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Resumen: La estrategia tradicional que usan los niños para aprender las tablas

de multiplicación mediante la memorización y repetición constante de cada una de

las tablas, ha demostrado ser deficiente, ya que genera efectos negativos en los niños

dificultando aśı el correcto aprendizaje de las tablas. Debido a este problema nace

la necesidad de crear nuevas estrategias que faciliten el aprendizaje de las tablas

de multiplicación. Una alternativa basada en una interacción humano-robot podŕıa

ser eficiente debido a los excelentes resultados obtenidos por los robots sociales

en el contexto de la educación en los últimos años. La interacción humano-robot

inherentemente requiere de alguna forma de comunicación; por lo general, esta

comunicación se logra mediante dispositivos como tabletas o teclados. No obstante, si

se desea que el campo de la robótica social continúe progresando hacia entornos del

mundo real, debe ser incluida la interacción verbal dada la predominancia de este canal

de comunicación en la interacción natural de los humanos. El proyecto de grado incluye

el diseño de una interacción humano-robot para facilitar el aprendizaje de las tablas de

multiplicación, aśı como también la implementación de los modelos de reconocimiento

del habla infantil que permitirán reconocer los números y palabras que se requieran

en la interacción diseñada. Además, se construirá un corpus de audio infantil para el

entrenamiento y la evaluación de los modelos de reconocimiento del habla desarrollados.

Este proyecto de grado es parte de un estudio más grande que busca explorar los efectos

de un robot social en el aprendizaje de las tablas de multiplicación con niños.

Palabras clave: reconocimiento del habla infantil, interacción humano-robot, robótica

social, tablas de multiplicación.
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Introducción

La multiplicación es uno de los temas más importantes de las matemáticas que se enseña

a los niños durante sus estudios de primaria, la cual comienza con el aprendizaje de las

tablas de multiplicación. Dada la importancia de la multiplicación en la educación de

los niños, se han hecho esfuerzos por crear estrategias que faciliten el aprendizaje de

las tablas de multiplicación y diviertan a los niños, con la intención de que se sientan

motivados durante el aprendizaje.

En los últimos años, investigaciones en el ámbito de la robótica social han

demostrado los beneficios que pueden obtenerse al incorporar los robots sociales como

plataformas educativas en las aulas de clases. Espećıficamente en el área de las

matemáticas, los robots sociales logran excelentes resultados mejorando el rendimiento

y estimulando la motivación de los niños durante el aprendizaje de algún tema

matemático. Esto convierte a los robots sociales en una alternativa que puede servir

como estrategia para ayudar y motivar a los niños durante el aprendizaje de las tablas

de multiplicación.

Cuando se trata de aplicaciones donde los robots sociales interactúan con un niño,

la mayoŕıa de los investigadores se inclinan por utilizar tabletas o teclados como

interfaces de comunicación con el robot. Si bien este tipo de interfaces funcionan,

la comunicación no debeŕıa limitarse únicamente al uso de estos dispositivos. Agregar

la capacidad de interactuar a través de la voz en este tipo de aplicaciones contribuye a

interacciones más naturales con una mejor experiencia de usuario debido a que el habla

es la forma más natural y eficiente que los humanos utilizan para comunicarse. Por lo

tanto, el reconocimiento del habla juega un papel importante en la robótica social, ya

que permite ofrecer una forma de comunicación con los robots mucho más natural e

intuitiva, similar a la existente entre los humanos.

xi
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Debido a los beneficios que presentan los robots sociales en la educación, nace

el interés de diseñar una interacción humano-robot que permita facilitar a los niños

el aprendizaje de las tablas de multiplicación. La interacción diseñada brindará una

alternativa que cubrirá las desventajas más importantes, considerando las ventajas, de

las estrategias para el aprendizaje de las tablas de multiplicación aplicadas actualmente,

aśı como también varios elementos presentes en las investigaciones de robótica social

en el contexto de la educación matemática que se muestran en los antecedentes de esta

investigación. Además, dada la importancia del reconocimiento del habla en este tipo

de interacciones, en este trabajo de grado se considera una interacción verbal entre un

niño y el robot.

En este proyecto de grado se realizará el diseño de una interacción humano-robot

para el aprendizaje de las tablas de multiplicación. Del mismo modo, se hará el diseño e

implementación de los modelos de reconocimiento de habla infantil según el vocabulario

requerido en nuestro caso de estudio, junto con la construcción de un corpus de audio

infantil en español que permitirá el entrenamiento y la evaluación de los modelos de

reconocimiento del habla desarrollados.

Este proyecto de grado está organizado de la siguiente manera: en el primer caṕıtulo

se encuentra una contextualización que involucra los antecedentes de esta investigación;

en el segundo caṕıtulo se ubica el marco teórico, el cuál comprende una revisión de

los conceptos necesarios para la comprensión de este trabajo; en el tercer caṕıtulo se

detalla el diseño de la interacción humano-robot para el aprendizaje de las tablas

de multiplicación, incluyendo el diseño del corpus de audio infantil y el diseño e

implementación de los modelos de reconocimiento del habla para el caso de estudio;

en el cuarto caṕıtulo se encuentran las pruebas que se realizaron sobre los modelos de

reconocimiento del habla para el caso de estudio; finalmente, en el quinto caṕıtulo se

presentan las conclusiones y recomendaciones de este proyecto de grado.

C.C. Reconocimiento

www.bdigital.ula.ve



Caṕıtulo 1

Contextualización

El hecho de que los niños posean un dominio y fluidez de las tablas de multiplicación

proporciona una gran ventaja, ya que liberan recursos mentales al momento de resolver

problemas matemáticos [1], permitiendo a los niños enfocarse en el problema y en cómo

deben resolverlo. Además, esto ayuda a una comprensión de conceptos más avanzados

de las matemáticas durante los años de estudio en la primaria y secundaria [2].

La estrategia tradicional aplicada para que los niños aprendan las tablas de

multiplicación, consiste en la memorización y repetición constante de cada una de las

tablas [3, 4]. Esta estrategia se torna, en muchas ocasiones, dif́ıcil y aburrida para los

niños, lo que hace que éstos se desmotiven durante el aprendizaje, entorpeciendo aśı el

correcto aprendizaje de las tablas. Aunque en los últimos años muchas otras estrategias

han sido creadas con la intención de motivar a los niños durante el aprendizaje, y han

logrado obtener buenos resultados, éstas presentan una serie de desventajas, lo que

conlleva a la necesidad de crear nuevas alternativas que puedan cubrir esas desventajas

y logren ofrecer buenos resultados al facilitar a los niños el aprendizaje de las tablas

de multiplicación.

Una alternativa que puede cubrir las desventajas más importantes presentes en las

estrategias actuales para el aprendizaje de las tablas de multiplicación, considerando

también las ventajas, es la robótica social. Recientemente, investigadores han

examinado los efectos de robots sociales en el contexto de la educación, demostrando

los efectos positivos cuando un robot social asume los roles de tutor, compañero y

C.C. Reconocimiento

www.bdigital.ula.ve



1 Contextualización 2

aprendiz [5]. Siendo ideal que los robots se comuniquen por voz.

Un gran problema de las aplicaciones que utilizan interfaces de voz es que están

desarrolladas principalmente para trabajar con el habla de los adultos. Ésto es debido

a que en la actualidad la mayoŕıa de los corpus de audio destinados al entrenamiento y

evaluación de los modelos de reconocimiento del habla, se centra principalmente en el

habla de personas adultas, siendo los corpus de audio infantil significativamente menos

comunes [6], lo que conlleva a una carencia de datos para el entrenamiento y evaluación

de modelos de reconocimiento del habla infantil. Para desarrollar aplicaciones que

hagan uso del reconocimiento del habla y puedan ser utilizadas por niños de manera

exitosa, es necesario poseer una gran cantidad de audios con discursos de niños para

entrenar y evaluar los modelos de reconocimiento del habla basados en arquitecturas

de aprendizaje profundo [7]. La mayoŕıa de los corpus de audio infantil existentes se

encuentran en el idioma inglés, mientras que para otros idiomas y dialectos, en especial

los menos hablados, los corpus de audio infantil son poco comunes [8], siendo éste el

caso del español venezolano.

En la siguiente sección se presentan los antecedentes de esta investigación, los

cuales están conformados por investigaciones sobre estrategias para el aprendizaje de

las tablas de multiplicación, investigaciones de robots sociales en el contexto de la

educación aplicados al área de las matemáticas, investigaciones sobre la construcción

de corpus de audio infantil e investigaciones sobre modelos de reconocimiento del habla

infantil. La revisión de estos antecedentes tiene el objetivo de estudiar las diferentes

estrategias utilizadas para que los niños aprendan las tablas de multiplicación, para

aśı determinar cuáles son las ventajas y desventajas que éstas poseen y que puedan

ser considerados en la interacción humano-robot a diseñar. Esta revisión también

permitirá mostrar los beneficios presentes al utilizar robots sociales en el aprendizaje

de las matemáticas y cómo éstos son aplicados, para aśı considerar los elementos más

importantes al momento de diseñar la interacción. Igualmente, permitirá estudiar los

métodos para la creación de corpus de audio infantil y los distintos modelos utilizados

para la construcción de los reconocedores de habla infantil.
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1.1 Antecedentes

Los antecedentes de esta investigación se dividen en 3 categoŕıas: primero,

investigaciones sobre estrategias para el aprendizaje de las tablas de multiplicación;

segundo, investigaciones sobre robots sociales en el contexto de la educación aplicados

al área de las matemáticas; y por último, investigaciones sobre la creación de corpus

de audio infantil y modelos de reconocimiento del habla infantil.

1.1.1 Estrategias para el aprendizaje de las tablas de

multiplicación

Debido a que la estrategia tradicional no es eficiente y por lo general no produce buenos

resultados porque los niños las olvidan al momento de aprender otras operaciones

matemáticas como la división [9], se han creado nuevas estrategias con la intención de

lograr que los niños se motiven y se sientan atráıdos en el aprendizaje de las tablas de

multiplicación de una manera mucho más fácil y divertida.

Una de las estrategias usadas para motivar a los niños durante el aprendizaje de las

tablas es el uso de juegos de mesa modificados para tal fin, los cuales, ayudan a mejorar

en los niños la motivación, el interés y la atención por aprender. Además, permiten

a los niños divertirse durante el aprendizaje, lo que hace el aprendizaje de las tablas

mucho más agradable para ellos. Dentro de este tipo de estrategia podemos encontrar

varios juegos de mesa como los propuestos en [10] donde se presentan los siguientes

juegos: “Rompecabezas multiplicativo”, que es una modificación del rompecabezas

donde se arman piezas con las operaciones presentes en las tablas de multiplicación;

las “Cápsulas multiplicativas”, similar al juego de la memoria donde se usan chapas

con las operaciones de las tablas; y “Dominó multiplicativo”, una modificación del

popular juego del dominó donde las fichas contienen los resultados y operaciones de

las tablas. En [11] proponen una modificación del “Juego de la OCA”, el cual consta

de un tablero con varias casillas que contienen una operación de multiplicación. En

[12] recopilan varios juegos destinados a enseñar las tablas de multiplicación, entre los

cuales se encuentra el “Bingo de las tablas” basado en el bingo tradicional; en esta

variación del juego se dictan operaciones de las tablas de multiplicación y las tarjetas
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se llenan según el resultado de la operación dictada. La principal desventaja de este

tipo de juegos es que están diseñados para permitir practicar un conjunto pequeño de

las tablas de multiplicar.

Algunas estrategias plantean el aprendizaje de las tablas de multiplicación por

medio de dinámicas grupales en las que los niños se divierten jugando mientras

aprenden. Como en la mayoŕıa de juegos donde los niños interactúan con compañeros

de juego, presentan la ventaja de permitir a los niños desarrollar habilidades sociales

como la cooperación, liderazgo, comunicación, la expresión emocional y creatividad.

En [13], plantean varias estrategias para el aprendizaje de las tablas de multiplicación

en forma de dinámicas con los niños entre las cuales se encuentran “Capitán multipli”,

la cual consiste en dar órdenes a los niños para que se formen en filas y columnas

en base a una operación de la tablas de multiplicación; “Sigan la pista”, en donde

los niños van en orden proponiendo una operación de la tablas de multiplicación con

el resultado, de manera que el siguiente debe proponer otra multiplicación en base

al resultado de la anterior; “Don Pepe el pescador”, que consiste en colocar sobre

la pizarra varias hojas con dibujos de peces que en su reverso tienen escrita una

operación de las tablas de multiplicación donde participan grupos de niños que escogen

un representante por cada equipo, para que seleccione un pez del pizarrón y muestre la

operación que éste contiene en su reverso a sus compañeros para que digan la operación

y puedan ganar el pez. En [14], muestran una serie de actividades propuestas en una

unidad didáctica para el aprendizaje de las tablas de multiplicación. Una de esas

actividades es el juego denominado “Llena la cesta”, que consiste en formar equipos

de 4 niños entregándoles diez pelotas a cada miembro del equipo, para posteriormente

encestarlas en una canasta que muestra alguna operación de la tabla del 4. Dentro

de las desventajas presentes en estas estrategias, se destaca que no permiten practicar

todas las tablas de multiplicación, sino sólo un conjunto pequeño de éstas.

Gracias al crecimiento que ha tenido la tecnoloǵıa en los últimos años, muchas

estrategias optan por hacer uso de la tecnoloǵıa para cautivar con mayor facilidad a los

niños, aumentando aśı el interés por aprender de éstos. En [15], presentan el software

educativo “Tablas de multiplicar” donde los niños pueden practicar y aprender las

tablas de multiplicación por medio de canciones y juegos que consisten principalmente
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en la construcción de las tablas de multiplicación. En [16], implementan un software

denominado “Jugando y cantando voy multiplicando” donde los niños pueden aprender

las tablas de multiplicación por medio de canciones y juegos de completado de las tablas.

En [17], se presenta una herramienta educacional para ayudar a los maestros a enseñar

las tablas de multiplicación. La herramienta denominada “Multiplication Mat” consiste

en una consola que muestra operaciones de las tablas de multiplicación, junto con una

alfombrilla que captura las respuestas del niño por medio de saltos que da sobre los

números dibujados en la alfombrilla. El principal problema que presentan este tipo de

estrategias es que no dan una retroalimentación con la respuesta correcta cuando el

niño se equivoca y optan por simplemente marcar las respuestas como incorrectas.

1.1.2 Robots sociales en la educación matemática

El uso de robots sociales en el ámbito de la educación matemática ha logrado

excelentes resultados mejorando el rendimiento, aumentando la comprensión de temas

matemáticos y motivando a los estudiantes durante el proceso de aprendizaje. Una

técnica muy utilizada para motivar a los niños cuando interactúan con un robot es el

uso de recompensas verbales, gestos y sonidos que ayuden a que los niños se sientan

animados durante la interacción.

En [18], el robot social NAO actúa como asistente de enseñanza en un salón de clases

con estudiantes de primaria, para apoyar el aprendizaje de una materia no robótica

(aritmética) a través de una actividad innovadora basada en juegos. Aqúı, cuando

el robot recibe una respuesta correcta durante la actividad, recompensa al niño con

gestos y sonidos, mientras que cuando recibe una respuesta incorrecta, consuela al niño

y lo alienta. Los resultados de este estudio son prometedores, pues los estudiantes se

mostraron encantados con el robot y, en consecuencia, indicaron un mayor interés y

comprensión de los conceptos matemáticos enseñados por el robot.

En [19], presentan al robot tutor social interactivo “Ms. An” basado en la

plataforma robótica NAO, el cual fue usado en sesiones de tutoŕıa con niños para

practicar problemas de multiplicación mediante la resolución de problemas y preguntas

de selección múltiple, las cuales se responden a través de una interfaz basada en

una tableta. Además, dependiendo del rendimiento del niño, el robot respond́ıa con
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recompensas verbales para alentarlo. Los resultados de esta investigación demostraron

que los niños prefeŕıan interactuar con el robot tutor sobre otros tipos de apoyo al

estudio como compañeros, programas de computadora, maestros u otros adultos.

Los robot sociales son plataformas robóticas que cautivan con facilidad a los niños.

Una ventaja clave de los robot sociales es que pueden ser programados para que se

adapten durante el desarrollo de las actividades dependiendo de la persona con la que

interactúan y aśı poder brindar una experiencia personalizada.

En [20], presentan al robot NAO como un tutor inteligente adaptativo con

comportamiento social. El robot fue utilizado en sesiones de tutoŕıa con niños donde

los ayudaba a resolver problemas de fracciones matemáticas por medio de pistas, que

eran solicitadas por el niño a través de una tableta donde resolv́ıa los problemas de

fracciones y pod́ıa interactuar con el robot. El robot NAO proporcionaba ayuda al niño

o la negaba si éste cumpĺıa ciertas condiciones, aśı evitaba mal uso de las peticiones de

ayuda por parte del niño. El estudio demostró que los niños que interactuaron con el

robot tutor adaptativo mejoraron su rendimiento en la comprensión de las fracciones

matemáticas.

En [21], se presenta un sistema de tutoŕıa robótico autónomo que hace uso del robot

NAO como tutor. El robot da lecciones cortas referentes al orden de las operaciones

matemáticas mientras el niño resuelve problemas matemáticos a través de una tableta.

Dependiendo del rendimiento que obtiene el niño durante la resolución de problemas

el robot provee al niño tareas de descanso. Dentro de las actividades de descanso se

encuentran el juego de tic-tac-toc, ejercicios f́ısicos, ejercicios de relajación y ejercicios

de reenfoque. El estudio demostró que los niños mejoraron la eficiencia y la precisión al

completar problemas de matemáticas después de los descansos personalizados durante

la tutoŕıa con el robot.

En [22], presentan el diseño y la evaluación de un robot social como tutor que puede

proporcionar retroalimentación de errores espećıficos sobre las respuestas a problemas

matemáticos. En la investigación se enfocan en el dominio de la suma y la resta,

para sumas y restas hasta el número 100. Se utilizó el robot NAO como plataforma

robótica para llevar a cabo las sesiones de tutoŕıa. Durante las sesiones de tutoŕıa

los niños deb́ıan interactuar con el robot y responder de manera verbal usando el
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idioma neerlandés, a los problemas matemáticos planteados . Cuando los niños se

equivocaban el robot dećıa al niño si la respuesta era correcta o incorrecta, también

recib́ıa retroalimentación detallada sobre el tipo de error que se cometió, si el robot

pod́ıa identificarlo. Aunque los resultados obtenidos en la investigación no evidenciaron

los efectos de aprendizaje del robot sobre el desempeño de los niños en la resolución de

problemas de suma y resta, éstos expresaron haber mejorado sus habilidades gracias

al robot, además de disfrutar más trabajar con el robot que cuando trabajaban con

aplicaciones en tabletas.

Muy recientemente, investigadores se han centrado espećıficamente en estudiar

los efectos de los robots sociales en el aprendizaje de las tablas de multiplicación,

obteniendo resultados prometedores al mejorar el rendimiento de los alumnos. En la

investigación [23], presentan al robot NAO como un robot de tutoŕıa autónoma, donde

los niños pod́ıan interactuar de manera verbal usando el idioma neerlandés con el

robot, haciendo uso en parte de la técnica “Mago de Oz”, mientras practican las tablas

de multiplicar. Los resultados mostraron que, en promedio, los alumnos mejoraron

significativamente su rendimiento incluso después de 3 tutoŕıas de 5 minutos con el

robot. Los alumnos por encima del promedio se beneficiaron más de un robot tutor con

comportamiento social, mientras que aquellos por debajo del promedio se beneficiaron

más de un robot que mostró un comportamiento neutral en lugar de más social.

1.1.3 Reconocimiento del habla infantil

Una razón por la que el reconocimiento del habla infantil plantea un gran desaf́ıo, es

debido a la carencia de corpus de audio infantil disponibles para entrenar y probar

los modelos de reconocimiento [24]. Por lo general, los corpus de audio enfocados al

entrenamiento y evaluación de modelos de reconocimiento del habla se centran en el

habla de personas adultas, convirtiendo a los corpus de audio infantil en un recurso

escaso.

Reconocer el habla infantil presenta mayores desaf́ıos que con el habla adulta

[25], debido a que el habla de los niños posee caracteŕısticas muy diferentes al habla

de los adultos, las cuales, son atribuidas principalmente a diferencias anatómicas y

morfológicas en la geometŕıa del tracto vocal [26] y a diferencias en las habilidades
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lingǘısticas [24]. A nivel espectral, dado que los niños poseen tractos vocales y cuerdas

vocales más pequeñas en comparación con los adultos, producen formantes y frecuencias

fundamentales más altas [27]. Además, los tractos vocales de los niños cambian

rápidamente a medida que maduran, lo que conlleva a una alta variabilidad en las

caracteŕısticas inter-locutor, ya que las propiedades acústicas del habla vaŕıan mucho

más entre los niños que entre los adultos [28]. A nivel lingǘıstico, los niños tienden

a reemplazar un fonema por otro y son más propensos a usar palabras imaginarias,

frases gramaticalmente incorrectas y pronunciar incorrectamente las palabras [24, 29],

esto a causa de que la producción del habla es una actividad motora compleja que los

niños todav́ıa están aprendiendo a dominar, por lo que la variación en la producción

del habla de un mismo hablante, es decir caracteŕısticas intra-locutor, es mucho más

alta en los niños que en los adultos [28]. Es por estas razones que el rendimiento de

un sistema reconocedor del habla desarrollado para adultos, disminuye drásticamente

cuando se emplea para reconocer el habla infantil [30]. Igualmente, un reconocedor

desarrollado para niños disminuye su rendimiento significativamente con la edad del

grupo de niños usados para el entrenamiento del modelo [31].

1.1.3.1 Corpus de audio infantil

Construir un corpus de habla infantil presenta mayores retos que los corpus de habla

adulta. Un desaf́ıo muy común es mantener a los niños concentrados y atentos durante

el proceso de grabación, para evitar que se distraigan o se aburran durante sesiones

de grabaciones muy prolongadas. A continuación, se describen varios corpus de audio

infantil.

El corpus de audio TBALL [32], consiste en más de 30000 grabaciones que

comprenden más de 40 horas de audio en inglés, transcritas fonéticamente utilizando

el conjunto de códigos de transcripción fonética ARPABET. Las grabaciones fueron

obtenidas de 256 niños divididos de manera uniforme por género, con edades

comprendidas entre 5 a 8 años. La captura de las grabaciones fue realizada en escuelas

utilizando un micrófono auricular para evitar el ruido ambiental, a una frecuencia de

muestreo de 44100 Hz para que pudieran ser utilizadas tanto para estudios del habla

de niños aśı como también de reconocimiento del habla. Cada sesión de grabación con
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los niños tuvo una duración de 20 minutos o menos, con la intención de que los niños

pudieran mantenerse concentrados el mayor tiempo posible. Uno de los principales

desaf́ıos presentes en la construcción de este corpus fue cómo motivar a los niños a

decir lo que se queŕıa que se dijera. Para esto, fue diseñado un software en Java para

presentar a través de una pantalla est́ımulos atractivos de material legible que conteńıan

letras, números, palabras, oraciones e imágenes, controlados por un operador humano,

a fin de mantener su atención y brindarles una experiencia agradable.

NITK Kids’ Speech Corpus [33] es un corpus de audio en idioma indio canarés

que incluye aproximadamente 10 horas de grabaciones de habla espontánea de 160

niños, con edades comprendidas entre los 2.5 y 6.5 años. Los niños fueron divididos

en 4 grupos con un intervalo de 1 año de edad, y cada grupo estaba equilibrado por

género con una cantidad de 20 niñas y 20 niños por grupo. Las grabaciones fueron

realizadas en una sala silenciosa utilizando un micrófono común, a una frecuencia

de muestreo de 48000 Hz y 16 bits de resolución. El protocolo de captura de datos

consistió en sentar a los niños en una posición cómoda frente a una computadora y

un micrófono, posteriormente se les ped́ıa describir una imagen que representaba una

palabra, la cual era mostrada a éstos en una diapositiva de PowerPoint en la pantalla

de la computadora. Como los niños se aburren con facilidad, se dieron descansos

suficientes entre las grabaciones para mantener respuestas adecuadas durante la sesión

de grabación.

CHOREC [34], es un corpus de audio de discurso léıdo y etiquetado fonéticamente,

obtenido de 400 niños de primaria hablantes del idioma neerlandés con edades entre los

6 y 12 años. De éstos, 274 niños pertenećıan a escuelas regulares y el resto pertenećıa

a escuelas para niños con discapacidades de aprendizajes espećıficas. Las grabaciones

fueron realizadas en una habitación silenciosa con la intención de evitar el ruido. El

discurso de los niños se grabó a 22050 Hz por medio de 2 micrófonos: un micrófono

auricular y un micrófono de escritorio. Para las grabaciones, se mostraban a través de

un computador listas de palabras que se presentaban de forma individual e historias

que se presentaban párrafo por párrafo. Los niños fueron instruidos para que intentaran

leer las palabras y párrafos presentados en la pantalla, con la mayor precisión y fluidez

posible. Se realizaron 3 sesiones de grabación por niño, cada sesión teńıa un máximo de
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20 minutos de duración. La mayoŕıa de los niños estaban muy motivados y ansiosos por

participar en las grabaciones. Sin embargo, algunos niños, que a menudo tienen serias

dificultades de lectura, deb́ıan estar motivados por la promesa de que luego podŕıan

escuchar sus propias grabaciones.

En [8], se describe el corpus de audio CNG que consta de 21 horas de discurso léıdo

en portugués, grabado de 510 niños con edades comprendidas entre 3 a 10 años de edad.

Las grabaciones consisten en un total de 292 frases ricas fonéticamente, notas musicales,

números y secuencias de números que fueron breves y no inclúıan palabras dif́ıciles.

Para la captura de las grabaciones se utilizó una interfaz web donde se presentaba a los

niños el texto a grabar. Las sesiones de grabación fueron supervisadas por seis personas

capacitadas para la tarea, y tuvieron lugar en una habitación tranquila. En el caso

de los niños que tuvieron problemas para leer el texto, el supervisor de grabación las

leyó primero y luego los niños las repitieron. Cada grabación fue captada usando un

micrófono auricular con cancelación de ruido a una frecuencia de muestreo de 22000

Hz y 16 bits de resolución.

En [35], se construye el corpus de audio CID children’s speech corpus que fue

recolectado de 436 niños equilibrados por género, con edades comprendidas entre 5

y 18 años, y 56 adultos. Las grabaciones que consist́ıan en 15 palabras y 5 frases

fonéticamente ricas, se realizaron en una cabina con tratamiento de sonido ubicada

dentro de una caja de panel de vidrio, utilizando un micrófono de alta fidelidad a una

frecuencia de muestreo de 20000 Hz y 16 bits de resolución. Las palabras y frases

se presentaron en un monitor de computadora dos veces en orden aleatorio mientras

se le ped́ıa a los participantes que repitieran el texto presentado. Aquellos niños

que presentaban problemas para leer las palabras y frases, realizaban las grabaciones

mediante la imitación de una muestra pregrabada por una patóloga del habla femenina.

El corpus de audio final consta de 24152 archivos de audios en formato WAV transcritos

fonéticamente.

OGI Kids’ Speech [36] es un corpus de audio que consiste en una colección de

grabaciones de discursos espontáneos y lectura en inglés. Las grabaciones están

conformadas por 205 palabras aisladas, 100 oraciones solicitadas y 10 cadenas

numéricas, obtenidas de 1100 niños con edades comprendidas entre los 5 y 15 años. Un
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grupo de 100 niños por grado divididos equilibradamente por género, pertenecientes a

los grados comprendidos entre preescolar y el décimo grado, participó en la recolección

de las grabaciones. La captura de las grabaciones fue realizada durante las horas de

clases de los estudiantes por lo que las sesiones de grabación teńıan una duración

máxima de 30 minutos. El protocolo de grabación consist́ıa en mostrar en una

pantalla de computador un texto y reproducir una muestra pregrabada con voz humana

del texto, en sincrońıa con la animación facial usando el personaje animado en 3D

“Baldi”, posteriormente, el estudiante repet́ıa el texto. Una vez completada esta

fase, el experimentador realizaba al estudiante una serie de preguntas destinadas a

provocar un discurso espontáneo, los cuales fueron transcritos ortográficamente según

las convenciones de transcripción CSLU. La cantidad total de discurso grabado por

estudiante fue aproximadamente de 8 a 10 minutos. Durante las grabaciones se utilizó

un micrófono a una frecuencia de muestreo de 16000 Hz y 16 bits de resolución.

1.1.3.2 Modelos para el reconocimiento del habla infantil

Una forma de desarrollar un reconocedor del habla infantil es utilizando alguno de los

frameworks de software libre disponibles en Internet, como HTK [37], CSLU [38] o

Kaldi [39]. Estos frameworks utilizan métodos estad́ısticos basados en modelos ocultos

de Markov (HMM) para adaptarse a la variabilidad en los patrones de voz.

En [36], desarrollan un sistema reconocedor de habla infantil utilizando el framework

CSLU Toolkit y el corpus de audio infantil OGI Kids’ Speech. Para el entrenamiento

de este reconocedor se usaron las palabras aisladas de los grados 2 a 10 del corpus de

audio, junto con ejemplos obtenidos del corpus de audio TIMIT [40] para contrarrestar

la falta de datos. Para evaluar el desempeño del reconocedor se realizaron dos tipos

de pruebas. La primera usando un conjunto de prueba de 205 palabras aisladas en la

que se obtuvo una precisión de 97.5%. La segunda usando un conjunto de prueba de

100 palabras que no fueron usadas para el entrenamiento, con la cual se obtuvo una

precisión del 37.9%.

En [41], se presenta un modelo reconocedor de habla infantil orientado a niños

malayos, el cual fue desarrollado con el framework HTK toolkit. El modelo fue

entrenado usando 360 frases de un pequeño corpus de audio que comprende las voces
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de seis niños que pronuncian un total de 390 frases conformadas por 1404 palabras,

de las cuales, 987 son palabras que no se repiten. En los resultados de la prueba de

rendimiento, el modelo muestra una precisión a nivel de oración del 71.51%. A nivel de

palabras, la precisión es del 76.70%, que se basa en un total de 160 palabras disponibles

en las 30 frases que conformaban el conjunto de prueba. En total, el modelo obtuvo una

tasa de error de palabra del 23.30%. El modelo desarrollado en esta investigación puede

reconocer el habla infantil de niños hablantes del idioma malayo a un nivel aceptable

a pesar del uso de un pequeño corpus de audio.

El problema de utilizar un framework basado en modelos ocultos de Markov para

desarrollar un reconocedor del habla infantil es que estos conjuntos de herramientas

carecen de los algoritmos y técnicas de alto rendimiento que se han desarrollado en los

últimos años. Actualmente, los mejores resultados en un reconocedor del habla infantil

se obtienen cuando se desarrollan utilizando técnicas de aprendizaje profundo.

En [7], se construye un reconocedor del habla de vocabulario extenso para niños

y adultos, que se utiliza en la aplicación móvil YouTube Kids. El conjunto de

entrenamiento se obtuvo mediante un muestreo del tráfico de búsqueda por voz de

Google, donde se capturaron 1.9 millones de declaraciones hechas por niños y 2.6

millones hechas por adultos. Además, para lograr que el reconocedor fuera robusto al

ruido, se creó un conjunto de datos que conteńıa ruidos de fondos artificiales. Para

el modelo acústico del reconocedor se compararon las redes neuronales recurrentes de

memoria a corto plazo y a largo plazo (LSTM) con las redes neuronales convolucionales

profundas LSTM (CLDNN). Los resultados de este trabajo demostraron que las redes

neuronales CLDNN superan a una red neuronal LSTM en una variedad de condiciones

diferentes, obteniendo una tasa de error de palabra del 12.5% para el habla de los

adultos y del 9.4% para el habla de los niños. En los resultados para la prueba en

condiciones ruidosas, el reconocedor obtiene una tasa de error de palabra del 9.4%

en condiciones sin ruido y del 11.8% en condiciones ruidosas para el habla de los

niños, mejorando el reconocimiento en condiciones ruidosas sin afectar el rendimiento

en condiciones menos ruidosas.

Un problema presente al momento de desarrollar reconocedores del habla infantil

es la falta de grandes cantidades de datos para el entrenamiento de los modelos. Varias
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técnicas de aumento de datos pueden ser empleadas para contrarrestar este problema,

como por ejemplo utilizar técnicas para transformar voces pertenecientes a corpus de

audio de adultos, los cuales se encuentran en mayor cantidad que los de niños.

En [42], se explora el aumento de datos para el reconocimiento del habla de los niños

utilizando el mapeo de caracteŕısticas estocásticas (SFM) para transformar audios de

adultos. Se realizaron experimentos utilizando el corpus de audio en inglés PF-STAR

[43], WSJCAM0 [44] y ABI [45]. Con el corpus de audio PF-STAR se entrenó un

modelo base utilizando Kaldi, con el que se obtuvo una tasa de error de palabra del 29%,

posteriormente se aplicó SFM en las bases de datos WSJCAM0 y ABI para entrenar

dos modelos más y evaluar su rendimiento. Los mejores resultados fueron obtenidos

con el modelo entrenado con PF-STAR y WSJCAM0 aplicando SFM, obteniendo una

tasa de error de palabra del 27.2%, una mejora relativa del 6.2% sobre el modelo base,

demostrando que los reconocedores de habla infantil pueden hacer uso de datos de

adultos cuando son transformados con SFM.

En [46], utilizan la normalización de la longitud del tracto vocal (VTLN) para

reducir el desajuste entre los datos del corpus de audio TIMIT y el corpus de audio

infantil CMU Kids. En la investigación se observó que el habla de mujeres adultas

se parece mucho más a la de los niños. Por lo tanto, se seleccionaron sólo datos de

mujeres adultas de TIMIT para aumentar el conjunto de entrenamiento usando VTLN.

Al entrenar un modelo con el conjunto de entrenamiento aumentado, se observó que la

tasa de error de palabra era de 16.92% comparado con un 19.50% de un modelo base

entrenado solo con los datos de los niños, demostrando que VTLN es eficaz para tratar

la variabilidad entre el habla de niños y adultos.

Aunque los corpus de audio infantil son menores que los corpus de audio adulto,

varios corpus de audio infantil pueden ser usados para aumentar los datos. En [47],

se desarrollan varios modelos utilizando el framework Kaldi Toolkit para reconocer

el habla infantil de niños jamaicanos. El objetivo de la investigación fue explorar el

aumento de datos utilizando corpus de audio infantil de dialectos del inglés relacionados

al inglés jamaicano. Se utilizaron 3 corpus de audio infantil para el estudio, CMU Kids,

PF-STAR y el corpus de audio de inglés jamaicano JAMLIT para entrenar 3 modelos

bases. Para el modelo base entrenado con la base de datos JAMLIT se obtuvo una
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tasa de error de palabra del 22.9%, con el modelo entrenado con PF-STAR se obtuvo

una tasa de error de palabra del 85.7%, finalmente, con el modelo entrenado con CMU

Kids se obtuvo una tasa de error de palabra de 84.1%. Posteriormente se aplicó el

aumento de datos con el corpus de audio en inglés británico PF-STAR y americano

CMU Kids. Cuando al modelo entrenado con el corpus de audio PF-START se le agregó

una fracción del corpus de audio JAMLIT se obtuvo una tasa de error de palabra del

25.6%, obteniendo una mejora del 58.1% en comparación con un modelo entrenado

solo con el corpus de audio PF-STAR. Con CMU Kids, la mejora obtenida fue del

59.6%, obteniendo una tasa de error de palabra del 24.9%. El estudio muestra que los

modelos creados con datos de niños de un dialecto del inglés no reconocen idealmente el

habla de un dialecto relacionado. Además, demuestra que se pueden utilizar datos no

modificados del dialecto de destino para aumentar los datos de un dialecto relacionado

para producir un modelo que funciona casi tan bien como un modelo completo del

dialecto de destino.

Algo a tomar en consideración cuando se estudia el reconocimiento del habla infantil

en escenarios del mundo real, especialmente en escenarios de interacción niño-robot de

aplicaciones educativas, es que se debe lidiar con el ruido de fondo presente en las

aulas de clase para que los modelos de reconocimiento funcionen correctamente en

condiciones ruidosas. Una forma de lidiar con este problema es aplicar técnicas de

aumento de datos utilizando audios que contengan ruidos de fondo similares a los

esperados en el entorno donde se desarrollará la interacción.

En [48], implementan un modelo de reconocimiento del habla utilizando el

framework Kaldi Toolkit que puede ser usado tanto por niños como por adultos en

aplicaciones donde se interactúa con robots. Para el entrenamiento del modelo se

usaron dos corpus de audio en inglés británico. El primero es la versión en inglés

británico WSJCAMO, el segundo fue el corpus de audio infantil en inglés británico

PF-STAR. Además, para mejorar la robustez del reconocedor en entornos ruidosos,

utilizaron audios de ruido de fondo de la base de datos CHiME [49], en concreto, ruido

de fondo presente en una cafeteŕıa para aumentar los datos de entrenamiento, ya que

éste era el que más se ajustaba al entorno donde el robot se pondŕıa a prueba. Al evaluar

el reconocedor con los conjuntos de prueba, se obtuvo una tasa de error de palabra del

C.C. Reconocimiento

www.bdigital.ula.ve



1.1 Antecedentes 15

9.9% en condiciones silenciosas y 13.1% para condiciones ruidosas con el habla infantil,

para el habla de los adultos se obtuvo un 4.9% en condiciones silenciosas y 12.3%

en condiciones ruidosas. Además, para determinar el rendimiento del reconocedor del

habla en tiempo real, el modelo se probó en un evento de un museo público como parte

de un estudio de investigación en el que 320 niños interactuaron con un robot, logrando

un 90% de precisión al reconocer frases dichas por los niños.

La mayoŕıa de los reconocedores del habla infantil son desarrollados para utilizar

un vocabulario extenso, pero en muchos escenarios de interacción, no es necesario un

sistema reconocedor de un vocabulario extenso para que la interacción se lleve a cabo

de manera correcta, en estos casos, el reconocimiento de palabras clave se puede aplicar

como una alternativa, reconociendo comandos o algunas palabras para mantener una

interacción.

En [50], desarrollan un modelo reconocedor de palabras clave presentes en el habla

infantil en un escenario de interacción niño-robot, haciendo uso de redes neuronales

bidireccionales de memoria a corto plazo y a largo plazo (BLSTM) para la detección

de fonemas, junto con una red bayesiana dinámica. Para el entrenamiento del modelo se

consideró un conjunto de datos que conteńıa 25 palabras clave diferentes obtenidas del

corpus de audio FAU Aibo Emotion Corpus [51], un corpus de audio infantil en alemán

con grabaciones de niños de 10 a 13 años que se comunican con un robot mascota.

Según las pruebas realizadas en esta investigación, el reconocedor de palabras clave

propuesto logró una tasa de detección de hasta el 95.9%. Además, el ser basado en

fonemas permite que sea independiente del vocabulario, añadiendo la versatilidad de

agregar nuevas palabras sin la necesidad de reentrenar el modelo.

Si bien los reconocedores de palabras clave basados en fonemas poseen la

versatilidad de ser independientes del vocabulario, éstos requieren una gran cantidad

de audios etiquetados fonéticamente. Los reconocedores de palabras clave basados en

palabras solo necesitan de grabaciones que contengan las palabras clave de ejemplos.

Además, éstos llegan a tener un mejor rendimiento tanto en precisión, como en menor

tiempo de latencia [52].

En [53], desarrollan un reconocedor de palabras clave para ser usado en Mole

madness [54], un juego controlado por voz en el que dos jugadores en configuración
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niño-niño o niño-robot, mueven un topo virtual a través de su entorno, obteniendo

recompensas y evitando obstáculos. En el juego, un jugador debe crear el movimiento

horizontal del topo usando la palabra GO y el otro debe crear movimiento vertical

con la palabra JUMP. Aunque se presenta una tarea simple de reconocimiento de dos

palabras clave, este escenario conlleva a varios desaf́ıos como ruido de fondo, habla

superpuesta y variabilidad léxica de los niños. Para el entrenamiento del reconocedor

de palabras clave se recopilaron grabaciones de 62 niños de entre 5 y 10 años que

jugaron Mole Madness, las cuales fueron segmentadas y transcritas a nivel de palabra.

En las pruebas realizadas al reconocedor de palabras clave en las mejores condiciones se

obtuvo una precisión del 89% en la configuración niño-niño y del 93% en la configuración

niño-robot.

1.2 Planteamiento del problema

La estrategia tradicional con la que los niños aprenden las tablas de multiplicación,

por medio de la memorización y repetición constante, ha demostrado no ser efectiva ya

que los niños muestran deficiencias al retener a largo plazo en su memoria las tablas de

multiplicación [55], olvidándolas semanas o incluso d́ıas después. Además, esta manera

de aprender las tablas de multiplicación genera una gran presión emocional al niño

aprendiz debido a la insistencia en la memorización, lo que conlleva a un rechazo y

actitud negativa a otros temas referentes con las matemáticas [56]. Aunado a esto,

es considerada dif́ıcil y aburrida por los niños, lo que hace que éstos se desmotiven

durante el aprendizaje.

Debido a las desventajas que presentan las estrategias actuales, es necesario

encontrar nuevas formas de ayudar a los niños con el aprendizaje de las tablas de

multiplicación que puedan mitigar esos problemas. Dado que el campo de la robótica

social en el contexto de la educación presenta excelentes resultados e investigaciones

recientes muestran los efectos positivos que generan los robots sociales en el área de

las matemáticas [18, 19, 20, 21, 22, 23], pareciera que una interacción humano-robot

seŕıa una buena alternativa para facilitar a los niños el aprendizaje de las tablas de

multiplicación.
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Por lo general, en las aplicaciones donde se hace uso de robots sociales, la interacción

con el robot se lleva a cabo mediante enfoques de interacciones que no se basan en la

interacción verbal, siendo los más populares el uso de tabletas y teclados, los cuales

funcionan muy bien para interacciones no verbales. Sin embargo, como se explica en

[57], si se desea que el campo de la robótica social continúe progresando hacia entornos

del mundo real, no es realista excluir la interacción verbal debido a la predominancia

de este canal de comunicación en la interacción natural de los humanos, por lo tanto, es

necesario desarrollar enfoques de interacciones que hagan uso de la comunicación verbal.

Una forma de lograr una interacción verbal con un robot es mediante el reconocimiento

del habla [58], que permite traducir señales de audio en una entrada legible por las

computadoras. En este sentido, es necesario que las interacciones con robots sociales

permitan la interacción verbal, ya que aśı se explotan aún más las habilidades de un

robot social.

1.3 Justificación

La robótica social es un área que cobra cada vez más importancia en el contexto

de la educación a través de diferentes aplicaciones tales como: enseñar a un niño un

segundo idioma [59], enseñar a un robot a escribir a mano [60], narrar cuentos a niños de

preescolar para mejorar su rendimiento cognitivo/motor [61], logrando efectos positivos

en los niños. Varios estudios donde hacen uso de robots sociales para el aprendizaje de

las matemáticas presentados en la sección de antecedentes, demuestran que el uso de

estos sistemas robóticos motivan e involucran a los niños en el aprendizaje de temas

matemáticos, logrando que los niños se diviertan y disfruten al interactuar con un robot

social.

Es por esta razón, que nace el interés de brindar una nueva forma de aprendizaje

de las tablas de multiplicación a través de una interacción humano-robot, de tal forma

que permita cubrir las desventajas más importantes, considerando las ventajas, de las

estrategias que se aplican actualmente, incluyendo también algunos elementos aplicados

en el uso de robots sociales en el aprendizaje de las matemáticas. Además, en aras de

que la robótica social continúe progresando hacia entornos del mundo real, se tomará en
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cuenta un enfoque de comunicación verbal entre el niño y el robot durante la interacción

mediante el diseño y la implementación de modelos de reconocimiento del habla infantil

que permitan reconocer números y palabras.

1.4 Objetivos

1.4.1 Objetivo general

Diseñar una interacción humano-robot para el aprendizaje de las tablas de

multiplicación e implementar los modelos de reconocimiento del habla.

1.4.2 Objetivos espećıficos

� Investigar las estrategias actuales utilizadas para el aprendizaje de las tablas de

multiplicación.

� Estudiar los elementos caracteŕısticos de los robots sociales en el contexto de la

educación matemática.

� Diseñar la interacción humano-robot para el aprendizaje de las tablas de

multiplicación.

� Construir el corpus de audio infantil para el entrenamiento y evaluación de los

modelos de reconocimiento del habla.

� Implementar los modelos de reconocimiento del habla infantil según el vocabulario

requerido en la interacción diseñada.

� Evaluar el rendimiento de los modelos de reconocimiento de habla infantil

implementados.
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1.5 Metodoloǵıa

1.5.1 Fase de diagnóstico

� Revisar documentos cient́ıficos relacionados con las estrategias utilizadas para el

aprendizaje de las tablas de multiplicación.

� Revisar documentos cient́ıficos relacionados con los robots sociales en el contexto

de la educación matemática.

� Revisar documentos cient́ıficos relacionados con modelos para el reconocimiento

del habla infantil.

� Revisar documentos cient́ıficos relacionados con la construcción de corpus de

audio infantil.

1.5.2 Fase de diseño

� Diseñar la interacción humano-robot para el aprendizaje de las tablas de

multiplicación.

� Diseñar el protocolo de captura de audio para el corpus de audio infantil.

� Diseñar los modelos de reconocimiento del habla infantil.

1.5.3 Fase de implementación

� Crear el corpus de audio infantil.

� Implementar los modelos de reconocimiento del habla infantil.

1.5.4 Fase de pruebas

� Realizar pruebas sobre los modelos de reconocimiento del habla infantil para

evaluar la tasa de reconocimiento.
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1.6 Alcance

En este proyecto de grado se realizará el diseño de una interacción humano-robot para

el aprendizaje de las tablas de multiplicación, que logre cubrir las desventajas más

importantes presentes en las estrategias actuales para el aprendizaje de las tablas de

multiplicación, tomando en consideración las ventajas presentes en estas estrategias,

aśı como también los elementos más importantes considerados en las investigaciones

de robótica social en el contexto de la educación matemática que se muestran en los

antecedentes de esta investigación.

De igual forma, el proyecto de grado incluye el diseño e implementación de los

modelos de reconocimiento del habla infantil que permitirán reconocer los números

y palabras requeridas en la interacción diseñada, junto con la creación de un corpus

de audio infantil para el entrenamiento y evaluación de los modelos desarrollados. El

corpus de audio infantil para implementar los modelos de reconocimiento del habla será

creado a partir de muestras de audio provenientes de niños de primaria que se presten

como voluntarios a esta investigación.

Realizar un estudio en profundidad de los efectos en el aprendizaje de los niños

utilizando un robot social, es una tarea desafiante que requiere de un proceso de varias

etapas, el cual puede tomar mucho tiempo. Este proyecto de grado hace parte de un

estudio más grande que busca explorar los efectos de un robot social en el aprendizaje de

las tablas de multiplicación con niños. Por lo tanto, en el proyecto de grado se limitará

a diseñar la interacción humano-robot, aśı como también diseñar e implementar los

modelos de reconocimiento del habla necesarios para permitir la interacción verbal

durante la interacción.
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Marco teórico

2.1 Robótica social

En los últimos años, ha habido un interés creciente en el desarrollo de robots que

interactúan de forma autónoma con los humanos siguiendo reglas de comportamiento

social, con la intención de que éstos se acoplen a la vida cotidiana de las personas. La

robótica social es el estudio de los robots que interactúan y se comunican entre ellos, con

los humanos y con el medio ambiente, dentro de la estructura social y cultural adjunta

a sus roles [62]. Recientemente los robots sociales han sido utilizados en diferentes

aplicaciones para resolver problemas complicados, donde humanos y robots interactúan

de manera natural e interpersonal para obtener ventajas de su colaboración, como por

ejemplo en: hogares [63], educación [5] y salud [64].

2.1.1 Robot social

El concepto de robot social continúa hasta el d́ıa de hoy bajo debate. Varios autores

han dado su punto de vista y, aunque actualmente no existe un consenso en torno a

una definición precisa, en general [65, 66, 67, 68] están de acuerdo en que un robot

social posee las siguientes caracteŕısticas:

� Encarnación f́ısica: un robot social debe tener un cuerpo f́ısico con el cual

interactuar.
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� Sociabilidad: un robot debe ser capaz de interactuar con las personas mostrando

rasgos similares a los humanos mientras sigue las reglas sociales (definidas a través

de la sociedad) asociadas a su función.

� Autonomı́a: un robot social debe tomar decisiones por śı mismo.

A continuación se presentan las definiciones más relevantes encontradas en la

literatura.

Bartneck y Forlizzi [65] proponen la siguiente definición: un robot social es un robot

autónomo o semiautónomo que interactúa y se comunica con los humanos siguiendo

las normas de comportamiento que esperan las personas con las que se pretende que

interactúe el robot. Esta definición implica 3 condiciones:

1. Un robot social tiene una encarnación f́ısica. Los personajes de pantalla o

cualquier tipo de agente virtual quedaŕıan excluidos por esta definición.

2. La autonomı́a es un requisito para un robot social. Un robot semiautónomo puede

definirse como social si comunica un conjunto aceptable de normas sociales. Un

robot completamente controlado a distancia no puede considerarse social, ya que

no toma decisiones por śı mismo y es simplemente una extensión de otro humano.

3. La comunicación y la interacción con los humanos es un punto cŕıtico en esta

definición. Por tanto, los robots que solo interactúan y se comunican con otros

robots no se consideran robots sociales. Es probable que la interacción sea

cooperativa, pero no se limita a ella.

Desde el punto de vista de Fong et al. [66], los robots sociales son agentes

encarnados que forman parte de un grupo heterogéneo: una sociedad de robots o

humanos. Son capaces de reconocerse y participar en interacciones sociales, poseen

historias (perciben e interpretan el mundo en términos de su propia experiencia), y

se comunican expĺıcitamente y aprenden unos de otros. Por lo tanto, un robot social

posee las siguientes caracteŕısticas sociales humanas:
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1. Tiene que ser capaz de expresar y percibir emociones.

2. Comunicarse con diálogos de alto nivel.

3. Aprender y reconocer modelos de otros agentes.

4. Debe ser capaz de establecer y mantener relaciones sociales, utilizando señales

naturales (mirada, gestos, etc.) y exhibiendo personalidad y carácter distintivos.

5. El robot también debe desarrollar competencias sociales.

Por otro lado, para Hegel et al. [67], un robot social combina aspectos técnicos

y sociales, pero los aspectos sociales son el propósito central de los robots sociales.

El robot no es un robot social per se, sino que necesita capacidades comunicativas

espećıficas para convertirse en un robot social. En primer lugar, implica que el robot

se comporte (funcione) socialmente dentro de un contexto y, en segundo lugar, implica

que el robot tenga una apariencia (forma) que exprese expĺıcitamente ser social en

un aspecto espećıfico para cualquier usuario. Desde este punto de vista, un robot

social contiene un robot y una interfaz social. Una interfaz social incluye todas las

caracteŕısticas diseñadas por las cuales un usuario juzga que el robot tiene cualidades

sociales. Esta interfaz está constituida por los siguientes componentes:

� Forma social: elementos que contribuyen a la comunicación humano-robot,

como el rostro.

� Función social: todos los aspectos que computan cualquier comportamiento

social artificial de un robot social son parte de las funciones sociales. Por ejemplo,

las emociones artificiales, los módulos para el reconocimiento y la producción de

voz son funciones que producen y alteran la interacción social.

� Contexto social: una aplicación es un contexto de un robot e influye en

la función. Dentro de una aplicación, un robot debeŕıa poder realizar todas

las tareas necesarias para mantener las expectativas de un usuario. Pero el

robot no tiene que ser capaz de hacer cosas fuera de su aplicación prevista,

porque en general la gente no espera que el robot haga cosas para las que no
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está preparado. Por tanto, las aplicaciones son un criterio para disminuir la

complejidad y determinar las tareas de los robots sociales.

Para Breazeal [68] un robot social es capaz de comunicarse con los humanos,

entenderlos e incluso relacionarse con ellos, de manera personal. Debeŕıa poder

entender a los humanos y a śı mismo en términos sociales. A su vez, los seres humanos

debeŕıan poder entender al robot en los mismos términos sociales: poder relacionarse

con el robot y empatizar con él. Dicho robot debe ser capaz de adaptarse y aprender

a lo largo de su vida, incorporando experiencias compartidas con otras personas en su

comprensión de śı mismo, de los demás y de las relaciones que comparten. En resumen,

un robot sociable es socialmente inteligente de una manera similar a la humana. Para

alcanzar este objetivo de un robot social, Breazeal establece los siguientes requisitos:

1. Un robot social debe estar encarnado de manera situada, ya que la experiencia

social depende de entornos simétricos donde las entidades interactúan entre śı.

2. Un robot social debe tener cualidades reales, ya que los humanos tienden a

antropomorfizar la tecnoloǵıa y a interpretar el comportamiento como intencional.

3. Un robot social debe ser capaz de identificar quién es la persona, con quién está

interactuando, qué está haciendo y cómo lo está haciendo.

4. Un robot social debe ser entendido, esto significa que el ser humano necesita ser

capaz de leer las actividades (expresiones, mı́mica, etc.) del robot.

5. Un robot social, al igual que los humanos, también debe poder aprender

continuamente sobre śı mismo, aquellos con quienes interactúa y su entorno.

De esta forma las nuevas experiencias darán forma continuamente a la historia

personal del robot e influirán en su relación con los demás.

2.1.2 Interacción humano-robot

Tradicionalmente, la interacción entre humanos y robots se llevaba a cabo

principalmente de forma unidireccional, es decir, controles simples de encendido y

apagado o joysticks analógicos para operar articulaciones de manipuladores y veh́ıculos
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remotos. Con el tiempo, a medida que los robots se han vuelto más inteligentes, la

naturaleza de la comunicación entre humanos y robots se ha vuelto cada vez más

parecida a la relación entre dos seres humanos y menos parecida a la del uso de una

herramienta.

La interacción humano-robot (HRI por sus siglas en inglés) se puede definir como

el estudio de los humanos, los robots y las formas en que se influyen entre śı. Como

disciplina, HRI considera el análisis, diseño, modelado, implementación y evaluación

de robots para uso humano [69]. En este proyecto de grado es de interés la interacción

humano-robot debido a que la nueva estrategia para el aprendizaje de las tablas de

multiplicación esta destinada a ser implementada en un escenario donde interactúan

de manera social un niño y un robot.

2.1.2.1 Modelo de interacción humano-robot MIHR

El desarrollo de aplicaciones basadas en robots sociales no solo se enfrenta a los desaf́ıos

convencionales de la robótica, como la localización del robot o la planificación del

movimiento. Un desaf́ıo importante en el desarrollo de aplicaciones que hacen uso de

robots sociales es la organización y la forma en que se comunican cada uno de los

componentes de software que facilitarán el desarrollo de las habilidades sociales del

robot al momento de interactuar con los humanos.

A continuación se presenta el modelo de interacción humano-robot MIHR (ver

Fig. 2.1), propuesto en [70] que fue tomado como base para la gestión de la dinámica

de interacción del robot social en nuestra estrategia para el aprendizaje de las tablas

de multiplicación.

El modelo MIHR, es un modelo que describe la interacción entre un humano y un

robot, el cual toma como base un modelo de interacción humano-humano [71] para

lograr una interacción parecida a la interacción existente entre personas. MIHR está

conformado por tres elementos principales: la modalidad de la comunicación humana,

la adaptación de la interacción y la expresión de emociones.
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Figura 2.1: Modelo de interacción humano-robot MIHR [70]

� Modalidad de la comunicación humana: es la forma en la que los robots

sociales se comunican y dado que la comunicación en lenguaje natural usa

diferentes formas para comunicar una misma intención, estos pueden hacerlo

de diferentes formas, como por ejemplo: la voz, la mirada, gestos o el contacto

f́ısico.

� Capacidad de adaptación: los robots sociales deben ser capaces de

personalizar su comportamiento con la intención de proporcionar interacciones

apropiadas en lugar de brindar interacciones genéricas que se mantengan

constantes en todas las personas o en una misma persona, ya que las interacciones

con personas requieren considerar que una misma persona puede tener un

comportamiento inconsistente en el tiempo, incluso, mientras interactúa con el

robot.

� Expresión de emociones: los robots sociales necesitan entender y expresar

estados afectivos para mejorar sus interacciones, esto con la finalidad de ayudar

a que el robot comunique su estado emocional, alentar los comportamientos

deseados de las personas o ayudar a las personas a conectarse emocionalmente

con el robot.

MIHR está constituido por dos niveles: un nivel interno, que describe el proceso

interno de cada participante en la interacción desde que percibe información hasta

que genera respuestas, y un nivel externo, que describe cómo puede ser alterada la

información desde que es emitida por un participante hasta que es recibida por otro.
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2.1.2.1.1 Nivel interno del humano El nivel interno del humano está constituido

por cuatro módulos: f́ısico, afectivo, cognitivo, y conductual. El nivel interno recibe

la información que proviene del nivel externo, modificándose según los sentidos de la

persona y activando estados afectivos según la interpretación dada. Posteriormente,

se hace una nueva interpretación según los filtros cognitivos de la persona, para

determinar la intención de comunicación de la otra persona, activando estados afectivos

nuevamente. Después, se genera el objetivo y el estilo de comunicación, a partir de

los aportes realizados inconsciente y conscientemente, y de los estados afectivos. Por

último, a la respuesta se le asignan los componentes conductuales, según el objetivo y

el estilo de comunicación, restringidos por las condiciones fisiológicas de la persona.

2.1.2.1.2 Nivel externo Durante la ejecución de una interacción la persona env́ıa

información al robot y viceversa. Esa información es enviada a través de un canal

de comunicación y esta puede llegar a ser alterada por el canal durante el recorrido.

Además, la información puede ser alterada durante el camino que recorre desde que es

generada por el emisor hasta que es incorporada al canal de comunicación o durante el

proceso de recepción mientras es desincorporada del canal de comunicación.

El nivel externo se comporta de la misma forma para el humano y el robot ya que

ambos pueden cumplir el rol de emisor y receptor. El nivel externo se compone de tres

módulos: módulo individual del humano, módulo individual del robot y compartido. El

nivel externo funciona de la siguiente manera: en primer lugar se altera la información

de entrada según las condiciones ambientales presentes entre el emisor y el canal

(módulo individual del emisor). Posteriormente, incorpora la información al canal de

comunicación y la modifica según los ruidos del canal (módulo compartido). Por último,

desincorpora la información del canal (módulo individual del receptor) y la modifica

según las condiciones ambientales presentes entre el canal y el receptor, obteniendo aśı

la salida de este nivel.

2.1.2.1.3 Nivel interno del robot La entrada de este nivel proviene del nivel

externo la cual es recibida a través de los sensores del robot. Posteriormente, se aplican

algoritmos de reconocimiento, con la intención de interpretar los datos y descubrir la

intención de la comunicación. Dentro de este nivel se gestionan dos tipos de respuestas:
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automáticas y deliberadas. Las respuestas automáticas se ejecutan inmediatamente

después de descubrir que son requeridas, mientras que las respuestas deliberadas están

basadas en un objetivo de comunicación, el cual es determinado según la intención, las

normas de interacción y el estado afectivo, para luego adaptarlo según la persona y

generar las formas verbales, paraverbales y no verbales que serán traducidas en señales

que entiendan los actuadores para que sean ejecutadas. A continuación se describe con

detalle cada módulo presente en el nivel interno del robot:

� Módulo f́ısico: este módulo está compuesto por tres componentes: percepción,

actuación y condiciones f́ısicas. Si la información proviene del módulo individual

del robot del nivel externo, el componente de percepción se encarga de

capturar las señales según lo indicado por el componente de condiciones f́ısicas

(repetibilidad, sensibilidad, etc.) acerca de los sensores, de manera multimodal

para detectar los datos de interés, para luego enviarlos al componente de

reconocimiento del módulo cognitivo. Por otro lado, si la información que recibe

este módulo proviene del módulo conductual, el componente de actuación se

encarga de traducir las órdenes en señales comprendidas por los actuadores, para

posteriormente enviarlas a que sean ejecutadas según lo indicado acerca de los

actuadores por el componente de condiciones f́ısicas (precisión, velocidad, etc.).

� Módulo cognitivo: está compuesto por cinco componentes: reconocimiento,

automático, deliberativo, normativo y adaptación. En el componente de

reconocimiento se aplican algoritmos de reconocimiento (de personas, voz, temas

de conversación, lugares, estados afectivos, eventos, entre otros), usando los datos

obtenidos desde el módulo f́ısico. En el componente automático se identifican los

eventos que requieren respuesta inmediata y se env́ıan las respuestas directamente

al módulo conductual, con el propósito de que sean ejecutadas rápidamente. En

el componente deliberativo se aplican algoritmos que permiten interpretar lo que

se ha reconocido en los diferentes modos o canales, para identificar la intención

de comunicación y generar un objetivo de comunicación según las normas de

interacción y el estado afectivo. El componente normativo provee las normas

sociales de la interacción. En el componente de adaptación, se adecúa la respuesta
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según el objetivo y la persona. Adicionalmente, el módulo cognitivo env́ıa los

resultados de la intención de comunicación identificada al módulo afectivo.

Gestor Local

T1 T2
. . . Tn

P1 P2
. . . Pn

Gestor Remoto

T1 T2
. . . Tm

P1 P2
. . . Pm

Sub-módulo Local Sub-módulo Remoto

módulo de reconocimiento

Figura 2.2: Módulo de reconocimiento

– Módulo de reconocimiento: el módulo de reconocimiento [72] es un

subcomponente del módulo cognitivo que se encarga de la gestión de tareas

y paquetes de reconocimiento, además de proveer la capacidad de solicitar

dichas tareas a un robot en particular (ver Fig 2.2). Los usuarios de

este módulo son dos: el robot, quien solicita y gestiona las tareas de

reconocimiento de forma local y remota; y el operador, quien gestiona las

tareas y paquetes de reconocimiento en el gestor remoto. Una tarea de

reconocimiento es un elemento del sistema de software que ofrece servicios

de reconocimiento; y un paquete de reconocimiento, es un paquete de

datos que contiene todos los archivos necesarios para ejecutar una tarea

de reconocimiento. A continuación se presentan de manera breve la

especificación y requerimientos de la estructura general y contenido de los

paquetes de reconocimiento.

1. Todos los archivos deben ser compatibles con python 3.

2. La estructura general de un paquete de reconocimiento debe ser la

siguiente:
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Figura 2.3: Árbol de directorios de un paquete de reconocimiento

Los paquetes de reconocimiento deben seguir la estructura que se observa

en la Fig. 2.3 para poder ser usados en el módulo reconfigurable de

reconocimiento. A continuación se describen todos los elementos que

conforman un paquete de reconocimiento:

TaskName: es el directorio principal, éste tiene como nombre el

identificador de la tarea de reconocimiento. Está conformado por 3

directorios: Model, Aplication y Description. Adicionalmente, contiene dos

archivos: init.py y Read.me.

Model: es un directorio en el cual se almacenan los archivos que contienen el

pre-procesamiento de los datos, la versión persistente del modelo o algoritmo

entrenado y el archivo de código python correspondiente a la clase task,

que permiten integrar los elementos anteriores para realizar las tareas de

reconocimiento. Adicionalmente, contiene el archivo: init.py.

Aplication: es un directorio en el cual se genera una pequeña prueba

de funcionamiento del algoritmo. Estos archivos se utilizan para que

el operador pueda comprobar el funcionamiento del mismo antes de ser
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instalado. Para realizar esta prueba, es necesario utilizar un archivo .ipynb,

correspondiente a un jupyter notebook; esto con la finalidad de reproducir

de manera sencilla las pruebas sobre el algoritmo entrenado. Para realizar

estas pruebas es necesario utilizar los archivos contenidos en el directorio

Model y además es necesario añadir una o más muestras (directorio Sample),

para mostrar detalladamente el pre-procesamiento de la misma en el jupyter

notebook.

Description: es un directorio que contiene dos archivos con especificación

detallada del algoritmo de reconocimiento y sus dependencias. El archivo

ModelSpecs.txt contiene la información de: número de clases, formato

de entrada, tipo de salida, nombres de salidas, hiperparámetros, tasa de

reconocimiento, entre otros, por otro lado, el archivo Dependencies.txt,

contiene las dependencias del paquete de reconocimiento.

� Módulo afectivo: este módulo tiene el objetivo de gestionar los estados afectivos

del robot en términos de emociones y sentimientos. La entrada de este módulo

proviene del módulo cognitivo, el cual le env́ıa la intención de comunicación que ha

identificado para que sean actualizados los estados afectivos del robot en función

de esa intención, de la persona y de las normas sociales de interacción. Luego,

los estados afectivos son enviados a los módulos conductual y cognitivo.

� Módulo conductual: el objetivo de este módulo es distribuir en distintos

canales o modos, las respuestas y los estados afectivos que serán expresados

por el robot. Está constituido por tres componentes: verbal, paraverbal y

no verbal. Cada componente se encarga de generar las órdenes respectivas.

El componente verbal relacionado con las palabras; el componente paraverbal

asociado al volumen de la voz, tono, timbre, etc.; y el componente no verbal

relacionado con las expresiones faciales, movimientos, posturas, etc.
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2.2 Aprendizaje profundo

El aprendizaje profundo, también conocido en inglés como “deep learning”, es una

forma de aprendizaje de máquina que permite a las computadoras aprender de la

experiencia y comprender el mundo en términos de una jerarqúıa de conceptos [73],

descubriendo una estructura intrincada en grandes conjuntos de datos mediante el uso

de un algoritmo de retropropagación para indicar cómo una máquina debe cambiar

sus parámetros internos que se utilizan para calcular la representación en cada capa a

partir de la representación en la capa anterior [74]. En los últimos años, esta rama

de la inteligencia artificial ha logrado excelentes resultados en distintos dominios.

Especialmente en el campo de la robótica social y la interacción humano-robot ha sido

utilizado en variedad de tareas como seguimiento de la mirada humana [75], análisis

de sentimientos a través de la voz [76], reconocimiento de expresiones faciales [77],

reconocimiento de palabras claves a través de la voz [50], generación de movimientos

para expresar estados del robot [78], entre otras.

2.2.1 Redes neuronales convolucionales (CNN)

En los últimos años, las redes neuronales convolucionales [79] o CNN (por sus siglas

en inglés), han demostrado resultados sorprendentes en campos relacionados con el

reconocimiento de patrones en imágenes, que van desde la clasificación de imágenes

[80] al reconocimiento del habla [81]. Hoy en d́ıa, el uso exitoso de las redes neuronales

convolucionales en una amplia gama de aplicaciones es una de las razones clave de la

creciente popularidad del aprendizaje profundo. Las CNN son un tipo especializado

de red neuronal para procesar datos que tiene una topoloǵıa conocida en forma de

cuadŕıcula [73]. Los ejemplos incluyen datos de series de tiempo, que se pueden

considerar como una cuadŕıcula unidimensional que toma muestras a intervalos de

tiempo regulares, y datos de imágenes, que se pueden considerar como una cuadŕıcula

de ṕıxeles de 2 dimensiones. El aspecto más importante de las CNN radica en sus 3

propiedades claves [82]:
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1. Conectividad local : las imágenes se componen principalmente de elementos (por

ejemplo, objetos, animales, texturas, piezas de objetos, etc.). Por lo tanto,

las neuronas de una red no necesitan conectarse a todas las unidades de la

entrada para encontrar patrones interesantes. En cambio, las neuronas de una red

neuronal convolucional solo están conectadas a un pequeño número de unidades

en una región espacialmente localizada de la entrada. Esto permite que las

neuronas se centren en caracteŕısticas locales en lugar de caracteŕısticas globales,

reduciendo aśı el número de parámetros drásticamente..

2. Invarianza espacial : las imágenes pueden tener elementos en diferentes posiciones

sin alterar su contenido semántico, es decir, la red necesita producir valores de

salida similares a partir de patrones de entrada similares, independientemente de

su ubicación. Las redes neuronales convolucionales implementan esta propiedad

al compartir parámetros entre diferentes neuronas.

3. Caracteŕısticas jerárquicas : los patrones en las imágenes generalmente se pueden

descomponer en una jerarqúıa de caracteŕısticas, con caracteŕısticas de bajo nivel

(por ejemplo, orejas, ojos, nariz) que se pueden agrupar para crear caracteŕısticas

de alto nivel (por ejemplo, rostros, personas). Al usar múltiples capas, las

redes neuronales convolucionales pueden extraer y aprender automáticamente

esta jerarqúıa de caracteŕısticas para el reconocimiento de patrones.

Cuando se combinan todas estas propiedades, la red neuronal resultante es

altamente eficiente, permitiendo tanto a los investigadores como a los desarrolladores

construir modelos más grandes para resolver tareas de reconocimiento con imágenes

complejas.

Las redes neuronales convolucionales (ver Fig. 2.4) constan de 3 capas principales:

capa convolucional, capa de activación y capa de agrupación. La combinación de esas

tres capas es el componente básico de una red neuronal convolucional. Posteriormente

les sigue un conjunto de capas completamente conectadas para un razonamiento de

alto nivel.
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Figura 2.4: Ejemplo de estructura de una red neuronal convolucional [82]

2.2.1.1 Capa convolucional

La capa convolucional contiene un conjunto de filtros y su función es realizar una

operación de convolución entre estos filtros y la entrada de la capa para crear mapas de

caracteŕısticas. Un filtro es una cuadŕıcula de números discretos y, por lo general, tiene

forma cuadrada. Sus parámetros, es decir, los números en la cuadŕıcula, almacenan

principalmente un patrón. Este patrón es lo que el filtro detectará en la entrada

de la capa (como un detector de caracteŕısticas). La operación de convolución es el

paso clave que permite que las redes neuronales convolucionales sean invariantes en

el espacio. La operación de convolución colocará el filtro sobre la sección superior

izquierda de la imagen. Realizará un producto por elementos entre los parámetros del

filtro y la cuadŕıcula correspondiente en la entrada, seguido de la suma del resultado

para obtener un valor único (ver Fig. 2.5).

Figura 2.5: Operación convolución aplicada sobre una entrada
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El valor único resultante indica la presencia o ausencia de la plantilla/patrón único

del filtro en esta sección espećıfica de la imagen. A continuación, la operación de

convolución deslizará el filtro hacia la derecha y calculará el producto escalar en esta

nueva posición. Este deslizamiento de filtro se implementa de izquierda a derecha y de

arriba a abajo a través de la entrada y permite la aplicación del filtro en cada posición

de la imagen.

Finalmente, el mapa de caracteŕısticas almacena el resultado de la operación de

convolución. Este almacenamiento se realiza en una estructura de cuadŕıcula espacial,

que mantiene las relaciones espaciales entre la cuadŕıcula ingresada. Esta propiedad

del mapa de caracteŕısticas es esencial porque las operaciones de convolución de las

siguientes capas dependen fundamentalmente de estas relaciones espaciales. Dado que

cada filtro almacena sólo un patrón, es probable que escanear la entrada en busca

de un solo patrón resulte en una red muy limitada. Para abordar esta limitación,

una capa convolucional debe tener varios filtros, cada uno de los cuales produce un

único mapa de caracteŕısticas de 2 dimensiones. Después de obtener los diferentes

mapas de caracteŕısticas, se apilan todos juntos y eso se convierte en el resultado

final de la capa convolucional en un volumen de 3 dimensiones con todos los mapas

de caracteŕısticas. Al igual que en una red neuronal, los parámetros de cada filtro

se aprenden durante la fase de entrenamiento. Este procedimiento de aprendizaje

implica una inicialización aleatoria de los parámetros del filtro al principio, que luego

se sintonizan en muchas iteraciones utilizando un método de descenso de gradiente.

De igual manera la capa convolucional tiene diferentes hiperparámetros. Estos son el

número de filtros, el tamaño del filtro, tamaño del paso comúnmente llamado “stride”

y el relleno también llamado “padding”.

� Número de filtros: el número de filtros determina el número de detectores de

caracteŕısticas. Este hiperparámetro es el más variable entre las capas y, por

lo general, se establece en una potencia de 2, entre 32 y 512. El uso de más

filtros da como resultado una red neuronal más potente, pero aumenta el riesgo

de sobreajuste debido a la mayor cantidad de parámetros a estimar.
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� Tamaño del filtro: el tamaño (alto y ancho) del filtro define su extensión

espacial. Normalmente se utilizan filtros pequeños con rejillas de tamaño 3x3,

pero también se usan de 5x5 o 7x7. El uso de filtros pequeños proporciona

dos beneficios claves: (1) la cantidad de parámetros que se pueden aprender se

reduce significativamente; y (2) asegura que se aprendan patrones distintivos de

las regiones locales.

� Tamaño del paso (stride): el tamaño del paso indica el número de ṕıxeles en

los que se mueve la ventana del filtro. Su valor suele ser 1, lo que significa que el

filtro se desliza ṕıxel a ṕıxel. Sin embargo, se puede aumentar el tamaño del paso

si se quiere que el filtro se deslice con un intervalo más grande. Esta alteración

hace que el mapa de caracteŕısticas resultante sea más pequeño.

� Relleno (padding): a veces es beneficioso rellenar los datos de entrada con

ṕıxeles de valor cero alrededor del borde. Esta almohadilla evita que nuestro

mapa de caracteŕısticas se contraiga durante la operación de convolución porque

el ṕıxel central del filtro ahora se puede colocar en el ṕıxel del borde de la

imagen de entrada (ver Fig. 2.6). Esto evita un colapso de las dimensiones de las

caracteŕısticas de salida, lo que permite diseñar redes más profundas.

Figura 2.6: Efecto de aplicar relleno a una entrada

C.C. Reconocimiento

www.bdigital.ula.ve



2.2 Aprendizaje profundo 37

Desde un punto de vista matemático, la operación de convolución es solo una

operación entre dos funciones que se puede expresar de la siguiente manera:

y(t) = (x ∗ w)(t) =

∫
x(τ)w(t− τ)dτ (2.1)

Donde t ∈ R, τ ∈ R, x : R → R, y w : R → R. La función resultante y : R → R
después de aplicar el operador de convolución, t́ıpicamente denotado con un asterisco

∗, a las funciones x y w es definida como la integral del producto de ambas funciones

después de que una se invierte y se desplaza (τ). La primera función x generalmente

se denomina entrada, mientras que w es una función de ponderación conocida como

kernel. La salida y se denomina mapa de caracteŕısticas.

Cuando se implementa la operación de convolución en una computadora, las

entradas son discretas y también lo tiene que ser la operación. El ı́ndice t solo puede

tomar valores enteros. Suponiendo que tanto la entrada como el kernel están definidos

solo en t, una convolución discreta se puede definir como:

y(t) = (x ∗ w)(t) =
τ=∞∑
τ=−∞

x(τ)w(t− τ) (2.2)

En la práctica, dentro del campo del aprendizaje automático, la entrada y el kernel

no son funciones de valor real, sino matrices n-dimensionales de datos con tamaños

discretos para cada dimensión. Teniendo todo esto en cuenta, la convolución discreta

se puede redefinir como una suma finita sobre matrices n-dimensionales.

Y (i, j) = (X ∗W )(i, j) =
m∑ n∑

X(i+m, j + n)W (m,n) (2.3)

2.2.1.2 Capa de activación

Las redes neuronales convolucionales implican el uso de una función de activación no

lineal después del cálculo de las operaciones de la capa convolucional. Por lo general,

esta función no lineal se define dentro de la capa convolucional. Sin embargo, a veces

las transformaciones no lineales se implementan como una capa independiente para

permitir una mayor flexibilidad en la arquitectura de la red. Entre las posibles no
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linealidades, la función ReLU (ver Fig. 2.7) es la más popular. Matemáticamente la

función ReLU se define de la siguiente manera:

f(x) = max(0, x) (2.4)

−6 −4 −2 2 4 6

1

2

3

4

5

x

y

Figura 2.7: Función ReLU

El uso de esta función permite entrenar las redes neuronales convolucionales

profundas mucho más rápido que el uso de otras funciones de activación, como tangente

hiperbólica o sigmoide. La razón es que las funciones tangente hiperbólica y sigmoide

se saturan a valores muy altos o muy bajos, haciendo que el gradiente de la función

sea muy cercano a cero, lo que ralentiza la optimización del descenso del gradiente.

Por otro lado, el gradiente de la función ReLU no está cerca de cero para ningún valor

positivo, lo que ayuda a que la optimización converja más rápido.

2.2.1.3 Capa de agrupación

El propósito de la capa de agrupación es reducir el tamaño espacial de la representación

capturada por la capa convolucional. Principalmente simplifica la información

recopilada y crea una versión condensada de la misma información. La forma más

común de agrupación es la agrupación máxima (ver Fig. 2.8). La capa de agrupación

máxima desliza una ventana sobre su entrada y toma el valor máximo en la ventana,
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descartando todos los demás valores. Similar a una capa convolucional, se deben

especificar hiperparametros como el tamaño de la ventana y paso.

Figura 2.8: Ejemplo de agrupación máxima

2.2.1.4 Capa de clasificación

Por lo general, las últimas capas de una red neuronal convolucional son capas

completamente conectadas. Su función principal es realizar la clasificación de las

caracteŕısticas detectadas y extráıdas por la serie de capas convolucionales y capas

de agrupación. Para ingresar en las capas completamente conectadas, los mapas de

caracteŕısticas se aplanan en un solo vector unidemensional.

...

...
...

I1

I2

I3

In

H1

Hn

O1

On

Capa de entrada Capa oculta Capa de salida

Figura 2.9: Capas completamente conectadas
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2.2.2 Redes neuronales recurrentes (RNN)

Las redes neuronales recurrentes [83], o RNN (por sus siglas en inglés), son una familia

de redes neuronales para procesar datos secuenciales. Aśı como una red convolucional

es una red neuronal especializada para procesar una cuadŕıcula de valores, como una

imagen, una red neuronal recurrente es una red neuronal especializada para procesar

una secuencia de valores x1, ..., xτ [73]. Las RNN procesan una secuencia de entrada

un elemento a la vez, manteniendo en sus unidades ocultas un vector de estado que

contiene impĺıcitamente información sobre la historia de todos los elementos pasados

de la secuencia. En los últimos años, las RNN han desempeñado un papel importante

en los campos de la visión por computadora [84], el procesamiento del lenguaje natural

[85], el reconocimiento del habla [86], entre otros.

Figura 2.10: Diagrama de una red neuronal recurrente
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Las capas en una RNN se pueden dividir en capas de entrada, capas ocultas y capas

de salida (ver Fig. 2.10). Mientras que las capas de entrada y salida se caracterizan por

conexiones de alimentación directa, las capas ocultas contienen conexiones recurrentes.

En cada paso de tiempo t, la capa de entrada procesa el componente x[t] ∈ RNi de una

entrada x. La serie de tiempo x tiene una longitud T y puede contener valores reales,

valores discretos, vectores one-hot, etc. En la capa de entrada, cada componente x[t]

se suma con un vector de sesgos bi ∈ RNh , donde Nh es el número de neuronas en la

capa oculta. Luego se multiplica con la matriz de pesos de entrada Wh
i ∈ RNi×Nh .

De manera análoga, el estado interno de la red h[t− 1] ∈ RNh del intervalo de tiempo

anterior se suma primero con un vector de sesgo bh ∈ RNh y luego se multiplica por

la matriz de pesos Wh
h ∈ RNh×Nh de las conexiones recurrentes. La entrada actual

transformada y el estado pasado de la red son luego combinados y procesados por las

neuronas de las capas ocultas, que aplican una transformación no lineal. Las ecuaciones

de diferencia para la actualización del estado interno y la salida de la red en un paso

de tiempo t son las siguientes:

h[t] = f (Wh
i (x[t] + bi) + Wh

h(h[t− 1] + bh)) (2.5)

y[t] = g(Wo
h(h[t] + bo)) (2.6)

Donde f (·) es la función de activación de las neuronas, generalmente implementada

por una función sigmoide o por una tangente hiperbólica. El estado oculto h[t]

transmite el contenido de la memoria de la red en el paso de tiempo t, se inicializa

t́ıpicamente con un vector de ceros y depende de las entradas pasadas y los estados de

la red. La salida y[t] ∈ RNo se calcula mediante una transformación g(·), generalmente

lineal, en la matriz de los pesos de salida Wo
h ∈ RNr×No aplicada a la suma del estado

actual h[t] y el vector de sesgo bo ∈ RNo .

2.2.2.1 Celdas de memoria a corto y largo plazo

Uno de los principales inconvenientes de las primeras arquitecturas RNN era su

capacidad de memoria limitada, causada por el problema del gradiente que desaparece o

explota [87], que se hace evidente cuando la información contenida en entradas pasadas
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debe recuperarse después de un intervalo de tiempo prolongado. Las redes neuronales

recurrentes de memoria a corto y largo plazo o LSTM (por sus siglas en inglés) [88] son

usadas ampliamente hoy en d́ıa debido a su rendimiento superior en el modelado preciso

de dependencias de datos tanto a corto como a largo plazo. LSTM intenta resolver

el problema del gradiente que desaparece o explota al no imponer ningún sesgo hacia

las observaciones recientes, pero mantiene el error constante fluyendo hacia atrás en

el tiempo. LSTM funciona esencialmente de la misma manera que una red neuronal

recurrente común, con la diferencia de que implementa una unidad de procesamiento

interno más elaborada llamada celda (ver Fig. 2.11). Las diferentes ecuaciones para

actualizar el estado de la celda y calcular la salida se enumeran a continuación.

σf [t] = σ(Wfx[t] + Rfy[t− 1] + bf ) (2.7)

h̃[t] = g1(Whx[t] + Rhy[t− 1] + bh) (2.8)

σu[t] = σ(Wux[t] + Ruy[t− 1] + bu) (2.9)

h[t] = σu[t]� h̃[t] + σf [t]� h[t− 1] (2.10)

σo[t] = σ(Wox[t] + Roy[t− 1] + bo) (2.11)

y[t] = σo[t]� g2(h[t]) (2.12)

Figura 2.11: Celda de memoria a corto y largo plazo (LSTM)
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Mientras que una neurona de una RNN implementa una única no linealidad f (·), una

celda LSTM está compuesta por 5 componentes no lineales diferentes, que interactúan

entre śı de una manera particular. LSTM modifica el estado interno de una celda solo

a través de interacciones lineales. Esto permite que la información se propague hacia

atrás sin problemas a lo largo del tiempo, con la consiguiente mejora de la capacidad

de memoria de la celda. LSTM protege y controla la información en la celda a través

de tres puertas, que se implementan mediante una multiplicación sigmoide y puntual.

Para controlar el comportamiento de cada puerta, se entrena un conjunto de parámetros

con descenso de gradiente, con el fin de resolver una tarea objetivo.

x[t] es el vector de entrada en el tiempo t. Wf , Wh, Wu y Wo son matrices

de peso que se aplican a la entrada de la celda LSTM. Rf , Rh, Ru y Ro son

matrices que definen los pesos de las conexiones recurrentes, mientras que bf , bh,

bu y bo son vectores de sesgo. La función σ(·) es sigmoide, mientras que g1(·) y

g2(·) son funciones de activación no lineales puntuales generalmente implementadas

como tangentes hiperbólicas. Finalmente, � es la multiplicación por entrada entre dos

vectores (producto de Hadamard).

Cada puerta de la celda tiene una funcionalidad única y espećıfica. La puerta de

olvido σf decide qué información debe descartarse del estado de celda anterior h[h−1].

La puerta de entrada σu opera en el estado anterior h[h − 1], después de haber sido

modificada por la puerta de olvido, y decide cuánto debe actualizarse el nuevo estado

h[t] con un nuevo candidato h̃[t]. Para producir la salida y[t], primero la celda filtra

su estado actual con una no linealidad g2(·). Luego, la puerta de salida σo selecciona

la parte del estado que se devolverá como salida. Cada puerta depende de la entrada

externa actual x[t] y la salida de las celdas anteriores y[t − 1]. Cuando σf = 1 y

σu = 0, el estado actual de una celda se transfiere al siguiente intervalo de tiempo

exactamente como está. Con unidades LSTM no ocurre el problema del gradiente que

desaparece o explota, debido a la ausencia de funciones de transferencia no lineales

aplicadas al estado de la celda. Dado que en este caso la función de transferencia f (·)
que se aplica a los estados internos es una función de identidad, la contribución de los

estados pasados permanece sin cambios con el tiempo. Sin embargo, en la práctica,

las puertas de actualización y olvido nunca están completamente abiertas o cerradas
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debido a la forma funcional del sigmoide, que se satura sólo para valores infinitamente

grandes. Como resultado, incluso si la memoria a largo plazo en LSTM mejora en gran

medida con respecto a las arquitecturas RNN comunes, el contenido de la celda no se

puede mantener completamente sin cambios con el tiempo.

2.2.2.2 Unidad recurrente cerrada (GRU)

La Unidad Recurrente Cerrada o GRU (por sus siglas en inglés) [85], es una variación

de la celda LSTM que captura de forma adaptativa las dependencias en diferentes

escalas de tiempo. En GRU, las puertas de entrada y de olvido se combinan en una

única puerta de actualización, que controla de forma adaptativa cuánto puede recordar

u olvidar cada unidad oculta. El estado interno en GRU siempre está completamente

expuesto en la salida, debido a la falta de un mecanismo de control, como la puerta

de salida en LSTM. En una comparación emṕırica de GRU y LSTM [89], configurados

con la misma cantidad de parámetros, se concluyó que, en algunos conjuntos de datos,

GRU puede superar a LSTM, tanto en términos de capacidad de generalización como en

términos de tiempo necesario para alcanzar la convergencia y actualizar los parámetros.

Figura 2.12: Unidad recucurrente cerrada (GRU)
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En la Fig. 2.12 se muestra una descripción esquemática de la celda GRU. GRU

hace uso de dos puertas. La primera es la puerta de actualización, que controla cuánto

debe actualizarse el contenido actual de la celda con el nuevo estado candidato. La

segunda es la puerta de reinicio que, si está cerrada (valor cercano a 0), puede reiniciar

efectivamente la memoria de la celda y hacer que la unidad actúe como si la siguiente

entrada procesada fuera la primera en la secuencia. Las ecuaciones de estado del GRU

son las siguientes:

r[t] = σ(Wrh[t− 1] + Rrx[t] + br) (2.13)

h′[t] = h[t− 1]� r[t] (2.14)

z[t] = g(Wzh
′[t− 1] + Rzx[t] + bz) (2.15)

u[t] = σ(Wuh[t− 1] + Rux[t] + bu) (2.16)

h[t] = (1− u[t])� h[t− 1] + u[t]� z[t] (2.17)

Aqúı, g(·) es una función no lineal generalmente implementada por una tangente

hiperbólica. En una celda GRU, el número de parámetros es mayor que en la unidad

de una RNN común, pero menor que en una celda LSTM. Los parámetros a aprender

son las matrices Wr, Wz, Wu, Rr, Rz, Ru y los vectores de sesgo br, bz, bu.

2.2.3 Redes neuronales convolucionales recurrentes (CRNN)

Las redes neuronales convolucionales recurrentes o CRNN (por sus siglas en inglés), son

un h́ıbrido de redes neuronales convolucionales (CNN) y redes neuronales recurrentes

(RNN). Es tipo de red neuronal está compuesta por varias capas convolucionales

seguidas de algunas capas recurrentes. Las CRNN tienen las ventajas de las redes

convolucionales y recurrentes. Las capas convolucionales son capaces de extraer de

manera eficiente caracteŕısticas de nivel medio, abstractas y localmente invariantes

de la secuencia de entrada desempeñando aśı el papel de extractor de caracteŕısticas.

Las capas recurrentes extraen información contextual de la secuencia de caracteŕısticas

generada por las capas convolucionales anteriores, lo que permite a este tipo de red

neuronal tener en cuenta la estructura global de los datos. Este tipo de red neuronal se
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propuso por primera vez en [90] para la clasificación de documentos, posteriormente fue

aplicada en otros dominios como la clasificación de imágenes [91] y el reconocimiento

del habla [92, 93, 94].

2.3 Reconocimiento de palabras clave

En los últimos años, ha crecido un gran interés en desarrollar aplicaciones orientadas

a niños que hacen uso del reconocimiento del habla, por ejemplo, en juegos [53, 95, 96]

y robots sociales [48, 50, 57]. Lo que convierte a este tipo de interacción por medio de

una interfaz de voz en una modalidad muy deseada por los usuarios infantiles [97]. Sin

embargo, solo un pequeño número de estas aplicaciones requieren que se obtenga una

transcripción completa de la señal de voz de entrada.

El reconocimiento de palabras clave es una tarea de detección que consiste en

descubrir la presencia de palabras habladas espećıficas en señales de voz [98]. Las

aplicaciones de esta tecnoloǵıa se encuentran generalmente en el contexto de los agentes

inteligentes, teléfonos móviles o dispositivos de hogar inteligente [99].

Actualmente, dependiendo de la configuración de la tarea, hay cuatro categoŕıas

de enfoques que son la corriente principal para el reconocimiento de palabras clave

[52]. El enfoque más básico es simplemente establecer los términos clave en oposición

a un modelo de relleno genérico y aplicar una prueba de razón de verosimilitud

para identificar las palabras clave. El segundo consiste en realizar el reconocimiento

de fonemas (o śılabas u otra unidad de subpalabras) para posteriormente realizar

la detección de palabras clave buscando secuencias espećıficas de fonemas en una

grabación y fusionándolas en palabras. La tercera categoŕıa comprende realizar un

reconocimiento de vocabulario extenso con un modelo de lenguaje y buscar los términos

clave deseados en el sistema de reconocimiento del habla.

En el cuarto conjunto de técnicas, se utilizan ejemplos hablados de las palabras clave

para construir detectores de palabras espećıficos. Nos referimos a estos como métodos

basados en ejemplos. Los métodos basados en ejemplos modelan cada palabra clave

para ser detectada en su totalidad. Si bien los métodos basados en fonemas son flexibles,

los métodos basados en ejemplos son generalmente más precisos o más rápidos. Tales
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técnicas basadas en ejemplos también incluyen aquellas basadas en redes neuronales, las

cuales en los últimos años, gracias a la creciente popularidad del aprendizaje profundo,

se han convertido en el estado del arte de este tipo de sistemas, logrando resultados

sorprendentes [92, 99, 100, 101, 102].

Un reconocedor de palabras clave basado en ejemplos consiste en un extractor

de caracteŕısticas y un clasificador basado en redes neuronales [93] (ver Fig. 2.13).

Primero, la señal de voz de entrada de longitud L se enmarca en cuadros superpuestos

de longitud l con un tamaño de paso s, dando un total de T = L−l
s

+ 1 fotogramas. De

cada trama, se extraen caracteŕısticas de voz F , lo que genera un total de caracteŕısticas

T × F para toda la señal de voz de entrada de longitud L.

Figura 2.13: Pipeline de un reconocedor de palabras clave

Con la matriz de caracteŕısticas de voz extráıda se alimenta a un módulo clasificador,

que genera las probabilidades para las clases de salida. En un escenario del mundo real

donde las palabras clave deben identificarse a partir de un flujo de audio continuo, un

módulo de manejo posterior promedia las probabilidades de salida de cada clase de

salida durante un peŕıodo de tiempo, mejorando la confianza general de la predicción.
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Caṕıtulo 3

Diseño e implementación

3.1 Diseño de la interacción humano-robot para el

aprendizaje de las tablas de multiplicación

Como se muestra en la sección de antecedentes, muchas investigaciones han hecho

el esfuerzo de eliminar de la mente de los niños que el aprendizaje de las tablas de

multiplicación es algo dif́ıcil y aburrido, encontrando nuevas estrategias que permiten

a los niños aprender las tablas de multiplicación de una manera mucho más fácil y

divertida.

Aunque se han obtenido resultados favorables con estas estrategias, se logran

destacar principalmente tres desventajas. La primera es que la mayoŕıa de las

estrategias solo permiten practicar un conjunto pequeño de las tablas de multiplicación.

La segunda consiste en el hecho de que no se proporciona retroalimentación con el

resultado correcto cuando los niños se equivocan, evitando aśı que éstos puedan corregir

los errores que cometen. Por último, otra desventaja presente en todas las estrategias

consultadas radica en el hecho de que no se adaptan a las necesidades individuales

de los niños. Esto representa un problema, puesto que las dificultades matemáticas

de los estudiantes vaŕıan entre los estudiantes dentro de una clase [103], por lo tanto,

cada niño puede presentar dificultades con las tablas de multiplicación distintas a las

de sus compañeros, las cuales deben abordarse de manera individual. En resumen, las

ventajas y desventajas presentes en estas estrategias se pueden observar en la Tabla 3.1.
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Estrategias
Ventajas Desventajas

v1 v2 v3 d1 d2 d3

Rompecabezas multiplicativo [10]

Cápsulas multiplicativas [10]

Dominó multiplicativo [10]

Juego de la OCA [11]

Bingo de las tablas [12]

Capitán multipli [13]

Sigan la pista [13]

Don Pepe el pescador [13]

Llena la cesta [14]

Tablas de multiplicar [15]

Jugando y cantando voy multiplicando [16]

Multiplication Mat [17]

Tabla 3.1: Ventajas y desventajas de las estrategias actuales. v1: Basada en juegos,

v2: Basada en tecnoloǵıa, v3: Permite desarrollar habilidades sociales, d1: Sólo

permite practicar un conjunto pequeño de las tablas, d2: No hay retroalimentación con

el resultado correcto, d3: No se adapta a las necesidades individuales del niño

En la interacción diseñada, se especificó cómo un robot debe llevar a cabo dos juegos

de preguntas y respuestas con un niño. En el primer juego, se le preguntan al niño las

operaciones de las tablas de multiplicar del 2 al 9 y éste debe dar la respuesta correcta

a cada operación; aqúı el robot asume el rol de tutor. En el segundo juego, el robot

compite con el niño haciendo preguntas de verdadero y falso con las operaciones de las

3 tablas en las cuales el niño presenta dificultades, esta vez con el robot asumiendo el

rol de compañero de juego.

Durante la interacción, cuando el robot pide a un niño que responda una pregunta,

éste puede pensar en voz alta mientras intenta responder. El habla de los niños mientras

piensan en voz alta es más dif́ıcil de reconocer, ya que el volumen del habla es más

variado, por otro lado, el niño puede mencionar varias respuestas mientras piensa, lo

que dificulta aún más reconocer exactamente cuál de las respuestas que menciona el

niño se supone que es la correcta. Para que no se restrinja a los niños la forma en que
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dan su respuesta y permitirles pensar en voz alta, y además proporcionar otro tipo de

interacciones como por ejemplo solicitar ayuda a un compañero de clases, abordamos

este problema siguiendo el patrón de diseño de interacción propuesto en [22] llamado

“activación del habla basado en el tacto”, para que aśı los niños puedan proporcionar

las respuestas al robot. Es decir, el niño debe presionar un dispositivo táctil cuando

sienta que está listo para dar una respuesta, una vez presionado el dispositivo táctil

se activará el reconocimiento del habla y el robot escuchará una respuesta durante

un peŕıodo de 4 segundos. A continuación, se explican cada una de las 3 etapas que

conforman la interacción diseñada:

Identificación: en esta primera etapa, el robot debe identificar al niño con el que

va desarrollar la interacción para que aśı pueda adaptarse a las necesidades espećıficas

de éste. Una vez identificado, el robot da la bienvenida al niño y lo saluda por su

nombre. Por último, dependiendo de si el niño ha interactuado con anterioridad o no,

el robot pregunta por la siguiente etapa con la que desea continuar el niño.

Si el niño ya ha interactuado con el robot y ha ejecutado con éxito la etapa de

exploración, el robot pregunta al niño si desea seguir con la etapa de exploración o con

la etapa de aprendizaje. Si por el contrario, es la primera vez que el niño interactúa con

el robot, el robot se presenta a śı mismo y pasa directamente a la etapa de exploración.

En la Fig. 3.1 se muestra el diagrama de interacción de la etapa de identificación.

Exploración: en esta etapa el robot se encarga de aprender las tablas que al

niño se le dificultan para que posteriormente puedan ser practicadas en la fase de

aprendizaje. Una vez que el niño acepta pasar a la etapa de exploración, el robot da una

introducción al juego de preguntas y respuestas, y explica con detalle las instrucciones

que el niño debe seguir. El robot realiza de manera aleatoria 80 preguntas de las tablas

de multiplicación del 2, 3, 4, 5, 6, 7, 8 y 9, y por cada respuesta correcta el niño ganará

un punto en el juego.

Existen 3 escenarios que deben tomarse en consideración durante el desarrollo del

juego. El primero es cuando el niño elige terminar la interacción antes de lo esperado.

En nuestra interacción, el niño tiene la opción de detener la interacción mencionando

la palabra de activación “Pepe” (nombre del robot) seguido del comando “Detente”,

durante el tiempo en el que el robot se encuentra en espera antes de que el niño
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presione el dispositivo táctil para dar una respuesta. Cuando el niño decide detener la

interacción, el robot responde adecuadamente a la situación a través de una estrategia

de “parada suave” como se recomienda en [104], agradeciendo al niño por participar

y asegurándose de que el niño no sienta que ha hecho algo malo al elegir retirarse de

la interacción. El segundo escenario es cuando el niño necesita que el robot repita

nuevamente la pregunta, para este escenario, el niño puede mencionar la palabra de

activación “Pepe”, y luego el comando “Repite”. El tercer escenario es aquel donde

el niño no sabe la respuesta a la operación de la tabla de multiplicación, para este

escenario, el niño tiene 2 opciones. La primera opción es mencionar la palabra de

activación “Pepe”, de igual forma que los escenarios anteriores, y luego el comando

“Siguiente” para pasar a la siguiente pregunta. En la Fig. 3.2 se muestra el diagrama

de interacción para este tipo de escenarios. La segunda opción consiste en presionar 2

veces el dispositivo táctil; en el caso de pasar a la siguiente pregunta, el robot marcará

la respuesta como incorrecta.

Para motivar a los niños, el robot otorgará recompensas verbales durante el

desarrollo de la interacción. Se ha demostrado que factores externos como ofrecer

opciones, reconocer los sentimientos de las personas y proporcionar comentarios

positivos sobre el desempeño en una tarea mejoran la motivación intŕınseca de los

estudiantes [105], lo que resulta en un mejor desempeño al momento de realizar

una tarea. Escogimos dar una recompensa verbal cada 3 preguntas debido a que

aunque los niños con rendimiento alto prefieren un robot con un comportamiento más

social, los niños con menor rendimiento pueden distraerse con estas recompensas y

desconcentrarse por lo que prefieren un robot con un comportamiento más neutral y

menos social [23]; de esta forma pensamos que podemos mantener un equilibrio entre

un robot un poco más neutral y un robot social. Las recompensas verbales se han

diseñado para que tengan una valencia positiva, indiferentemente de si el niño acierta

(ver Tabla 3.2) o se equivoca (ver Tabla 3.3). Una vez completada la etapa, el robot

notifica el puntaje que el niño obtuvo en el juego y proporciona una recompensa verbal

dependiendo de su rendimiento en el juego: alto (ver Tabla 3.4), medio (ver Tabla 3.5)

o bajo (ver Tabla 3.6). Posteriormente, informa las 3 tablas de multiplicación (de

menor a mayor) en las que el niño obtuvo el menor rendimiento y se despide del niño.
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En la Fig. 3.3 se muestra el diagrama de interacción de la etapa de exploración.

Aprendizaje: una vez que el niño haya completado la etapa de exploración al

menos una vez, puede ejecutar la etapa de aprendizaje. En esta etapa el robot desarrolla

junto al niño una interacción basada en un juego de preguntas de verdadero o falso,

donde el robot pasa de tener el rol de tutor a tener el rol de compañero de juegos.

En primer lugar, el robot explica detalladamente las instrucciones que el niño debe

seguir. Una vez que inicia el juego, el robot comienza a realizar preguntas del tipo “2

por 2 es igual a 4 ¿verdadero o falso?”, a las cuales el niño debe responder siguiendo

el mismo mecanismo de “activación del habla basado en el tacto”. Las tablas que

el robot utiliza para realizar las preguntas son las 3 tablas de multiplicación donde

el niño presentó mayores dificultades durante la etapa de exploración. Si el niño

responde correctamente, obtiene un punto, si falla el robot gana un punto. También se

le otorgarán recompensas verbales al niño independientemente si acierta o no cada 3

preguntas, de la misma forma como sucede en la etapa de exploración. De igual manera

que en la etapa de exploración, el niño tiene la oportunidad de detener la interacción,

pedir que se repita la pregunta y pasar a la siguiente pregunta durante el desarrollo

del juego.

Una vez que se realizan 30 preguntas de verdadero y falso, el robot notifica el

ganador del juego e informa el puntaje obtenido tanto por el niño como por el robot.

Seguidamente, proporciona una recompensa verbal dependiendo de si el niño ganó

o perdió el juego y se despide del niño. En la Fig. 3.4 se muestra el diagrama de

interacción de la etapa de aprendizaje.

La interacción humano-robot diseñada cubre las desventajas más importantes de las

estrategias utilizadas para el aprendizaje de las tablas de multiplicación de la siguiente

manera:

� Sólo permite practicar un conjunto pequeño de las tablas de multiplicar : los juegos

que se desarrollan junto al robot permiten practicar las tablas de multiplicar del

2 al 9.

� No hay retroalimentación con el resultado correcto: cuando el niño da un

resultado incorrecto el robot proporciona la respuesta correcta.
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� No se adapta a las necesidades individuales del niño: el robot se adapta a las

debilidades del niño con las tablas de multiplicación para practicar las tablas que

más se le dificultan.

De igual manera, se toman en consideración las ventajas que poseen estas

estrategias:

� Basada en juegos : en nuestra interacción el robot desarrolla junto a un niño 2

juegos de preguntas y respuestas.

� Basada en tecnoloǵıa: al ser una interacción humano-robot, debe hacerse uso de

un robot social para desarrollar la interacción.

� Permite desarrollar habilidades sociales : debido a que la interacción se lleva a

cabo con un robot social, lo niños deben interactuar de manera social con un

robot, lo que ayuda al desarrollo de habilidades sociales del niño.

Por otro lado, varios de los elementos presentes en las investigaciones de robots

sociales en el área de las matemáticas fueron integrados a la interacción, entre éstos se

encuentran las recompensas verbales [18, 19] y la capacidad del robot para adaptarse

durante la interacción [20, 21, 22], que en nuestro caso, lo logramos adaptando las

preguntas que realiza el robot en base a las tablas con las cuales el niño presenta

dificultades durante uno de los juegos.
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Figura 3.1: Etapa de identificación. nombre: nombre del niño, respuesta:

respuestas del niño, robot: nombre del robot
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Figura 3.2: Escenarios para palabra de activación. nombre: nombre del niño,

respuesta: respuestas del niño, , n por m: operación de la tabla de multiplicación

etapa de exploración, resultado: resultado de la operación etapa de exploración, n por

m es igual a x: operación de la tabla de multiplicación propuesta etapa de aprendizaje,

respuesta correcta: respuesta correcta a la pregunta etapa de aprendizaje, n por m

es igual a r: respuesta correcta a la operación propuesta etapa de aprendizaje
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Figura 3.3: Etapa de exploración. nombre: nombre del niño, respuesta: respuestas

del niño, n por m: operación de la tabla de multiplicación, resultado: resultado de

la operación, puntaje: puntaje obtenido por el niño, Tn: Tablas de multiplicar que se

le dificultan al niñoC.C. Reconocimiento
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Figura 3.4: Etapa de aprendizaje. nombre: nombre del niño, respuesta: respuestas

del niño, n por m es igual a x: operación de la tabla de multiplicación propuesta,

respuesta correcta: respuesta correcta a la pregunta, n por m es igual a r:

respuesta correcta a la operación propuesta, puntaje del niño: puntaje obtenido por

el niño, puntaje del robot: puntaje obtenido por el robotC.C. Reconocimiento
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Número Recompensas verbales para respuestas correctas

1 ¡Fantástico!, lo estás haciendo muy bien

2 ¡Eres un genio nombre!, ¡sigue aśı!

3 ¡Asombroso!, esa era la respuesta correcta

4 ¡Genial!, vamos muy bien nombre

5 ¡Increible!, un punto más para t́ı

6 ¡Excelente nombre!, ¡sigue aśı!

7 !Felicidades!, respondiste correctamente!

8 ¡Bravo nombre!, lo estás haciendo genial

9 ¡Enhorabuena!, eso es correcto

10 ¡Correcto!, un punto más para t́ı nombre, ¡buen trabajo!

11 ¡Buen trabajo! un punto para t́ı

12 !Fenomenal nombre!, un punto más para t́ı

13 ¡Muy bien!, respuesta correcta

14 !Correcto!, sigamos aśı nombre

15 ¡Que alegŕıa!, estámos progresando

16 ¡Estupendo nombre!, ganaste otro punto

17 ¡Maravilloso!, la respuesta es correcta

18 ¡Esplendido!, lo estás haciendo excelente nombre

19 ¡Magńıfico!, un punto más para t́ı

20 ¡Sigue aśı nombre!, lo estas haciendo bien

Tabla 3.2: Recompensas verbales para respuestas correctas. nombre: nombre del

niño
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Número Recompensas verbales para respuestas incorrectas

1 ¡No te preocupes nombre!, esa era realmente dif́ıcil

2 ¡No te rindas!, lo vamos a lograr

3 ¡Ánimos nombre!, ésta era un gran desaf́ıo

4 ¡Estoy seguro de que la próxima la conseguiremos!

5 ¡Tú puedes nombre! la próxima vez lo conseguiremos

6 Ésta realmente te hizo pensar, !Sigamos esforzándonos!

7 !Vamos nombre!, ¡śı podemos!

8 Ésta es dif́ıcil pero lo conseguirás !tú puedes!

9 A la próxima lo conseguirás nombre, !Vamos que śı puedes!

10 ¡Lo conseguirás para la próxima!, ¡sigue esforzándote!

11 Todo está bien nombre, !no te rindas!

12 ¡Ánimos!, piensa un poco más las respuestas

13 ¡Lo vamos a lograr nombre!, pensemos un poco más las respuestas

14 ¡Para la próxima śı lo conseguiremos ya verás!

15 !Sigamos trabajando duro nombre!

16 !Puedes hacerlo!, para la próxima lo lograremos

17 !La próxima vez lo harás bien nombre!, ¡no te preocupes!

18 ¡Estoy seguro de que lo vamos a lograr!, piensa un poco más las respuestas

19 ¡Yo sé que puedes nombre!, ¡no te rindas!

20 Esa era un poco dif́ıcil, ¡pero yo sé que tú puedes!

Tabla 3.3: Recompensas verbales para respuestas incorrectas. nombre: nombre del

niño
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Número Recompensas verbales para puntaje alto

1 ¡Asombroso nombre!, ¡eres un maestro de las tablas de multiplicar!

2 !Incréıble nombre!, ¡eres un genio! dominas muy bien las tablas de multiplicar

3 !Impresionante nombre!, lograste un puntaje muy alto en el desaf́ıo ¡sigue aśı!

4 !Fantástico nombre!, tienes un muy buen dominio de las tablas de multiplicar

5 !Espléndido nombre!, obtuviste un puntaje alto en el desaf́ıo, !eres impresionante!

Tabla 3.4: Recompensas verbales para puntajes alto. nombre: nombre del niño

Número Recompensas verbales para puntaje medio

1 ¡Muy bien nombre!, Sigue esforzándote, pronto dominarás las tablas de multiplicar

2 ¡Lo hiciste bien nombre!, debemos seguir practicando para que sigas mejorando

3 ¡Nada mal nombre!, pronto dominarás por completo las tablas de multiplicar

4 ¡Eso estuvo bien nombre!, debemos practicar un poco más para que sigas mejorando

5 !Genial nombre!, si seguimos practicando lograrás mejorar mucho más

Tabla 3.5: Recompensas verbales para puntajes medio. nombre: nombre del niño

Número Recompensas verbales para puntaje bajo

1 Sigue practicando nombre para que puedas mejorar, ¡tú puedes!

2 Debemos seguir trabajando duro para que puedas mejorar nombre, ¡ánimo!

3 No te preocupes nombre, para la próxima lo haremos excelente !conf́ıo en t́ı ánimo!

4 Tienes que seguir esforzándote nombre, la próxima te irá mejor, !no te rindas!

5 Sigamos practicando juntos y te aseguro que mejorarás, !vamos tú puedes nombre!

Tabla 3.6: Recompensas verbales para puntajes bajo. nombre: nombre del niño
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3.1.1 Módulos del modelo MIHR considerados

Para organizar y determinar la forma en que se comunican cada uno de los componentes

de software que facilitarán el desarrollo de las habilidades sociales del robot al

momento de interactuar con el niño durante la estrategia, se toma como base el

modelo de interacción humano-robot MIHR. Dentro del modelo MIHR se encuentra

el nivel interno del robot (ver Fig. 3.5) encargado de gestionar la dinámica interna de

interacción del robot.

Figura 3.5: Nivel interno del robot [70]

No todos los módulos que componen el nivel interno del robot son necesarios para

ejecutar la interacción humano-robot diseñada. En la Fig. 3.6, se puede observar cada

módulo del cual hacemos uso. A continuación, se describe la forma en que cada módulo

deberá ser utilizado.
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Figura 3.6: Módulos del nivel interno del robot utilizados

� Módulo f́ısico: del módulo f́ısico, el componente de percepción será el

encargado de obtener los datos de entrada que se pasarán al módulo cognitivo.

En la interacción humano-robot diseñada, los datos de interés serán las

imágenes obtenidas por medio de una cámara para realizar el reconocimiento

e identificación de los niños, las señales recibidas a través del dispositivo táctil

para proporcionar las respuestas durante la interacción y los audios obtenidos

por medio de un micrófono para realizar el reconocimiento del habla. Por

otro lado, el componente de actuación se encargará de traducir las órdenes en

señales comprendidas por los actuadores, que en este caso serán las bocinas que

transmitirán el habla del robot junto con los efectos de sonidos cuando se dicen

respuestas correctas o incorrectas.
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� Módulo cognitivo: de este módulo se usarán los componentes normativo,

adaptación y reconocimiento. El componente normativo deberá contener el

modelo que describe cada una de las normas que permiten el flujo correcto de

la interacción entre el niño y el robot. El componente adaptativo contendrá el

modelo que permitirá conocer las 3 tablas que más se le dificultan al niño, para

que de esta forma se pueda proporcionar una interacción personalizada. Por

último, el componente de reconocimiento se encargará de administrar cada uno

de los modelos de reconocimiento necesarios para llevar a cabo la interacción. En

nuestro caso, las tareas de reconocimiento son 2: reconocer a los niños a través

de imágenes y reconocer números y palabras a través del habla infantil.

� Módulo conductual: este módulo será el encargado de manejar la forma en

la cual el robot se comunica, en nuestro caso, solo hacemos uso del componente

verbal para que el robot se comunique de manera verbal con el niño.

3.2 Diseño y construcción del corpus de audio

infantil

En la práctica, la construcción de un corpus de habla infantil representa un reto

mayor comparado con los corpus de habla adulta; esto debido a que surgen una serie

de desaf́ıos que deben tomarse en consideración. En primer lugar, la capacidad de

atención y concentración de los niños depende de su edad [32], lo que conlleva a que los

niños puedan distraerse durante sesiones de grabación muy prolongadas dificultando

el proceso de grabación. En segundo lugar, los niños pueden presentar dificultades al

momento de leer y repetir palabras u oraciones largas o complejas cuando se realizan

las grabaciones [8]; esto a causa de que la producción del habla es una actividad

motora compleja que los niños todav́ıa están aprendiendo a dominar. Por lo tanto,

es necesario utilizar recursos adicionales como diapositivas, animaciones, descansos

durante las grabaciones y reproducciones de audio de las sentencias a pronunciar que

sirvan de gúıa a los niños para aśı contrarrestar estos problemas.
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Los corpus de audio infantil pueden ser clasificados en 2 tipos según la forma en la

que se solicite a los niños expresar el discurso a grabar durante el proceso de grabación.

� Discurso espontáneo: son aquellos donde el discurso expresado por el niño se

obtiene por medio de algún tipo de narración o discursos provocados de manera

natural.

� Discurso léıdo: son aquellos donde el discurso expresado por el niño se obtiene

por medio de la lectura de las declaraciones de interés.

Dentro de los corpus de audio infantil de discurso espontáneo podemos encontrar el

corpus de audio “NITK Kids’ Speech Corpus” [33]. De discurso léıdo “TBALL” [32],

“CHOREC” [34], “CNG” [8] y “CID children’s speech corpus” [35]. También existe el

caso donde el corpus de audio contiene grabaciones tanto de discurso espontáneo como

de discurso léıdo, siendo éste el caso del corpus “OGI Kids’ Speech” [36].

En este proyecto de grado se construirá un corpus de audio infantil de discurso

léıdo, que llevará por nombre “LaSDAI Comandos de Voz Infantil” (LaSDAICVI).

El cual estará destinado al entrenamiento y evaluación de modelos de reconocimiento

de palabras clave en español a través del habla infantil, y que hasta el momento de

realización de este proyecto de grado, seŕıa el primer corpus de audio infantil en español

para este tipo de aplicaciones.

3.2.1 Participantes

El corpus de audio LaSDAICVI fue recolectado de un total de 41 niños inscritos en

escuelas primarias, pertenecientes a los grados tercero a sexto con edades comprendidas

entre los 8 y 11 años (µ = 9.609756098, σ = 1.069533748). Para cada niño que formó

parte de las grabaciones, los padres dieron su consentimiento a través de la firma de

un consentimiento informado para permitirles participar y proporcionaron información

relevante como el nombre, género, edad y grado. De igual forma, a todos los niños

que estuvieron de acuerdo en participar se les pidió que firmaran un asentimiento

informado. En la Tabla. 3.7 se puede observar la cantidad de niños por grado y género

que participaron en las grabaciones.
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Grado Femenino Masculino Total

3er 5 5 10

4to 6 5 11

5to 7 5 12

6to 4 4 8

Tabla 3.7: Cantidad de niños por grado y género

3.2.2 Palabras y números grabados

Las palabras y números grabados consistieron en la serie de números del 0 al 9, junto

con los números resultantes en las operaciones de las tablas de multiplicación del

2 al 9, además de 18 palabras necesarias que servirán como comandos de voz para

desarrollar la interacción diseñada. Las palabras seleccionados fueron: “Pepe”, “Śı”,

“No”, “Detente”, “Continúa”, “Repite”, “Atrás” “Siguiente”, “Apágate”, “Act́ıvate”,

“Arriba”, “Abajo”, “Izquierda”, “Derecha”, “Jugar”, “Aprender”, “Verdadero” y

“Falso”. Las palabras seleccionadas fueron inspiradas por el corpus de audio adulto

Speech Commands [106], el cual se ha convertido en uno de los corpus de audio de habla

adulta más usados para el entrenamiento y evaluación de reconocedores de palabras

clave.

3.2.3 Equipo de grabación

El habla de los niños fue grabada a una frecuencia de muestreo de 16000 Hz, 32 bits

de resolución y utilizando un solo canal a través de un micrófono de condensador. El

micrófono de condensador fue conectado a un computador portátil donde se ejecutaba

el software de edición y grabación de audio Audacity para realizar las grabaciones. Un

segundo computador portátil se conectó a un monitor para presentar las diapositivas

que conteńıan las palabras y números, junto con una reproducción en audio de la

misma en sincrońıa con una animación 2D de un robot (ver Fig. 3.7), las cuales eran

controladas por el experimentador encargado de las grabaciones. La reproducción

de audio (de las palabras y números) era escuchada por el niño a través de unos

aud́ıfonos auriculares conectados al computador portátil para evitar que al momento
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que ésta se reprodujera interfiriera con la captura de audio. En la Fig. 3.8 se muestra

la configuración usada para realizar las grabaciones.

Figura 3.7: Diapositiva con animación 2D del robot Pepe

Figura 3.8: Configuración usada para realizar las grabaciones
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3.2.4 Protocolo de grabación

El proceso de grabación fue realizado en una habitación con poco ruido. Antes de

comenzar las grabaciones se le explicaba al niño en qué consist́ıa la sesión de grabación,

se le ped́ıa que firmara el asentimiento informado y se le asignaba un identificador único.

Luego se realizaba una pequeña sesión de práctica donde se grababan 5 palabras y los

números del 0 al 9; esto con la intención de que los niños que estuvieran nerviosos

se sintieran más familiarizados con el proceso de grabación. Para obtener la mayor

cantidad de muestras por niño, se realizaron dos sesiones de grabación cada una con

una duración máxima de 25 minutos. En cada sesión, los niños deb́ıan repetir la serie

de palabras y números un total de 5 veces, para aśı obtener un mı́nimo de 10 muestras

por niño para cada palabra y número. El proceso de grabación fue realizado como se

explica a continuación:

1. A cada uno de los niños se les pidió sentarse en una silla ubicada a 30 cm del

micrófono.

2. A cada niño se le ped́ıa que pronunciara el número o palabra que se mostraba

en el monitor luego de la reproducción en audio de la misma. De esta forma

evitábamos que los niños cometieran una mayor cantidad de errores durante las

grabaciones.

3. Se presentaba la serie de números de forma aleatoria hasta completar las 5

repeticiones para cada número, tomando breves descansos cada 42 números para

evitar la fatiga en los niños.

4. Se presentaban las palabras hasta completar las 5 repeticiones para cada una,

tomando breves descansos cada 18 palabras presentadas.

5. En caso de pronunciar incorrectamente alguna palabra o número, capturar algún

ruido fuerte del exterior o que simplemente el niño o el experimentador no

estuviese satisfecho con el resultado, se le ped́ıa nuevamente repetir la palabra o

número.
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6. Una vez finalizada la primera sesión de grabación se les otorgó a los niños un

descanso de 10 minutos donde se les brindaba un refrigerio. Luego de haber

terminado el descanso se les pidió repetir el proceso de grabación para obtener

las muestras restantes.

3.2.5 Etiquetado de las grabaciones

Cada una de las grabaciones fue etiquetada y recortada para extraer las palabras

y números cuidadosamente de manera manual por un experimentador, utilizando el

software de edición de audio Audacity, descartando aquellas palabras o números de

poca calidad (pronunciaciones ambiguas o presencia de ruidos fuertes). Seguidamente,

cada palabra y número fue almacenado en formato WAV 16bits PCM, y se renombraron

según la información obtenida de los niños usando la siguiente convención de nombre:

{ID} {EDAD} {GÉNERO} {GRADO} {#GRABACIÓN}.wav

� {ID}: identificador del niño.

� {EDAD}: edad del niño.

� {GÉNERO}: género del niño.

� {GRADO}: grado que estudia el niño.

� {#GRABACIÓN}: número de la muestra grabada.

Posteriormente, se guardaron en una carpeta etiquetada con la palabra o número

presente en la grabación. El corpus de audio final consistió en 29061 muestras de

audios. En la Tabla. 3.8 se muestra el número total de muestras obtenidas para cada

palabra y número.
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Tabla 3.8: Número de muestras por palabra y número en el corpus de audio infantil

LaSDAICVI

Palabra o número Número de muestras

Pepe 467

Śı 469

No 461

Verdadero 486

Falso 478

Detente 472

Continúa 487

Siguiente 462

Atrás 457

Apágate 465

Act́ıvate 486

Arriba 481

Abajo 466

Izquierda 481

Derecha 461

Aprender 501

Jugar 503

Repite 508

0 504

1 482

2 481

3 481

4 479

5 493

6 483

7 472

8 497

9 472

10 444

12 472

14 505

Continua en la próxima página
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Tabla 3.8 – continuación de la página previa

Palabra o número Número de muestras

15 494

16 487

18 491

20 474

21 469

24 492

25 499

27 501

28 495

30 490

32 506

35 504

36 498

40 475

42 483

45 475

48 463

49 478

50 466

54 494

56 491

60 498

63 486

64 500

70 495

72 537

80 483

81 494

90 487
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3.3 Diseño e implementación de los modelos de

reconocimiento de habla infantil

Uno de los mayores desaf́ıos técnicos presentes en la interacción humano-robot, y

especialmente en la interacción de robots con niños, es la capacidad de percepción

del robot [107]. Por lo general, se espera que un robot pueda percibir su entorno de la

misma manera que lo hace un humano. Sin embargo, recrear artificialmente ese nivel

de percepción es una tarea muy complicada.

Un ejemplo de esto es el reconocimiento del habla, porque, aunque el reconocimiento

de habla ha logrado grandes avances en los últimos años, el reconocimiento del habla

infantil en escenarios de interacción humano-robot todav́ıa tiene un rendimiento inferior

[57]. Al practicar las tablas de multiplicar, no se necesita mucho lenguaje verbal y la

tarea es relativamente simple en interacción con un robot social. Esto permite el uso del

habla de manera limitada, logrando una interacción mucho más cercana a la parecida

con un humano, mientras que la mayoŕıa de las interacciones con robots dependen de

las tabletas que las acompañan o de técnicas como la del “Mago de Oz”. Para lograr la

comunicación verbal entre el niño y el robot escogimos un enfoque de reconocimiento de

palabras clave como en [50], para determinar qué palabras o números son pronunciados

por un niño durante la interacción.

El principal objetivo del reconocimiento de palabras clave es detectar un conjunto

relativamente pequeño de palabras predefinidas, en un flujo de audio dicho por un

usuario, siendo éste usado generalmente en el contexto de un agente inteligente, un

teléfono móvil o un dispositivo de hogar inteligente. Por lo general, este tipo de

tecnoloǵıa se aplica a dominios en los que un reconocedor del habla completo es dif́ıcil

de desarrollar e innecesario. En particular, en el campo de la robótica es utilizada para

permitir a las personas controlar a los robots a través de comandos de voz para que

estos realicen alguna acción en espećıfico [50, 108].

Normalmente, un reconocedor de habla completo se ejecuta en la nube haciendo uso

de servidores con grandes capacidades computacionales, esto requiere la transferencia

de grabaciones de audio desde el dispositivo del usuario hasta los servidores en la nube,

existiendo aśı importantes implicaciones de privacidad. Un reconocedor de palabras
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clave puede ejecutarse directamente desde el dispositivo, lo que permite abordar 3

limitaciones clave: en primer lugar, el reconocimiento de comandos comunes como

“Encendido” y “Apagado”, aśı como otras palabras frecuentes como “Śı” y “No”, se

puede lograr directamente en el dispositivo del usuario evitando aśı cualquier posible

problema de privacidad, lo cual, al trabajar con niños, es un factor muy importante a

tomar en consideración. En segundo lugar, al realizar el reconocimiento de palabras

clave desde el dispositivo se obtiene una respuesta con una latencia mı́nima ya que no

hay ida y vuelta con un servidor. Por último, al realizar el reconocimiento de palabras

clave desde el dispositivo, no se requiere de una conexión a internet.

3.3.1 Lista de palabras clave para cada modelo

El alcance de este proyecto de grado es reconocer a través del habla los números que se

encuentran como resultado en las operaciones de las tablas de multiplicación del 2 al

9, aśı como las palabras requeridas durante la interacción diseñada para el aprendizaje

de las tablas de multiplicación (ver sección 3.1).

Para lograr este objetivo y abordar el problema de una forma más eficiente, se optó

por dividirlo en problemas de menor complejidad. Por lo tanto decidimos crear un

total de 10 modelos de reconocimiento de palabras clave: 1 modelo para cada tabla de

multiplicación que reconozca los números presentes en los resultados de la tabla (para

un total de 8 modelos); 1 modelo para reconocer los comandos y palabras requeridas

durante la interacción; y 1 modelo para reconocer la palabra de activación “Pepe”.

De igual manera, cada uno de los modelos debe reconocer cuando hay presencia de

ruido/silencio ( silencio ) y cuando se pronuncia una palabra o número desconocido

para cada modelo ( desconocido ). Para las palabras o números desconocidos,

decidimos agregar como números desconocidos aquellos números que tengan una

pronunciación similar a los números que se deben reconocer para cada modelo de tabla

de multiplicar. Para los modelos de interacción y activación, seleccionamos algunas

palabras y números del conjunto de datos LaSDAICVI para que sirvieran como palabras

o números desconocidos. El uso de palabras o números desconocidos ayudará a reducir

la tasa de falsos positivos en los modelos. En la Tabla. 3.9 se observa las palabras clave

objetivo a reconocer para cada uno de los modelos.
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Modelo Palabras clave objetivo Palabras o números desconocidos

Tabla del 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20,

silencio , desconocido
15, 21, 24, 25, 27, 28, 30, 32, 36, 40,

42, 48, 50, 54, 56, 60, 64, 79, 72, 80, 90

Tabla del 3
3, 6, 9, 12, 15, 18, 21, 24, 27, 30,

silencio , desconocido
1, 2, 4, 7, 8, 10, 14, 16, 20, 25, 28, 32, 35, 36,
40, 48, 49, 50, 54, 56, 60, 63, 64, 70, 80, 90

Tabla del 4
4, 8, 12, 16, 20, 24, 28, 32, 36, 40,

silencio , desconocido
2, 6, 10, 14, 15, 18, 21, 25, 27, 30, 35, 42,

45, 48, 49, 50, 54, 56, 60, 64, 70, 72, 80, 90

Tabla del 5
5, 10, 15, 20, 25, 30, 35, 40, 45, 50,

silencio , desconocido
12, 14, 16, 18, 21, 24, 27, 28, 32,

36, 42, 48, 49, 54, 56, 60, 70, 80, 90

Tabla del 6
6, 12, 18, 24, 30, 36, 42, 48, 54, 60,

silencio , desconocido
2, 4, 8, 10, 14, 15, 16, 20, 21, 25, 27, 28,

32, 35, 40, 45, 49, 50, 56, 63, 64, 70, 80, 90

Tabla del 7
7, 14, 21, 28, 35, 42, 49, 56, 63, 70,

silencio , desconocido
1, 2, 3, 5, 6, 8, 9, 12, 15, 16, 18, 20, 24, 25, 27,

30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 80, 81, 90

Tabla del 8
8, 16, 24, 32, 40, 48, 56, 64, 72, 80,

silencio , desconocido
2, 4, 6, 10, 18, 20, 21, 25, 27, 28, 30, 35,
36, 42, 45, 49, 50, 54, 60, 63, 70, 81, 90

Tabla del 9
9, 18, 27, 36, 45, 54, 63, 72, 81, 90,

silencio , desconocido
1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 20, 21, 24, 25, 28,
30, 32, 35, 40, 42, 48, 49, 50, 56, 60, 64, 70, 80

Interacción

śı, no, verdadero, falso,
detente, siguiente, aprender, repite,

jugar, continúa, silencio , desconocido pepe, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Activación
pepe,

silencio , desconocido
śı, no, verdadero, falso, detente, siguiente,

aprender, repite, jugar, continúa, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Tabla 3.9: Palabras clave objetivo y palabras clave desconocidas para cada modelo

3.3.2 División del corpus de audio LaSDAICVI

Para crear los conjuntos de entrenamiento, validación y prueba, se dividió el corpus

de audio LaSDAICVI de la siguiente manera: por cada grado y género, realizamos un

muestreo sin reemplazo para seleccionar de manera aleatoria el 50% de los niños para el

conjunto de entrenamiento, 25% para el conjunto de validación y 25% para el conjunto

de prueba. De esta forma mantenemos los niños por grado y género equilibrados

dentro de cada conjunto de datos. Al mismo tiempo, evitamos que un niño aparezca

en diferentes conjuntos de datos, previniendo aśı la fuga de datos.
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En total, se obtuvo un conjunto de entrenamiento con 21 niños y 14737 muestras

de audio; un conjunto de validación con 10 niños y 7210 de muestras de audio; y un

conjunto de prueba con 10 niños y 7113 muestras de audio. A continuación se muestran

los identificadores, edad, género y grado de cada niño perteneciente a cada conjunto

de datos.

# Identificador Género Edad Grado

1 2d5ywQE8 F 9 3ro

2 etVCpoHz F 8 3ro

3 68QfMqdS F 8 3ro

4 JE8LZ4so M 8 3ro

5 SHjKaKWT M 8 3ro

6 eJcUaRSW M 8 3ro

7 MwPvEkhC F 9 4to

8 KEqDpnec F 10 4to

9 HGhtQEgj M 10 4to

10 fzbcST9H M 10 4to

11 GrLJrJfs M 9 4to

12 UCseQ6gc F 10 5to

13 QsoNpuJa F 11 5to

14 e4PAirZ2 F 10 5to

15 8spkKHdE M 10 5to

16 WpG4B6T3 M 10 5to

17 BH25qTuQ M 10 5to

18 7DMGwJNa F 11 6to

19 S6qS4hD9 F 11 6to

20 ijhfhsjo M 11 6to

21 5j7Uj7vn M 11 6to

Tabla 3.10: Niños pertenecientes al conjunto de entrenamiento
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# Identificador Género Edad Grado

1 Mvx26dQ7 F 8 3ro

2 fzm5ARkQ M 8 3ro

3 EWaAuiQt F 10 4to

4 ZD24aEoE F 9 4to

5 FzJCbWZY M 9 4to

6 ctd7zjAm F 10 5to

7 e5TFkGRp F 10 5to

8 k38ovYSi M 10 5to

9 XAZZ8qWp F 11 6to

10 PNF7NjoD M 11 6to

Tabla 3.11: Niños pertenecientes al conjunto de validación

# Identificador Género Edad Grado

1 Wf4zy8ui F 8 3ro

2 mYw3UQoH M 8 3ro

3 Nj5XnFzn F 9 4to

4 HcFUSEdx F 9 4to

5 77fYRs5a M 10 4to

6 Zx9SYM4g F 10 5to

7 HuwJU54m F 10 5to

8 WEddoaXU M 10 5to

9 CLTgXEu9 F 11 6to

10 QZP6LcEN M 11 6to

Tabla 3.12: Niños pertenecientes al conjunto de prueba

Una vez dividido el corpus de audio, se seleccionaron espećıficamente las palabras

clave a reconocer por cada modelo desde cada conjunto de datos para formar los

conjuntos de entrenamiento, validación y prueba individuales para cada modelo.

Debido a que la palabra clave objetivo desconocido está conformada por varias

palabras o números del corpus de audio, ésta posee un mayor número de muestras

en relación con las otras palabras clave objetivo. Para mantener todas las palabras

clave objetivo relativamente equilibradas, se calculó el número total de muestras

que ésta deb́ıa contener y se seleccionó un número de muestras equitativo por cada

palabra perteneciente a las palabras o números desconocidos de forma aleatoria. En
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el siguiente enlace gráficos circulares1, se encuentra un documento donde se pueden

observar gráficos circulares para cada uno de los conjuntos de datos de cada modelo.

3.3.3 Arquitecturas seleccionadas

En la actualidad, con el éxito del aprendizaje profundo en una variedad de tareas

de reconocimiento, los enfoques basados en redes neuronales se han vuelto populares

para mejorar los métodos de reconocimiento de palabras clave al obtener modelos

con mejor rendimiento, bajo consumo de memoria y costo computacional [93, 94].

Especialmente, en muchas investigaciones recientes han sugerido el uso de redes

neuronales convolucionales (CNN) [93, 94, 99, 101, 102] y redes neuronales recurrentes

RNN [93, 94, 98]; estas últimas también se han combinado con capas convolucionales

para conformar las redes neuronales convolucionales recurrentes (CRNN) [92, 93, 94].

En la Tabla. 3.13 se observan las tasas de reconocimiento para las arquitecturas

mencionadas anteriormente, las cuales fueron obtenidas en 2 investigaciones donde se

realiza la comparación de rendimiento entre éstas utilizando el corpus de audio Speech

Commands [106].

Arquitectura
% Exactitud

[93] [94]

CNN 92.7% 96.0%

GRU 93.7% 97.2%

CRNN 95.0% 97.5%

Tabla 3.13: Tasas de reconocimiento para diferentes arquitecturas de redes neuronales

profundas

En aras de realizar una comparativa del desempeño entre las diferentes

arquitecturas, exploramos 3 de ellas para entrenar a nuestros modelos: CNN (ver

Fig. 3.9); RNN con celdas GRU (ver Fig. 3.10); CRNN con celdas GRU (ver Fig. 3.11).

Los hiperparámetros para cada arquitectura de red neuronal de nuestros modelos fueron

tomados de la investigación [94], la cual presenta las mejores tasas de reconocimiento

para cada arquitectura seleccionada.
1https://bit.ly/2Z5lCUb
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Figura 3.9: Arquitectura de red convolucional utilizada [94]

C.C. Reconocimiento

www.bdigital.ula.ve



3.3 Diseño e implementación de los modelos de reconocimiento de habla infantil 78

Figura 3.10: Arquitectura de red recurrente utilizada [94]

Figura 3.11: Arquitectura de red convolucional recurrente utilizada [94]
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3.3.4 Preprocesamiento del audio

Para hacer frente a la falta de disponibilidad de una gran cantidad de datos del habla

de los niños, hemos explorado la viabilidad de crear artificialmente más datos que

sean acústicamente iguales o similares al habla de los niños mediante el aumento de

datos. El aumento de datos es una técnica popular para aumentar el tamaño de los

conjuntos de entrenamiento mediante la aplicación de transformaciones a las muestras

originales para crear nuevas muestras que mantienen la etiqueta de la muestra original.

El aumento de datos en el reconocimiento del habla es un método eficaz para reducir

el desajuste, mejorar la solidez de los modelos y evitar el ajuste excesivo [109].

En este proyecto de grado, exploramos la perturbación de la velocidad y la inyección

de ruido de fondo. Con la intención de estudiar el efecto de aumento de datos en el

rendimiento de los modelos hemos probado 4 casos:

1. Conjunto entrenamiento sin aumento + conjunto de prueba sin ruido

2. Conjunto de entrenamiento aumentado + conjunto de prueba sin ruido

3. Conjunto entrenamiento sin aumento + conjunto de prueba con ruido

4. Conjunto de entrenamiento aumentado + conjunto de prueba con ruido

Para la perturbación de la velocidad, generamos 6 muestras de audios de una

muestra de audio original perteneciente al conjunto de entrenamiento, cambiando la

velocidad de las muestras de audio por un factor α seleccionado uniformemente al azar

en el rango [0.85, 1.15]. Escogimos esta técnica de aumento de datos basados en el hecho

de que, en el caso de los niños, éstos exhiben una mayor variabilidad en la velocidad

del habla [110]. Los sistemas de reconocimiento del habla suelen funcionar bien en

condiciones de voz limpia. Sin embargo, su rendimiento se degrada significativamente

en condiciones ruidosas. Para mejorar la solidez de los modelos al ruido, corrompimos

artificialmente cada muestra de audio con ruidos de fondo que pueden encontrarse en

una primaria, como por ejemplo, ruido dentro de un salón de clases, ruido en los pasillos

de una primaria o ruido en el patio de recreo. Cada muestra de audio fue combinada

con ruido de fondo con una relación señal/ruido escogida uniformemente al azar entre

el rango de [5, 30] dB tanto para el conjunto de entrenamiento como para el conjunto
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de prueba. Para este último, las muestras de audio de ruido de fondo eran distintas a

las usadas con el conjunto de datos de entrenamiento para evitar la fuga de datos.

Las muestras de audio en el corpus LaSDAICVI no poseen la misma duración; esto

es un problema para arquitecturas convolucionales donde la capa entrada debe recibir

entradas con un tamaño estándar. Por lo tanto, para que todas las muestras de audio

de los diferentes conjuntos de datos posean la misma duración, decidimos estandarizar

la duración en 2 segundos, tiempo suficiente para garantizar que cualquier muestra de

audio del corpus se escuche completamente y no se trunque. Una forma de lograr que

todas las muestras de audio posean la misma duración es rellenar con ceros (silencio)

al final de la muestra de audio hasta alcanzar la duración deseada. En nuestro caso,

debido a que cada muestra de audio en el corpus LaSDAICVI solo representa la palabra

o número pronunciado por el niño, al aplicar la técnica de relleno con ceros al final de

cada muestra, obtendŕıamos muestras de audio con la mayor cantidad de información al

inicio de cada muestra. Por lo tanto, decidimos crear una muestra de audio silenciosa

de 2 segundos, a la cual le insertamos la muestra de audio original en una posición

aleatoria. De esta forma se debeŕıa ayudar a los modelos a aprender una representación

más invariante en el tiempo de las palabras clave, ya que pueden aparecer en cualquier

lugar dentro de la muestra de 2 segundos. Una vez estandarizadas todas las muestras

de audio, se agregó un porcentaje de muestras de audio silenciosas con la etiqueta

silencio en cada uno de los conjuntos de datos.

3.3.5 Extracción de caracteŕısticas

Los coeficientes cepstrales de frecuencia Mel (MFCC) están entre las caracteŕısticas

que más se utilizan comúnmente en el reconocimiento de voz basado en aprendizaje

profundo, que se adapta de las técnicas tradicionales de procesamiento de voz. La

extracción de caracteŕısticas utilizando MFCC implica traducir la señal de voz en el

dominio del tiempo en un conjunto de coeficientes espectrales en el dominio de la

frecuencia, lo que permite la compresión de dimensionalidad de la señal de entrada.

Para extraer MFCC, son necesarios los siguientes pasos [111]:
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1. La transformada discreta de Fourier (DFT, por sus siglas en inglés) es calculada.

Esta es usada para derivar la representación de la señal en el dominio de la

frecuencia (espectral), la cual sirve como entrada para la obtención de muchas

caracteŕısticas importantes.

Dada una señal discreta en el dominio del tiempo x(n), n = 0, ..., N − 1, con N

muestras de longitud, su DFT es calculada como sigue:

X(k) =
N−1∑
n=0

x(n)exp(−j 2π

N
kn), k = 0, ..., N − 1, donde j ≡

√
−1 (3.1)

2. El espectro resultante es utilizado como entrada a un banco de filtros de la escala

de Mel que consiste en L filtros. Los filtros usualmente tienen una frecuencia

triangular superpuesta. La escala de Mel introduce una función de distorsión

de frecuencia (ver Fig. 3.12) que intenta ajustarse a ciertas observaciones

psicoacústicas. A través de los años varias funciones de distorsión de frecuencias

han sido propuestas, por ejemplo:

fw = 2595 ∗ log(1 + f/700) (3.2)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·104

500

1,000
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Figura 3.12: Función de distorsión de frecuencias fw
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Si Õk, k = 1, ..., L, es la potencia en la salida del k-ésimo filtro, entonces los

MFCCs están dados por la siguiente ecuación

Cm =
L∑
k=1

(logÕk)cos[m(k − 1

2
)
π

L
], m = 1, ..., L. (3.3)

Para el paso de extracción de caracteŕısticas, para todos los modelos, utilizamos

20 caracteŕısticas de MFCC extráıdas de una ventana de longitud de 1024 muestras

(64 ms) con un paso de 512 muestras (32 ms) y 40 bancos de filtros, lo que da como

resultado una matriz de caracteŕısticas con 61 filas (marcos de tiempo) y 20 columnas

(caracteŕısticas MFCC) por cada muestra de audio de 2 segundos.

3.3.6 Implementación

Para la implementación de cada uno de nuestros modelos, hicimos uso de la biblioteca

Keras de Tensorflow [112]. Para el entrenamiento seleccionamos un tamaño de lote de

128 muestras, una tasa de aprendizaje de 10−5 y la optimización estocástica de Adam

[113]. Cada modelo fue entrenado hasta alcanzar la convergencia, por lo tanto, las

épocas de entrenamiento vaŕıan de 300 a 400 épocas dependiendo de la arquitectura.

Utilizamos el punto de control de la menor perdida de validación para guardar los

modelos con el mejor rendimiento. En el siguiente enlace curvas de aprendizaje2, se

encuentra un documento donde se pueden observar las curvas de aprendizaje para cada

uno de los modelos entrenados.

Debido a que los modelos reconocedores de palabras clave deben desplegarse en

el dispositivo, es deseable que tales modelos tengan un consumo de memoria bajo,

aśı como también un costo computacional bajo para que puedan implementarse en

dispositivos de bajo consumo energético y rendimiento limitado. En un escenario de

interacción humano-robot estas caracteŕısticas son muy deseables, ya que por lo general,

en estos escenarios se deben realizar diferentes tareas de reconocimiento, lo cual es un

inconveniente para el limitado almacenamiento y procesamiento interno de los robots.

2https://bit.ly/3qW2svB
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Por tal motivo, una vez entrenados los modelos, utilizamos el conjunto de

herramientas de TensorFlow Lite para optimizarlos, y obtener modelos con un tamaño

reducido, un menor consumo de enerǵıa y una velocidad de inferencia más rápida

para que puedan ser ejecutados de forma eficiente en dispositivos con recursos de

procesamiento y memoria limitados.

En la Fig. 3.13 se puede observar un diagrama de bloques donde se muestra

el proceso de entrenamiento de un modelo. En los casos donde se deba mantener

el conjunto de entrenamiento sin modificaciones, los bloques de aumentos de datos

(perturbación de la velocidad y adición de ruido de fondo) son obviados.

Figura 3.13: Diagrama de bloques del proceso de entrenamiento
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Caṕıtulo 4

Pruebas y análisis de los resultados

Una vez que un modelo de aprendizaje profundo es entrenado, una tarea frecuente

es probar el modelo con datos distintos a los de entrenamiento, con la finalidad de

medir su desempeño para predecir datos no antes vistos. Para evaluar qué tan bien

se desempeñan nuestros modelo, hemos decidido utilizar la exactitud como métrica

principal, es decir, la proporción de decisiones correctas sobre el número total de

predicciones realizadas:

Exactitud =
Núm. de predicciones correctas

Núm. total de predicciones
(4.1)

Asimismo, calculamos el área bajo la curva (AUC) de la curva de caracteŕıstica

operativa del receptor (ROC), donde el eje x y el eje y denotan las tasas de falsa alarma

(la probabilidad de dar un resultado positivo cuando el valor verdadero sea negativo) y

falso rechazo (la probabilidad de dar un resultado negativo cuando el valor verdadero

sea positivo), respectivamente. Una menor área bajo la curva (AUC) significa que el

modelo perdeŕıa menos palabras clave objetivo en promedio para varias tasas de falsas

alarmas, lo cual es fundamental para una buena experiencia de usuario en los sistemas

de reconocimiento de palabras clave. Aunque las curvas ROC se utilizan normalmente

para evaluar clasificadores binarios, ampliamos éste a la clasificación de clases múltiples

mediante micro promedio sobre todas las clases por modelo, de forma similar a otros

trabajos [99, 102].
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De igual manera, calculamos varias métricas para realizar un análisis más profundo

de cada modelo, y observar su comportamiento para cada clase individual. Para esto,

obtenemos la matriz de confusión y calculamos la precisión, la sensibilidad y el puntaje

F1. La precisión, permite estimar el costo de los falsos positivos en la clasificación;

la sensibilidad, permite estimar el costo de los falsos negativos en la clasificación; por

último, el puntaje F1, permite evaluar la exactitud en función de la precisión y de la

sensibilidad, en otras palabras, evaluar la exactitud en función el costo de los falsos

positivos y falsos negativos.

Precisión =
Núm. de predicciones correctas que realmente son correctas

Núm. total predicciones marcadas como correctas
(4.2)

Sensibilidad =
Núm. de predicciones correctas que realmente son correctas

Núm. muestras correctas en el conjunto de prueba
(4.3)

Puntaje F1 = 2× Precisión× Sensibilidad
Precisión + Sensibilidad

(4.4)

En la Fig. 4.1 se puede observar un diagrama de bloques donde se muestra el proceso

de evaluación de un modelo. En los casos donde se deba mantener el conjunto de datos

de prueba sin modificaciones, el bloque de adición de ruido de fondo es obviado. Para

ser consistentes con el proceso de evaluación, los modelos fueron evaluados utilizando

los mismos conjuntos de prueba.

Figura 4.1: Diagrama de bloques del proceso de evaluación
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4.1 Exactitud y micro promedio AUC

En la Tabla 4.1, se pueden observar los resultados obtenidos para exactitud y micro

promedio AUC de cada uno de los modelos entrenados. En ella podemos observar que

para los modelos de la tabla del 2 y la tabla del 8 con arquitectura CRNN entrenados

con el conjunto de entrenamiento aumentado, se obtienen los mejores resultados para

ambos conjuntos de prueba. Por otro lado, los modelos de la tabla del 3, la tabla del

4, la tabla del 5, interacción y activación, obtienen los mejores resultados para ambos

conjuntos de prueba con la arquitectura GRU, cuando son entrenados con el conjunto

de entrenamiento aumentado.

Aunque los modelos de la tabla del 6 y la tabla del 7 obtienen un valor de exactitud

mayor para los modelos entrenados con el conjunto de entrenamiento aumentado con

arquitecturas GRU comparado con los modelos con arquitecturas CRNN, podemos

apreciar que el modelo con arquitectura CRNN obtiene un valor AUC menor para

el conjunto de pruba sin ruido en comparación al modelo GRU. Estos resultados se

deben a la forma en la que se calcula el micro promedio, en donde todas las muestras

contribuyen por igual a la métrica promediada final. Por lo tanto, las clases con más

muestras son las más dominantes, indicando aśı que en la prueba sin ruido los modelos

con arquitectura CRNN obtienen tasas de falsos positivos y tasas de falsos negativos

más bajas para la clases con el mayor número de muestras.

Para todos los modelos con el mejor rendimiento, se obtuvo una exactitud mayor al

90%, siendo el modelo de activación quien obtuvo el valor de exactitud más alto para

ambas pruebas, 99.38% para el conjunto de prueba sin ruido y 97.82% para el conjunto

de prueba con ruido. Por el contrario, el modelo de la tabla del 9 fue quien obtuvo

los resultados más bajos de exactitud, 96.12% para el conjunto de prueba sin ruido y

93.13% para el conjunto de prueba con ruido.

Por último, se puede observar que todos los modelos entrenados con el conjunto de

entrenamiento sin aumento de datos, degradan su rendimiento cuando el conjunto de

datos de prueba contiene ruido en las muestras. Por el contrario, todos los modelos

aumentan su rendimiento en ambas pruebas cuando se entrenan con el conjunto de

entrenamiento aumentado.
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Modelo Arquitectura Conjunto de entrenamiento
Exactitud AUC

limpio Ruido limpio Ruido

Tabla del 2

CNN
Original 91.98% 33.13% 0.0040756 0.2898468

Aumentado 97.03% 92.53% 0.0006737 0.0032106

GRU
Original 95.44% 41.42% 0.0023621 0.2288262

Aumentado 97.10% 95.57% 0.0005807 0.0016160

CRNN
Original 94.95% 32.02% 0.0024613 0.3147178

Aumentado 97.86% 96.33% 0.0004205 0.0011396

Tabla del 3

CNN
Original 86.70% 34.13% 0.0070049 0.3216751

Aumentado 94.52% 88.62% 0.0014326 0.0062828

GRU
Original 93.83% 40.71% 0.0030460 0.2146977

Aumentado 97.19% 94.52% 0.0009039 0.0020528

CRNN
Original 94.17% 30.50% 0.0023101 0.3287901

Aumentado 96.85% 93.76% 0.0011819 0.0026557

Tabla del 4

CNN
Original 88.40% 34.24% 0.0059607 0.2705737

Aumentado 94.86% 89.93% 0.0013445 0.0054297

GRU
Original 93.40% 43.47% 0.0029801 0.1931431

Aumentado 97.22% 95.00% 0.0007343 0.0028439

CRNN
Original 94.65% 34.65% 0.0012615 0.2589904

Aumentado 96.46% 94.10% 0.0007367 0.0033074

Tabla del 5

CNN
Original 87.34% 33.15% 0.0064726 0.3296081

Aumentado 93.29% 86.23% 0.0020826 0.0090982

GRU
Original 92.53% 41.59% 0.0031124 0.2151512

Aumentado 97.79% 95.02% 0.0006384 0.0031350

CRNN
Original 91.56% 29.76% 0.0046750 0.3295046

Aumentado 95.57% 91.76% 0.0012124 0.0038429

Tabla del 6

CNN
Original 89.48% 34.94% 0.0051206 0.2958438

Aumentado 94.23% 89.28% 0.0015286 0.0046577

GRU
Original 93.08% 37.92% 0.0029401 0.2073710

Aumentado 97.90% 95.12% 0.0010652 0.0019798

CRNN
Original 90.98% 31.89% 0.0033517 0.3176272

Aumentado 96.13% 92.94% 0.0007149 0.0024674

Tabla del 7

CNN
Original 88.33% 48.66% 0.0065337 0.2035843

Aumentado 93.21% 88.33% 0.0021198 0.0058384

GRU
Original 94.58% 40.01% 0.0016338 0.1986852

Aumentado 97.25% 94.65% 0.0006038 0.0023521

CRNN
Original 94.17% 35.62% 0.0016905 0.2253169

Aumentado 96.84% 94.23% 0.0005875 0.0030476

Tabla del 8

CNN
Original 88.57% 42.31% 0.0067912 0.2369026

Aumentado 94.42% 89.39% 0.0014271 0.0050700

GRU
Original 93.06% 40.82% 0.0023950 0.1975906

Aumentado 95.03% 91.97% 0.0015942 0.0046266

CRNN
Original 93.61% 36.39% 0.0022072 0.2485352

Aumentado 96.87% 94.08% 0.0004184 0.0033212

Tabla del 9

CNN
Original 87.76% 44.08% 0.0076615 0.2272587

Aumentado 93.33% 88.10% 0.0021172 0.0061336

GRU
Original 93.13% 44.63% 0.0022186 0.1808663

Aumentado 96.12% 93.13% 0.0007106 0.0025360

CRNN
Original 91.63% 42.99% 0.0034020 0.1968283

Aumentado 95.37% 91.97% 0.0008750 0.0046881

Activación

CNN
Original 96.26% 44.86% 0.0039547 0.2413360

Aumentado 97.51% 93.77% 0.0006793 0.0045710

GRU
Original 97.51% 61.68% 0.0006163 0.2140604

Aumentado 99.38% 97.82% 0.0000970 0.0007085

CRNN
Original 98.13% 45.17% 0.0010772 0.4432338

Aumentado 97.82% 94.70% 0.0006648 0.0071768

Interacción

CNN
Original 89.62% 40.35% 0.0066824 0.2486499

Aumentado 95.54% 88.85% 0.0007994 0.0055911

GRU
Original 94.63% 43.07% 0.0031247 0.2023213

Aumentado 98.33% 96.86% 0.0003775 0.0008548

CRNN
Original 96.10% 35.89% 0.0006416 0.2688441

Aumentado 97.63% 95.12% 0.0004056 0.0010628

Tabla 4.1: Exactitud y micro promedio AUC de los modelos de reconocimiento de
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4.2 Métricas de precisión, sensibilidad y puntaje F1

A continuación, se presentan las matrices de confusión obtenidas para los modelos con

mejor rendimiento de la Tabla 4.1, junto con las métricas: precisión, sensibilidad y

puntaje F1 para cada uno de los conjuntos de prueba.

4.2.1 Modelo de la tabla del 2

En la Fig. 4.2, se pueden observar las matrices de confusión para el modelo de la tabla

del 2 con arquitectura CRNN entrenado con el conjunto de entrenamiento aumentado

cuando se prueba con el conjunto de prueba sin ruido (Fig. 4.2a) y con ruido (Fig. 4.2b).

Podemos notar que para ambas pruebas, el modelo tiende a clasificar incorrectamente

en mayor medida el número 18 con el número 16, el número 8 con el número 4, y la

clase desconocido con el número 20.

(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.2: Matrices de confusión para el modelo de la tabla del 2 con arquitectura

CRNN entrenado con el conjunto de entrenamiento aumentado
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En la Tabla 4.2 podemos apreciar que cuando se prueba con el conjunto de prueba

sin ruido, los valores más bajos de precisión y puntaje F1 corresponden a la clase

desconocido , mientras que el número 18 presenta el valor más bajo en sensibilidad.

Lo que indica que el modelo tiende a clasificar incorrectamente otras clases como

desconocido y rechaza el número 18 clasificándolo como otra clase distinta. Para

el conjunto de prueba con ruido, la clase desconocido obtiene los valores más bajos

en las 3 distintas métricas, lo que indica que el modelo presenta dificultades al clasificar

números que no se encuentren dentro de los resultados de la tabla de multiplicación

del 2 en condiciones ruidosas.

Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

2 100.00% 100.00% 100.00% 99.10% 96.49% 97.78%

4 94.92% 100.00% 97.39% 93.22% 98.21% 95.65%

6 99.21% 99.21% 99.21% 98.41% 98.41% 98.41%

8 100.00% 94.31% 97.07% 98.28% 92.68% 95.40%

10 99.12% 100.00% 99.56% 99.10% 98.21% 98.65%

12 99.12% 97.39% 98.25% 94.78% 94.78% 94.78%

14 98.44% 96.92% 97.67% 95.45% 96.92% 96.18%

16 94.44% 100.00% 97.14% 92.97% 100.00% 96.36%

18 99.16% 92.91% 95.93% 99.16% 92.91% 95.93%

20 96.03% 100.00% 97.98% 95.16% 97.52% 96.33%

desconocido 94.44% 94.44% 94.44% 91.27% 91.27% 91.27%

silencio 100.00% 100.00% 100.00% 100.00% 99.17% 99.59%

Tabla 4.2: Precisión, sensibilidad y puntaje F1 para el modelo de la tabla del 2 con

arquitectura CRNN entrenado con el conjunto de entrenamiento aumentado
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4.2.2 Modelo de la tabla del 3

En la Fig. 4.3, se pueden observar las matrices de confusión para el modelo de

la tabla del 3 con arquitectura GRU entrenado con el conjunto de entrenamiento

aumentado cuando se prueba con el conjunto de prueba sin ruido (Fig. 4.3a) y con

ruido (Fig. 4.3b). Podemos notar que para el conjunto de prueba sin ruido, el modelo

tiende a clasificar incorrectamente en mayor medida el número 12 y el número 21 con

la clase desconocido . Para el conjunto de prueba con ruido, se mantienen los mismos

errores de clasificación, pero además, el modelo clasifica incorrectamente el número 27

con la clase desconocido .

(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.3: Matrices de confusión para el modelo de la tabla del 3 con arquitectura

GRU entrenado con el conjunto de entrenamiento aumentado
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Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

3 94.53% 100.00% 97.19% 93.50% 96.04% 94.26%

6 100.00% 96.83% 98.39% 96.77% 95.24% 96.00%

9 98.20% 96.46% 97.32% 96.33% 92.92% 94.59%

12 98.21% 95.65% 96.92% 97.30% 93.91% 95.58%

15 98.37% 100.00% 99.18% 95.20% 98.35% 96.75%

18 99.20% 97.64% 98.41% 95.35% 96.85% 96.09%

21 97.22% 91.30% 94.17% 97.14% 88.70% 92.73%

24 99.19% 99.19% 99.19% 99.19% 99.19% 99.19%

27 97.54% 98.35% 97.94% 94.26% 95.04% 94.65%

30 96.03% 100.00% 97.98% 96.77% 96.77% 96.77%

desconocido 86.13% 90.77% 88.39% 77.14% 83.08% 80.00%

silencio 100.00% 100.00% 100.00% 98.37% 99.18% 98.78%

Tabla 4.3: Precisión, sensibilidad y puntaje F1 para el modelo de la tabla del 3 con

arquitectura GRU entrenado con el conjunto de entrenamiento aumentado

En la Tabla 4.3 podemos apreciar que para ambos conjuntos de prueba, los valores

más bajos de precisión, sensibilidad y puntaje F1 corresponden a la clase desconocido .

lo que indica que el modelo de la tabla del 3 presenta dificultades al clasificar números

que no se encuentren dentro de los resultados de la tabla de multiplicación del 3.

4.2.3 Modelo de la tabla del 4

En la Fig. 4.4, se pueden observar las matrices de confusión para el modelo de la tabla

del 4 con arquitectura GRU entrenado con el conjunto de entrenamiento aumentado

cuando se prueba con el conjunto de prueba sin ruido (Fig. 4.4a) y con ruido (Fig. 4.4b).

Podemos notar que para ambas pruebas, el modelo tiende a clasificar incorrectamente

en mayor medida el número 12 con la clase desconocido , y la clase desconocido con

los números 28, 32, 36.
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(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.4: Matrices de confusión para el modelo de la tabla del 4 con arquitectura

GRU entrenado con el conjunto de entrenamiento aumentado

Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

4 95.73% 100.00% 97.82% 95.73% 100.00% 97.82%

8 99.14% 93.50% 96.23% 96.55% 91.06% 93.72%

12 97.32% 94.78% 96.04% 97.20% 90.43% 93.69%

16 100.00% 97.48% 98.72% 99.15% 97.48% 98.31%

20 98.36% 99.17% 98.77% 95.12% 96.69% 95.90%

24 99.19% 99.19% 99.19% 99.19% 99.19% 99.19%

28 97.48% 100.00% 98.72% 94.17% 97.41% 95.76%

32 97.04% 97.76% 97.40% 92.75% 95.52% 94.12%

36 96.03% 100.00% 97.98% 93.02% 99.17% 96.00%

40 99.11% 96.52% 97.80% 98.20% 94.78% 96.46%

desconocido 87.60% 88.33% 87.97% 80.17% 80.83% 80.50%

silencio 100.00% 100.00% 100.00% 100.00% 97.50% 98.73%

Tabla 4.4: Precisión, sensibilidad y puntaje F1 para el modelo de la tabla del 4 con

arquitectura GRU entrenado con el conjunto de entrenamiento aumentado
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En la Tabla 4.4 podemos apreciar que para ambos conjuntos de prueba, los valores

más bajos de precisión, sensibilidad y puntaje F1 corresponden a la clase desconocido ,

lo que indica que el modelo de la tabla del 4 presenta dificultades al clasificar números

que no se encuentren dentro de los resultados de la tabla de multiplicación del 4.

4.2.4 Modelo de la tabla del 5

En la Fig. 4.5, se pueden observar las matrices de confusión para el modelo de la tabla

del 5 con arquitectura GRU entrenado con el conjunto de entrenamiento aumentado

cuando se prueba con el conjunto de prueba sin ruido (Fig. 4.5a) y con ruido (Fig. 4.5b).

Podemos notar que para el conjunto de prueba sin ruido, el modelo tiende a confundir

mayormente el número 35 con el número 25, y el número 45 con el número 35. Para

el conjunto de prueba con ruido, el modelo confunde nuevamente el número 35 con el

número 25, y el número 45 con el número 35, pero además, aumenta los errores de

clasificación al confundir los números 40 y 50 con la clase desconocido , y esta última

con el número 45.

(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.5: Matrices de confusión para el modelo de la tabla del 5 con arquitectura

GRU entrenado con el conjunto de entrenamiento aumentado
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En la Tabla 4.5 podemos apreciar que para el conjunto de prueba sin ruido el

número 35 obtiene los valores más bajos para precisión y puntaje F1, mientras que

la clase desconocido obtiene el valor más bajo de sensibilidad. Lo que indica que

el modelo tiende a clasificar otras clases como el número 35 y rechazar la clase

desconocido clasificándola como otra clase. En el conjunto de prueba con ruido

los valores más bajos de precisión, sensibilidad y puntaje F1 corresponden a la clase

desconocido , lo que indica que para este caso, el modelo presenta dificultades al

clasificar números que no se encuentren dentro de los resultados de la tabla de

multiplicación del 5 en condiciones ruidosas.

Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

5 100.00% 100.00% 100.00% 98.37% 97.58% 97.98%

10 100.00% 100.00% 100.00% 100.00% 99.11% 99.55%

15 100.00% 97.52% 98.74% 98.32% 96.69% 97.50%

20 98.37% 100.00% 99.18% 96.75% 98.35% 97.54%

25 95.73% 96.55% 96.14% 93.10% 93.10% 93.10%

30 96.83% 98.39% 97.60% 92.91% 95.16% 94.02%

35 92.97% 95.97% 94.44% 89.63% 97.58% 93.44%

40 97.37% 96.52% 96.94% 95.33% 88.70% 91.98%

45 99.15% 96.67% 97.89% 93.39% 94.17% 93.78%

50 97.41% 99.12% 98.26% 97.30% 94.74% 96.00%

desconocido 96.12% 93.23% 94.66% 87.12% 86.47% 86.79%

silencio 100.00% 100.00% 100.00% 100.00% 99.17% 99.59%

Tabla 4.5: Precisión, sensibilidad y puntaje F1 para el modelo de la tabla del 5 con

arquitectura GRU entrenado con el conjunto de entrenamiento aumentado
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4.2.5 Modelo de la tabla del 6

En la Fig. 4.6, se pueden observar las matrices de confusión para el modelo de la tabla

del 6 con arquitectura GRU entrenado con el conjunto de entrenamiento aumentado

cuando se prueba con el conjunto sin ruido (Fig. 4.6a) y con ruido (Fig. 4.6b). Se puede

apreciar que para ambos conjuntos de prueba, los errores de clasificación se presentan

al confundir números con la clase desconocido y viceversa. En el conjunto de prueba,

se confunden en mayor medida los números 12, 18 y 48 con la clase desconocido , y

esta última es confundida mayormente con el número 36.

(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.6: Matrices de confusión para el modelo de la tabla del 6 con arquitectura

GRU entrenado con el conjunto de entrenamiento aumentado

En la Tabla 4.6 se muestra que para ambos conjuntos de prueba, los valores más

bajos en las métricas corresponden a la clase desconocido , lo que indica que el modelo

de la tabla del 6 presenta dificultades al clasificar números que no se encuentren dentro

de los resultados de la tabla de multiplicación del 6.
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Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

6 100.00% 99.21% 99.60% 100.00% 97.62% 98.80%

12 98.21% 95.65% 96.92% 97.32% 96.52% 96.94%

18 98.43% 98.43% 98.43% 95.31% 96.06% 95.69%

24 100.00% 99.19% 99.60% 96.03% 97.58% 96.80%

30 98.41% 100.00% 99.20% 96.80% 97.58% 97.19%

36 96.80% 100.00% 98.37% 92.06% 95.87% 93.93%

42 99.15% 99.15% 99.15% 97.48% 98.31% 97.89%

48 96.46% 97.32% 96.89% 93.69% 92.86% 93.27%

54 100.00% 99.17% 99.58% 99.14% 95.83% 97.46%

60 99.16% 98.33% 98.74% 97.50% 97.50% 97.50%

desconocido 89.58% 89.58% 89.58% 79.59% 81.25% 80.41%

silencio 100.00% 100.00% 100.00% 100.00% 96.75% 98.35%

Tabla 4.6: Precisión, sensibilidad y puntaje F1 para el modelo de la tabla del 6 con

arquitectura GRU entrenado con el conjunto de entrenamiento aumentado

4.2.6 Modelo de la tabla del 7

(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.7: Matrices de confusión para el modelo de la tabla del 7 con arquitectura

GRU entrenado con el conjunto de entrenamiento aumentado
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En la Fig. 4.7, se pueden observar las matrices de confusión para el modelo de la tabla

del 7 con arquitectura GRU entrenado con el conjunto de entrenamiento aumentado

cuando se prueba con el conjunto sin ruido (Fig. 4.7a) y con ruido (Fig. 4.7b). Se puede

apreciar que para el conjunto de prueba sin ruido, el modelo tiende a confundir en mayor

medida el número 21 con el número 28, y la clase desconocido con el número 35. En

el conjunto de prueba con ruido, el modelo tiende a confundir nuevamente el número 21

con el número 28, y la clase desconocido con el número 35. Pero además, aumentan

los errores de clasificación de los números 28, 42, y 49 con la clase desconocido .

Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

7 99.14% 100.00% 99.57% 98.18% 93.91% 96.00%

14 99.22% 98.46% 98.84% 96.90% 96.15% 96.53%

21 99.06% 91.30% 95.02% 97.22% 91.30% 94.17%

28 91.20% 98.28% 94.61% 87.39% 89.66% 88.51%

35 95.35% 99.19% 97.23% 96.00% 96.77% 96.39%

42 97.46% 97.46% 97.46% 97.39% 94.92% 96.14%

49 98.28% 98.28% 98.28% 94.87% 95.69% 95.28%

56 98.40% 100.00% 99.19% 95.35% 100.00% 97.62%

63 100.00% 100.00% 100.00% 97.46% 100.00% 98.71%

70 97.50% 99.15% 98.32% 96.67% 98.31% 97.48%

desconocido 92.65% 86.90% 89.68% 81.76% 83.45% 82.59%

silencio 100.00% 100.00% 100.00% 100.00% 97.54% 98.76%

Tabla 4.7: Precisión, sensibilidad y puntaje F1 para el modelo de la tabla del 7 con

arquitectura GRU entrenado con el conjunto de entrenamiento aumentado

En la Tabla 4.7 se muestra que para el conjunto de prueba sin ruido el valor más bajo

de precisión corresponde al número 28, mientras que la clase desconocido presenta los

valores más bajos de sensibilidad y puntaje F1. Lo que indica que el modelo tiende a

clasificar otras clases como el número 28 y rechazar la clase desconocido clasificándola

como otra clase. Para el conjunto de prueba con ruido, los valores más bajos en las

3 métricas corresponden a la clase desconocido , lo que indica que el modelo de la

tabla del 7 presenta dificultades al clasificar números que no se encuentren dentro de

los resultados de la tabla de multiplicación del 7 en condiciones de ruidosas.
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4.2.7 Modelo de la tabla del 8

(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.8: Matrices de confusión para el modelo de la tabla del 8 con arquitectura

CRNN entrenado con el conjunto de entrenamiento aumentado

En la Fig. 4.8, se pueden observar las matrices de confusión para el modelo de la tabla

del 8 con arquitectura CRNN entrenado con el conjunto de entrenamiento aumentado

cuando se prueba con el conjunto sin ruido (Fig. 4.8a) y con ruido (Fig. 4.8b). Se puede

apreciar que para ambas pruebas, el modelo confunde en mayor medida el número 32

con el número 72, siendo más evidente este error de clasificación en la prueba con

ruido. Además, para la prueba con ruido, se aprecia un incremento de los errores de

clasificación del número 40 con la clase desconocido .

En la Tabla 4.8 se muestra que para ambos conjuntos de prueba los valores más

bajos de precisión corresponden al número 72, mientras que los valores de sensibilidad y

puntaje F1 corresponden a la clase desconocido . Lo que indica que el modelo tiende a

clasificar otras clases como el número 72 y rechazar la clase desconocido clasificándola

como otra clase.
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Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

8 97.60% 99.19% 98.39% 96.03% 98.37% 97.19%

16 100.00% 99.16% 99.58% 96.69% 98.32% 97.50%

24 98.39% 98.39% 98.39% 97.50% 94.35% 95.90%

32 93.94% 92.54% 93.23% 94.17% 84.33% 88.98%

40 94.83% 95.65% 95.24% 96.36% 92.17% 94.22%

48 98.21% 98.21% 98.21% 96.52% 99.11% 97.80%

56 96.85% 100.00% 98.40% 95.28% 98.37% 96.80%

64 99.12% 99.12% 99.12% 94.02% 96.49% 95.24%

72 91.67% 95.28% 93.44% 82.00% 96.85% 88.81%

80 100.00% 97.46% 98.71% 99.12% 94.92% 96.97%

desconocido 93.18% 89.13% 91.11% 85.82% 83.33% 84.56%

silencio 100.00% 100.00% 100.00% 100.00% 95.12% 97.50%

Tabla 4.8: Precisión, sensibilidad y puntaje F1 para el modelo de la tabla del 8 con

arquitectura CRNN entrenado con el conjunto de entrenamiento aumentado

4.2.8 Modelo de la tabla del 9

(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.9: Matrices de confusión para el modelo de la tabla del 9 con arquitectura

GRU entrenado con el conjunto de entrenamiento aumentado
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En la Fig. 4.9, se pueden observar las matrices de confusión para el modelo de la tabla

del 9 con arquitectura GRU entrenado con el conjunto de entrenamiento aumentado

cuando se prueba con el conjunto sin ruido (Fig. 4.9a) y con ruido (Fig. 4.9b). Se

puede apreciar que para ambos conjuntos de prueba, el modelo tiende a confundir en

mayor medida el número 18 con la clase desconocido ; y la clase desconocido con

el números 36 y 9. Para el conjunto de prueba con ruido, tambien se puede apreciar

un aumento de los errores de clasificación al confundirse la clase desconocido con el

número 81.

En la Tabla 4.9 se muestra que para ambos conjuntos de prueba, los valores más

bajos en las métricas corresponden a la clase desconocido , lo que indica que el modelo

de la tabla del 9 presenta dificultades al clasificar números que no se encuentren dentro

de los resultados de la tabla de multiplicación del 9.

Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

9 93.16% 96.46% 94.78% 92.24% 94.69% 93.45%

18 96.37% 95.28% 96.80% 96.75% 93.70% 95.20%

27 96.00% 99.17% 97.56% 92.06% 95.87% 93.93%

36 92.06% 95.87% 93.93% 86.36% 94.21% 90.12%

45 99.17% 100.00% 99.59% 98.28% 95.00% 96.61%

54 98.36% 100.00% 99.17% 96.75% 99.17% 97.94%

63 99.13% 99.13% 99. 13% 99.10% 95.65% 97.35%

72 96.95% 100.00% 98.45% 93.80% 95.28% 94.53%

81 97.56% 97.56% 97.56% 94.49% 97.56% 96.00%

90 98.29% 95.83% 97.05% 96.52% 92.50% 94.47%

desconocido 85.04% 77.14% 80.90% 74.81% 70.00% 72.32%

silencio 100.00% 100.00% 100.00% 99.17% 97.56% 98.36%

Tabla 4.9: Precisión, sensibilidad y puntaje F1 para el modelo de la tabla del 9 con

arquitectura GRU entrenado con el conjunto de entrenamiento aumentado
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4.2.9 Modelo de activación

(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.10: Matrices de confusión para el modelo de activación con arquitectura

GRU entrenado con el conjunto de entrenamiento aumentado

En la Fig. 4.10, se pueden observar las matrices de confusión para el modelo

de activación con arquitectura GRU entrenado con el conjunto de entrenamiento

aumentado cuando se prueba con el conjunto sin ruido (Fig. 4.10a) y con ruido

(Fig. 4.10b). Se puede apreciar que para el conjunto de prueba sin ruido el modelo

confunde la clase desconocido con la clase pepe. Para el conjunto de prueba con ruido

este error de clasificación se mantiene. Además, se aprecia que el modelo confunde la

clase pepe con la clase desconocido . Aunque el modelo clasifica erróneamente algunas

muestras, para ambos conjuntos de prueba, el modelo logra un buen desempeño al

clasificar correctamente cada una de la clases.

En la Tabla 4.10 se muestra que para ambos conjuntos de prueba, el valor más

bajo de precisión corresponde a la clase pepe, mientras que los valores más bajos de

sensibilidad y puntaje F1 corresponden a la clase desconocido .
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Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

pepe 98.25% 100.00% 99.12% 97.32% 97.32% 97.32%

desconocido 100.00% 98.04% 99.01% 96.12% 97.06% 96.59%

silencio 100.00% 100.00% 100.00% 100.00% 99.07% 99.53%

Tabla 4.10: Precisión, sensibilidad y puntaje F1 para el modelo de activación con

arquitectura GRU entrenado con el conjunto de entrenamiento aumentado

4.2.10 Modelo de interacción

(a) Conjunto de prueba sin ruido (b) Conjunto de prueba con ruido

Figura 4.11: Matrices de confusión para el modelo de interacción con arquitectura

GRU entrenado con el conjunto de entrenamiento aumentado

En la Fig. 4.11, se pueden observar las matrices de confusión para el modelo

de interacción con arquitectura GRU entrenado con el conjunto de entrenamiento

aumentado cuando se prueba con el conjunto sin ruido (Fig. 4.11a) y con ruido

(Fig. 4.11b). Se puede apreciar que en general, para ambos conjuntos de prueba,

el modelo logra un buen desempeño al clasificar correctamente cada una de la clases.
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En la Tabla 4.11 se muestra que para el conjunto de prueba sin ruido, los valores

más bajos en las métricas corresponden a la clase desconocido , mientras que para

el conjunto de prueba con ruido, la clase siguiente presenta el valor más bajo de

sensibilidad, y la clase desconocido los valores más bajos de precisión y puntaje F1.

Esto indica, que el modelo de interacción en condiciones ruidosas, tiende a clasificar

otras clases como desconocido y rechazar la clase siguiente clasificándola como otra

clase.

Etiqueta
Conjunto de prueba sin ruido Conjunto de prueba con ruido

Precisión Sensibilidad Puntaje F1 Precisión Sensibilidad Puntaje F1

siguiente 98.21% 97.35% 97.78% 96.36% 93.81% 95.07%

verdadero 96.72% 96.72% 96.72% 94.26% 94.26% 94.26%

aprender 98.46% 97.71% 98.08% 96.90% 95.42% 96.15%

continúa 100.00% 98.45% 99.22% 98.41% 96.12% 97.25%

detente 98.26% 96.58% 97.41% 92.62% 96.58% 94.56%

falso 100.00% 97.41% 98.69% 99.12% 97.41% 98.26%

jugar 100.00% 100.00% 100.00% 100.00% 97.54% 98.76%

no 99.08% 100.00% 99.54% 98.18% 100.00% 99.08%

repite 97.54% 100.00% 98.76% 95.20% 100.00% 97.54%

śı 100.00% 100.00% 100.00% 100.00% 96.58% 98.26%

desconocido 92.06% 95.87% 93.93% 92.00% 95.04% 93.50%

silencio 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Tabla 4.11: Precisión, sensibilidad y puntaje F1 para el modelo de interacción con

arquitectura GRU entrenado con el conjunto de entrenamiento aumentado
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4.3 Análisis de los resultados

Basándose en los resultados obtenidos en cada una de las pruebas realizadas sobre

cada uno de los modelos implementados (ver Secciones 4.1 y 4.2), se pueden realizar

las siguientes observaciones:

� Los resultados de las diferentes métricas obtenidas para los modelos entrenados

con el conjunto de entrenamiento aumentado, muestran una evidente mejora con

respecto al coste de los falsos positivos (precisión), falsos negativos (sensibilidad)

y puntaje F1, cuando se realizan las pruebas con los conjuntos de pruebas sin

ruido y con ruido. Lo que apunta a que el aumento de datos aplicado śı mejora el

rendimiento de los modelos al mejorar las tasas de reconocimiento y la robustez

al ruido de los modelos.

� Con el cálculo de métricas de exactitud y el micro promedio del área bajo la curva

(AUC) de la curva de caracteŕıstica operativa del receptor (ROC), se observó

que utilizando los modelos con arquitecturas GRU y CRNN entrenados con el

conjunto de entrenamiento aumentado se obtuvieron los mejores resultados. Lo

cual concuerda con los resultados que se muestran en la Tabla 3.13.

� De las 3 arquitecturas probadas, la que obtiene el menor rendimiento para cada

uno de los modelos es la arquitectura CNN. Aunque este tipo de arquitectura

logra explotar la correlación temporal y espectral local en las caracteŕısticas del

habla, las arquitecturas RNN y CRNN demuestran un mejor rendimiento ya

que no solo explotan la relación temporal local de la señal de entrada, sino que

también capturan la relación a largo plazo al usar celdas recurrentes.

� Los errores de clasificación presentes en los modelos de las tablas de multiplicar,

se deben principalmente a que algunos d́ıgitos son acústicamente muy similares

entre śı. Un ejemplo de esto, es el caso del número 18 y el número 16 (ver

sección 4.2.1), el número 45 y el número 35 (ver sección 4.2.4) o el número 32

con el número 72 (ver sección 4.2.7). Otra razón de los errores de clasificación se

puede explicar teniendo en cuenta que, algunos números son de corta duración

acústica, normalmente de unos pocos mili segundos de habla, como por ejemplo
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el número 4 y el número 8 en la tabla del 2 (ver sección 4.2.1). Aunado a esto,

los niños tienden a reemplazar un fonema por otro y pronunciar incorrectamente

las números cuando hablan, aumentando aún más los errores de clasificación.

� La clase desconocido , es la que obtuvo los resultados más bajos para las métricas

de precisión, sensibilidad y puntaje F1 para casi todos los modelos. Esto puede

deberse al hecho de que esta clase está conformada por varias muestras distintas

entre śı y que además pueden ser acústicamente similares a las otras clases.

Esto dificulta a los modelos obtener una mejor representación para esta clase

y aumenta los errores de clasificación.

� En general, los mejores resultados fueron obtenidos por los modelos de activación

e interacción. Esto puede deberse al hecho de que el modelo de activación

sólo clasifica entre un número reducido de clases, las cuales son muy distintas

acústicamente. De igual forma, el modelo de interacción, al contrario que los

modelos de las tablas que clasifican números, clasifica palabras clave muy distintas

acústicamente. Esto permite a los modelos diferenciar entre clases más fácilmente

y obtener un mejor rendimiento.

� Para las pruebas realizadas con el conjunto de prueba limpio, todos los modelos

obtuvieron métricas perfectas para la clase silencio . Esto se puede explicar

teniendo en cuenta que las muestras etiquetadas como silencio en este conjunto

de prueba son solo muestras totalmente silenciosas (valores 0), lo cual puede

permitir al modelo clasificarlas de manera fácil.
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Conclusiones y recomendaciones

Este proyecto de grado tuvo como objetivo general diseñar una interacción

humano-robot para el aprendizaje de las tablas de multiplicación e implementar los

modelos de reconocimiento del habla necesarios para llevar a cabo la interacción. Esta

interacción fue diseñada con el objetivo de brindar una alternativa a las estrategias

actuales para el aprendizaje de las tablas de multiplicación, que permita cubrir las

desventajas y aprovechar las ventajas de éstas, y que además, tome en consideración

los elementos más importantes presentes al usar robots sociales en el contexto de la

educación matemática.

En aras de que la robótica social continúe progresando hacia entornos del mundo

real, en escenarios donde se interactúe con niños, se tomó en consideración la

comunicación verbal con el robot. Por lo cual, se diseñaron e implementaron 10

modelos de reconocimiento de palabras clave, para llevar a cabo la interacción diseñada

de manera verbal. Para esto, se construyó un corpus de audio infantil denominado

LaSDAICVI, para el entrenamiento y evaluación de cada uno de los modelos de

reconocimiento de palabras clave implementados. Adicionalmente, fueron realizadas

diferentes implementaciones y pruebas, que sirvieron para comparar y evaluar el

rendimiento de los distintos modelos. A continuación, se presentan las conclusiones,

aportes, recomendaciones y trabajos futuros de este proyecto de grado.
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5.1 Conclusiones

En este proyecto de grado, se diseñó una interacción humano-robot para el aprendizaje

de las tablas de multiplicación. El diseño de esta interacción nace de la de necesidad

de brindar una alternativa que puede cubrir las desventajas más importantes presentes

en las estrategias actuales para el aprendizaje de las tablas de multiplicación. Para el

diseño de esta interacción, se consultaron varias estrategias que se aplican actualmente,

con la finalidad de determinar cuáles eran las ventajas y desventajas que éstas poséıan

y que pudieran ser considerados en la interacción humano-robot a diseñar. De igual

forma, se realizó una revisión de trabajos relacionados con el uso de robots sociales

en el contexto de la educación matemática, con el objetivo de encontrar los elementos

que éstos aplican, y que permiten facilitar y aumentar la motivación de los niños

durante el aprendizaje de un tema matemático, para posteriormente integrarlos a la

interacción humano-robot para el aprendizaje de las tablas de multiplicación diseñada.

La interacción humano-robot diseñada, constó de 3 etapas donde un robot lleva a cabo

dos juegos de preguntas y respuestas sobre las tablas de multiplicación junto con un

niño. En la interacción, el robot deberá adaptarse a las debilidades del niño con las

tablas de multiplicación para practicar las tablas que más se le dificultan.

Una parte importante de la estrategia de interacción humano-robot que fue

diseñada, es que se agregó la capacidad de que los niños puedan interactuar a través

de la voz con el robot. El reconocimiento del habla desarrolla un papel importante en

la robótica social, ya que permite ofrecer una forma de comunicación con los robots

mucho más natural e intuitiva, similar a la existente entre los humanos. Sin embargo,

en la actualidad la mayoŕıa de los corpus de audio destinados al entrenamiento y

evaluación de los modelos de reconocimiento del habla, se centra principalmente en el

habla de personas adultas. Ésto plantea un desaf́ıo, debido a la carencia de corpus

de audio infantil para el entrenamiento y evaluación de modelos de reconocimiento del

habla infantil. Por tal motivo, en este proyecto de grado se construyó el corpus de

audio infantil en español “LaSDAI Comandos de Voz Infantil” (LaSDAICVI) con la

intención de que pueda ser usado para el entrenamiento y evaluación de modelos de

reconocimiento de palabras clave en español a través del habla infantil. Para esto,

se realizó una investigación de corpus de audio infantiles, con el objetivo de estudiar
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los factores a considerar al momento de diseñar y construir nuestro corpus de audio

con niños. Parte de su diseño consistió en la definición de un conjunto de palabras y

números, las cuales consistieron en la serie de números del 0 al 9, junto con los números

resultantes en las operaciones de las tablas de multiplicación del 2 al 9, además de 18

palabras necesarias que servirán como comandos de voz para desarrollar la interacción

diseñada. LaSDAICVI consta de un total de 29061 muestras de audio, las cuales fueron

compiladas de un total de 41 niños matriculados en escuelas primarias, pertenecientes

a los grados tercero a sexto, con edades comprendidas entre los 8 y 11 años.

Con la intención de abordar el problema del reconocimiento del habla de una

forma eficiente, decidimos dividirlo en problemas de menor complejidad. Por lo

tanto, optamos por un enfoque de reconocimiento de palabras clave. Haciendo uso

del corpus de audio infantil LaSDAICVI, se diseñaron e implementaron 10 modelos

de reconocimiento de palabras clave; 1 modelo para cada tabla de multiplicación

del 2 al 9, que reconoce los números presentes en los resultados de las tablas de

multiplicación (para un total de 8 modelos); 1 modelo que reconoce los comandos

y palabras requeridas durante la interacción; y 1 modelo que reconoce la palabra de

activación “Pepe”. Fueron probadas 3 arquitecturas de redes neuronales diferentes

para cada modelo: redes neuronales convolucionales, redes neuronales recurrentes y

redes neuronales convolucionales recurrentes, seleccionadas a partir de investigaciones

previas en el área del reconocimiento de palabras clave.

Para cada uno de los modelos entrenados se calcularon diferentes métricas para

seleccionar aquellos con el mejor rendimiento y realizar un análisis más profundo

de las particularidades de cada modelo. Los resultados obtenidos mostraron que los

modelos con arquitecturas de redes neuronales recurrentes y convolucionales recurrentes

obtuvieron los mejores resultados, ya que estos explotan tanto la relación temporal

local como a largo plazo de las señales de audio al utilizar celdas recurrentes. Además,

se evidenció que aquellos modelos entrenados con el conjunto de entrenamiento con

aumento de datos mostraban una mejora sustancial con respecto a aquellos entrenados

con el conjunto de entrenamiento sin aumento de datos, demostrando que el aumento de

datos aplicado mejora las tasas de reconocimiento y la robustez al ruido de los modelos.

Finalmente, observamos que los errores de clasificación presentes en los modelos de las
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tablas de multiplicar, se deb́ıan principalmente similitudes o cortas duraciones acústicas

de los números; y al hecho de que los niños tienden a reemplazar un fonema por otro

y pronunciar incorrectamente las números cuando hablan, aumentando aún más los

errores de clasificación.

En conclusión, los objetivos planteados en el caṕıtulo 1 fueron alcanzados tras

haber diseñado la interacción humano-robot para el aprendizaje de las tablas de

multiplicación, construido el corpus de audio infantil para el entrenamiento y evaluación

de los modelos de reconocimiento de habla infantil y haber diseñado e implementado los

modelos para el reconocimiento del habla según la interacción humano-robot diseñada.

5.2 Aportes

Las principales contribuciones de este proyecto de grado son las siguientes:

� Se realizó una revisión sobre las estrategias utilizadas para el aprendizaje de la

tablas de multiplicación.

� Se realizó una revisión sobre los robots sociales en el contexto de la educación

matemática.

� Se realizó una revisión sobre los corpus de audios disponibles actualmente para

el reconocimiento del habla infantil.

� Se realizó una revisión sobre los modelos para el reconocimiento del habla infantil.

� Se realizó la construcción de un corpus de audio infantil para el reconocimiento

de palabras clave, que hasta momento de realización este proyecto de grado, seŕıa

el primer corpus de audio infantil en español para este tipo de aplicaciones.

� Se diseñó una interacción humano-robot para el aprendizaje de las tablas de

multiplicación que permite adaptarse a las dificultades que los niños presentan

con las tablas de multiplicación
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� Se diseñaron e implementaron 10 modelos de reconocimientos de palabras

clave, para permitir el reconocimiento del habla en la interacción humano-robot

diseñada.

� Se evaluaron varios tipos de arquitecturas de redes neuronales en los modelos

de reconocimiento de palabras clave para determinar cual generaba los mejores

resultados.

� Se evaluó el aumento de datos sobre el corpus de audio LaSDAICVI y su efecto

sobre los modelos de reconocimiento de palabras clave.

5.3 Recomendaciones

A continuación se presentan algunas recomendaciones sobre la interacción

humano-robot diseñada y los modelos de reconocimiento de palabras clave

desarrollados.

� A nivel lingǘıstico, los niños pueden reemplazar un fonema por otro y son

más propensos a usar palabras imaginarias, frases gramaticalmente incorrectas

y pronunciar incorrectamente las palabras mientras estén interactuando con

un robot. Esto puede aumentar los errores de clasificación en los modelos de

reconocimiento de palabras clave. Por tal motivo, es recomendable acompañar

la interacción con otra técnica como la del “Mago de Oz” para cubrir los errores

cometidos por el robot y brindar una experiencia de usuario más agradable.

� Por lo general, las condiciones en las cuales interactúa un robot un social son

bastante controladas. En la interacción humano-robot diseñada fue tomado en

consideración este hecho. Por lo tanto, se recomienda que una vez implementada

la interacción en un robot, se prepare con anticipación al niño para posibles

problemas en el comportamiento del robot, por ejemplo, si el robot se equivoca

al marcar una respuesta como correcta o incorrecta. De esta forma, se evitará

que el participante no esté seguro de lo que deba hacer en tal situación.

C.C. Reconocimiento

www.bdigital.ula.ve



5.4 Trabajos Futuros 111

� Una de las principales desventajas en el reconocimiento de patrones mediante el

audio, es que éste es muy susceptible a las condiciones de ambiente. Aunque se

aplicó aumento de datos añadiendo ruido a las muestras de entrenamiento para

permitir que los modelos implementados fueran más robustos al ruido, el ruido

ambiental es impredecible. Por lo tanto, para obtener los mejores resultados, las

condiciones ambientales deben ser similares a las utilizadas para el entrenamiento

de los modelos de reconocimiento de palabras clave descritos en este proyecto de

grado.

5.4 Trabajos Futuros

A continuación se presentan trabajos futuros que surgieron a partir de este proyecto

de grado:

� Desarrollar un modelo adaptativo utilizando aprendizaje reforzado que permita

aprender las deficiencias de los niños con las tablas de multiplicación para que

pueda ser integrado a la interacción humano-robot diseñada.

� Desarrollar un modelo de reconocimiento facial utilizando aprendizaje profundo

que permita reconocer a los niños y pueda ser integrado a la interacción

humano-robot diseñada.

� Implementar la interacción humano-robot diseñada en un robot social para probar

su efecto en el aprendizaje de las tablas de multiplicación de los niños.
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y aprendizaje de las tablas de multiplicar con estudiantes del grado tercero de
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silencios. Revista latinoamericana de educación, vol. 2, no. especial, pp. 38–64,

2011.

[57] J. Kennedy, S. Lemaignan, C. Montassier, P. Lavalade, B. Irfan, F. Papadopoulos,

E. Senft, and T. Belpaeme, “Child speech recognition in human-robot interaction:

evaluations and recommendations,” in Proceedings of the 2017 ACM/IEEE

International Conference on Human-Robot Interaction, 2017, pp. 82–90.

[58] Y. Yu, “Research on speech recognition technology and its application,” in 2012

International Conference on Computer Science and Electronics Engineering,

vol. 1. IEEE, 2012, pp. 306–309.

[59] G. Gordon, S. Spaulding, J. K. Westlund, J. J. Lee, L. Plummer, M. Martinez,

M. Das, and C. Breazeal, “Affective personalization of a social robot tutor for

children’s second language skills,” in Thirtieth AAAI Conference on Artificial

Intelligence, 2016.

[60] D. Hood, S. Lemaignan, and P. Dillenbourg, “When children teach a robot to

write: An autonomous teachable humanoid which uses simulated handwriting,”

in Proceedings of the Tenth Annual ACM/IEEE International Conference on

Human-Robot Interaction. ACM, 2015, pp. 83–90.

[61] M. Fridin, “Storytelling by a kindergarten social assistive robot: A tool for

constructive learning in preschool education,” Computers & education, vol. 70,

pp. 53–64, 2014.

[62] G. Shuzhi and M. Maja, “Preface,” in International Journal of Social Robotics,

vol. 1, no. 1. Springer, 2009, pp. 1–2.

[63] M. M. de Graaf, S. B. Allouch, and J. A. van Dijk, “Long-term evaluation of a

social robot in real homes,” Interaction studies, vol. 17, no. 3, pp. 462–491, 2016.

[64] S. Rossi, M. Larafa, and M. Ruocco, “Emotional and behavioural distraction by

a social robot for children anxiety reduction during vaccination,” International

Journal of Social Robotics, vol. 12, no. 3, pp. 765–777, 2020.

C.C. Reconocimiento

www.bdigital.ula.ve



BIBLIOGRAFÍA 120
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