiente a la falla del mediodía y, finalmente, 

la simulación correspondiente a la falla de la tarde. Adicionalmente, se realiza una 

simulación en ausencia de fallas para cada paciente.  

 

 Luego de tener definidos el escenario de prueba, el grupo de pacientes objeto de 

estudio y las fallas, se generan los datos. De las estructuras de datos del simulador, se extraen 

vectores con valores del monitoreo continuo de glucosa, valores correspondientes a la dosis 

de inyección de insulina, así como también el vector de tiempos de simulación. Se considera 

un período de muestreo de 5 minutos para simular el muestreo real de los monitores 

continuos de glucosa, CGM.  

3.2 Implementación del ASN  

 En esta sección se describen los pasos a seguir para la implementación y validación 

de las dos versiones originales del algoritmo de selección negativa y el procedimiento para 

selección de parámetros necesarios para la ejecución de los mismos.  

3.2.1 ASN con radio de detección fijo 

 Este algoritmo es implementado en MATLAB® basado en lo descrito en el marco 

teórico. Inicialmente, los datos utilizados son normalizados en el intervalo [0,1]. Para este 
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propósito se programa una rutina en la que se emplea el comando norm de MATLAB® 

aplicando la norma infinita. A continuación, se define el conjunto propio a partir del conjunto 

de datos que presentan características similares. Los datos que conforman el conjunto propio 

son seleccionados de forma aleatoria utilizando el comando randsample de MATLAB® que 

permite obtener k-valores aleatorios muestreados uniformemente y sin reemplazo a partir del 

conjunto dado. Se genera aleatoriamente el conjunto de tamaño prefijado de "posibles 

detectores", este proceso se realiza utilizando el comando rand de MATLAB® que devuelve 

una matriz de la dimensión requerida contentiva de valores aleatorios de una distribución 

uniforme estándar en el intervalo establecido, en este caso [0,1]. Luego, se procede a 

determinar si cada detector generado coincide con algún dato del conjunto propio. Utilizando 

estructuras de repetición y decisión se calcula, la distancia Euclidiana entre cada posible 

detector y cada dato del conjunto propio. Si la distancia es menor al radio de detección 

predefinido, el detector es descartado y se genera aleatoriamente uno nuevo. Este bucle 

finaliza cuando se alcanza el número de detectores predefinido, el cual es obtenido a partir de 

la ecuación 2.2. Si la distancia es mayor al radio de detección, el detector es almacenado para 

la siguiente fase del algoritmo (fase de detección). Una vez generado el conjunto de 

detectores, utilizando estructuras de repetición, cada dato del universo de datos objeto de 

estudio es comparado con cada detector y, con base en la distancia Euclidiana, se clasifica 

como propio o no propio. Si la distancia entre el dato y el detector es menor al radio de 

detección, el dato es clasificado como no propio, si la distancia es mayor, se clasifica como 

propio. En cada iteración se va llenando el arreglo de clasificación. Si el i-ésimo dato es 

clasificado no propio, se establece “cero” en la posición i del arreglo y, si el dato es 
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clasificado como propio, entonces, en esa posición se fija el valor “uno”. Este arreglo es 

utilizado para el cálculo de tasas de detección y falsos positivos. La tasa de detección es la 

suma de los puntos no propios detectados. La tasa de falsos positivos es la cantidad de puntos 

propios detectados incorrectamente durante la ejecución. 

3.2.2 ASN con radio de detección variable 

 En el caso del ASN con radio de detección variable, se implementa un pseudocódigo 

generado a partir de la descripción del algoritmo y luego, es codificado en MATLAB®. De 

igual manera que en el ASN de radio fijo, los datos utilizados son normalizados en el 

intervalo [0,1] utilizando el comando norm de MATLAB® y aplicando la norma infinita. 

Haciendo uso del conjunto definido como propio, un porcentaje de datos es elegido 

aleatoriamente utilizando también el comando randsample. Los detectores se generan 

aleatoriamente, uno a la vez, utilizando el comando rand de MATLAB®. Luego, se 

comprueba que se mantienen a la distancia mínima permitida del conjunto propio. Si la 

distancia es menor, entonces el detector es eliminado y se genera uno nuevo. De lo contrario, 

el detector se almacena junto a la distancia calculada, la cual representa su radio variable. A 

su vez, se incrementa un contador de detectores. Haciendo uso de estructuras de repetición y 

decisión, de la fórmula de distancia Euclidiana (ecuación 2.1) y tomando en cuenta el 

porcentaje de solapamiento permitido, se comprueba que el nuevo detector se encuentra 

también a una distancia mínima permitida de otros detectores (se utiliza como umbral el 

radio variable del detector previo almacenado). Si la distancia es menor a la distancia 

mínima, se genera un nuevo detector. Si no, se incrementa un contador que indica que el 
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nuevo detector no ha sido detectado por otro y se almacena para la etapa de detección. En 

cada iteración se va incrementando el contador de cobertura (m). Cuando el valor de este 

contador mmax es alcanzado, el cual es obtenido utilizando la ecuación 2.6 y estableciendo un 

porcentaje de cobertura estimada deseado (co), culmina la etapa de generación de detectores.   

 La fase de detección es similar a la del ASN con detectores de radio fijo, pero en este 

caso el umbral o mínima distancia permitida hasta cada punto del conjunto propio, se basa en 

el radio variable asignado a cada detector. Cada dato desconocido cuya distancia hasta el 

conjunto de detectores sea menor al radio de detección, se clasifica como no propio. En cada 

iteración se va asignando uno o cero en la posición actual del arreglo de salida dependiendo 

de si el dato es clasificado como propio o no propio, respectivamente.   

3.2.3 Validación del ASN 

 Para validar el funcionamiento de estos algoritmos, se utilizan los resultados 

presentados por Zhou, Ji. et al., 2004 donde implementan las dos versiones del ASN. Zhou, 

Ji. et al., ejecutan los ASN con el conjunto de datos Fisher’s Iris Dataset (Statlib datasets 

archive, 2009) ampliamente utilizado en análisis que implican clasificación. El conjunto de 

datos incluye 150 muestras de tres tipos de flores (50 muestras por cada especie): Iris Setosa, 

Iris Virginica, Iris Versicolor. Para cada especie de flor se utilizan medidas de cuatro 

características, largo y ancho del pétalo y del sépalo. Los investigadores se plantean estudiar 

las propiedades y posibles ventajas que ofrece el ASN con detectores de radio variable. En la 

fase de generación de ambas versiones del ASN utilizan los datos de una de las especies de 

flores como conjunto propio, mientras los otros dos son considerados como conjunto no 
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propio. Los datos propios son utilizados completa y parcialmente en la fase de generación de 

detectores. El uso de una parte del conjunto propio permite demostrar la capacidad de los 

algoritmos de reconocer datos propios desconocidos. Los resultados presentados son 

obtenidos a partir de 100 pruebas repetidas para cada método. El radio de detección utilizado 

es 0.1, un 99% de cobertura estimada y el máximo de detectores generados es 1000. Para 

validar los ASN implementados en este trabajo de grado, se utilizan los mismos valores de 

parámetros. La media y desviación estándar de las tasas de detección, tasas de falsos 

positivos y número de detectores se muestran en la tabla correspondiente para su análisis y 

poder determinar si la implementación presentada es válida. El criterio utilizado para validar 

los ASN consiste en calcular el valor medio porcentual de la diferencia entre las tasas 

obtenidas y las publicadas y comprobar que es inferior al 10%.  

3.2.4 Ajuste de parámetros 

3.2.4.1 ASN con radio de detección fijo 

 Los principales parámetros del ASN con detectores de radio fijo son el radio de 

detección y el número máximo de detectores. Ambos son parámetros de diseño que el 

investigador puede fijar según sus criterios. En nuestro caso, el radio de detección se 

obtendrá a partir de la distancia Euclideana máxima entre centroide del conjunto propio y 

cada elemento de este conjunto. Esta distancia máxima, es el punto de partida para el análisis 

de sensibilidad que permita seleccionar el radio de detección adecuado. El número máximo 

de detectores se calcula a partir de la ecuación 2.2 y del procedimiento descrito en la sección 

2.4.2.  
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 El análisis de sensibilidad  para la selección del radio de detección se aplica sobre el 

conjunto "Fisher’s Iris Dataset". Esta fase determina el efecto de la variación de los valores 

del radio de detección en el desempeño del ASN. Se selecciona el conjunto de datos flores 

Virginica como conjunto propio. Se escoge como  radio de detección base Rdb, la distancia 

máxima obtenida entre el conjunto de datos propios y el centroide. Luego, se ejecuta el 

algoritmo variando el radio de detección (se considera el 75%, 100%, 150% y 200% del 

valor de Rdb). Finalmente, se determina el radio de detección a utilizar,  basados en las 

mejores tasas de detección y falsos positivos.  

3.2.4.2 ASN con radio de detección variable 

 En la versión del ASN con detectores de radio variable se utilizan los siguientes 

parámetros de diseño: número máximo de detectores, radio de detección, cobertura máxima 

estimada y porcentaje de solapamiento permitido. Igual que en el caso del ASN de radio fijo, 

estos parámetros pueden ser fijados por el investigador. En nuestro caso, el radio se obtiene 

determinando el centroide del conjunto de datos propios y calculando la distancia Euclidiana 

que existe entre cada dato de ese conjunto y el centroide. A partir de este procedimiento se 

obtiene el valor de radio base, Rdb, sobre el cual se realiza el análisis de sensibilidad. El 

número máximo de detectores se calcula utilizando la ecuación 2.2 y del procedimiento 

descrito en la sección 2.4.2. Para establecer el valor del parámetro adicional requerido en esta 

versión, se decide utilizar una cobertura estimada de 99%, ya que se requiere cubrir la mayor 

parte del espacio no propio. A partir de la ecuación (2.6) se calcula el valor del parámetro m 

C.C. Reconocimiento

www.bdigital.ula.ve



  48 

 

relacionado con la cobertura estimada y el cual, junto al número máximo de detectores es 

utilizado como criterio de parada del algoritmo. 

 

 Utilizando el conjunto“Fisher’s Iris Dataset”se determina el efecto de la variación 

de los valores del Rdb en el desempeño del ASN. Se considera el conjunto datos flores 

Virginica como conjunto propio. Se ejecuta el algoritmo variando el valor del Rdb, se utiliza 

75%, 150%, 200% y 250% de este valor. Luego de seleccionar el radio que permita obtener  

mayores tasas de detección y menores tasas de falsos positivos, se varía el porcentaje de 

solapamiento permitido entre detectores (25%, 15% y 5%) para estudiar su efecto en el 

desempeño del algoritmo. Al concluir la etapa de pruebas, se seleccionan los valores 

definitivos del radio de detección y el porcentaje de solapamiento.  

3.2.4.3 Desempeño del ASN utilizando nuevos parámetros 

 Luego de validar los ASN y fijar nuevos valores para los parámetros, obtenidos a 

partir de los procedimientos descritos en la sección anterior, se realizan pruebas considerando 

los datos de cada una de las especies de flores como conjunto propio y los conjuntos de las 

dos especies restantes como conjunto no propio. Con la finalidad de obtener un mejor 

desempeño, la inicialización de los parámetros es independiente para cada conjunto de datos. 

Se realizan 100 pruebas consecutivas en cada caso. La media y desviación estándar de las 

tasas de falsos positivos y detección se muestran en tablas correspondientes. La evaluación 

del desempeño de los ASN se realiza con base en los valores de parámetros que permitan 

obtener un balance entre altas tasas de detección y bajas tasas de falsos positivos.    
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3.2.5 ASN en la detección de FEII 

 Para la detección de Fallas en los equipos de Infusión de Insulina, FEII, utilizados por 

pacientes que padecen diabetes tipo I, mediante ASN debemos acondicionar el algoritmo que 

mostró el mejor desempeño en las pruebas de clasificación de datos como detector de fallas.  

En este caso la fuente de datos corresponde al monitoreo de glucosa del grupo de pacientes  

in silico, en condiciones normales y en momentos en los que se simulan FEII,  generados en 

el simulador UVA/PADOVA. 

 

 Es necesario establecer una diferencia entre la aplicación del ASN en la clasificación 

de datos (primera etapa de pruebas con el conjunto de flores Iris) y la aplicación del ASN 

como detector de FEII. La detección de FEII implica el manejo de datos de serie de tiempo. 

La estructura de datos de los pacientes simulados incluyen el vector de datos del monitoreo 

continuo de glucosa y el vector de tiempos de simulación. Los datos de interés para nuestra 

investigación, generados en el simulador, tienen la estructura de un vector columna 

contentivo de valores correspondientes al monitoreo de glucosa en plasma en períodos de 

simulación predefinidos. Se considera un período de muestreo de 5 minutos para simular el 

muestreo real de los monitores continuos de glucosa. En este contexto, para la ejecución del 

ASN es necesario considerar vectores que contengan los últimos 45 minutos de datos para 

glucosa en plasma y tiempo (10 datos).   

 

 Los datos requieren ser normalizados antes de ser utilizados en el algoritmo. La rutina 

de normalización utilizada para este propósito es la misma utilizada en la etapa de pruebas 
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con el conjunto de flores Iris, realizando las adaptaciones necesarias debido a que la 

dimensión del conjunto es distinta. Se selecciona el valor del radio de detección base, Rdb, 

obteniendo el centroide del conjunto de datos normales (conjunto propio) y calculando la 

distancia desde cada dato del conjunto hasta el centroide. Se elige como radio de detección 

base (Rdb) la distancia mínima calculada. Posteriormente, se realiza un análisis de 

sensibilidad, utilizando los datos correspondientes al paciente promedio, variando el Rdb (se 

utilizan el 50%, 75% 100% y 150% de este valor). El radio de detección se elige tomando en 

cuenta las menores tasas de falsos positivos y mayores tasas de detección. El ASN, 

dependiendo de la versión que se implemente, requiere que se asigne valores a los 

parámetros: número máximo de detectores, cobertura estimada, porcentaje de solapamiento 

permitido entre detectores y radio de detección. La selección de estos valores se realiza 

replicando el procedimiento utilizado el conjunto de datos de flores Iris. En caso de aplicar la 

versión de radio variable, se establece una cobertura estimada de 99.99% ya que se requiere 

cubrir la mayor parte del espacio no propio, a partir de este valor, se calcula el parámetro m 

(utilizado como criterio de parada del algoritmo). El valor del porcentaje de solapamiento 

permitido seleccionado es el que mejores tasas de detección y menores tasas de falsos 

positivos genera en el análisis de sensibilidad, en el cual se varía este valor (25%, 15% y 

5%). El número máximo de detectores se calcula a partir de la ecuación 2.2. Una vez 

establecidos los parámetros a utilizar, se procede a ejecutar el ASN. 

  

 La primera fase del ASN, etapa de generación de detectores, es una etapa en la que un 

porcentaje del conjunto total de datos normales es seleccionado, aleatoriamente, para formar 
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el conjunto propio. Se utiliza el 75% de los datos en condiciones normales. Para la selección 

aleatoria, hacemos uso de la rutina implementada en MATLAB® utilizada en las pruebas 

anteriores, nuevamente tomando en consideración que las dimensiones de los conjuntos de 

datos son diferentes. Cada dato de este conjunto propio es comparado con el conjunto de 

detectores generado aleatoriamente. Esta comparación consiste en calcular la distancia 

Euclidiana entre cada punto propio y cada detector y si la misma es menor que la distancia 

mínima permitida, el detector es descartado y se genera uno nuevo, de lo contrario el detector 

es almacenado. En el caso de ejecutarse la versión de radio variable, el detector se almacena 

junto a la distancia calculada, que se asigna como su radio variable. Se incrementa el 

contador de detectores. Tomando en cuenta el porcentaje de solapamiento, se comprueba que 

este nuevo detector se encuentra también separado de otros detectores. Si la distancia es 

menor a la distancia mínima, se genera un nuevo detector. Si no, éste se almacena para la 

etapa de detección. En cada iteración se va incrementando el contador de cobertura (m). 

Cuando el valor de este contador mmax es alcanzado, culmina la fase de generación. 

 

 En la fase de detección se consideran los datos muestreados a partir del monitoreo 

continuo de glucosa en momentos en los que se simulan las FEII. Se selecciona una banda de 

valores de glucosa en plasma entre cero y 500 mg/dL. Cada valor muestreado es comparado 

con cada dato del conjunto de detectores generado en la etapa anterior. La comparación se 

realiza calculando la distancia Euclidiana entre cada dato y si esta es menor al radio de 

detección definido, el dato es clasificado como no propio, de lo contrario es clasificado como 

propio. En cada iteración se va almacenando “uno” o “cero” en la posición actual del arreglo 

C.C. Reconocimiento

www.bdigital.ula.ve



  52 

 

de salida según el dato sea clasificado como propio o no propio, respectivamente. Este 

arreglo se utiliza para el cálculo de tasas de detección y falsos positivos. Además, se genera 

un arreglo contentivo de los datos clasificados como no propios y un arreglo de datos 

clasificados como propios. Cada dato debe pasar por el proceso inverso a la normalización 

inicial para hallar su equivalente en valor de glucosa en plasma y posteriormente ser utilizado 

en la generación de las gráficas correspondientes. En este contexto, clasificar el dato como 

propio o no propio, es equivalente a detectar un punto normal o un punto de falla, 

respectivamente.      

3.3 Comparación entre ASN y Enfoque Estadístico Multivariable 

  La comparación entre los resultados obtenidos aplicando el ASN de radio variable y 

los de la literatura (Rojas, Garcia y Bequette, 2011) obtenidos aplicando un enfoque 

estadístico multivariable se realiza con base en la tasa de falsos positivos por hora y tiempo 

de detección. Para esto se organizan dos tablas resumen, donde se muestran los resultados de 

esta investigación y los publicados.  

C.C. Reconocimiento

www.bdigital.ula.ve



 

Capítulo 4  

Análisis de resultados   

 En este capítulo se presentan los resultados obtenidos al manejar el simulador 

UVA/PADOVA para generar el conjunto de datos utilizados. De igual manera, se presentan 

los resultados obtenidos al implementar y validar el ASN, por último, se presentan los 

resultados obtenidos al utilizar el ASN como método detector de FEII.  

4.1 Simulador UVA/PADOVA  

 

 En figura 4.1, se observa la gráfica correspondiente a los valores de insulina para el 

paciente promedio simulado. En negro se aprecia la curva que describe un comportamiento normal 

de los niveles de insulina. Nótese que los momentos en los que ocurre una elevación de los 

valores de insulina, son justamente en las horas donde el paciente consume alimentos 

(desayuno, almuerzo y cena), lo que ocurre con la finalidad de mantener los valores de 

glucosa en plasma dentro de los valores normales, los cuales se alteran con la ingesta 

alimenticia. En color verde se observa la degradación en rampa que ocurre a la dosis de 

insulina en el momento en el que se genera la falla de medianoche, los valores de insulina 

comienzan a degradarse con el transcurso. En rojo se presenta la degradación que ocurre en 

la dosis de insulina cuando se genera la falla del mediodía y en color azula la degradación 

de la dosis que ocurre al generar la falla de las cuatro de la tarde.  
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Figura 4. 1 Degradación en rampa de la dosis de insulina para el paciente promedio simulado 

 

 A continuación, se presenta la gráfica correspondiente a los datos obtenidos al 

realizar las simulaciones del paciente #4. Se grafica, simultáneamente, la señal del sensor 

de monitoreo continuo de glucosa en momentos en los que no estaban ocurriendo FEII y la 

señal en momentos en los que se presentan las fallas. En la gráfica color negro se aprecian 

los valores de glucosa en plasma en ausencia de FEII. En color verde, rojo y azul, los 

valores de glucosa en plasma después de producirse las fallas de medianoche, mediodía y 

4:00 de la tarde, respectivamente.    

 

Figura 4. 2 Respuesta de la glucosa en plasma para las tres fallas simuladas. Paciente simulado #4. 
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 En la figura 4.3 se presenta el módulo de la bomba de insulina donde se incluye la 

rampa de degradación de la infusión de insulina. Como se puede observar, se agrega al 

módulo una señal tipo rampa (observar el recuadro rojo) la cual es multiplicada por la señal 

de insulina total (dosis calculada) y el producto obtenido corresponde a la señal que recibe 

la bomba de infusión de insulina. La bomba de insulina recibe, por lo tanto, una señal que 

va siendo atenuada al transcurrir el tiempo. 

 

 

Figura 4. 3 Módulo correspondiente a la bomba de infusión de insulina del simulador UVA/PADOVA incluyendo la rampa 
de degradación de insulina. 

 

4.2 Implementación del ASN 

4.2.1 ASN con radio de detección fijo 

El pseudocódigo obtenido para el ASN con detectores de radio fijo es el siguiente. 

Cargar conjunto total de datos  

Cargar conjunto propio 

Selección tamaño conjunto propio 

Ejecutar rutina de normalización 

Ejecutar rutina de selección aleatoria  
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Parámetros predefinidos:   ,      

Inicio 

Mientras (       ) 

 Generar aleatoriamente el conjunto de detectores,     

    Para cada muestra propia 

 Calcular la distancia a cada detector, dist 

 Si (dist <   ) 
  Generar aleatoriamente un nuevo de detector,    

 Si no  

  Almacenar detector como    

  Incrementar i+1 

 Fin Si 

    Fin Para 

Fin Mientras 

Fin 

Para cada dato desconocido dj 

   Hacer dist_min igual a infinito 

 Para cada punto del conjunto de detectores,     

  Calcular la distancia (dist) a cada dato desconocido 

       Si  (dist < dist_min)  

   Almacenar dist como la nueva dist_min 

    Si (dist_min < r)  

     Almacenar 0 en posición j del vector conjunto_propio 

    Si no  

     Almacenar 1 en posición j del vector conjunto_propio

    Fin Si 

       Fin Si  

 Fin Para 

Fin Para 

Fin   

 

4.2.2 ASN con radio de detección variable 

 El pseudocódigo utilizado para implementar el ASN con detectores de radio variable 

es el siguiente: 

Cargar conjunto de datos propios 

Selección tamaño conjunto propio 

Ejecutar rutina de normalización 

Ejecutar rutina de selección aleatoria  
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Parámetros de control predefinidos:   ,     ,      

Inicio 

Mientras (m <     ) || (i <      ) 

 Generar aleatoriamente el conjunto de detectores,     

 Calcular la distancia más corta a cada punto propio, dist_min 

 Si (dist_min <   ) 
  Retornar al inicio 

 Si no  

  Si (i=1)  

   Almacenar detector como    y    = dist_min  

    Incrementar i+1 

  Si no 

   Calcular la distancia mínima para cada detector anterior, dist_min2 

   Si (dist_min2 <    ) 
    m = m+1 

   Si no 

    Almacenar detector como    y    = dist_min 

    Incrementar i+1 

    m = 0 

   Fin Si 

  Fin Si 

 Fin Si 

Fin Mientras 

Fin 

Para cada dato desconocido dj 

   Hacer dist_min igual a infinito 

 Para cada punto del conjunto de detectores,     

  Calcular la distancia (dist) a cada dato desconocido 

       Si  (dist < dist_min)  

   Almacenar dist como la nueva dist_min 

    Si (dist_min < rdi)  

     Almacenar 0 en posición j del vector conjunto_propio 

          

    Si no  

     Almacenar 1 en posición j del vector conjunto_propio 

        

    Fin Si 

       Fin Si  

 Fin Para 

Fin Para 

Fin 
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4.2.3 Validación del ASN 

 A continuación, se presenta la distribución de los datos correspondientes al conjunto 

de datos Fisher’s Iris (figuras 4.4 y 4.5). Inicialmente, se grafican las dos primeras dos 

características de cada tipo de flor (largo y ancho del sépalo) y, posteriormente, se grafican la 

tercera y cuarta característica de cada tipo de flor (largo y ancho del pétalo). Como se puede 

apreciar en las gráficas, los datos de la flor Iris Setosa están claramente diferenciados del 

resto de los datos, hecho que no se aprecia en el caso de las otras dos especies donde la 

distribución es menos definida. 

 

Figura 4. 4 Distribución del ancho y largo del sépalo. Conjunto de datos Iris. 

 

 

Figura 4. 5 Distribución del ancho y largo del pétalo. Conjunto de datos Iris. 
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 En la tabla 4.1 se muestran los resultados obtenidos por Zhou, Ji et al., y los 

resultados obtenidos en esta investigación al aplicar el ASN con detectores de radio fijo 

utilizando los mismos valores de los parámetros (radio de detección: 0.1 y número máximo 

de detectores: 1000). Como se puede apreciar, en ambas implementaciones, las mayores tasas 

de detección se obtienen al utilizar una parte del conjunto propio en la fase de generación (25 

datos). El error absoluto calculado entre las tasas publicadas y las obtenidas es inferior al 

2.5% en todos los casos, llegando incluso a valores por debajo del 0.2%.   

Tabla 4. 1 Tasa de detección obtenida al aplicar el ASN de radio fijo utilizando conjunto de datos flores Iris. 

 

Conjunto 

de Datos 

Número de 

datos 

Propios 

Tasa de detección 

(Zhou, Ji 2004) (%) 

Media           DE 

Tasa de detección 

Obtenida (%) 

Media                DE 

Error absoluto 

% 

Setosa 50 100.00              0.00 99.40                 1.51 0.60 

Virginica 50 92.51                0.74 94.77                 3.88 2.44 

Versicolor 50 95.67                0.69 94.26                 2.92 1.47 

     

Setosa 25 100.00              0.00 99.55                 0.90 0.45 

Virginica 25 97.18                0.71 96.87                 2.83 0.32 

Versicolor 25 96.00                0.45                        96.18                 3.01        0.19 

 
Tabla 4. 2 Tasa de falsos positivos obtenidas al ejecutar el ASN de radio fijo, utilizando conjunto de datos flores Iris. 

 

Conjunto 

de Datos 

Número de 

datos 

Propios 

Tasa de falsos positivos 

(Zhou, Ji 2004) 

 

Media                DE 

Tasa de falsos 

 positivos obtenida 

 

Media                DE 

Error absoluto 

% 

Setosa 50 0.00                     0.00 0.00                  0.00 0.00 

Virginica 50 0.00                     0.00 0.00                  0.00 0.00 

Versicolor 50 0.00                     0.00 0.00                  0.00 0.00 

     

Setosa 25 11.18                   2.17 10.78                6.48 3.58 

Virginica 25 33.26                   0.96 34.48                5.77                     3.67 

Versicolor 25 22.20                   1.25 22.40                7.84 0.90 
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 Los resultados que se presentan en la tabla 4.2 corresponden a las tasas de falsos 

positivos obtenidas al ejecutar el ASN con detectores de radio fijo. Igual que en el caso 

anterior, los valores de los parámetros utilizados son: radio de detección: 0.1, número total de 

detectores generados: 1000. Las tasas de falsos positivos son mayores cuando se utilizan 25 

datos como conjunto propio. El error absoluto porcentual obtenido entre los valores 

publicados y los obtenidos es inferior al 5% en todos los casos. 

 
Tabla 4. 3 Tasa de detección obtenida al ejecutar el ASN de radio variable. Utilizando conjunto de datos flores Iris. 

 

 

Conjunto 

de Datos 

Número de 

datos 

Propios 

Tasa de detección 

(Zhou, Ji 2004) 

Media                DE 

Tasa de detección 

obtenida 

Media              DE 

Error absoluto 

% 

Setosa 50 99.98                0.14 99.92              0.40 0.06 

Virginica 50 81.87                2.78 89.19              5.52 8.94 

Versicolor 50 85.95                2.44 84.16              5.49 2.08 

     

Setosa 25 99.97                0.17 99.96              0.31 0.01 

Virginica 25 93.58                2.33 95.53              4.59 2.08 

Versicolor 25 88.30                2.77 83.49              4.79 5.45 

 

 

 Los resultados que se presentan en la tabla 4.3 corresponden a las tasas de detección 

obtenidas al ejecutar el ASN con detectores de radio variable. Se muestran los resultados 

obtenidos por Zhou, Ji et al., y los obtenidos en esta investigación. Los valores de los 

parámetros utilizados son: radio de detección: 0.1, número total de detectores generados: 

1000, cobertura estimada: 99% y porcentaje de solapamiento: 5%. El porcentaje de 

solapamiento permitido no es un dato aportado en la publicación, por tal razón fue necesario 
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ajustar el valor de este parámetro para obtener tasas cercanas a las publicadas. Utilizando el 

conjunto de flores Virginica y 25 datos como conjunto propio, el error absoluto porcentual es 

el más elevado (superior al 8%), en los otros casos se mantiene inferior al 5%. Los valores 

del error absoluto porcentual más elevados en esta versión del algoritmo son atribuibles al 

desconocimiento del valor real del porcentaje de solapamiento utilizado por los 

investigadores.   

 

 
Tabla 4. 4 Tasa de falsos positivos obtenidas al ejecutar el ASN de radio variable. Utilizando conjunto de datos flores Iris. 

Conjunto 

de Datos 

Número de 

datos propios 

Tasa de falsos positivos 

(Zhou, Ji 2004) 

Media                DE 

Tasa de falsos 

positivos obtenida 

Media              DE 

Error absoluto 

% 

 Setosa 50                                0.00                  0.00 0.00                0.00 0.00 

Virginica 50 0.00                  0.00 0.00                0.00 0.00 

Versicolor 50 0.00                  0.00 0.00                0.00 0.00 

     

Setosa 25 1.32                  0.95 2.14                0.70 6.21 

Virginica 25                               13.18                3.24 12.16              5.67 7.74 

Versicolor 25 8.42                  2.12 7.40                3.65 12.11 

 

 Los resultados que se presentan en la tabla 4.4 corresponden a las tasas de falsos 

positivos obtenidas al ejecutar el ASN con detectores de radio variable. Los valores de los 

parámetros utilizados son los mismos que en el caso anterior. En la versión del ASN con 

detectores de radio variable ejecutada en esta investigación, la tasa de falsos positivos fue 

cero en todos los casos en los que se utilizó el total de datos del conjunto propio (50 datos), 

igual que en el estudio publicado. Las tasas de falsos positivos son mayores cuando se 

utilizan 25 datos como conjunto propio. En el caso del conjunto de flores Versicolor y 
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utilizando 25 datos como conjunto propio, el error absoluto porcentual es el más elevado 

(superior al 12%), en los otros casos se mantiene inferior al 8%. 

Tabla 4. 5 Número de detectores generados al ejecutar el ASN de radio variable. Utilizando conjunto de datos flores Iris . 

Conjunto 

de Datos 

Número de 

datos propios 

Número de detectores 

(Zhou, Ji 2004) 

Media                  DE 

Número de detectores 

obtenidos 

Media                DE 

Error absoluto 

% 

Setosa 50 20.00                   7.87 16.34                5.43 18.30 

Virginica 50 218.36               66.11 261.09            37.35 19.56 

Versicolor 50 153.24                 38.8 161.19            33.11 5.19 

     

Setosa 25 16.44                   5.63 14.00                2.09 14.84 

Virginica 25 108.12               30.74 112.72            22.65 4.25 

Versicolor 25 110.08               22.61 118.21            33.24 7.38 

 

 En la tabla 4.5 se resumen los resultados obtenidos al aplicar el ASN con detectores 

de radio variable, los resultados corresponden a la cantidad de detectores generados. Se 

muestran los resultados obtenidos en la publicación de Zhou, Ji et al., y los obtenidos en 

muestra investigación. El error absoluto porcentual entre la cantidad de detectores generados 

alcanza un valor de casi 20%. La cantidad de detectores generados tiene relación directa con 

el porcentaje de solapamiento que se permita, como este dato no es aportado por los 

investigadores en su publicación, el error absoluto porcentual puede atribuirse al ajuste que 

fue necesario hacer para determinar el valor de este parámetro. 

 

 Analizando las tablas correspondientes a las tasas de detección y falsos positivos 

(tablas 4.1 a 4.4), es importante mencionar que el promedio de error absoluto porcentual para 

las tasas de detección utilizando 50 datos es 2.60%, utilizando 25 datos como conjunto 
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propio, este promedio es 2.01%. En el caso de las tasas de falsos positivos, el promedio de 

error absoluto para los casos en los que se utilizó 50 datos es 0%. Cuando se utilizan 25 datos 

el promedio de error es 5.71%. Finalmente, se puede concluir que los algoritmos 

implementados en esta investigación son válidos, ya que cumplen con el criterio propuesto en 

el cual se acepta un error absoluto porcentual, entre tasas de detección y falsos positivos 

publicadas y obtenidas, menor al 10%. 

4.2.4 Ajuste de parámetros 

4.2.4.1 ASN con detectores de radio fijo 

 A continuación se presentan los resultados obtenidos al realizar el procedimiento para 

el ajuste de parámetros. Se aplica el ASN de radio fijo haciendo variaciones en el radio de 

detección base, Rdb, y utilizando el conjunto de flores Virginica como conjunto propio.  

 

 

Tabla 4. 6 Resultados obtenidos al ejecutar el ASN con detectores de radio fijo utilizando el conjunto Iris Virginica como 

conjunto propio. Variación del radio base de detección. Tasas de detección. 

Conjunto de 

Datos 

Número de datos 

Propios 

Tasa de Detección 

Media          DE 

% Radio de  

detección base 

 50 98.78            0.70 75 

 50 98.05            1.00 100 

 50 96.12            2.33 150 

 50 94.84            4.92 200 

    

Iris Virginica 25 99.62            0.56 75 

 25 99.05            0.96 100 

 25 97.73            1.89 150 

 25 97.44            3.08 200 
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 En la tabla 4.6 se muestran los valores de media y desviación estándar de las tasas de 

detección al variar el radio de detección base. Las tasas de detección se mantienen en todas 

las pruebas por encima del 94% y son mayores mientras menos datos se usen como conjunto 

propio. 

 

Tabla 4. 7 Resultados obtenidos al ejecutar el ASN con detectores de radio fijo utilizando el conjunto Iris Virginica como 
conjunto propio. Variación del radio de detección base (Rdb). Tasas de falsos positivos. 

Conjunto de 

Datos 

Número de datos 

Propios 

Tasa de falsos positivos 

Media            DE 

% Radio de 

detección base 

 50 8.06            11.78 75 

 50 13.70            6.02 100 

 50 9.12            18.84 150 

 50 15.92          25.76 200 

    

Iris Virginica 25 34.04          13.63 75 

 25 24.14      15.50 100 

 25 26.14          19.80 150 

 25 16.38           8.64 200 

  

 En la tabla 4.7 se muestra los resultados correspondientes a la media y desviación 

estándar de la tasa de falsos positivos obtenidos al aplicar el ASN de radio fijo, variando el 

radio de detección base. El número de datos utilizados como conjunto propio y las 

variaciones del radio base, causan que las tasas de falsos positivos varíen desde un valor 

superior  al 34%, cuando se utiliza el 75% del radio de detección base y se utilizan 25 datos 

como conjunto propio, hasta un mínimo de 8.06% cuando se utiliza el 75 % del Rdb y se usa 

el total de datos como conjunto propio (50 datos). Las tasas de falsos positivos son inferiores 

mientras más datos se usen como conjunto propio. 
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4.2.4.2 ASN con detectores de radio variable  

 A continuación se presentan los resultados correspondientes a media y desviación 

estándar de las tasas de detección y de falsos positivos, respectivamente, obtenidas al aplicar 

el ASN de radio variable utilizando el conjunto de flores Virginica como conjunto propio, 

cambiando el radio de detección base y manteniendo el porcentaje de solapamiento en 25%.     

Tabla 4. 8 Resultados obtenidos al ejecutar el ASN con detectores de radio variable utilizando el conjunto Iris Virginica 
como conjunto propio. Variación del Rdb. Tasas de detección. 

 

Conjunto de Datos 

Número de datos 

Propios 

Tasa de Detección 

Media                 DE 

% Radio de 

detección base 

 50 98.57                 0.62 75 

Iris Virginica 50 99.07                 0.77 100 

 50 97.17                 1.16 150 

 50 95.80                 2.17 200 

    

 25 99.50                 0.67 75 

 25 98.00                 0.63 100 

 25 98.30                 1.55 150 

 25 98.20                 1.05 200 

 

Tabla 4. 9 Resultados obtenidos al ejecutar el ASN con detectores de radio variable utilizando el conjunto Iris Virginica 
como conjunto propio. Variación del Rdb. Tasas de falsos positivos. 

 

Conjunto de Datos 

Número de datos 

Propios 

Tasa de Falsos 

positivos 

Media                 DE 

% Radio de 

detección base 

 50 0.00                   0.00 75 

Iris Virginica 50 0.00                   0.00 100 

 50 0.00                   0.00 150 

 50 0.00                   0.00 200 

    

 25 26.93                 6.71 75 

 25 22.27                 6.10 100 

 25 15.60                 5.30 150 

 25 9.40                   3.27 200 
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 Analizando los resultados mostrados en las tablas  4.8 y 4.9, las variaciones del radio 

de detección base y el número de datos utilizados como conjunto propio causan que las tasas 

de falsos positivos varíen desde un valor medio superior al 26%, cuando se utiliza el 75% del 

radio base y 25 datos como conjunto propio, hasta una media mínima de 9.40% cuando se 

utiliza el doble del radio de detección base y se utilizan 25 datos. Las tasas de falsos positivos 

pueden reducirse al 0% cuando se utiliza el total de datos del conjunto propio en la fase de 

generación del algoritmo. La tasa de detección se mantiene en todas las pruebas por encima 

del 95%. Las mayores tasas de detección se obtienen al utilizar menos datos  como conjunto 

propio.  

 

 En las tablas 4.10 y 4.11 se muestran la media y desviación estándar de las tasas de 

detección y falsos positivos, respectivamente, obtenidas al aplicar el ASN con detectores de 

radio variable. En este caso se utiliza el doble del radio de detección base (Rdb) y se varía el 

porcentaje de solapamiento permitido para evaluar su efecto en el desempeño del algoritmo. 

Se utiliza el doble del radio de detección base ya que fue el radio que permitió lograr 

menores tasas de falsos positivos y mayores tasas de detección. En este sentido, debido a que 

el 5 % de solapamiento ofrece mejores tasas de detección y menores tasas de falsos positivos, 

se establece este valor para la siguiente fase de pruebas. La selección del valor de los 

parámetros obedece a la finalidad con la que se utilice el algoritmo. Si la prioridad es que la 

detección sea totalmente precisa, es posible lograrlo a costa de una tasa mayor de falsos 

positivos. Por otro lado, si un alto porcentaje de falsos positivos no es conveniente, es posible 

lograr un valor adecuado, permitiendo tasas de detección menores. 
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Tabla 4. 10 Resultados obtenidos ejecutando el ASN con detectores de radio variable utilizando el conjunto Virginica como 
conjunto propio. Variación del porcentaje de solapamiento. Tasa de detección. 

 

Conjunto de Datos 

Número de datos 

Propios 

Tasa de Detección 

Media                 DE 

% Radio de 

solapamiento 

 50 95.80                 2.17 25 

Iris Virginica 50 94.70                 2.37 15 

 50 93.17                 4.37 5 

    

 25 98.20                 1.05 25 

 25 97.73                 1.98 15 

 25 96.00                 4.30 5 

 

 

Tabla 4. 11 Resultados obtenidos ejecutando el ASN con detectores de radio variable utilizando el conjunto Iris Virginica 
como conjunto propio. Variación del porcentaje de solapamiento. Tasa de falsos positivos. 

Conjunto de Datos Número de datos 

Propios 

Tasa de Falsos positivos 

Media                 DE 

% Radio de 

solapamiento 

 50 0.00                   0.00 25 

Iris Virginica 50 0.00                   0.00 15 

 50 0.00                   0.00 5 

    

 25 9.40                   3.27 25 

 25 10.00                 4.87 15 

 25 8.47                   6.23 5 

 

4.2.4.3 Desempeño del ASN utilizando nuevos parámetros 

 En esta sección se presentan resultados correspondientes a la ejecución de los ASN 

utilizando los parámetros seleccionados con base en los análisis realizados en la sección 

inmediata anterior. Se presentan los resultados correspondientes a los mejores desempeños  

de ambas versiones el ASN.   
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Figura 4. 6 . Efectos de la variación del radio de detección sobre las tasas de detección y falsos positivos. 

  

 

En la figura 4.6 se muestran las gráficas correspondientes a los resultados obtenidos al 

ejecutar el ASN con detectores de radio fijo y variable cambiando el radio de detección. El 

conjunto de flores Virginica conforma el conjunto propio y se utiliza la mitad del conjunto 

(25 datos) en la fase de generación de detectores. Se observa que las tasas de falsos positivos 

son menores cuando se ejecuta el ASN con detectores de radio variable, pero, al aumentar el 

radio de detección, las tasas de falsos positivos disminuyen para ambas versiones del 

algoritmo. Las tasas de detección disminuyen conforme se utiliza un radio de detección 

mayor. 

 En la tabla 4.12 se presentan los resultados al ejecutar ambas versiones del ASN 

utilizando el conjunto de datos de las flores Iris, pero seleccionando los parámetros a partir 

de la descripción detallada en la sección relativa al ajuste de parámetros (sección 3.2.4). 
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Como se puede observar, las tasas de detección se mantienen por encima 96%, lo cual 

representa una mejora con respecto a la ejecución de los algoritmos con valores de 

parámetros propuestos en la investigación de Zhou, Ji et al., en la que la tasa de detección 

puede llegar a una media mínima de 81.87%. Las tasas de falsos positivos (tabla 4.13) 

pueden llegar a 0% cuando se utiliza el total de datos del conjunto propio, cosa que también 

se observa en los resultados publicados por Zhou, Ji et al. Cuando se usan menos datos como 

conjunto propio, las tasas de falsos positivos se elevan.  

Tabla 4. 12 Resultados obtenidos aplicando ASN de radio fijo y variable. Utilizando conjunto de datos flores Iris y los 
parámetros calculados. Tasas de detección. 

 

Conjunto 

de Datos 

Número de 

datos 

Propios 

Tasa de Detección 

Radio Fijo 

Media                DE 

Tasa de Detección 

Radio Variable 

Media                 DE 

Setosa 50 100.00              0.00 100.00               0.00 

Virginica 50 98.03                1.22 96.60                 1.54  

Versicolor 50 98.96                1.02 96.40                 1.56 

    

Setosa 25 100.00              0.00 100.00               0.00 

Virginica 25 98.99                1.03 98.23                 1.23 

Versicolor 25 99.51                0.77 98.13                 1.63 

 

Tabla 4. 13 Resultados obtenidos aplicando ASN de radio fijo y variable. Utilizando conjunto de datos flores Iris y los 
parámetros calculados. Tasas de falsos positivos. 

Conjunto 

de Datos 

Número de 

datos 

Propios 

Tasa de falsos positivos 

Radio Fijo 

         Media                DE 

Tasa de falsos positivos 

Radio Variable 

Media                 DE 

Setosa 50         9.16               3.44 0.00                  0.00 

Virginica 50         6.92               1.18 0.00                  0.00 

Versicolor 50         9.96               3.35 0.00                  0.00 

    

Setosa 25        18.18              2.13 6.53                  3.10 

Virginica 25        22.50              1.58 14.20                7.05 

Versicolor 25        36.94              1.69 21.53                6.30 
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En la tabla 4.14 se muestran la cantidad de detectores generados en ambas versiones del ASN 

utilizando los parámetros calculados en la sección inmediata anterior. La versión del ASN 

con detectores de radio variable genera una cantidad menor de detectores. 

 

Tabla 4. 14 Resultados obtenidos aplicando ASN de radio fijo y variable. Utilizando conjunto de datos flores Iris y los 
parámetros calculados. Número de detectores. 

Conjunto de Datos Número de datos 

Propios 

Número de detectores 

ASN radio variable 

Media                 DE 

Número de detectores 

ASN radio  fijo 

Media                 DE 

Setosa 50 131.64               21.97 1212                166.37 

Virginica 50 121.54               22.89 1154                143.66 

Versicolor 50 122.52               32.58 1174                180.67 

    

Setosa 25 121.39               21.75 1227                158.47 

Virginica 25 121.11               23.13 1233                118.42 

Versicolor 25 119.21               32.97 1260                180.00 

 

 En este contexto, habiendo determinado que el desempeño del ASN con detectores de 

radio variable ofrece ventajas en cuanto a menores tasas de falsos positivos y tasas mayores 

de detección, además de ser una versión más eficiente ya que requiere una menor cantidad de 

detectores, lo que aumenta la velocidad de ejecución del algoritmo, se decide implementar 

esta versión del algoritmo en la fase de detección de FEII.  

4.2.5 ASN en la detección de FEII 

 Con base en los resultados obtenidos en la sección anterior, se utiliza el ASN con 

detectores de radio variable para la detección de FEII. 
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 En la tabla 4.15 se presentan los resultados obtenidos al variar el radio de detección 

base, aplicando el ASN con los datos correspondientes al paciente promedio cuando se 

simulan las tres fallas. Se puede observar que las mayores tasas de detección y menores tasas 

de falsos positivos se obtienen utilizando el 50% del Rbd. Por lo tanto, este valor es 

seleccionado para la siguiente etapa de pruebas. 

 

Tabla 4. 15 Efectos de la variación del Rbd en las tasas de detección y falsos positivos. 

Caso de estudio Falla 12:00 a.m. 

Tasa             Tasa falsos 

detección          positivos 

Falla 12:00 p.m. 

Tasa             Tasa falsos 

detección         positivos 

Falla 12:00 p.m. 

Tasa           Tasa falsos 

detección         positivos 

Rbd (%) 

 

Paciente  

Promedio 

96.43              3.57 

92.86              7.29  

89.29              10.71 

84.88              7.14          

100.00             7.14               

92.31             14.29 

92.31              21.43 

92.31              12.94             

88.89             22.32 

77.78             25.16 

66.67             26.32 

44.44             21.16 

50 

75 

100 

150 

 

 En la tabla 4.16 se presentan los resultados al variar el porcentaje de solapamiento 

utilizando el valor del Rdb calculado en la fase anterior. Se ejecuta el ASN con los datos del 

paciente promedio en momentos en los que se simulan las tres fallas. Se puede observar que 

permitiendo el 25 % de solapamiento se obtienen las mayores tasas de detección y menores 

tasas de falsos positivos.   

Tabla 4. 16 Efectos de la variación del porcentaje de solapamiento en las tasas de detección y falsos positivos. 

Caso de estudio Falla 12:00 a.m. 

Tasa             Tasa falsos 

detección          positivos 

Falla 12:00 p.m. 

Tasa             Tasa falsos 

detección         positivos 

Falla 12:00 p.m. 

Tasa           Tasa falsos 

detección         positivos 

Solapamiento 

(%) 

 

Paciente  

Promedio 

96.43                3.57 

82.14              17.86  

78.57              21.43 

100.00             7.14               

92.31              14.29 

92.31              28.57 

88.89               22.32 

100.00             26.32 

100.00             36.32 

25 

15 

5 
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 En la tabla 4.17 se presentan los resultados correspondientes a las tasas de detección 

obtenidas al aplicar el ASN de radio variable en la detección de las FEII en el grupo de 11 

pacientes simulados con los parámetros seleccionados (50% del Rdb, 25% de solapamiento 

permitido). Los resultados son obtenidos utilizando los datos de cada paciente en el momento 

en el que se simularon tres fallas (a medianoche, a las 12:00 del mediodía y a las 4:00 de la 

tarde). 

Tabla 4. 17 Tasa de detección porcentuales aplicando ASN para cada paciente simulado (%). 

Caso de estudio FEII de medianoche 

(12:00 a.m.) 

FEII  de mediodía  

(12:00 p.m.) 

FEII 4 de la tarde  

(4:00 p.m.) 

Paciente #1 

Paciente #2 

Paciente #3 

Paciente #4 

98.75 

92.86 

89.29 

75.00  

92.31 

76.75 

92.15 

68.54 

72.22 

81.11 

77.78 

84.44 

Paciente #5 96.43 100.00 78.89 

Paciente #6 78.57 92.31 72.22 

Paciente #7 

Paciente #8 

Paciente #9 

Paciente #10 

96.42 

93.47 

89.28 

98.25 

91.13 

86.39 

93.08 

71.54 

75.56 

77.67 

77.78 

82.14 

Paciente promedio 94.73 75.57 93.68 

  

En la tabla 4.18 se muestran las tasas de falsos positivos porcentual al ejecutar el ASN con 

los datos pertenecientes a los 11 pacientes simulados en los momentos en los que ocurre la 

falla del mediodía y la falla de las 4 de la tarde. También se observan los resultados 

obtenidos al ejecutar el ASN cuando no se presenta ninguna falla. La falla de medianoche no 

se toma en cuenta debido a que se está considerando un período de 24 horas para las 

simulaciones, el cual comienza justamente con esta falla.  
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Tabla 4. 18 Tasa de falsos positivos porcentuales aplicando ASN para cada paciente simulado (%). 

Caso de estudio Sin FEII  FEII  de mediodía  

(12:00 p.m.) 

FEII 4 de la tarde  

(4:00 p.m.) 

Paciente #1 

Paciente #2 

Paciente #3 

Paciente #4 

0.00 

7.14 

10.71 

25.00 

28.57 

7.14 

14.29 

0.00 

21.05 

5.26 

21.05 

15.79 

Paciente #5 13.57 7.14 26.32 

Paciente #6 21.43 14.29 15.79 

Paciente #7 

Paciente #8 

Paciente #9 

Paciente #10 

3.57 

0.00 

10.71 

0.00 

7.14 

28.57 

14.29 

7.14 

15.79 

14.89 

21.05 

5.26 

Paciente promedio 5.26 7.14 26.32 

   

 
Figura 4. 7 Valores de glucosa en plasma paciente simulado #9 FEII 4:00 p.m. al utilizar ASN. 

 En la figura 4.7 se observan las curvas correspondientes a valores normales de 

glucosa y valores cuando se simula la falla de las 4:00 p.m. para el caso del paciente #9. La 

detección correcta del primer punto de falla se produce 40 minutos después de haberse 
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comenzado a simular la falla. Se puede observar que un período de 16 horas se detectan 

erróneamente 2 puntos como puntos de falla (falsos positivos). 

 

 

Figura 4. 8 Valores de glucosa en plasma paciente simulado #4. Falla 4:00 p.m. 

 

 En la figura 4.8 se presentan las curvas correspondientes a los valores de glucosa en 

plasma del paciente simulado #4 en momentos en los que no se presenta FEII y cuando se 

presenta la falla de las 4:00 p.m. Como se observa, el primer punto de falla se detecta 

correctamente 30 minutos después de haberse comenzado a simular la falla. Se observa que 

se detectan erróneamente cuatro puntos de falla antes de que la misma empiece a simularse.  
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Figura 4. 9 Glucosa en plasma. Paciente simulado #3 Falla de las 4:00 p.m. 

 En la figura 4.9 se presentan las curvas correspondientes a valores de glucosa en 

plasma normales y valores cuando se presenta la FEII de las 4:00 p.m. en el paciente 

simulado #3. Como se observa ocurren un total de cinco detecciones anteriores a la falla, que 

corresponden a falsos positivos en un período de 16 horas de simulación. De igual manera, se 

aprecia que la detección del primer punto de falla correctamente, ocurre 30 minutos luego de 

haberse comenzado a simular la falla. 

 
Figura 4. 10Glucosa en plasma. Paciente simulado #1 Falla de las 12:00 p.m 
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 En la figura 4.10 se presentan las curvas correspondientes a los valores normales de 

glucosa en plasma y los valores correspondientes a las concentraciones de glucosa cuando se 

simula la FEII de las 12:00 p.m. en el paciente #1. Se puede observar que el primer punto de 

falla se detecta 20 minutos después del comienzo de la simulación de la falla. De igual 

manera, se puede observar que ocurren cuatro falsos positivos en un período de 12 horas de 

simulación. 

 

 
Figura 4. 11Glucosa en plasma. Paciente simulado #2 Falla de las 12:00 p.m 

 En la figura 4.11 se presentan las curvas correspondientes a los valores normales de 

glucosa en plasma y los valores correspondientes a las concentraciones de glucosa cuando se 

simula la FEII de las 12:00 p.m. en el paciente #2. Se puede observar que el primer punto de 

falla se detecta 30 minutos después del comienzo de la simulación de la falla. De igual 

manera, se puede observar que ocurre un falso positivo en un período de 12 horas de 

simulación 
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Figura 4. 12 Glucosa en plasma. Paciente simulado #6. Falla del mediodía. 

 En la figura 4.12 se presentan las curvas correspondientes a los valores normales de 

glucosa en plasma y los valores correspondientes a las concentraciones de glucosa cuando se 

simula la FEII de las 12:00 p.m. para el paciente #6. Se puede observar que el primer punto 

de falla se detecta 30 minutos después del comienzo de la simulación de la falla. De igual 

manera, se puede observar que ocurren tres falsos positivos en un período de 12 horas de 

simulación. 

 

 
Figura 4. 13Glucosa en plasma paciente simulado #5. Falla de las 4:00 p.m. 
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 En la figura 4.13 se presentan las curvas correspondientes a los valores normales de 

glucosa en plasma y los valores correspondientes a las concentraciones de glucosa cuando se 

simula la FEII de las 4:00 p.m. para el paciente #5. Se puede observar que el primer punto de 

falla se detecta 40 minutos después del comienzo de la simulación de la falla. También, se 

puede observar que ocurren tres falsos positivos en un período de 12 horas de simulación. 

 

4.3 Comparación entre ASN y Enfoque Estadístico Multivariable 

 A continuación se presentan dos tablas resumen en las que se muestran los resultados 

obtenidos por Rojas et al. en la detección de FEII utilizando tres métodos estadísticos y los 

resultados obtenidos utilizando el ASN con detectores de radio variable. Para comparar los 

dos enfoques (estadístico e inmune) se toman en cuenta la tasa de falsos positivos por hora y 

los tiempos de detección. 

Tabla 4. 19 Tasa de falsos positivos (# fp/hora, Media (Desviación Estándar)). 

Caso 

Experimental 

Algoritmo 

ACP 

Algoritmo 

combinado 

Algoritmo  

CB 

ASN  

(100% datos 

propios) 

ASN  (75% 

datos propios) 

 

Sin falla presente  

 

0.04 (0.05) 

 

0.08 (0.08) 

 

0.21 (0.13) 

 

0.00 (0.00) 

 

0.23 (0.09) 

 

Falla de mediodía 

 

0.00 (0.00) 

 

0.05 (0.08) 

 

0:13 (0.06) 

 

0.00 (0.00) 

 

0.45 (0.24) 

 

Falla de 4 de la 

tarde 

 

0.02 (0.03) 

 

0.07 (0.08) 

 

0.02 (0.04) 

 

0.00 (0.00) 

 

0.33 (0.11) 

 

En la tabla 4.19 se muestran las tasas de falsos positivos por hora obtenidas al ejecutar los 

algoritmos basados en un enfoque estadístico multivariable y el ASN de radio variable. Se 
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observa que al ejecutar el ASN con el conjunto total de datos esta tasa se reduce a cero. Pero, 

utilizando un porcentaje del conjunto de datos propios (75%), las tasas de falsos positivos 

son mayores a las reportadas por Rojas, et al. (2011). 

 

Tabla 4. 20Tiempo de detección (HH:MM, Media [Desviación Estándar]). 

Caso 

Experimental 

Algoritmo  

CB 

Algoritmo combinado Algoritmo 

PCA 

ASN detectores de 

tamaño variable 

Falla de medianoche 

(12:00 a.m.) 

7:26 (0:50) 6:04 (2:03) 6.04 [2:03] 1:21[0:25] 

Falla de mediodía 

(4:00 p..m.) 

1:04 (0:11) 2:05 (2:00) 3:04 [2:24] 0:30 [0:07] 

Falla de 4 de la tarde 

(4:00 p.m.) 

2:45 (0:51) 3:09 (1:35) 3:49 [0.48] 1:47 [0:35] 

 

 En la tabla 4.20 se presentan los resultados correspondientes a los tiempos de 

detección obtenidos al aplicar algoritmos basados en el enfoque estadístico multivariable y el 

algoritmo inmune implementado en nuestra investigación. Se puede observar que el ASN 

ofrece los menores tiempos de detección. En el caso de la falla simulada a medianoche la 

detección correcta del primer punto de falla ocurre, en promedio, una hora y 21 minutos 

después de haber comenzado la simulación de la FEII. En cuanto a la falla de mediodía, la 

detección ocurre, en promedio, 30 minutos después de haberse detectado la falla y en el caso 

de la falla de las 4:00 p.m. la media del tiempo de detección es de 1 hora 47 minutos. Esto 

representa una clara ventaja sobre los algoritmos basados en enfoques estadísticos, los cuales 

arrojan medias de tiempos de detección mayores para las tres fallas simuladas. 
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 Es importante mencionar que el hecho de que las tasas de falsos positivos son 

mayores, cuando se ejecuta el ASN con 75% de los datos del conjunto propio (ver tabla 

4.19), constituye una desventaja de este algoritmo con respecto a los algoritmos basados en 

enfoques estadísticos, ya que antes de producirse la primera detección correcta utilizando el 

ASN, se detectan equivocadamente datos normales como falla. 
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Conclusiones   

 El propósito de esta investigación fue estudiar el desempeño del algoritmo de selección 

negativa de valores reales en la detección temprana de fallas de equipos de infusión de insulina 

que son utilizados por pacientes que padecen diabetes tipo I. La investigación se enfocó en 

realizar pruebas preliminares a dos versiones del ASN y evaluar su desempeño utilizando para 

ello un conjunto de datos apropiado. Se demostró experimentalmente, utilizando un conjunto de 

datos ampliamente utilizados para probar algoritmos de clasificación, que el ASN de valores 

reales con detectores de tamaño variable representa la implementación más eficiente. Al utilizar 

el ASN con detectores de radio fijo, se pudo observar que las tasas de falsos positivos son 

mayores, mientras que en el caso del ASN con detectores de radio variable es posible reducir esta 

tasa a cero. La cantidad de detectores generados en la versión de radio variable es mucho menor a 

la generada en la versión de radio fijo, lo cual aumenta la velocidad de ejecución del algoritmo. 

La implementación propuesta en nuestro trabajo fue comparada con una investigación publicada 

por Zhou, Ji et al. (2004), y se pudo determinar que es válida ya que cumple con el criterio de 

error absoluto porcentual entre las tasas de detección y de falsos positivos publicadas y obtenidas, 

inferior a 10%. 

 

Luego de validar el ASN y determinar que la versión que ofrece mayores ventajas es la 

versión de radio variable, se procedió a utilizar el ASN con detectores de radio variable en la 
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detección de FEII en el grupo de pacientes in silico. Para este propósito se ajustaron valores de 

parámetros y se hizo un pre-procesamiento a datos obtenidos del simulador de pacientes para 

poder ser utilizados por el ASN. Finalmente, se compararon los resultados obtenidos con los 

resultados de otras investigaciones orientadas a la detección de FEII, pero que utilizan algoritmos 

basados en enfoques estadísticos. Se pudo demostrar que el ASN con detectores de radio variable 

ofrece una ventaja que tiene que ver con el tiempo de detección. Resultados publicados, en los 

que se utiliza el enfoque estadístico multivariable para la detección de FEII, muestran que la 

media de tiempos de detección es mayor, para todos los casos estudiados, que la media de 

tiempos de detección obtenida al ejecutar el ASN. Recordemos que, en este caso, es de gran 

importancia que la detección de la falla ocurra en un tiempo adecuado para que se tomen 

acciones correctivas antes de que las concentraciones de glucosa en sangre alcancen valores que 

pongan en riesgo al paciente que utiliza este tipo de sistemas de infusión continua de insulina. La 

tasa de falsos positivos por hora y el tiempo de detección son los dos puntos clave tomados en 

cuenta para realizar la comparación entre los algoritmos presentados. En tal sentido, se determinó 

que los algoritmos inmunes ofrecen ventajas en cuanto al tiempo de detección, pero en cuanto a 

las tasas de falsos positivos por hora, los algoritmos basados en enfoques estadísticos, ofrecen 

tasas menores. El propósito de la implementación de estos algoritmos, es obviamente la detección 

de las fallas, es decir, que sean eficientes al momento de clasificar correctamente los datos como 

normales o anormales, pero si esta tarea no es realizada en el tiempo requerido, resulta poco 

efectiva. Es por eso que se consideran los algoritmos inmunes como una herramienta con gran 

potencial en el campo de investigación relacionado con la detección de fallas en equipos de 

infusión de insulina. 
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Este estudio puede ser considerado como un aporte a investigaciones orientadas a la 

detección de este tipo de fallas, ya que no existe evidencia publicada de que el ASN haya sido 

utilizado para este propósito. El área de investigación relacionada con los sistemas inmunes 

artificiales y con la detección de FEII sigue siendo objeto de estudio y en futuras investigaciones 

podrían emplearse el ASN con reglas de coincidencia distintas a la distancia Euclidiana para 

realizar la clasificación de los datos. De igual manera, es conveniente realizar pruebas con los 

otros grupos de pacientes incluidos en el simulador UVA/PADOVA. Otro aspecto que podría 

incluirse en futuros trabajos es utilizar distintas técnicas para el pre-procesamiento de los datos 

que van a ser utilizados y finalmente, se recomienda hacer pruebas con datos obtenidos de 

pacientes reales. 
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