
PROYECTO DE GRADO

Presentado ante la ilustre Universidad de Los Andes como requisito final para
obtener el Título de Ingeniero de Sistemas

Desarrollo de un Esquema de Rendimiento para MOODLE

Br.Gustavo Alejandro Mejía Briceño
Tutores:

Yaneth Moreno, M.Sc
Francisco Hidrobo, Ph.D

Mérida, Febrero de 2021

www.bdigital.ula.ve

C.C. Reconocimiento

Resumen

En el presente trabajo se expone el proceso de diseño e implementación de un es-
quema transaccional que busca optimizar el acceso a recursos digitales (documentos,
archivos multimedia, entre otros) por parte de los usuarios de plataformas e-learning
basadas en el proyecto Moodle, aplicando una metodología basada en funcionalidades
(FDD por sus siglas en inglés). El esquema transaccional consiste específicamente de
una extensión creada con el fin de intermediar entre la interfaz de usuario de Moodle
y las librerías que manejan el almacenamiento de datos y recursos. Además, solicita
recomendaciones sobre los recursos más concurridos de la plataforma a un recomen-
dador externo e implementa una base de datos en memoria utilizando Redis en la
que se almacenan los archivos más descargados por los usuarios.

Palabras clave: Almacenamiento, Esquema transaccional, EVA, Moodle.

iii

www.bdigital.ula.ve

C.C. Reconocimiento

Índice general

Resumen III

1. Introducción 8
1.1. Antecedentes . 9
1.2. Planteamiento del Problema . 10
1.3. Justificación del Proyecto . 11
1.4. Objetivos del Proyecto . 12
1.5. Metodología . 12
1.6. Alcances . 14

2. Marco Referencial 15
2.1. Entorno Virtual de Aprendizaje(EVA) 15

2.1.1. MOODLE . 16
2.1.2. Estructura de un plugin 17
2.1.3. Instalación de un plugin 19

2.2. Memorias caché . 20
2.3. Herramientas tecnológicas . 20

3. Análisis, Planificación y Diseño de funcionalidades 22
3.1. Desarrollo de un modelo global 22
3.2. Construcción de una lista de funcionalidades 25
3.3. Planificación por funcionalidades 26
3.4. Diseño de funcionalidades . 27

3.4.1. Recomendaciones . 27
3.4.2. Memoria caché . 27
3.4.3. Descargas . 29

iv

www.bdigital.ula.ve

C.C. Reconocimiento

Índice general v

4. Implementación, Pruebas y Resultados 31
4.1. Implementación de funcionalidades 31

4.1.1. Recomendaciones . 31
4.1.2. Memoria caché . 36
4.1.3. Descargas . 40

4.2. Pruebas . 43
4.2.1. Uso de las instrucciónes var_dump() y echo para ve-

rificar el estado del proceso 43
4.2.2. Pruebas de rendimiento 44

4.3. Resultados . 44
4.3.1. Resultados para archivos PDF 44
4.3.2. Resultados para archivos FLAC 45
4.3.3. Resultados para archivos MP4 46

5. Conclusiones y Recomendaciones 48

Apéndice A: Instalación de un Plugin 50
Instalación directa desde el directorio de plugins de Moodle . . . 50
Instalación mediante archivo ZIP subido al sitio 50
Instalación manual en el servidor . 51

Apéndice B: Instalación Redis en Linux 52
Instalación usando la línea de comandos 52
Instalación de PhpRedis . 53

Referencias 54

www.bdigital.ula.ve

C.C. Reconocimiento

Índice de figuras

1.1. Procesos de la metodología FDD (modificado de (Ambler, 2002)) . . . 13

3.1. Arquitectura global de la solución . 22
3.2. Arquitectura de Moodle (modificado de (Tim, 2010)) 23
3.3. Ubicación de la extensión en la arquitectura de Moodle (modificado

de (Tim, 2010)) . 24
3.4. Arquitectura de la extensión . 25
3.5. Comunicación entre la extensión y el recomendador 27
3.6. Diagrama de secuencia de la interacción extensión-recomendador . . . 28
3.7. Diagrama de actividad: Copiado de un archivo a la memoria caché. . 29
3.8. Diagrama de actividad: Descarga de archivos. 30

4.1. Estructura que debe tener la tabla download_optimizer_metrics. . . 34

vi

www.bdigital.ula.ve

C.C. Reconocimiento

Índice de cuadros

2.1. Tabla sobre la estructura de un plugin. 19

3.1. Lista de funcionalidades . 26

4.1. Tabla de tiempos de ejecución registrados para archivos PDF. 45
4.2. Tabla de tiempos de ejecución registrados para archivos FLAC. . . . 46
4.3. Tabla de tiempos de ejecución registrados para archivos MP4. 46
4.4. Tabla de medias de tiempos de ejecución registrados para archivos PDF. 47
4.5. Tabla de medias de tiempos de ejecución registrados para archivos

FLAC. 47
4.6. Tabla de medias de tiempos de ejecución registrados para archivos MP4. 47

vii

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 1

Introducción

Con el pasar de los tiempos, la evolución de las tecnologías de información y
comunicación han traido al mundo cambios en todo aspecto de la vida humana, faci-
litando entre algunos las comunicaciones, los negocios y por supuesto, la educación.
En los ultimos años, las plataformas dedicadas a la formación de profesionales a dis-
tancia han ganado tal popularidad que es incalculable la gran cantidad de usuarios
que estas poseen, ofreciendo una amplia gama de carreras y areas de formación con
el fin de brindar oportunidades a quienes no cuentan con los medios para disfrutar
de una educación prescencial universitaria.

Pero a pesar del apoyo y soporte que hay detras del mundo del aprendizaje
electrónico (e-learning), estas plataformas no escapan de la realidad de los sistemas
web en general, y es que debido a la gran cantidad de usuarios que acceden día a
día a distintos cursos en línea y de manera simultanea, los tiempos de respuesta
pueden tornarse un problema a gran escala en especial si no se cuenta con los medios
necesarios para adaptar los equipos a los nuevos requerimientos de los sistemas.

Entre tantas plataformas de aprendizaje electrónico podemos resaltar el pro-
yecto de software libre Moodle. Esta se define como una plataforma de aprendizaje,
diseñada para proporcionar a educadores, administradores y estudiantes un sistema
integrado único, robusto y seguro para crear ambientes de aprendizaje personalizados
(Gabriel Barrios, 2019).

En este trabajo se presenta el desarrollo de un componente que optimizará la
gestión de almacenamiento en las plataformas e-learning haciendo uso de memorias
caché para almacenar los recursos que se determinen deban estar a primera mano.

8

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 1. Introducción 9

Este será implementado en Moodle y se encargará de efectuar las transacciones entre
la memoria secundaria y el servidor web de Moodle siguiendo las reglas especificadas
para su comunicación con la finalidad de mantener una copia de los recursos reque-
ridos en la memoria caché, reduciendo el tiempo necesario para brindar respuesta a
futuras solicitudes.

1.1. Antecedentes

Hoy en día existe una gran cantidad de componentes y extensiones (plugins)
creados para Moodle con el fin de cubrir una necesidad de la plataforma o brindar
una funcionalidad adicional a esta. Estos pueden ser instalados de forma manual o
desde la misma página oficial de moodle (moodle.org). Una categoría importante
es la de los plugins que integran memoria caché, entre los cuales podemos resaltar
Alternative PHP Cache (APC) (Hemelryk, 2014) el cual proporciona un caché
de tamaño limitado pero de excelente desempeño destinado al almacenamiento de
datos de aplicaciones persistentes de PHP; Memcache Cluster (Merrill, 2014) que
implementa una versión modificada de la memoria caché estándar de Moodle que
permite mantener varios almacenamientos memcache sincronizados entre sí.

Con el fin de lograr los objetivos planteados en este trabajo, se hará uso de
la librería AdoDB, la cual no es más que una capa de abstracción de base de datos
popular, rápida y fácil de usar para PHP. Una aplicación de esta librería la podemos
conseguir en (Mgheder y Ridley, 2008) en el cual se propone estudiar la posibilidad
de usar metadatos almacenados en bases de datos para desarrollar elementos de
interfaz de usuario. En este trabajo se hace uso del lenguaje PHP en conjunto con
la librería AdoDB por ser un buen candidato para generar interfaces de usuario web
dinámicamente.

Por otra parte, en (Sanchez et al., 2017) se presenta un framework para PHP
basado en el modelo de 3 capas con el fin de identificar y separar la aplicacion
final en diferentes capas que faciliten su construcción y mantenimiento. Este enfoque
integra diferentes tecnologías y patrones de diseño con el fin de proporcionar una
herramienta eficaz que respalde a la comunidad en la creación de aplicaciones web
con PHP, entre estas, se integra la librería AdoDB en la capa de acceso a datos para
gestionar la comunicación entre la aplicación y la base de datos relacional.

www.bdigital.ula.ve

C.C. Reconocimiento

moodle.org

Capítulo 1. Introducción 10

(García, 2017) realiza el diseño e implementacion de una aplicación móvil para
la intranet de la Universidad Politécnica de Madrid basada en el framework cordova y
tecnologías web. La idea de este trabajo, fué proponer la programación híbrida usan-
do el patrón MVC (Modelo-Vista-Controlador) como una forma de programación
que sustituiría el desarrollo ordinario para plataformas nativas, evitando el desarro-
llo en paralelo para cada sistema operativo móvil, como Android o iOS, y brindando
una mejor implementación. El propósito de usar la librería AdoDB en este trabajo
es, principalmente, evitar el mantenimiento extra en el caso de migraciones de la
base de datos o cambios en los controladores de esta. Tambien, la implementacion
de AdoDB brinda a los desarrolladores la facilidad de usar el mismo código para
acceder a una amplia gama de bases de datos.

1.2. Planteamiento del Problema

El rendimiento de una aplicación web es importante, pero en una plataforma
de formación es crucial. La percepción del alumnado sobre la calidad de los cursos
puede verse deteriorada si durante su formación la plataforma responde de forma
lenta o inesperada. Los sistemas de enseñanza aprendizaje apoyados por e-learning
constituyen actualmente la nueva tendencia en la web para aquellas instituciones
que apuestan por la educación a distancia o semipresencial, bien sea impartiendo
cursos, diplomados, estudios de pregrado, estudios de postgrado, entre otros progra-
mas de formación académica, ejemplos de ello en Venezuela, podemos mencionar, la
Universidad Centro Occidental Lisandro Alvarado (UCLA) a través del dictado de
algunos diplomados a distancia, la Universidad de Carabobo (UC) impartiendo la
Especialización en Desarrollo de Software con modalidad semipresencial y la Univer-
sidad de Los Andes (ULA) con el programa de formación de la carrera de Derecho
a distancia, el cual es impartido por medio de la Plataforma de Estudios Interac-
tivos a Distancia de la ULA (EIDIS), esto reafirma el interés de las instituciones
educativas por favorecer a aquellas personas que se les dificulta tener acceso a la
formación presencial. Es aquí donde la elección de una plataforma de aprendizaje
ideal entra en juego, y en este sentido Moodle es una de las opciones más empleadas
para tal fin por distintas instituciones educativas. La gestión del almacenamiento en
Moodle es un aspecto significativo, ya que allí se manejan los recursos más valiosos

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 1. Introducción 11

con los cuales se transmite la formación al participante, como lo son, los archivos, y
dependiendo del desempeño que provea esta parte de la plataforma, para que dichos
recursos se gestionen eficientemente cada vez que el usuario los requiera, el proceso
de enseñanza se percibirá bastante oportuno y rápido. Así, surgue la necesidad de
aumentar la velocidad y la eficiencia de las aplicaciones web, y de manera específica
de Moodle, apuntando a enriquecer la calidad en cuanto a la experiencia de uso, es
decir que el servicio satisfaga las expectativas y necesidades del usuario, y por otro
lado, a mejorar la calidad de servicio, referida a la medida del rendimiento del siste-
ma. El problema planteado en este trabajo, es el requerimiento de Entornos Virtuales
de Aprendizaje (EVA) más eficientes para gestionar los requerimientos de usuarios
cada vez mas exigentes, y que ellos perciban u observen que su productividad no esta
siendo afectada. En lo particular, se requiere mejorar el rendimiento en cuanto a la
gestión de almacenamiento, para ello se debe detectar necesidades y comportamien-
tos a través de los procesos que se llevan a cabo entre la librería AdoDB y la base
de datos de la plataforma Moodle, que nos permitirán desarrollar e implementar al
menos un esquema de rendimiento apropiado que se integre a la plataforma, que
permita al servidor acceder más rápido a los archivos que soliciten los usuarios.

1.3. Justificación del Proyecto

Si bien es cierto que la eficiencia de un sitio web influye enormemente en la
experiencia del usuario, cuando se trata de una plataforma de aprendizaje es crucial
que los tiempos de respuesta sean rápidos, pues esto ayudará a que el interes de los
alumnos no decaiga. Tomando en cuenta esto, en este trabajo se busca optimizar el
sistema gestor de almacenamiento de las plataformas e-learning, tomando como caso
de estudio Moodle, con el fin de minimizar las deficiencias que poseen estos sistemas
a la hora de gestionar los datos y recursos de los distintos cursos y usuarios inscritos.

Adicionalmente, es importante mencionar que este proyecto se encuentra en-
marcado en una linea de investigación doctoral que trata sobre un Sistema de Gestión
de Almacenamiento para entornos e-learning basado en Big Data, el cual requiere
el diseño, desarrollo e implementación de un esquema de transacción de datos, un
componente que actuará de intermediario entre la interfaz de usuario de Moodle y
el servidor de almacenamiento de datos y recursos.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 1. Introducción 12

1.4. Objetivos del Proyecto

El objetivo general de este trabajo es desarrollar a nivel de backend un esquema
transaccional de datos en la plataforma e-learning Moodle.

Para ello se debe cumplir con los siguientes objetivos específicos:

1. Analizar el modelo de datos y el rendimiento de los procesos de almacenamiento
que se llevan a cabo dentro de la plataforma Moodle.

2. Estudiar los procesos que se llevan a cabo entre la librería AdoDB y la base de
datos de Moodle.

3. Determinar el alcance y requerimientos del esquema de transacciones de datos
a desarrollar.

4. Diseñar el esquema transaccional.

5. Implantar el esquema diseñado en la plataforma Moodle.

1.5. Metodología

En la actualidad, la agilidad al cambio es un factor de suma importancia en los
proyectos de software. Los requisitos y diseños tienden a cambiar rapidamente con
el tiempo para adaptarse a las necesidades del proyecto. Por esta razón, existen las
metodologías ágiles, que nacen con el fin de brindar un mayor enfoque al proceso de
desarrollo, enfatizar la comunicación cara a cara en lugar de la documentación y en
especial facilitar la refactorización y la adaptación a los cambios. En este proyecto
se pleantea aplicar un Desarrollo basado en funcionalidades o Feature Driven Deve-
lopment (FDD), puesto que se trata de una metodología ágil basada en la calidad y
el monitoreo constante del proyecto. Se enfoca en iteraciones cortas, que permiten
entregas tangibles del producto en un período corto de tiempo.

La metodología FDD define 5 procesos: Proceso 1 - Desarrollar un modelo
global, Proceso 2 - Desarrollar una lista de funcionalidades, Proceso 3 - Planificar
por funcionalidad, Proceso 4 - Diseñar por funcionalidad y Proceso 5 - Implementar
por funcionalidad.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 1. Introducción 13

Figura 1.1: Procesos de la metodología FDD (modificado de (Ambler, 2002))

Con el fin de adaptar estos 5 procesos a nuestro trabajo, se especificaron, para
cada uno ellos las siguientes tareas:

Proceso I: Desarrollar un modelo global.

Analizar el modelo de datos y el rendimiento de los procesos de almace-
namiento de Moodle.

Estudiar los procesos que se llevan a cabo entre la librería AdoDB y la
BD Moodle.

Determinar el alcance y requerimientos del esquema a desarrollar.

Determinar el modelo de objetos.

Proceso II: Construir una lista de funcionalidades.

Construir una lista de funcionalidades en base a los requerimientos pre-
viamente determinados.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 1. Introducción 14

Proceso III: Planificar.

Construir el plan de desarrollo:

• Determinar el orden en que se desarrollarán las funcionalidades.

• Determinar el tiempo estimado que tomará desarrollar e implemen-
tar cada funcionalidad.

Proceso IV: Diseñar.

Especificar las funcionalidades del esquema de rendimiento adecuado que
defina la solución de los problemas de gestión en la plataforma Moodle.

Elaborar la documentación detallada de cada funcionalidad:

• Diseño general de funcionalidades.

• Diagramas de secuencia.

• Diagramas de clases.

Proceso V: Implementar.

Desarrollar e implementar las funcionalidades en el orden especificado en
el plan de desarrollo.

Implantar el esquema de optimización desarrollado en la plataformaMood-
le.

1.6. Alcances

En el presente trabajo se propone el diseño e implementación de un esquema
transaccional de datos y recursos procurando mejorar el rendimiento de las plata-
formas e-learning y en general de cualquier sistema web. Este será implementado
y probado en Moodle. Entre las tareas que se deben llevar a cabo es importante
mencionar el estudio y análisis de los procesos internos de Moodle así como su comu-
nicación con la librería AdoDB y distintos plugins y componentes que se encuentran
integrados a esta o que pueden ser instalados por parte del administrador del siste-
ma con el fin de conseguir la forma óptima de implementar el esquema previamente
mencionado.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 2

Marco Referencial

En éste capítulo, se pretende exponer las bases teóricas necesarias para la
comprensión del diseño e implementación de un esquema transaccional que optimice
la gestión de archivos en Moodle.

2.1. Entorno Virtual de Aprendizaje(EVA)

Un Entorno Virtual de Aprendizaje, mayormente conocido como plataforma
e-learning, hace referencia a una plataforma web destinada a la enseñanza en línea
mediante un método que puede ser completamente no presencial, en el cual el apren-
dizaje se hace completamente mediante Internet, o mixto, combinando la enseñanza
en línea con experiencias en el salón de clases.

“El objetivo primordial de una plataforma e-learning es permitir la creación y
gestión de los espacios de enseñanza y aprendizaje en Internet, donde los profesores y
los alumnos puedan interactuar durante su proceso de formación” (Gabriel Barrios,
2019), facilitando la comunicación pedagógica entre los participantes de un proceso
educativo en lo que (Bello Díaz, 2005) denomina un “aula sin paredes”, distal y
multicrónica.

(Gabriel Barrios, 2019) en su trabajo, clasifica a los entornos virtuales de apren-
dizaje con respecto a su funcionalidad, pudiendo ser plataformas de carácter general
o específicas. Las plataformas de carácter general se caracterizan principalmente por
no enforcarse en una sola catedra, al contrario, estan orientadas al aprendizaje de dis-
tintos tópicos. Entre estas destacan como las más utilizadas los Sistemas de Gestión

15

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 2. Marco Referencial 16

del Aprendizaje (SGA) como por ejemplo Moodle, .LRN, e-College, Desire2Learn,
entre otras.

Los SGA resaltan por ser los más completos en cuestión de características
y funcionalidades, entre las principales y más comunes que poseen la mayoria de
estos sistemas se pueden mencionar: la administración del EVA, comunicación de los
participantes, gestión de contenido, gestión del trabajo en grupos y, la evaluación.

En el caso de los sistemas dedicados al desarrollo de una destreza o aprendizaje
de una materia en específico, podemos destacar las plataformas orientadas al apren-
dizaje de las lenguas, que integran herramientas que se adaptan a las metodologías
específicas de enseñanza de esta competencia (Gabriel Barrios, 2019).

Existen algunas plataformas aun más orientadas a un modelo o método de
aprendizaje espécifico, entre estas existen los Entornos Personales de Aprendizaje
(PLE, por sus siglas en inglés). Inspiradas en el fenómeno de la Web Social o
Web 2.0, un enfoque que enfatiza en la colaboración online, conectividad y compar-
tir contenidos entre usuarios (https://disenowebakus.net/la-web-2.php). “Es-
tán basadas en el modelo de aprendizaje socio-constructivista en el que el aprendiz
es protagonista de su propio aprendizaje, cooperando y colaborando con el grupo
para construir nuevos conocimientos.” (Gabriel Barrios, 2019).

2.1.1. MOODLE

Moodle es una plataforma web libre de aprendizaje colectivo y es, en este
trabajo, el caso de estudio para la implementación de un esquema transaccional
de datos. Esta se encuentra actualmente en la versión 3.7 pero la versión que será
implementada en este proyecto será la 3.3

Moodle está diseñada para soportar tanto la enseñanza como el aprendizaje
guiado por la pedagogía de constructivismo social, puesto que proporciona un conjun-
to de poderosas herramientas centradas en el estudiante y ambientes de aprendizaje
colaborativo (Gabriel Barrios, 2019).

El proyecto Moodle impulsa decenas de miles de ambientes de aprendizaje glo-
balmente con más de 79 millones de usuarios, entre usuarios académicos y empresa-
riales, que la convierten en la plataforma de aprendizaje más ampliamente utilizada
del mundo (Moodle, 2019).

www.bdigital.ula.ve

C.C. Reconocimiento

https://disenowebakus.net/la-web-2.php

Capítulo 2. Marco Referencial 17

Modulos en Moodle

Los modulos en Moodle son grupos de características en un curso. Significa
propiamente algo a lo que los estudiantes pueden contribuir directamente, y a menudo
es contrastada con un recurso, como por ejemplo un archivo o una página, el cual es
presentado por el profesor a los alumnos.

Los modulos principales en Moodle son: tarea, consulta, foro, diario, cuestiona-
rio, recurso, encuesta, wiki, taller. Éstos se encuentran detallados en (Gabriel Barrios,
2019).

Extensiones en Moodle

En informática, un complemento o «plug-in» es una aplicación (o programa in-
formático) que se relaciona con otra para agregarle una función nueva y generalmente
muy específica. Esta aplicación adicional es ejecutada por la aplicación principal e
interactúan por medio de la interfaz de programación de aplicaciones.

Moodle cuenta con un amplio directorio de extensiones que permiten añadir
características y funcionalidades adicionales, como por ejemplo, nuevas actividades,
nuevos tipos de preguntas para exámenes, nuevos reportes, integraciones con otros
sistemas y muchas más1.

2.1.2. Estructura de un plugin

En (Ivorra Oltra y Luján-Mora, 2009) se describe el esquema estandar de un
plugin de Moodle de la siguiente manera:

Nombre Tipo Descripción
version.php Archivo Contiene la meta informa-

ción sobre el plugin, por
ejemplo, la versión de este.

settings.php Archivo Archivo opcional que con-
tiene el formulario con las
opciones generales del plu-
gin.

1Directorio de plugins: https://moodle.org/plugins/

www.bdigital.ula.ve

C.C. Reconocimiento

https://moodle.org/plugins/

Capítulo 2. Marco Referencial 18

index.php Archivo Sirve para mostrar todas las
instancias de una actividad
en un curso, es decir, una
lista con todas las instancias
del mismo plugin.

view.php Archivo Ésta es la página que mues-
tra una instancia de la acti-
vidad.

lib.php Librería Librería de funciones del
plugin. En este archivo se
implementarán todas sus
funciones y procedimientos.

mod_form.php Formulario Formulario para crear o mo-
dificar una instancia de la
actividad.

lang/ Directorio Almacenar los archivos de
idioma del plugin. Este de-
be contener los archivos de
idioma con las cadenas de
texto necesarias por el plu-
gin en ingles y sus traduc-
ciones a los idiomas de los
usuarios finales.

db/ Directorio Directorio donde se almace-
narán los archivos con las
tablas de las bases de datos
necesarias.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 2. Marco Referencial 19

access.php Archivo Archivo opcional que con-
tiene los permisos del plu-
gin. Los permisos no son
obligatorios, pero si muy re-
comendables para garanti-
zar qué usuarios pueden ac-
ceder a las distintas partes
de este.

install.xml Archivo Archivo que describe la es-
tructura de las tablas del
plugin.

upgrade.php Archivo Código de actualización,
aquí es donde se deben de
hacer las alteraciones de las
tablas, si las hay, entre ver-
siones.

Tabla 2.1: Tabla sobre la estructura de un plugin.

2.1.3. Instalación de un plugin

Existen tres formas de instalar un plugin en un servidor Moodle. La primera
de estas y la más sencilla es la instalación directa desde el directorio de plugins de
Moodle, haciendo uso de la herramienta que este tiene que permite la instalación
rapida y sencilla del plugin deseado desde la misma página del proyecto.

En segundo lugar la instalación mediante un archivo ZIP cargado al servidor,
esta consiste en descargar un archivo comprimido que contiene al plugin y posterior-
mente cargarlo al sitio web desde su herramienta local.

Por ultimo, la instalación manual en el servidor. Esto significa que el adminis-
trador se encarga de copiar manualmente el código a la carpeta correcta del sistema
de archivos del servidor web.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 2. Marco Referencial 20

2.2. Memorias caché

Una caché es un componente de hardware o software que almacena datos para
que las solicitudes futuras de esos datos se puedan atender con mayor rapidez.

En Moodle existen varias integraciones de memorias cache ya incluidas en el
código fuente y otras que pueden ser instaladas mediante plugins, algunas de estas
son Memcached2, MongoDB, APC user cache (APCu)3, XCache4 y Redis5.

Para el desarrollo de las funcionalidadeds de este proyecto, se tomará como
base la extensión para la gestión de caché de Redis ya integrada en la plataforma.
Redis permite el almacenamiento clave-valor lo que facilita el mapeo de archivos en
memoria principal.

2.3. Herramientas tecnológicas

PHP: Lenguaje de código abierto muy popular especialmente adecuado para el
desarrollo web y que puede ser incrustado en HTML. El código es interpretado
por un servidor web con un módulo de procesador de PHP que genera el HTML
resultante.

AdoDB: ADOdb es una capa de abstracción de base de datos popular, rápida
y fácil de usar para PHP. Permite utilizar el mismo código para acceder a una
amplia gama de bases de datos. Ha sido mantenido activamente desde el año
2000 por el fundador del proyecto y numerosos colaboradores de la comunidad.
ADOdb contiene componentes para consultar y actualizar bases de datos, así
como una biblioteca de registros activos orientada a objetos, administración de
esquemas y monitoreo del rendimiento (Damien Regad y Community, 2014).
Moodle hace uso de AdoDB como su capa de abstracción de base de datos por
defecto, esta se encuentra incluida en su código fuente y es usada de forma
automática al momento de realizarse cualquier consulta a la base de datos.

2Memcached: https://moodle.org/plugins/cachestore_memcachedcluster
3APCu: https://docs.moodle.org/37/en/APC_user_cache_(APCu)
4XCache: https://moodle.org/plugins/cachestore_xcache
5Redis: https://docs.moodle.org/37/en/Redis_cache_store

www.bdigital.ula.ve

C.C. Reconocimiento

https://moodle.org/plugins/cachestore_memcachedcluster
https://docs.moodle.org/37/en/APC_user_cache_(APCu)
https://moodle.org/plugins/cachestore_xcache
https://docs.moodle.org/37/en/Redis_cache_store

Capítulo 2. Marco Referencial 21

Atom: Atom es un editor de texto de código abierto para macOS, Linux, y
Windows con soporte para múltiples plug-in, desarrollado por GitHub.

Servidor HTTP Apache: Apache es un software de servidor web gratuito y
de código abierto para plataformas Unix (BSD, GNU/Linux, etc.), Microsoft
Windows, Macintosh y otras, con el cual se ejecutan el 46% de los sitios web
de todo el mundo. Permite a los propietarios de sitios web servir contenido en
la web.

MySQL: MySQL es un sistema de gestión de bases de datos relacional. Está
considerada como la base datos de código abierto más popular del mundo, y
una de las más populares en general junto a Oracle y Microsoft SQL Server,
sobre todo para entornos de desarrollo web.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 3

Análisis, Planificación y Diseño de
funcionalidades

En este capítulo se explicarán los tres primeros procesos de la construcción del
plugin: Desarrollo de un modelo global, construcción de una lista de funcionalidades
y planificación por funcionalidades. Estas tres fases corresponden a la iteración cero,
en la que se estableció un modelo global del proyecto y se planificó el desarrollo de las
funcionalidades. Seguidamente se hablará sobre los esfuerzos del proceso de diseño
por funcionalidades en cada una de las iteraciones.

3.1. Desarrollo de un modelo global

Figura 3.1: Arquitectura global de la solución

22

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 3. Análisis, Planificación y Diseño de funcionalidades 23

La solución al problema planteado consta de la integración conjunta entre un
sistema recomendador externo a Moodle y una extensión que maneje las transaccio-
nes entre el sistema recomendador, la memoria caché implementada con Redis, las
librerías de la plataforma y la interfaz de usuario (figura 3.1).

Para comprender el alcance y la ubicación de nuestra extensión dentro de Mood-
le y su interacción con los diversos módulos y librerías de este, se partió tomando en
cuenta la arquitectura de Moodle que se puede observar en la figura 3.2.

Figura 3.2: Arquitectura de Moodle (modificado de (Tim, 2010))

Nuestro plugin se insertó entre la interfaz de usuario de Moodle y el almacén
de datos y archivos como se observa en la figura 3.3, funcionando como una capa
intermedia o middleware que recibe tanto las consultas de cada usuario como las
respuestas desde el servidor.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 3. Análisis, Planificación y Diseño de funcionalidades 24

Figura 3.3: Ubicación de la extensión en la arquitectura de Moodle (modificado de
(Tim, 2010))

Nuestra extensión consta de una memoria caché implementada usando Redis,
ya que el lenguaje de programación PHP posee librerías que facilitan su integracón
conjunta. Redis es un motor de base de datos que hace uso de la memoria principal
del computador para alojar datos en un esquema clave-valor, esta permite de la
misma forma almacenar datos o archivos binarios, permitiendo alojar documentos,
imágenes, archivos ejecutables, etc, que no excedan un tamaño de 512 MB.

El diseño de la memoria caché utilizada en este componente consiste en una
memoria que se ubicará en el servidor web en el cual se encuentra alojado nuestro
cliente de Moodle. Su función es la de mantener copias de los archivos a los cuales
los usuarios accedan con mayor frecuencia en la plataforma con el fin de proveer una
respuesta más rápida a sus solicitudes.

Adicionalmente, tiene la tarea de solicitar al recomendador externo, cada vez
que sea necesario un listado actualizado de los archivos que este determine deban
permanecer en la memoria caché y crear una copia de estos en la misma, así como

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 3. Análisis, Planificación y Diseño de funcionalidades 25

proveer al recomendador un listado de aciertos y errores que pueda usar para futuras
recomendaciones.

Figura 3.4: Arquitectura de la extensión

El fin de esta memoria caché es almacenar los archivos más concurridos y debe
ser actualizada cada vez que se produzca una nueva recomendación. El plugin se
encarga de remover los archivos que ya no sean necesarios y cubrir este espacio con
nuevos recursos.

El componente no solo debe encargarse de dar respuesta a las solicitudes cuan-
do el recurso solicitado se encuentre en la memoria caché, sino que también debe
responder cuando este no se encuentre a primera mano, buscandolo en el servidor de
archivos y enviandolo al usuario que lo ha solicitado.

3.2. Construcción de una lista de funcionalidades

Según (Ambler, 2002), Una funcionalidad es una pequeña función valorada
por el cliente expresada en la forma <acción><resultado><objeto>. Por ejemplo,
“Calcular el total de una venta”, “Validar la contraseña de un usuario” y “Autorizar
la transacción de venta de un cliente”.

Acorde a lo descrito en la sección anterior en la cual se desarrolló un mode-
lo global de nuestra extensión, la lista de funcionalidades que se estableció es la
siguiente:

1. Recomendaciones
1.1. Solicitar recomendaciones al recomendador externo (HTTP Request).
1.2. Enviar métricas de aciertos y errores al recomendador externo (HTTP Re-
quest).

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 3. Análisis, Planificación y Diseño de funcionalidades 26

2. Memoria caché
2.1. Limpiar archivos innecesarios de la memoria caché cada vez que se produzca
una nueva recomendación.
2.2. Copiar archivos nuevos a la memoria caché de acuerdo a la última recomen-
dación producida.
3. Descargas
3.1. Descargar archivos solicitados por los usuarios desde la memoria caché en
caso de encontrarse en la misma.
3.2. Descargar archivos solicitados por los usuarios desde el almacenamiento en
caso de no encontrarse en la memoria caché.

Tabla 3.1: Lista de funcionalidades

3.3. Planificación por funcionalidades

Los esfuerzos de construcción fueron divididos en tres iteraciones de dos se-
manas, cada una comprendiendo un set de funcionalidades en el orden descrito a
continuación:

Diseño e Implementación (Semanas)

1 2 3 4 5 6 7 8

1. Recomendaciones
1.1.
1.2.

2. Memoria Caché
2.1.
2.2.

3. Descargas
3.1.
3.2.

Pruebas y revisiones finales

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 3. Análisis, Planificación y Diseño de funcionalidades 27

3.4. Diseño de funcionalidades

El diseño de los sets de funcionalidades se realizó al comienzo de cada iteración
en la cual correspondía su desarrollo como se estableció en la sección anterior.

3.4.1. Recomendaciones

La solicitud de recomendaciones y el envío de métricas se deben realizar de
forma automática cada vez que sea necesario. Por ende, la extensión hace uso de las
tareas sincronizadas de Moodle. Una tarea es una unidad de trabajo que debe ser
realizada en un tiempo determinado, son especialmente útil para ejecutar una tarea
de mantenimiento en un horario regular.

Figura 3.5: Comunicación entre la extensión y el recomendador

En la figura 3.5 se puede observar la interacción entre nuestra extensión y el
recomendador externo. Las recomendaciones y métricas se recibirán y enviarán como
solicitudes HTTP en formato JSON.

El diagrama de secuencia mostrado en la figura 3.6 corresponde a la secuencia
que sigue el proceso de solicitud de recomendaciones y envío de métricas al momento
de ejecutarse la tarea programada que se encarga de comunicarse con el recomenda-
dor externo.

3.4.2. Memoria caché

La memoria caché implementada en este proyecto tiene la funcion de almacenar
los archivos más concurridos por los usuarios de la plataforma Moodle.

Luego de recibir un listado de recomendaciones desde el recomendador externo
mencionado en la sección anterior, nuestro componente debe limpiar de la memoria
caché los archivos que no se contemplen en este listado antes de proceder con el
copiado.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 3. Análisis, Planificación y Diseño de funcionalidades 28

Figura 3.6: Diagrama de secuencia de la interacción extensión-recomendador

Posteriormente el componente busca uno por uno los archivos del listado en el
almacenamiento de archivos. Para cada caso se verifica que el recurso no se encuentre
almacenado ya en la memoria cache y de no ser así se verifica si el espacio disponible
es suficiente para agregarlo a la memoria considerando el límite establecido. Para
este proyecto se fijó un límite de aproximadamente 800MB ya que se cuenta con un
almacenamiento físico de 2GB. Si el almacenamiento disponible es mayor al tamaño
del archivo se procede a copiarlo.

Antes de continuar con el siguiente archivo se debe actualizar la memoria usada.
De quedar entradas sin revisar en el listado el componente buscará el siguiente archivo
y realizará el proceso. De no poseer espacio suficiente, se procede con el siguiente
recurso del listado hasta que este sea cubierto en su totalidad o la memoria esté
usada por completo.

En la figura 3.7 se puede ver el proceso explicado anteriormente representado
con un diagrama de actividad.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 3. Análisis, Planificación y Diseño de funcionalidades 29

Figura 3.7: Diagrama de actividad: Copiado de un archivo a la memoria caché.

3.4.3. Descargas

Para integrar estas funcionalidades al flujo normal de los procesos de Moodle
es necesario adentarnos en su código fuente, especificamente en la rutina encargada
de gestionar todas las descargas que los usuarios solicitan.

La mayoría de actividades que involucran la descarga de archivos y reproduc-
ción de recursos multimedia hacen uso de la rutina pluginfile.php que Moodle posee
en su código fuente. Esta rutina sirve de interfaz tomando directamente la solicitud
de los usuarios para crear el enlace de descarga del recurso solicitado. Por ende, es
allí en donde se realizó la inserción de nuestro plugin.

Sin embargo, ya que no siempre se servirán archivos desde la memoria caché
administrada por nuestra extensión, solo se realizó una bifurcación en la que luego de
obtener los argumentos del archivo solicitado se verifica si este existe o no en caché.
Si el resultado de esta verificación es satisfactorio se procede a buscar el archivo en
la memoria, si por el contrario se determina que el archivo no se encuentra en la
misma, el proceso continua de la misma manera que lo haría si nuestro plugin no
estuviera implementado.

Luego de determinar el método a utilizar se deben actualizar las métricas de
aciertos y errores. En caso de que el archivo se encontrara en la memoria caché,

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 3. Análisis, Planificación y Diseño de funcionalidades 30

la cantidad de aciertos de las recomendaciones sumarían uno. Por el contrario si el
archivo debiera obtenerse desde el almacenamiento, representaría un desacierto y
sumaría uno la cuenta de fallos. Estas métricas son escritas en una tabla de la base
de datos creada con este fin llamada download_optimizer_metrics.

En la figura 3.8 se puede ver el proceso explicado anteriormente representado
con un diagrama de actividad.

Figura 3.8: Diagrama de actividad: Descarga de archivos.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4

Implementación, Pruebas y
Resultados

A continuación se presenta la explicación detallada del proceso de implementa-
ción seguido de las pruebas que se realizaron para garantizar que el funcionamiento
y rendimiento sea el esperado.

4.1. Implementación de funcionalidades

El último proceso de la metodología trata de la implementación de las fun-
cionalidades y se aplica de forma iterativa en conjunto con el proceso de diseño.
Antes de cada iteración se seleccionaron los sets de funcionalidades que serían dise-
ñados e implementados en la misma. Cada set de funcionalidades especificado fue
implementado uno por uno como se aprecia a continuación.

4.1.1. Recomendaciones

Se requería que la solicitud de recomendaciones y el envío de de métricas al
recomendador externo se hiciera de forma automática en intervalos de tiempo que
el administrador de la plataforma decidiera sean adecuados. Para conseguir esto se
implementaron estas funcionalidades en una tarea sincronizada de Moodle. Las tareas
sincronizadas son ejecutadas a través del proceso Cron de Moodle1 que es un script

1Cron de Moodle: https://docs.moodle.org/all/es/Cron

31

www.bdigital.ula.ve

C.C. Reconocimiento

https://docs.moodle.org/all/es/Cron

Capítulo 4. Implementación, Pruebas y Resultados 32

PHP contenido en el código fuente que debe ejecutarse regularmente en segundo
plano y se encarga de ejecutar las tareas sincronizadas en sus intervalos agendados.

El programa cron.php de Moodle debe ser invocado regularmente, esto con
el fin de que las tareas sincronizadas se ejecuten correctamente en los intervalos
establecidos. Ya que PHP permite ejecutar programas desde la consola de comandos
de linux se configuró el Crontab de Linux para que ejecute cron.php cada minuto.

En el sistema operativo Unix, cron es un administrador regular de procesos en
segundo plano que ejecuta procesos o rutinas a intervalos regulares como se especi-
fican en el fichero crontab.

La configuración de la tarea sincronizada creada para ejecutar la solicitud de
recomendaciones y el envío de métricas al recomendador externo se encuentra en
db/tasks.php dentro de la carpeta de la extensión y contiene la especificación del
intervalo en el que se debe correr.

El archivo classes/task/http_requests.php contiene las funciones que se
ejecutaran en esta tarea.

http_requests.php:

<?php
//
// This file is part of Moodle - http://moodle.org/
//
// Moodle is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Moodle is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.

/**
* This file contains the scheduled tasks needed by the plugin.
*

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 33

* @package cachestore_download_optimizer
* @copyright 2020 Gustavo Mej’ia <bfmvtm@gmail.com>
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
*/

namespace cachestore_download_optimizer\task;
include_once($CFG->dirroot.’/cache/stores/download_optimizer/lib.php’);

/**
* Scheduled task to request new recommendations and send metrics.
*/

class http_requests extends \core\task\scheduled_task {

/**
* Return the task’s name as shown in admin screens.
*
* @return string
*/

public function get_name() {
return get_string(’httprequests’, ’cachestore_download_optimizer’);

}

/**
* Execute the task.
*/

public function execute() {
check_metrics_availability();

send_metrics();

$recommendations = get_recommendations();

clear_cache($recommendations);
retrieve_files($recommendations);

}
}

Las actividades a ejecutar se encuentran en el cuerpo de la función execu-
te. En primer lugar, se invoca a la rutina check_metrics_availability que se
encarga de verificar que se encuentren las entradas necesarias en la tabla down-
load_optimizer_metrics como se muestran en la figura 4.1 y de no encontrarse

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 34

de este modo, se crean. Esto es útil como seguridad para evitar errores que se puedan
presentar al momento de escribir los aciertos y errores en la tabla.

Figura 4.1: Estructura que debe tener la tabla download_optimizer_metrics.

Posteriormente se invoca la rutina send_metrics que envía las métricas cap-
turadas al recomendador. Esta función se encarga de recuperar de la base de datos
los valores capturados de aciertos y errores para el último listado de recomendaciones
y enviarlos en una petición HTTP de tipo POST usando la biblioteca cURL de
PHP. Una vez finalizado el envío de la petición se reestrablecen los valores de la tabla
a cero.

Función send_metrics:

function send_metrics() {
global $DB;

$success = $DB->get_field(’download_optimizer_metrics’, ’value’,
[’metric’ => ’success’]);

$fail = $DB->get_field(’download_optimizer_metrics’, ’value’, [’metric’
=> ’fail’]);

$metrics = array(
’success’ => $success,
’fail’ => $fail

);

$payload = json_encode(array(’metrics’ => $metrics));

$url = ’https://obscure-lake-39056.herokuapp.com/api/get-metrics’;
$ch = curl_init($url);

curl_setopt($ch, CURLOPT_POSTFIELDS, $payload);

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 35

curl_setopt($ch, CURLOPT_HTTPHEADER,
array(’Content-Type:application/json’));

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$response = json_decode(curl_exec($ch));

curl_close($ch);

clean_metrics_values();
}

La función get_recommendations se encarga de solicitar al recomendador
una lista de recomendaciones actualizada. Para conseguir esto también se hace uso
de la biblioteca cURL pero en este caso se envía una petición de tipo GET. Esta
rutina retorna un arreglo que contiene los identificadores de los archivos más concu-
rridos en cada una de sus posiciones. En caso de que ocurra un fallo, se retorna un
mensaje de error.

Función get_recommendations:

function get_recommendations() {
$url =

’https://obscure-lake-39056.herokuapp.com/api/send-recommendations-aux’;
$ch = curl_init($url);

curl_setopt($ch, CURLOPT_HTTPGET, 1);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$response = json_decode(curl_exec($ch));
$recommendations = $response->recommendations;

curl_close($ch);

if ($response->success) {
return $recommendations;

} else {
return ’There was an error retrieving recommendations’;

}
}

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 36

4.1.2. Memoria caché

En este proyecto se implementó una memoria caché utilizando el motor de base
de datos en memoria Redis el cual es posible manejar desde nuestro plugin a través
de la librería de PHP PhpRedis2 que proporciona una API para comunicarse con
el almacenamiento clave-valor usando código PHP. Su instalación se detalla en el
apéndice B.

La función clear_cache se encarga de remover de la memoria caché los archi-
vos que ya no son necesarios, es decir, que no se encuentran en el listado recibido.
Esta rutina toma un array conteniendo el nuevo listado de recomendaciones y se
conecta con Redis usando la instrucción connect de la librería PhpRedis que reci-
be como argumentos la dirección y el puerto del servidor Redis y obtiene todas las
claves contenidas en la memoria con la instrucción keys, estas claves corresponden
a los identificadores de los archivos como se encuentran registrados en la base de
datos de Moodle. Al comparar los identificadores contenidos en caché con los que
se encuentran en el nuevo listado de recomendaciones se obtiene un arreglo con las
claves innecesarias. La instrucion del toma como argumento el arreglo de las claves a
eliminar y las remueve del servidor. De ser removidos todos los archivos innecesarios,
la función retorna el valor booleano TRUE, en caso contrario, Muestra un mensaje
de error en la consola y retorna el valor booleano FALSE.

Función clear_cache:

function clear_cache($recommendations) {
$redis = new Redis();
$redis->connect(’127.0.0.1’, ’6379’);

$allkeys = $redis->keys(’*’);

$unnecessarykeys = array_diff($allkeys, $recommendations);

if ($redis->del($unnecessarykeys) == count($unnecessarykeys)) {
echo "All keys cleaned.\xA";
return true;

}

2Repositorio de PhpRedis: https://github.com/phpredis/phpredis

www.bdigital.ula.ve

C.C. Reconocimiento

https://github.com/phpredis/phpredis

Capítulo 4. Implementación, Pruebas y Resultados 37

echo "There was a problem removing unnecessary files from cache.\xA";

return false;
}

La función retrieve_files recibe como argumento el array de recomendaciones
recibido desde el recomendador y se encarga de copiar los archivos desde el alma-
cenamiento de Moodle a la memoria caché. Ya que esta función también debe velar
que el límite para la caché establecido por el administrador no se exceda se usa la
instrucción info, en este caso con el argumento "MEMORY" para obtener el espa-
cio utilizado actualmente.

Función retrieve_files:

function retrieve_files($recommendations) {
global $DB;

$redis = new Redis();
$redis->connect(’127.0.0.1’, ’6379’);

$info = $redis->info("MEMORY");

$usedmemory = $info[used_memory];
$memorylimit = get_cache_limit();

var_dump($memorylimit);
var_dump($usedmemory);

for ($i=0; $i < count($recommendations); $i++) {
$id = $recommendations[$i];

// Retrieve the file from the Files API.
$fs = get_file_storage();
$file = $fs->get_file_by_id($id);
$filesize = $file->get_filesize();

var_dump($filesize);

if (($usedmemory+$filesize) > $memorylimit)
continue;

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 38

if (!$file) {
echo "File with id ".$id." not found.\xA"; // The file does not

exist.
} else {

$contents = $file->get_content();

if (!redis_save_file($id, $contents)) {
echo "There was a problem saving file ".$id." in Redis.\xA";

} else {
$info = $redis->info("MEMORY");
$usedmemory = $info[used_memory];
var_dump($usedmemory);
echo "File saved in Redis successfully.\xA";

}
}

}
}

La función get_cache_limit obtiene el tamaño de la memoria RAM del
computador y retorna el límite de la memoria caché en función a la anterior. Para
este proyecto se estimó usar la tercera parte del total de la memoria física del compu-
tador (aproximadamente 800MB en este caso) pero este valor puede ser modificado
a conveniencia del administrador.

Función get_cache_limit:

function get_cache_limit() {
$fh = fopen(’/proc/meminfo’,’r’);
$mem = 0;

while ($line = fgets($fh)) {
$pieces = array();
if (preg_match(’/^MemTotal:\s+(\d+)\skB$/’, $line, $pieces)) {

$mem = $pieces[1];
break;

}
}

fclose($fh);

return ($mem*0.3333)*1024;

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 39

}

La rutina retrieve_files itera sobre cada identificador contenido en el arreglo
de recomendaciones recibido y para cada caso usa la API de archivos (File API3)
de Moodle, que es la interfaz de programación de aplicaciones que Moodle provee
para manejar los archivos en la plataforma, con el fin de obtener los metadatos del
archivo en cuestión junto con su contenido. Si no existe espacio disponible suficiente
para almacenar este archivo, se procede con el siguiente y así sucesivamente. Si por
el contrario el espacio disponible es suficiente se utiliza la función redis_save_file
que recibe como argumentos el identificador del archivo y el contenido del mismo y
lo almacena en la memoria caché usando la instrucción set de PhpRedis. De ser
satisfactorio el proceso, se actualiza la variable que contiene el valor de la memoria
utilizada y se procede con el siguiente archivo. Por el contrario, si el proceso falla, se
retorna un mensaje de error a la consola y se procede de igual forma con el siguiente
archivo.

Función redis_save_file:

function redis_save_file($id, $file) {
$redis = new Redis();

if ($redis->connect(’127.0.0.1’, ’6379’)) {

if ($redis->exists($id)) {
echo "File ".$id." is already cached.\xA";
return false;

} else {

if (!$redis->set($id, $file)) {
return false;

}

return true;
}

} else {
echo "Can’t connect with Redis.\xA";

3Documentación del File API: https://docs.moodle.org/dev/File_API

www.bdigital.ula.ve

C.C. Reconocimiento

https://docs.moodle.org/dev/File_API

Capítulo 4. Implementación, Pruebas y Resultados 40

return false;
}

}

4.1.3. Descargas

Para implementar el uso del componente en el flujo normal de descargas de
Moodle se requirió realizar una modificación al código fuente de Moodle. La rutina
pluginfile.php mencionada en el capítulo anterior es la encargada de gestionar las
descargas de todos los módulos de la plataforma.

Los cambios realizados al archivo comienzan con la inclusión de la librería de
nuestro componente. De ser encontrada se procede a revisar si la tabla encargada
de almacenar las métricas se encuentra disponible. El método tradicional de las
descargas directas se insertó en la función serve_file_from_storage. De esta
forma, se mantendría a disposición en caso de ser requerido.

Luego de establecer una conexión con Redis se toman los argumentos del
archivo solicitado y se hace uso de la API de archivos de Moodle para extraer la
información necesaria para mapear el archivo en la memoria caché.

Se consiguió un error con las imagenes de visualización de los cursos. Debido
a que estos archivos no son encontrados por la API de archivos, el flujo normal
ocasionaba que estas imagenes no fueran servidas correctamente. Por ende se agregó
una condicional en la que de no encontrarse el archivo requerido a pluginfile.php
automáticamente se desviara el flujo a la función serve_file_from_storage.

De encontrarse el archivo se verifica su existencia en la base de datos de
Redis. Si este se encuentra en la misma, se procede a invocar la función ser-
ve_file_from_cache que toma como argumentos el identificador del archivo en
la base de datos, su nombre y su tamaño para extraerlo desde la memoria caché
y servirlo al usuario. En caso de no existir el archivo en la memoria se procede a
servirse de forma tradicional.

Una vez completado el proceso se actualizan las métricas en la base de datos.
Como se detalló en la planificación, si el archivo fue servido desde la memoria caché
representaría un acierto que se suma a la cantidad de aciertos registrada en la tabla.
En caso contrario, si el archivo debió ser servido desde el almacenamiento, se registra

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 41

un fallo en la recomendación agregandose en la tabla.

Para finalizar el flujo se escribe en la base de datos, especificamente en la ta-
bla download_optimizer_logs los logs generados en el proceso, como el tiempo
tomado para servir el archivo en su totalidad. Cabe resaltar que este tiempo no es
el tiempo de descarga, el cual se ve afectado por otras condiciones.

Función serve_file_from_cache:

function serve_file_from_cache($id, $filename, $filesize){
$redis = new Redis();
$redis->connect(’127.0.0.1’, ’6379’);

$content = $redis->get($id);

header(’Content-Disposition: attachment; filename=’.$filename);
header(’Content-Type: application/force-download’);
header(’Content-Length: ’ . $filesize);
header(’Connection: close’);

echo $content;
}

Rutina pluginfile.php:

<?php

// This file is part of Moodle - http://moodle.org/
//
// Moodle is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Moodle is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 42

/**
* This script delegates file serving to individual plugins
*
* @package core
* @subpackage file
* @copyright 2008 Petr Skoda (http://skodak.org)
* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
*/

// Disable moodle specific debug messages and any errors in output.
define(’NO_DEBUG_DISPLAY’, true);

require_once(’config.php’);
require_once(’lib/filelib.php’);
require_once($CFG->dirroot.’/cache/stores/download_optimizer/lib.php’);

if (function_exists(’serve_file_from_cache’)) {
check_metrics_availability();

$table = ’download_optimizer_metrics’;

$redis = new Redis();
$redis->connect(’127.0.0.1’, ’6379’);

$args = explode(’/’, ltrim(get_file_argument(), ’/’));

$fs = get_file_storage();
$file = $fs->get_file($args[0], $args[1], $args[2], $args[3], ’/’,

$args[4]);

if (!$file) {
serve_file_from_storage();
return;

}

$id = $file->get_id();
$filename = $file->get_filename();
$filesize = $file->get_filesize();

if ($redis->exists($id)){
serve_file_from_cache($id, $filename, $filesize);

$success = $DB->get_field($table, ’value’, [’metric’ => ’success’]);

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 43

$DB->set_field($table, ’value’, ++$success, [’metric’ => ’success’]);
}
else{

$fail = $DB->get_field($table, ’value’, [’metric’ => ’fail’]);
$DB->set_field($table, ’value’, ++$fail, [’metric’ => ’fail’]);

serve_file_from_storage();
}

} else {
serve_file_from_storage();

}

function serve_file_from_storage() {
$relativepath = get_file_argument();
$forcedownload = optional_param(’forcedownload’, 0, PARAM_BOOL);
$preview = optional_param(’preview’, null, PARAM_ALPHANUM);
// Offline means download the file from the repository and serve it,

even if it was an external link.
// The repository may have to export the file to an offline format.
$offline = optional_param(’offline’, 0, PARAM_BOOL);

file_pluginfile($relativepath, $forcedownload, $preview, $offline);
}

4.2. Pruebas

4.2.1. Uso de las instrucciónes var_dump() y echo para ve-
rificar el estado del proceso

La instrucción var_dump() de PHP muestra información estructurada sobre
una o más expresiones incluyendo su tipo y valor, esta se implementó como herra-
mienta para conocer información de utilidad en la ejecución del proceso de limpiado
y llenado de la memoria caché, como por ejemplo el espacio disponible al almacenar
o remover un elemento de la misma.

Por otro lado, echo se define como un constructor del lenguaje, su función es
imprimir un texto dado. Su implementación se aplicó para imprimir mensajes que

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 44

explicaran de forma rápida y clara lo que estaba ocurriendo en dicho momento, un
ejemplo serían los mensajes de éxito y/o error en algún paso de la ejecución.

4.2.2. Pruebas de rendimiento

Con el fin de conocer el rendimiento de nuestra extensión y realizar las res-
pectivas comparaciones con el flujo normal que provee la plataforma por defecto, se
implementó un sistema de logs que son plasmados en la base de datos en una tabla
que lleva por nombre download_optimizer_logs. La información capturada en
esta corresponde al tiempo en microsegundos que se toma la plataforma en servir
un archivo especificado con su propio identificador, ya sea que fuese servido desde la
memoria caché o directamente desde el almacenamiento.

4.3. Resultados

A continuación se muestran los resultados obtenidos tabulados para ambos
casos. Como se puede apreciar, se utilizaron archivos PDF, FLAC y MP4 de tamaños
variados con el fin de probar la mayor cantidad posible de comportamientos de
la plataforma. Estas pruebas de rendimiento fueron ejecutadas en un equipo que
contaba con un procesador Intel Core 2 Duo, un disco duro mecánico de 256GB de
almacenamiento y una memoria de acceso aleatorio DDR de 2GB.

4.3.1. Resultados para archivos PDF

Archivo 1: Archivo .pdf de 12.74 MB.

Archivo 2: Archivo .pdf de 126.12 MB.

Archivo 3: Archivo .pdf de 395.89 MB.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) Servidor(ms) Cache(ms) Servidor(ms) Cache(ms) Servidor(ms)
0.0013147 0.0712364 0.0391349 0.0450909 0.1339281 0.7795469
0.0006478 0.0071478 0.0508111 0.0482569 0.1019279 0.0440559

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 45

0.0008741 0.0004878 0.0425971 0.0337379 0.1095259 0.0783770
0.0014752 0.0016478 0.0404260 0.0339191 0.1336439 0.0623741
0.0004318 0.0013712 0.0525000 0.0977330 0.1212389 0.0561211
0.0001687 0.0004048 0.0446059 0.0707841 0.1059069 0.0951399
0.0013548 0.0009379 0.0130169 0.0695179 0.1041231 0.0578520
0.0017493 0.0017519 0.0858491 0.0737338 0.0945940 0.1038241
0.0001975 0.0009794 0.0460801 0.0814800 0.1542399 0.0923815
0.0001647 0.0002159 0.0125771 0.0513611 0.1144018 0.0686631

Tabla 4.1: Tabla de tiempos de ejecución registrados para
archivos PDF.

4.3.2. Resultados para archivos FLAC

Archivo 1: Archivo .flac de 23.20 MB.

Archivo 2: Archivo .flac de 125.92 MB.

Archivo 3: Archivo .flac de 329.74 MB.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) Servidor(ms) Cache(ms) Servidor(ms) Cache(ms) Servidor(ms)
0.0037560 0.1219440 0.6077996 0.5212248 0.1339281 0.5204261
0.0089550 0.0028629 0.5650714 0.6311146 0.1019279 0.6689912
0.0036220 0.0064800 0.4697466 0.4330288 0.1095259 0.8216092
0.0030441 0.0026130 0.5227754 0.3726597 0.1336439 0.6835562
0.0046251 0.0021999 0.4451844 0.5112276 0.1212389 0.6589940
0.0028789 0.0038180 0.4551816 0.6686376 0.1059069 0.7788810
0.0037561 0.0027082 0.3066165 0.5357898 0.1041231 0.8164040
0.0051291 0.0027139 0.3669856 0.5888186 0.0945940 0.5807952
0.0044241 0.0085749 0.6025944 0.6738428 0.1542399 0.7365850

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 46

0.0039530 0.0047879 0.5345924 0.6006356 0.1144018 0.7484020
Tabla 4.2: Tabla de tiempos de ejecución registrados para
archivos FLAC.

4.3.3. Resultados para archivos MP4

Archivo 1: Archivo .mp4 de 23.20 MB.

Archivo 2: Archivo .mp4 de 125.92 MB.

Archivo 3: Archivo .mp4 de 329.74 MB.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) Servidor(ms) Cache(ms) Servidor(ms) Cache(ms) Servidor(ms)
0.0004151 0.0434270 0.5390871 0.8578963 0.7674171 0.8148802
0.0010800 0.0008411 0.4963589 0.5342097 0.8146889 0.6295554
0.0006000 0.0008581 0.4410341 0.7198433 0.6293641 0.5916842
0.0004342 0.0009189 0.4940629 0.7728721 0.5914929 0.7676084
0.0004079 0.0013142 0.5138969 0.6933227 0.6948019 0.7844012
0.0004609 0.0010289 0.3864691 0.4253199 0.7047991 0.7049904
0.0004429 0.0009379 0.3753290 0.8367132 0.5562340 0.5564253
0.0006721 0.0254129 0.2982731 0.6041239 0.6166031 0.6167944
0.0010161 0.0009000 0.5338819 0.6526911 0.7422029 0.7423942
0.0006471 0.0009441 0.4658799 0.6047307 0.7842099 0.6949932

Tabla 4.3: Tabla de tiempos de ejecución registrados para
archivos MP4.

En la siguiente tabla podemos ver una comparación entre las medias de los
tiempos de respuesta del servidor capturados en ambos casos.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 47

Archivo 1 Archivo 2 Archivo 3
Cache(ms) Servidor(ms) Cache(ms) Servidor(ms) Cache(ms) Servidor(ms)
0.0008379 0.0086181 0.0427598 0.0605615 0.1173530 0.1438336

Tabla 4.4: Tabla de medias de tiempos de ejecución re-
gistrados para archivos PDF.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) Servidor(ms) Cache(ms) Servidor(ms) Cache(ms) Servidor(ms)
0.0044143 0.0158703 0.4876548 0.5536980 0.6993443 0.7014644

Tabla 4.5: Tabla de medias de tiempos de ejecución re-
gistrados para archivos FLAC.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) Servidor(ms) Cache(ms) Servidor(ms) Cache(ms) Servidor(ms)
0.0006176 0.0076583 0.4544273 0.6701723 0.6901814 0.6903727

Tabla 4.6: Tabla de medias de tiempos de ejecución re-
gistrados para archivos MP4.

En general podemos notar que en las pruebas para los distintos tipos de ar-
chivo se percibió una mejora. Se pudo apreciar que el rendimiento en los archivos
más pequeños fue mejor que en los archivos con mayor tamaño, alcanzando mejo-
ras de 91.28% en archivos PDF, 72.19% en archivos de audio FLAC y 91.94% en
archivos de video MP4. También podemos notar que el rendimiento en general de
la plataforma para servir archivos de audio y video reduce con mayor proporción en

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 4. Implementación, Pruebas y Resultados 48

comparación con archivos de texto PDF a medida que aumenta el tamaño de los
mismos.

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 5

Conclusiones y Recomendaciones

En este proyecto se logró diseñar e implementar una extensión en la plataforma
Moodle con el fin de mejorar los tiempos de respuesta de la plataforma al momento
de servir recursos a los usuarios.

Para llevar esto a cabo, se aplicó una metodología de desarrollo basada en
funcionalidades, a partir de la cual se pudo organizar el trabajo en 5 procesos: Desa-
rrollar un modelo global, construir una lista de características, planificar, diseñar e
implementar.

Luego de desarrollar un modelo global óptimo, se construyó una lista de ca-
racterísticas enfocada en satisfacer las necesidades planteadas en el proceso anterior
con el fin de cumplir con los objetivos planteados al inicio del proyecto. Posterior-
mente se realizó la planificación y el diseño de cada funcionalidad por separada pero
manteniendo la integridad del sistema para finalmente realizar la implementación.

Con la extensión implementada, se realizaron las pruebas de funcionamiento
y rendimiento correspondientes, en las cuales se determinó que el trabajo realizado
cumplía con los objetivos planteados resultando en una implementación completa-
mente funcional del modelo diseñado como primer paso en este proyecto.

En base a los resultados obtenidos, se puede comprobar que efectivamente
la extensión aquí implementada mejorará la experiencia del usuario dentro de la
plataforma al momento de acceder a algún recurso de alta demanda optimizando los
tiempos de respuesta de la misma dependiendo de las propiedades los archivos.

Como recomendaciones encontradas durante este estudio, hemos planteado las
siguientes:

49

www.bdigital.ula.ve

C.C. Reconocimiento

Capítulo 5. Conclusiones y Recomendaciones 50

Desplegar el cliente de Moodle que hará uso de este plugin en un sistema
operativo basado en Linux.

Configurar el crontab del sistema operativo para que ejecute el proceso cron
de Moodle en intervalos de menos de un (1) minuto. Para garantizar que se
mantenga un listado de recomendaciones actualizado.

Configurar un límite seguro desde la consola de Redis además del límite esta-
blecido desde la extensión con el fin de evitar eventuales desbordamientos.

Modificar el límite de memoria principal utilizada por la extensión, por defecto
la extensión utilizará una tercera parte (1/3) de la memoria que se posee en el
servidor.

Integrar este esquema con el sistema recomendador para optimizar la gestión
de almacenamiento de Moodle.

www.bdigital.ula.ve

C.C. Reconocimiento

Apéndice A: Instalación de un
Plugin

Instalación directa desde el directorio de plugins de
Moodle

1. Ingrese a su sitio como administrador y vaya a Administración >Administra-
ción del sitio >Plugins >Instalar plugins. (Si Usted no puede encontrar este
lugar, esto es debido a que en su sitio está prohibido instalar plugins).

2. Elija el botón que dice Instalar plugins desde el directorio de plugins de Moodle.

3. Busque un plugin que tenga un botón para instalar (Install) que asegura que
es compatible con su versión de Moodle), elija el botón para instalar (Install)
y luego elija continuar (Continue).

4. Revise que aparezca el mensaje de que pasó la validación (Validation passed!)
y después elija el botón para instalar el plugin (Install add-on).

Instalación mediante archivo ZIP subido al sitio

1. Vaya al Moodle plugins directory1, seleccione su versión actual de Moodle
(2.5/2.6/3.0/...), después elija un plugin que tenga un botón para Descargar
(Download) y descargue el archivo ZIP.

2. Ingrese a su sitio Moodle como administrador y vaya a Administración >Ad-
ministración del sitio >Plugins >Instalar plugins.

1Directorio de plugins: https://moodle.org/plugins

51

www.bdigital.ula.ve

C.C. Reconocimiento

https://moodle.org/plugins

APÉNDICE A 52

3. Suba el archivo ZIP, seleccione el tipo apropiado de plugin, acepte la casilla
de aceptación, después elija el botón para Ínstalar un plugin desde un archivo
ZIP’.

4. Revise que aparezca el mensaje de que pasó la validación (Validation passed!)
y después elija el botón para Instalar el plugin (Install add-on).

Instalación manual en el servidor

En primer lugar, establezca el sitio correcto dentro del árbol de directorios de
Moodle en donde debe de ir el tipo de plugin. Las localizaciones comunes son:

/ruta/a/moodle/theme/ - temas gráficos

/ruta/a/moodle/mod/ - recursos y módulos de actividad

/ruta/a/moodle/blocks/ - bloques que van a un lado

/ruta/a/moodle/question/type/ - tipos de preguntas

/ruta/a/moodle/course/format/ - formatos de curso

/ruta/a/moodle/admin/report/ - reportes administrativos

1. Vaya al Moodle plugins directory2, seleccione su versión actual de Moodle
(2.5/2.6/3.0/...), después elija un plugin que tenga un botón para Descargar
(Download) y descargue el archivo ZIP.

2. Súbalo o cópielo a su servidor Moodle.

3. Descomprima (unzip) el archivo al lugar apropiado para el tipo de plugin (o
siga las instrucciones del plugin).

4. En su sitio Moodle (como administrador) vaya a Configuraciones >Adminis-
tración del sitio >Notificaciones (para la mayoría de los plugins, Usted debería
de ver un mensaje que le diga que el plugin está instalado).

2Directorio de plugins: https://moodle.org/plugins

www.bdigital.ula.ve

C.C. Reconocimiento

https://moodle.org/plugins

Apéndice B: Instalación Redis en
Linux

Instalación usando la línea de comandos

Actualice el cache de su apt e instale Redis escribiendo en la consola:

$ sudo apt update
$ sudo apt install redis-server

De esta forma se descargará e instalará Redis y sus dependencias. Seguido de
esto, hay un cambio importante en las configuraciones que se debe realizar en el
archivo de configuración de Redis, el cual fue generado automaticamente durante la
instalación.
Abra este archivo con el editor de texto de su preferencia:

$ sudo nano /etc/redis/redis.conf

Dentro del archivo, busque la instrucción supervised. Esta instrucción le per-
mite declarar un sistema de arranque para manejar Redis como un servicio, propor-
cionando al administrador un mayor control sobre sus operaciones. La instrucción
está establecida en no por defecto. En sistemas basados en Debian, cambie esta con-
figuración a systemd.

Archivo /etc/redis/redis.conf

. . .

If you run Redis from upstart or systemd, Redis can interact with your
supervision tree. Options:
supervised no - no supervision interaction

53

www.bdigital.ula.ve

C.C. Reconocimiento

APÉNDICE B 54

supervised upstart - signal upstart by putting Redis into SIGSTOP mode
supervised systemd - signal systemd by writing READY=1 to

$NOTIFY_SOCKET
supervised auto - detect upstart or systemd method based on
UPSTART_JOB or NOTIFY_SOCKET environment variables
Note: these supervision methods only signal "process is ready."
They do not enable continuous liveness pings back to your

supervisor.
supervised systemd

. . .

Guarde y cierre el archivo y recargue el archivo de servicio de Redis para reflejar
los cambios realizados en el archivo de configuración.

Instalación de PhpRedis

El método recomendado para instalar PhpRedis es usando pecl.

Instalar pecl:

$ sudo apt install pkg-php-tools

Instalar PhpRedis:

$ sudo pecl install redis

www.bdigital.ula.ve

C.C. Reconocimiento

Referencias

Scott W. Ambler. Feature driven development (fdd) and agile modeling. 2002. URL
http://agilemodeling.com/essays/fdd.htm.

R. Bello Díaz. Educaciǿn virtual: Aulas sin paredes. Ciudades Virtuales Latinas,
2005.

Mark Newnham Damien Regad y The ADOdb Community. Adodb - database abs-
traction layer for php. 2014. URL https://adodb.org/dokuwiki/doku.php.

Francisco Hidrobo Gabriel Barrios, Yaneth Moreno. Entendiendo el funcionamiento
de moodle: un enfoque basado en un marco de modelado. RISTI-Revista Ibérica
de Sistemas e Tecnologias de Informação, (20):327–337, 2019.

Guillermo García. Design and implementation of a mobile application based on cor-
dova framework and web technologies for a university intranet. Telecomunicación,
2017.

Sam Hemelryk. Alternative php cache (apc). 2014. URL https://moodle.org/
plugins/cachestore_apc.

Raúl Ivorra Oltra y Sergio Luján-Mora. Ampliación de moodle: Creación de módulo
actividad. 2009.

Eric Merrill. Memcache cluster. 2014. URL https://moodle.org/plugins/
cachestore_memcachecluster.

Mohamed A Mgheder y Mick J Ridley. Automatic generation of web user interfaces
in php using database metadata. En IEEE, ed., Internet and Web Applications

55

www.bdigital.ula.ve

C.C. Reconocimiento

http://agilemodeling.com/essays/fdd.htm
https://adodb.org/dokuwiki/doku.php
https://moodle.org/plugins/cachestore_apc
https://moodle.org/plugins/cachestore_apc
https://moodle.org/plugins/cachestore_memcachecluster
https://moodle.org/plugins/cachestore_memcachecluster

Referencias 56

and Services, 2008. ICIW’08. Third International Conference on, págs. 426–430.
2008.

Moodle. Acerca de moodle. 2019. URL https://docs.moodle.org/all/es/
Acerca_de_Moodle.

Daniel Sanchez, Oscar Mendez, y Hector Florez. Applying the 3-layer model in
the construction of a framework to create web applications. En IIIS, ed., The
8th International Multi-Conference on Complexity, Informatics and Cybernetics,
2017., pág. 364”369. 2017.

Hunt Tim. A basic introduction to the moodle architectu-
re. 2010. URL https://www.slideshare.net/tjh1000/
a-basic-introduciton-to-the-moodle-architecture-5442122.

www.bdigital.ula.ve

C.C. Reconocimiento

https://docs.moodle.org/all/es/Acerca_de_Moodle
https://docs.moodle.org/all/es/Acerca_de_Moodle
https://www.slideshare.net/tjh1000/a-basic-introduciton-to-the-moodle-architecture-5442122
https://www.slideshare.net/tjh1000/a-basic-introduciton-to-the-moodle-architecture-5442122

	Desarrollo de un Esquema de Rendimiento para MOODLE
	ae315cf3a8917168c3150df71ffa35cdec3fc9f72a7468385ca6f8eca3338e77.pdf
	Desarrollo de un Esquema de Rendimiento para MOODLE
	Resumen
	Introducción
	Antecedentes
	Planteamiento del Problema
	Justificación del Proyecto
	Objetivos del Proyecto
	Metodología
	Alcances

	Marco Referencial
	Entorno Virtual de Aprendizaje(EVA)
	MOODLE
	Estructura de un plugin
	Instalación de un plugin

	Memorias caché
	Herramientas tecnológicas

	Análisis, Planificación y Diseño de funcionalidades
	Desarrollo de un modelo global
	Construcción de una lista de funcionalidades
	Planificación por funcionalidades
	Diseño de funcionalidades
	Recomendaciones
	Memoria caché
	Descargas

	Implementación, Pruebas y Resultados
	Implementación de funcionalidades
	Recomendaciones
	Memoria caché
	Descargas

	Pruebas
	Uso de las instrucciónes var_dump() y echo para verificar el estado del proceso
	Pruebas de rendimiento

	Resultados
	Resultados para archivos PDF
	Resultados para archivos FLAC
	Resultados para archivos MP4

	Conclusiones y Recomendaciones
	Apéndice A: Instalación de un Plugin
	Instalación directa desde el directorio de plugins de Moodle
	Instalación mediante archivo ZIP subido al sitio
	Instalación manual en el servidor

	Apéndice B: Instalación Redis en Linux
	Instalación usando la línea de comandos
	Instalación de PhpRedis

	Referencias

