UNIVERSIDAD
DE LOS ANDES

PROYECTO DE GRADO

Presentado ante la ilustre Universidad de Los Andes como requisito final para

obtener el Titulo de Ingeniero de Sistemas

DESARROLLO DE UN ESQUEMA DE RENDIMIENTO PARA MOODLE

BR.GUSTAVO ALEJANDRO MEJIA BRICENO
TUTORES:
YANETH MORENO, M.ScC
Francisco HiDrRoOBO, PH.D

MERIDA, FEBRERO DE 2021



Resumen

En el presente trabajo se expone el proceso de diseno e implementacion de un es-
quema transaccional que busca optimizar el acceso a recursos digitales (documentos,
archivos multimedia, entre otros) por parte de los usuarios de plataformas e-learning
basadas en el proyecto Moodle, aplicando una metodologia basada en funcionalidades
(FDD por sus siglas en inglés). El esquema transaccional consiste especificamente de
una extension creada con el fin de intermediar entre la interfaz de usuario de Moodle
y las librerias que manejan el almacenamiento de datos y recursos. Ademas, solicita
recomendaciones sobre los recursos mas concurridos de la plataforma a un recomen-
dador externo e implementa una base de datos en memoria utilizando Redis en la

que se almacenan los archivos mas descargados por los usuarios.

Palabras clave: Almacenamiento, Esquema transaccional, EVA, Moodle.

111



Indice general

Resumen

1. Introduccion
1.1. Antecedentes . .
1.2.
1.3.
1.4.
1.5. Metodologia . . .
1.6. Alcances . . . ..

Planteamiento del Problema . . . . . . . .. .. ... ... ....

Justificacion del Proyecto . . . ... ... .. .. ... ... ..

Objetivos del Proyecto . . . . . . .. .. ... ... ... .....

Marco Referencial
Entorno Virtual de Aprendizaje(EVA) . . ... ... ... ...

2.1.

2.2.
2.3.

2.1.1. MOODLE

2.1.2. Estructura de un plugin . . . . . . ... ... ... ....

2.1.3. Instalacién de un plugin . . . . . . .. ... ... .. ...

Memorias caché

Herramientas tecnolégicas . . . . . ... ... ... ... .....

Analisis, Planificacion y Disenio de funcionalidades

3.1.
3.2.
3.3.
3.4.

Desarrollo de un modelo global . . . . . . .. ... ... ... ..

Construccién de una lista de funcionalidades . . . . . . . . ..

Planificacion por funcionalidades . . . . . . . . .. ... .. ...

Diseno de funcionalidades . . . . . . . . . . .. .. ... .. ...

3.4.1. Recomendaciones . . . . . . . . . . . . ... ... ..

3.4.2. Memoria caché . . . . . . .. .. ...

3.4.3. Descargas

ITI

10
11
12
12
14

15
15
16
17
19
20
20

22
22
25
26
27
27
27
29

v



Indice general \%

4. Implementaciéon, Pruebas y Resultados 31

4.1. Implementacién de funcionalidades . . .. .. ... .. ... .. 31

4.1.1. Recomendaciones . . .. ... ... ... ... ....... 31

4.1.2. Memoriacaché . . ... ... ... .. ... ... ...... 36

4.1.3. Descargas . . . . . . . . .. ... 40

4.2. Pruebas. . . . . . ... 43
4.2.1. Uso de las instrucciénes var__dump() y echo para ve-

rificar el estado del proceso . . . . . . ... ... ... .. 43

4.2.2. Pruebas de rendimiento . . . ... ... ... ... .. .. 44

4.3. Resultados . . . . . . . .. . ... 44

4.3.1. Resultados para archivos PDF . . .. ... ... ... .. 44

4.3.2. Resultados para archivos FLAC . . ... ... ...... 45

4.3.3. Resultados para archivos MP4 . . . ... .. ... .. .. 46

5. Conclusiones y Recomendaciones 48

Apéndice A: Instalacion de un Plugin 50

Instalacion directa desde el directorio de plugins de Moodle . . . 50

Instalacion mediante archivo ZIP subido al sitio . . . . . . ... .. 50

Instalacion manual en el servidor . . ... .. ... .. ... ..... 51

Apéndice B: Instalacion Redis en Linux 52

Instalaciéon usando la linea de comandos . . . . . ... ... ... .. 52

Instalaciéon de PhpRedis . . . . . . . ... ... ... ... ... ... . 53

Referencias 54



Indice de figuras

1.1.

3.1.
3.2.
3.3.

3.4.
3.5.
3.6.
3.7.
3.8.

4.1.

Procesos de la metodologia FDD (modificado de (Ambler, 2002)) . . .

Arquitectura global de la solucion . . . . .. . ... ... L.
Arquitectura de Moodle (modificado de (Tim, 2010)) . . . .. .. ..
Ubicacion de la extension en la arquitectura de Moodle (modificado
de (Tim, 2010)) . . . . . . . . o o
Arquitectura de la extension . . . . . ...
Comunicacion entre la extension y el recomendador . . . . . . . . ..
Diagrama de secuencia de la interaccién extension-recomendador . . .
Diagrama de actividad: Copiado de un archivo a la memoria caché.

Diagrama de actividad: Descarga de archivos. . . . .. ... ... ..

Estructura que debe tener la tabla download optimizer metrics.

13

VI



Indice de cuadros

2.1. Tabla sobre la estructura de un plugin. . . . . . . ... .. ... ... 19
3.1. Lista de funcionalidades . . . . . . . ... ... ... ... ... .. 26
4.1. Tabla de tiempos de ejecucién registrados para archivos PDF. . . . . 45
4.2. Tabla de tiempos de ejecuciéon registrados para archivos FLAC. . . . 46
4.3. Tabla de tiempos de ejecucion registrados para archivos MP4. . . . . 46

4.4. Tabla de medias de tiempos de ejecucion registrados para archivos PDF. 47

4.5. Tabla de medias de tiempos de ejecucion registrados para archivos
FLAC. . . . e 47

4.6. Tabla de medias de tiempos de ejecucion registrados para archivos MP4. 47

VII



Capitulo 1

Introduccion

Con el pasar de los tiempos, la evolucién de las tecnologias de informacion y
comunicaciéon han traido al mundo cambios en todo aspecto de la vida humana, faci-
litando entre algunos las comunicaciones, los negocios y por supuesto, la educacion.
En los ultimos anos, las plataformas dedicadas a la formacion de profesionales a dis-
tancia han ganado tal popularidad que es incalculable la gran cantidad de usuarios
que estas poseen, ofreciendo una amplia gama de carreras y areas de formacién con
el fin de brindar oportunidades a quienes no cuentan con los medios para disfrutar
de una educacion prescencial universitaria.

Pero a pesar del apoyo y soporte que hay detras del mundo del aprendizaje
electrénico (e-learning), estas plataformas no escapan de la realidad de los sistemas
web en general, y es que debido a la gran cantidad de usuarios que acceden dia a
dia a distintos cursos en linea y de manera simultanea, los tiempos de respuesta
pueden tornarse un problema a gran escala en especial si no se cuenta con los medios
necesarios para adaptar los equipos a los nuevos requerimientos de los sistemas.

Entre tantas plataformas de aprendizaje electronico podemos resaltar el pro-
yecto de software libre Moodle. Esta se define como una plataforma de aprendizaje,
disefiada para proporcionar a educadores, administradores y estudiantes un sistema
integrado tinico, robusto y seguro para crear ambientes de aprendizaje personalizados
(Gabriel Barrios, 2019).

En este trabajo se presenta el desarrollo de un componente que optimizara la
gestién de almacenamiento en las plataformas e-learning haciendo uso de memorias

caché para almacenar los recursos que se determinen deban estar a primera mano.

8



Capitulo 1. Introduccion 9

Este sera implementado en Moodle y se encargara de efectuar las transacciones entre
la memoria secundaria y el servidor web de Moodle siguiendo las reglas especificadas
para su comunicacion con la finalidad de mantener una copia de los recursos reque-
ridos en la memoria caché, reduciendo el tiempo necesario para brindar respuesta a

futuras solicitudes.

1.1. Antecedentes

Hoy en dia existe una gran cantidad de componentes y extensiones (plugins)
creados para Moodle con el fin de cubrir una necesidad de la plataforma o brindar
una funcionalidad adicional a esta. Estos pueden ser instalados de forma manual o
desde la misma pagina oficial de moodle (moodle.org). Una categoria importante
es la de los plugins que integran memoria caché, entre los cuales podemos resaltar
Alternative PHP Cache (APC) (Hemelryk, 2014) el cual proporciona un caché
de tamano limitado pero de excelente desempeno destinado al almacenamiento de
datos de aplicaciones persistentes de PHP; Memcache Cluster (Merrill, 2014) que
implementa una version modificada de la memoria caché estandar de Moodle que
permite mantener varios almacenamientos memcache sincronizados entre si.

Con el fin de lograr los objetivos planteados en este trabajo, se hard uso de
la libreria AdoDB, la cual no es mas que una capa de abstraccién de base de datos
popular, rapida y facil de usar para PHP. Una aplicacion de esta libreria la podemos
conseguir en (Mgheder y Ridley, 2008) en el cual se propone estudiar la posibilidad
de usar metadatos almacenados en bases de datos para desarrollar elementos de
interfaz de usuario. En este trabajo se hace uso del lenguaje PHP en conjunto con
la libreria AdoDB por ser un buen candidato para generar interfaces de usuario web
dindmicamente.

Por otra parte, en (Sanchez et al., 2017) se presenta un framework para PHP
basado en el modelo de 3 capas con el fin de identificar y separar la aplicacion
final en diferentes capas que faciliten su construcciéon y mantenimiento. Este enfoque
integra diferentes tecnologias y patrones de disenio con el fin de proporcionar una
herramienta eficaz que respalde a la comunidad en la creaciéon de aplicaciones web
con PHP, entre estas, se integra la libreria AdoDB en la capa de acceso a datos para

gestionar la comunicacién entre la aplicaciéon y la base de datos relacional.


moodle.org

Capitulo 1. Introduccion 10

(Garcia, 2017) realiza el disefio e implementacion de una aplicacién mévil para
la intranet de la Universidad Politécnica de Madrid basada en el framework cordova y
tecnologias web. La idea de este trabajo, fué proponer la programacion hibrida usan-
do el patrén MVC (Modelo-Vista-Controlador) como una forma de programacién
que sustituiria el desarrollo ordinario para plataformas nativas, evitando el desarro-
llo en paralelo para cada sistema operativo movil, como Android o iOS, y brindando
una mejor implementacion. El propésito de usar la libreria AdoDB en este trabajo
es, principalmente, evitar el mantenimiento extra en el caso de migraciones de la
base de datos o cambios en los controladores de esta. Tambien, la implementacion
de AdoDB brinda a los desarrolladores la facilidad de usar el mismo cédigo para

acceder a una amplia gama de bases de datos.

1.2. Planteamiento del Problema

El rendimiento de una aplicacion web es importante, pero en una plataforma
de formacion es crucial. La percepcion del alumnado sobre la calidad de los cursos
puede verse deteriorada si durante su formacién la plataforma responde de forma
lenta o inesperada. Los sistemas de ensenanza aprendizaje apoyados por e-learning
constituyen actualmente la nueva tendencia en la web para aquellas instituciones
que apuestan por la educacion a distancia o semipresencial, bien sea impartiendo
cursos, diplomados, estudios de pregrado, estudios de postgrado, entre otros progra-
mas de formacion académica, ejemplos de ello en Venezuela, podemos mencionar, la
Universidad Centro Occidental Lisandro Alvarado (UCLA) a través del dictado de
algunos diplomados a distancia, la Universidad de Carabobo (UC) impartiendo la
Especializacion en Desarrollo de Software con modalidad semipresencial y la Univer-
sidad de Los Andes (ULA) con el programa de formacién de la carrera de Derecho
a distancia, el cual es impartido por medio de la Plataforma de Estudios Interac-
tivos a Distancia de la ULA (EIDIS), esto reafirma el interés de las instituciones
educativas por favorecer a aquellas personas que se les dificulta tener acceso a la
formacion presencial. Es aqui donde la eleccion de una plataforma de aprendizaje
ideal entra en juego, y en este sentido Moodle es una de las opciones mas empleadas
para tal fin por distintas instituciones educativas. La gestién del almacenamiento en

Moodle es un aspecto significativo, ya que alli se manejan los recursos mas valiosos



Capitulo 1. Introduccion 11

con los cuales se transmite la formacién al participante, como lo son, los archivos, y
dependiendo del desempeno que provea esta parte de la plataforma, para que dichos
recursos se gestionen eficientemente cada vez que el usuario los requiera, el proceso
de ensenanza se percibirda bastante oportuno y rapido. Asi, surgue la necesidad de
aumentar la velocidad y la eficiencia de las aplicaciones web, y de manera especifica
de Moodle, apuntando a enriquecer la calidad en cuanto a la experiencia de uso, es
decir que el servicio satisfaga las expectativas y necesidades del usuario, y por otro
lado, a mejorar la calidad de servicio, referida a la medida del rendimiento del siste-
ma. El problema planteado en este trabajo, es el requerimiento de Entornos Virtuales
de Aprendizaje (EVA) maés eficientes para gestionar los requerimientos de usuarios
cada vez mas exigentes, y que ellos perciban u observen que su productividad no esta
siendo afectada. En lo particular, se requiere mejorar el rendimiento en cuanto a la
gestion de almacenamiento, para ello se debe detectar necesidades y comportamien-
tos a través de los procesos que se llevan a cabo entre la libreria AdoDB y la base
de datos de la plataforma Moodle, que nos permitirdn desarrollar e implementar al
menos un esquema de rendimiento apropiado que se integre a la plataforma, que

permita al servidor acceder mas rapido a los archivos que soliciten los usuarios.

1.3. Justificaciéon del Proyecto

Si bien es cierto que la eficiencia de un sitio web influye enormemente en la
experiencia del usuario, cuando se trata de una plataforma de aprendizaje es crucial
que los tiempos de respuesta sean rapidos, pues esto ayudara a que el interes de los
alumnos no decaiga. Tomando en cuenta esto, en este trabajo se busca optimizar el
sistema gestor de almacenamiento de las plataformas e-learning, tomando como caso
de estudio Moodle, con el fin de minimizar las deficiencias que poseen estos sistemas
a la hora de gestionar los datos y recursos de los distintos cursos y usuarios inscritos.

Adicionalmente, es importante mencionar que este proyecto se encuentra en-
marcado en una linea de investigacion doctoral que trata sobre un Sistema de Gestién
de Almacenamiento para entornos e-learning basado en Big Data, el cual requiere
el diseno, desarrollo e implementaciéon de un esquema de transacciéon de datos, un
componente que actuara de intermediario entre la interfaz de usuario de Moodle y

el servidor de almacenamiento de datos y recursos.



Capitulo 1. Introduccion 12

1.4. Objetivos del Proyecto

El objetivo general de este trabajo es desarrollar a nivel de backend un esquema
transaccional de datos en la plataforma e-learning Moodle.

Para ello se debe cumplir con los siguientes objetivos especificos:

1. Analizar el modelo de datos y el rendimiento de los procesos de almacenamiento

que se llevan a cabo dentro de la plataforma Moodle.

2. Estudiar los procesos que se llevan a cabo entre la libreria AdoDB y la base de
datos de Moodle.

3. Determinar el alcance y requerimientos del esquema de transacciones de datos

a desarrollar.
4. Disenar el esquema transaccional.

5. Implantar el esquema disenado en la plataforma Moodle.

1.5. Metodologia

En la actualidad, la agilidad al cambio es un factor de suma importancia en los
proyectos de software. Los requisitos y disenos tienden a cambiar rapidamente con
el tiempo para adaptarse a las necesidades del proyecto. Por esta razoén, existen las
metodologias dgiles, que nacen con el fin de brindar un mayor enfoque al proceso de
desarrollo, enfatizar la comunicacion cara a cara en lugar de la documentacion y en
especial facilitar la refactorizacion y la adaptacién a los cambios. En este proyecto
se pleantea aplicar un Desarrollo basado en funcionalidades o Feature Driven Deve-
lopment (FDD), puesto que se trata de una metodologia agil basada en la calidad y
el monitoreo constante del proyecto. Se enfoca en iteraciones cortas, que permiten
entregas tangibles del producto en un periodo corto de tiempo.

La metodologia FDD define 5 procesos: Proceso 1 - Desarrollar un modelo
global, Proceso 2 - Desarrollar una lista de funcionalidades, Proceso 3 - Planificar
por funcionalidad, Proceso 4 - Disefiar por funcionalidad y Proceso 5 - Implementar

por funcionalidad.



Capitulo 1. Introduccion

Modeln Modelo
inicial dindmico
Desarrollar Desarrollar Planificar Disenar Construir
un modelo :D una lista de por —I_l ) por :D por
global funcionalida- funcionalidad funcionalidad funcionalidad
des
{Mds forma que Una lista de Un plan de desarrollo. Un paquete de disefio. Funcionalidad de
contenido). funcionalidades Propietarios de clase. . valor para el
agrupadas en conjuntos  Propietarios de conjuntos (agregar mas cliente finalizada.
Un modelo de v areas subjetivas. de funcionalidades. contenido al modelo

de objetos),

ohjetos + notas. < y

Copyright 2002-2005 Scatt W. Ambler
Criginal Copyright 5. R. Palmer & JM. Felsing

Figura 1.1: Procesos de la metodologia FDD (modificado de (Ambler, 2002))

Con el fin de adaptar estos 5 procesos a nuestro trabajo, se especificaron, para

cada uno ellos las siguientes tareas:

Proceso I: Desarrollar un modelo global.

= Analizar el modelo de datos y el rendimiento de los procesos de almace-

namiento de Moodle.

» Estudiar los procesos que se llevan a cabo entre la libreria AdoDB y la
BD Moodle.

= Determinar el alcance y requerimientos del esquema a desarrollar.

= Determinar el modelo de objetos.
Proceso II: Construir una lista de funcionalidades.

= Construir una lista de funcionalidades en base a los requerimientos pre-

viamente determinados.



Capitulo 1. Introduccion 14

Proceso III: Planificar.

= Construir el plan de desarrollo:

e Determinar el orden en que se desarrollaran las funcionalidades.
e Determinar el tiempo estimado que tomara desarrollar e implemen-
tar cada funcionalidad.

Proceso IV: Disenar.

= Especificar las funcionalidades del esquema de rendimiento adecuado que

defina la solucion de los problemas de gestion en la plataforma Moodle.
s FElaborar la documentacion detallada de cada funcionalidad:

» Diseno general de funcionalidades.
« Diagramas de secuencia.

o Diagramas de clases.
Proceso V: Implementar.

» Desarrollar e implementar las funcionalidades en el orden especificado en

el plan de desarrollo.

= Implantar el esquema de optimizacién desarrollado en la plataforma Mood-

le.

1.6. Alcances

En el presente trabajo se propone el diseiio e implementacién de un esquema
transaccional de datos y recursos procurando mejorar el rendimiento de las plata-
formas e-learning y en general de cualquier sistema web. Este sera implementado
y probado en Moodle. Entre las tareas que se deben llevar a cabo es importante
mencionar el estudio y andlisis de los procesos internos de Moodle asi como su comu-
nicacién con la libreria AdoDB y distintos plugins y componentes que se encuentran
integrados a esta o que pueden ser instalados por parte del administrador del siste-
ma con el fin de conseguir la forma 6ptima de implementar el esquema previamente

mencionado.



Capitulo 2

Marco Referencial

En éste capitulo, se pretende exponer las bases tedricas necesarias para la
comprension del disefio e implementacién de un esquema transaccional que optimice

la gestion de archivos en Moodle.

2.1. Entorno Virtual de Aprendizaje(EVA)

Un Entorno Virtual de Aprendizaje, mayormente conocido como plataforma
e-learning, hace referencia a una plataforma web destinada a la ensenanza en linea
mediante un método que puede ser completamente no presencial, en el cual el apren-
dizaje se hace completamente mediante Internet, o mixto, combinando la ensenanza
en linea con experiencias en el salén de clases.

“El objetivo primordial de una plataforma e-learning es permitir la creaciéon y
gestion de los espacios de ensenanza y aprendizaje en Internet, donde los profesores y
los alumnos puedan interactuar durante su proceso de formacién” (Gabriel Barrios,
2019), facilitando la comunicacién pedagdgica entre los participantes de un proceso
educativo en lo que (Bello Diaz, 2005) denomina un “aula sin paredes”; distal y
multicrénica.

(Gabriel Barrios, 2019) en su trabajo, clasifica a los entornos virtuales de apren-
dizaje con respecto a su funcionalidad, pudiendo ser plataformas de caracter general
o especificas. Las plataformas de caracter general se caracterizan principalmente por
no enforcarse en una sola catedra, al contrario, estan orientadas al aprendizaje de dis-

tintos tépicos. Entre estas destacan como las mas utilizadas los Sistemas de Gestion

15



Capitulo 2. Marco Referencial 16

del Aprendizaje (SGA) como por ejemplo Moodle, .LRN, e-College, Desire2Learn,
entre otras.

Los SGA resaltan por ser los mas completos en cuestién de caracteristicas
y funcionalidades, entre las principales y més comunes que poseen la mayoria de
estos sistemas se pueden mencionar: la administracion del EVA, comunicacién de los
participantes, gestion de contenido, gestion del trabajo en grupos y, la evaluacion.

En el caso de los sistemas dedicados al desarrollo de una destreza o aprendizaje
de una materia en especifico, podemos destacar las plataformas orientadas al apren-
dizaje de las lenguas, que integran herramientas que se adaptan a las metodologias
especificas de ensefianza de esta competencia (Gabriel Barrios, 2019).

Existen algunas plataformas aun mas orientadas a un modelo o método de
aprendizaje espécifico, entre estas existen los Entornos Personales de Aprendizaje
(PLE, por sus siglas en inglés). Inspiradas en el fenémeno de la Web Social o
Web 2.0, un enfoque que enfatiza en la colaboracién online, conectividad y compar-
tir contenidos entre usuarios (https://disenowebakus.net/la-web-2.php). “Es-
tan basadas en el modelo de aprendizaje socio-constructivista en el que el aprendiz
es protagonista de su propio aprendizaje, cooperando y colaborando con el grupo

para construir nuevos conocimientos.” (Gabriel Barrios, 2019).

2.1.1. MOODLE

Moodle es una plataforma web libre de aprendizaje colectivo y es, en este
trabajo, el caso de estudio para la implementacion de un esquema transaccional
de datos. Esta se encuentra actualmente en la versién 3.7 pero la versiéon que serd
implementada en este proyecto sera la 3.3

Moodle esta disenada para soportar tanto la ensenanza como el aprendizaje
guiado por la pedagogia de constructivismo social, puesto que proporciona un conjun-
to de poderosas herramientas centradas en el estudiante y ambientes de aprendizaje
colaborativo (Gabriel Barrios, 2019).

El proyecto Moodle impulsa decenas de miles de ambientes de aprendizaje glo-
balmente con mas de 79 millones de usuarios, entre usuarios académicos y empresa-
riales, que la convierten en la plataforma de aprendizaje mas ampliamente utilizada
del mundo (Moodle, 2019).


https://disenowebakus.net/la-web-2.php

Capitulo 2. Marco Referencial 17

Modulos en Moodle

Los modulos en Moodle son grupos de caracteristicas en un curso. Significa
propiamente algo a lo que los estudiantes pueden contribuir directamente, y a menudo
es contrastada con un recurso, como por ejemplo un archivo o una pagina, el cual es
presentado por el profesor a los alumnos.

Los modulos principales en Moodle son: tarea, consulta, foro, diario, cuestiona-
rio, recurso, encuesta, wiki, taller. Estos se encuentran detallados en (Gabriel Barrios,
2019).

Extensiones en Moodle

En informatica, un complemento o «plug-in» es una aplicacion (o programa in-
formético) que se relaciona con otra para agregarle una funcién nueva y generalmente
muy especifica. Esta aplicacién adicional es ejecutada por la aplicacion principal e
interactian por medio de la interfaz de programacién de aplicaciones.

Moodle cuenta con un amplio directorio de extensiones que permiten anadir
caracteristicas y funcionalidades adicionales, como por ejemplo, nuevas actividades,
nuevos tipos de preguntas para exdmenes, nuevos reportes, integraciones con otros

sistemas y muchas m4s'.

2.1.2. Estructura de un plugin

En (Ivorra Oltra y Lujan-Mora, 2009) se describe el esquema estandar de un

plugin de Moodle de la siguiente manera:

Nombre Tipo Descripcion

version.php Archivo Contiene la meta informa-
cion sobre el plugin, por

ejemplo, la version de este.

settings.php Archivo Archivo opcional que con-
tiene el formulario con las
opciones generales del plu-

gin.

*Directorio de plugins: https://moodle.org/plugins/


https://moodle.org/plugins/

Capitulo 2. Marco Referencial 18

index.php Archivo Sirve para mostrar todas las
instancias de una actividad
en un curso, es decir, una
lista con todas las instancias

del mismo plugin.

view.php Archivo Esta es la pagina que mues-
tra una instancia de la acti-

vidad.

lib.php Libreria Libreria de funciones del
plugin. En este archivo se
implementaran todas sus

funciones y procedimientos.

mod_ form.php Formulario Formulario para crear o mo-
dificar una instancia de la

actividad.

lang/ Directorio Almacenar los archivos de
idioma del plugin. Este de-
be contener los archivos de
idioma con las cadenas de
texto necesarias por el plu-
gin en ingles y sus traduc-
ciones a los idiomas de los

usuarios finales.

db/ Directorio Directorio donde se almace-
naran los archivos con las
tablas de las bases de datos

necesarias.




Capitulo 2. Marco Referencial 19

access.php Archivo Archivo opcional que con-
tiene los permisos del plu-
gin. Los permisos no son
obligatorios, pero si muy re-
comendables para garanti-
zar qué usuarios pueden ac-
ceder a las distintas partes

de este.

install.xml Archivo Archivo que describe la es-
tructura de las tablas del

plugin.

upgrade.php Archivo Codigo de actualizacion,
aqui es donde se deben de
hacer las alteraciones de las
tablas, si las hay, entre ver-

siones.

Tabla 2.1: Tabla sobre la estructura de un plugin.

2.1.3. Instalacién de un plugin

Existen tres formas de instalar un plugin en un servidor Moodle. La primera
de estas y la mas sencilla es la instalacién directa desde el directorio de plugins de
Moodle, haciendo uso de la herramienta que este tiene que permite la instalacién
rapida y sencilla del plugin deseado desde la misma péagina del proyecto.

En segundo lugar la instalaciéon mediante un archivo ZIP cargado al servidor,
esta consiste en descargar un archivo comprimido que contiene al plugin y posterior-
mente cargarlo al sitio web desde su herramienta local.

Por ultimo, la instalacion manual en el servidor. Esto significa que el adminis-
trador se encarga de copiar manualmente el codigo a la carpeta correcta del sistema

de archivos del servidor web.



Capitulo 2. Marco Referencial 20

2.2. Memorias caché

Una caché es un componente de hardware o software que almacena datos para
que las solicitudes futuras de esos datos se puedan atender con mayor rapidez.

En Moodle existen varias integraciones de memorias cache ya incluidas en el
codigo fuente y otras que pueden ser instaladas mediante plugins, algunas de estas
son Memcached?, MongoDB, APC user cache (APCu)?, XCache? y Redis®.

Para el desarrollo de las funcionalidadeds de este proyecto, se tomara como
base la extension para la gestion de caché de Redis ya integrada en la plataforma.
Redis permite el almacenamiento clave-valor lo que facilita el mapeo de archivos en

memoria principal.

2.3. Herramientas tecnolégicas

= PHP: Lenguaje de codigo abierto muy popular especialmente adecuado para el
desarrollo web y que puede ser incrustado en HTML. El codigo es interpretado
por un servidor web con un moédulo de procesador de PHP que genera el HTML

resultante.

= AdoDB: ADOdb es una capa de abstraccién de base de datos popular, rapida
y facil de usar para PHP. Permite utilizar el mismo c6digo para acceder a una
amplia gama de bases de datos. Ha sido mantenido activamente desde el afio
2000 por el fundador del proyecto y numerosos colaboradores de la comunidad.
ADOdb contiene componentes para consultar y actualizar bases de datos, asi
como una biblioteca de registros activos orientada a objetos, administracion de
esquemas y monitoreo del rendimiento (Damien Regad y Community, 2014).
Moodle hace uso de AdoDB como su capa de abstraccion de base de datos por
defecto, esta se encuentra incluida en su codigo fuente y es usada de forma

automatica al momento de realizarse cualquier consulta a la base de datos.

2Memcached: https://moodle.org/plugins/cachestore_memcachedcluster
SAPCu: https://docs.moodle.org/37/en/APC_user_cache_(APCu)
4XCache: https://moodle.org/plugins/cachestore_xcache

SRedis: https://docs.moodle.org/37/en/Redis_cache_store


https://moodle.org/plugins/cachestore_memcachedcluster
https://docs.moodle.org/37/en/APC_user_cache_(APCu)
https://moodle.org/plugins/cachestore_xcache
https://docs.moodle.org/37/en/Redis_cache_store

Capitulo 2. Marco Referencial 21

= Atom: Atom es un editor de texto de codigo abierto para macOS, Linux, y

Windows con soporte para multiples plug-in, desarrollado por GitHub.

s Servidor HTTP Apache: Apache es un software de servidor web gratuito y
de c6digo abierto para plataformas Unix (BSD, GNU/Linux, etc.), Microsoft
Windows, Macintosh y otras, con el cual se ejecutan el 46 % de los sitios web
de todo el mundo. Permite a los propietarios de sitios web servir contenido en

la web.

» MySQL: MySQL es un sistema de gestion de bases de datos relacional. Esta
considerada como la base datos de cédigo abierto mas popular del mundo, y
una de las mas populares en general junto a Oracle y Microsoft SQL Server,

sobre todo para entornos de desarrollo web.



Capitulo 3

Analisis, Planificaciéon y Diseno de
funcionalidades

En este capitulo se explicaran los tres primeros procesos de la construccion del
plugin: Desarrollo de un modelo global, construcciéon de una lista de funcionalidades
y planificacién por funcionalidades. Estas tres fases corresponden a la iteracion cero,
en la que se establecié un modelo global del proyecto y se planific el desarrollo de las
funcionalidades. Seguidamente se hablara sobre los esfuerzos del proceso de disefio

por funcionalidades en cada una de las iteraciones.

3.1. Desarrollo de un modelo global

Arquitectura

USUARIOS FRONT-END N BACK-END
Componente
Moodle >
| Libreria

Caché
de Datos

AdoDB

|
|
= «
N -
| { Archivos
- v
=3 Gestor de
— Streaming .
H Servidor | de Datos Lista de Sen/hllldosr de BD:!
r Web \ Aciertos ySQL |
' N

==~ Lista de Archivos Recomendados }

b3
‘ + SISTEMA RECOMENDADOR
= Predictor de ‘ Predictor de
i laci I{
archivos que relaciones entre

serdn solicitados archivos y otras
variables

Convertidor de
flujo de datos
continuo a flujo
de datos discreto
(RDD)

Figura 3.1: Arquitectura global de la solucién

22



Capitulo 3. Analisis, Planificacion y Diseno de funcionalidades 23

La solucién al problema planteado consta de la integraciéon conjunta entre un
sistema recomendador externo a Moodle y una extensiéon que maneje las transaccio-
nes entre el sistema recomendador, la memoria caché implementada con Redis, las
librerias de la plataforma y la interfaz de usuario (figura 3.1).

Para comprender el alcance y la ubicacién de nuestra extensién dentro de Mood-
le y su interaccion con los diversos modulos y librerias de este, se partié tomando en

cuenta la arquitectura de Moodle que se puede observar en la figura 3.2.

Usuario E
Usando un navegador web

Interfaz de Usuario

Llamadas a funciones PHP

Librerias

I Llamadas a funciones PHP I

Librerias de BD Librerias de Archivos

Archivos

moodledata

Figura 3.2: Arquitectura de Moodle (modificado de (Tim, 2010))

Nuestro plugin se inserté entre la interfaz de usuario de Moodle y el almacén
de datos y archivos como se observa en la figura 3.3, funcionando como una capa
intermedia o middleware que recibe tanto las consultas de cada usuario como las

respuestas desde el servidor.



Capitulo 3. Analisis, Planificacion y Diseno de funcionalidades 2/

=
Usuario i-
==

Usando un navegador web

Interfaz de Usuario

Llamadas a funciones PHP

Y

1
]
]
1
]

M 1
]
1
| Peticion HTTP
]

_ >
Redis  Recursos | Extensién Recomendador
-— 1 P — externo

A I Respuesta HTTP

Llamadas a funciones PHP

h 4

Librerias

~ N
Llamadas a funciones PHP 4

Librerias de BD | | Librerias de Archivos

Archivos

moodledata

Figura 3.3: Ubicacién de la extensién en la arquitectura de Moodle (modificado de
(Tim, 2010))

Nuestra extension consta de una memoria caché implementada usando Redis,
va que el lenguaje de programacion PHP posee librerias que facilitan su integracén
conjunta. Redis es un motor de base de datos que hace uso de la memoria principal
del computador para alojar datos en un esquema clave-valor, esta permite de la
misma forma almacenar datos o archivos binarios, permitiendo alojar documentos,
imégenes, archivos ejecutables, etc, que no excedan un tamaio de 512 MB.

El disenio de la memoria caché utilizada en este componente consiste en una
memoria que se ubicara en el servidor web en el cual se encuentra alojado nuestro
cliente de Moodle. Su funcién es la de mantener copias de los archivos a los cuales
los usuarios accedan con mayor frecuencia en la plataforma con el fin de proveer una
respuesta mas rapida a sus solicitudes.

Adicionalmente, tiene la tarea de solicitar al recomendador externo, cada vez
que sea necesario un listado actualizado de los archivos que este determine deban

permanecer en la memoria caché y crear una copia de estos en la misma, asi como



Capitulo 3. Analisis, Planificacion y Diseno de funcionalidades 25

proveer al recomendador un listado de aciertos y errores que pueda usar para futuras

recomendaciones.
Interfaz de usuario
e 1
; EXtenS|0n i Llamadas a funciones PHP I
I = ! peticion HTTP
_—
Redis | Recursos | Médulo PHP . Recomendador
- 1 ! | externo
1 A : Respuesta HTTP
1 ¢ Llamadas a funciones PHP .
e e e e e e m = = e - -
Libn-arias

Figura 3.4: Arquitectura de la extension

El fin de esta memoria caché es almacenar los archivos més concurridos y debe
ser actualizada cada vez que se produzca una nueva recomendacion. El plugin se
encarga de remover los archivos que ya no sean necesarios y cubrir este espacio con
NUevoS recursos.

El componente no solo debe encargarse de dar respuesta a las solicitudes cuan-
do el recurso solicitado se encuentre en la memoria caché, sino que también debe
responder cuando este no se encuentre a primera mano, buscandolo en el servidor de

archivos y enviandolo al usuario que lo ha solicitado.

3.2. Construccion de una lista de funcionalidades

Segun (Ambler, 2002), Una funcionalidad es una pequenia funcién valorada
por el cliente expresada en la forma <accion><resultado><objeto>. Por ejemplo,
“Calcular el total de una venta”, “Validar la contrasena de un usuario” y “Autorizar
la transaccion de venta de un cliente”.

Acorde a lo descrito en la secciéon anterior en la cual se desarroll6 un mode-
lo global de nuestra extension, la lista de funcionalidades que se establecié es la

siguiente:

1. Recomendaciones

1.1. Solicitar recomendaciones al recomendador externo (HTTP Request).

1.2. Enviar métricas de aciertos y errores al recomendador externo (HTTP Re-

quest).




Capitulo 3. Analisis, Planificacion y Diseno de funcionalidades 26

2. Memoria caché

2.1. Limpiar archivos innecesarios de la memoria caché cada vez que se produzca

una nueva recomendacion.

2.2. Copiar archivos nuevos a la memoria caché de acuerdo a la iltima recomen-

dacién producida.

3. Descargas

3.1. Descargar archivos solicitados por los usuarios desde la memoria caché en

caso de encontrarse en la misma.

3.2. Descargar archivos solicitados por los usuarios desde el almacenamiento en
caso de no encontrarse en la memoria caché.
Tabla 3.1: Lista de funcionalidades

3.3. Planificaciéon por funcionalidades

Los esfuerzos de construccién fueron divididos en tres iteraciones de dos se-
manas, cada una comprendiendo un set de funcionalidades en el orden descrito a

continuacion:

Disenio e Implementacién (Semanas)

12| 3[4]5]6]7]3

1. Recomendaciones

1.1. /]
1.2. 1

2. Memoria Caché .
2.1. L]
2.2. L 1]

3. Descargas I

3.1. 1
3.2 1

Pruebas y revisiones finales I




Capitulo 3. Analisis, Planificacion y Diseno de funcionalidades 27

3.4. Diseno de funcionalidades

El diseno de los sets de funcionalidades se realizé al comienzo de cada iteracién

en la cual correspondia su desarrollo como se establecié en la secciéon anterior.

3.4.1. Recomendaciones

La solicitud de recomendaciones y el envio de métricas se deben realizar de
forma automaética cada vez que sea necesario. Por ende, la extensién hace uso de las
tareas sincronizadas de Moodle. Una tarea es una unidad de trabajo que debe ser
realizada en un tiempo determinado, son especialmente 1til para ejecutar una tarea

de mantenimiento en un horario regular.

Peticion HTTP N
" Recomendador
externo

Médulo PHP

Y

Respuesta HTTP

Figura 3.5: Comunicacion entre la extensién y el recomendador

En la figura 3.5 se puede observar la interaccién entre nuestra extension y el
recomendador externo. Las recomendaciones y métricas se recibiran y enviaran como
solicitudes HTTP en formato JSON.

El diagrama de secuencia mostrado en la figura 3.6 corresponde a la secuencia
que sigue el proceso de solicitud de recomendaciones y envio de métricas al momento
de ejecutarse la tarea programada que se encarga de comunicarse con el recomenda-

dor externo.

3.4.2. Memoria caché

La memoria caché implementada en este proyecto tiene la funcion de almacenar
los archivos més concurridos por los usuarios de la plataforma Moodle.

Luego de recibir un listado de recomendaciones desde el recomendador externo
mencionado en la seccion anterior, nuestro componente debe limpiar de la memoria
caché los archivos que no se contemplen en este listado antes de proceder con el

copiado.



Capitulo 3. Analisis, Planificacion y Diseno de funcionalidades 28

. Recomendador
@

get_recommendations()

<json=recomendaciones

---eeef

send_metrics()

<boolean>success

P |

Figura 3.6: Diagrama de secuencia de la interaccion extension-recomendador

Posteriormente el componente busca uno por uno los archivos del listado en el
almacenamiento de archivos. Para cada caso se verifica que el recurso no se encuentre
almacenado ya en la memoria cache y de no ser asi se verifica si el espacio disponible
es suficiente para agregarlo a la memoria considerando el limite establecido. Para
este proyecto se fijo un limite de aproximadamente 800MB ya que se cuenta con un
almacenamiento fisico de 2GB. Si el almacenamiento disponible es mayor al tamaifio

del archivo se procede a copiarlo.

Antes de continuar con el siguiente archivo se debe actualizar la memoria usada.
De quedar entradas sin revisar en el listado el componente buscara el siguiente archivo
y realizard el proceso. De no poseer espacio suficiente, se procede con el siguiente
recurso del listado hasta que este sea cubierto en su totalidad o la memoria esté

usada por completo.

En la figura 3.7 se puede ver el proceso explicado anteriormente representado

con un diagrama de actividad.



Capitulo 3. Analisis, Planificacion y Diseno de funcionalidades 29

®
U

Conectar con
servidor Redis

‘- < conexmn
. stahlecm

Obtener archivo
del listado

Archlvo
com.rad

Werificar memoria ’Memana Guardar contenido _| Actualizar memoria _| Verificar si ain hay E)usten no / \
disponible sunueme del archivo en - usada “| archivos en lista hisien
~Q|spon|ble, caché I|5'La

Figura 3.7: Diagrama de actividad: Copiado de un archivo a la memoria caché.

3.4.3. Descargas

Para integrar estas funcionalidades al flujo normal de los procesos de Moodle
es necesario adentarnos en su codigo fuente, especificamente en la rutina encargada
de gestionar todas las descargas que los usuarios solicitan.

La mayoria de actividades que involucran la descarga de archivos y reproduc-
cion de recursos multimedia hacen uso de la rutina pluginfile.php que Moodle posee
en su codigo fuente. Esta rutina sirve de interfaz tomando directamente la solicitud
de los usuarios para crear el enlace de descarga del recurso solicitado. Por ende, es
alli en donde se realiz6 la insercién de nuestro plugin.

Sin embargo, ya que no siempre se serviran archivos desde la memoria caché
administrada por nuestra extension, solo se realizé una bifurcacién en la que luego de
obtener los argumentos del archivo solicitado se verifica si este existe o no en caché.
Si el resultado de esta verificacién es satisfactorio se procede a buscar el archivo en
la memoria, si por el contrario se determina que el archivo no se encuentra en la
misma, el proceso continua de la misma manera que lo haria si nuestro plugin no
estuviera implementado.

Luego de determinar el método a utilizar se deben actualizar las métricas de

aciertos y errores. En caso de que el archivo se encontrara en la memoria caché,



Capitulo 3. Analisis, Planificacion y Diseno de funcionalidades 30

la cantidad de aciertos de las recomendaciones sumarian uno. Por el contrario si el
archivo debiera obtenerse desde el almacenamiento, representaria un desacierto y
sumaria uno la cuenta de fallos. Estas métricas son escritas en una tabla de la base
de datos creada con este fin llamada download__optimizer__metrics.

En la figura 3.8 se puede ver el proceso explicado anteriormente representado

con un diagrama de actividad.

®
!

Conectar con
servidor Redis

Servir recurso
desde el
Almacenamiento
no v

) . i . - Archivo ™ -
conexion Obtener informacion \erificar existencia - < > - Servir recurso - L
i = - = = - |
<stablecld>_> del recurso solicitado del recurso en Redis encog‘t?rdaigo &g desde Redis Actualizar metricas

Figura 3.8: Diagrama de actividad: Descarga de archivos.



Capitulo 4

Implementacion, Pruebas y
Resultados

A continuacién se presenta la explicacion detallada del proceso de implementa-
cion seguido de las pruebas que se realizaron para garantizar que el funcionamiento

y rendimiento sea el esperado.

4.1. Implementacion de funcionalidades

El dltimo proceso de la metodologia trata de la implementacion de las fun-
cionalidades y se aplica de forma iterativa en conjunto con el proceso de diseno.
Antes de cada iteracion se seleccionaron los sets de funcionalidades que serian dise-
nados e implementados en la misma. Cada set de funcionalidades especificado fue

implementado uno por uno como se aprecia a continuacién.

4.1.1. Recomendaciones

Se requeria que la solicitud de recomendaciones y el envio de de métricas al
recomendador externo se hiciera de forma automatica en intervalos de tiempo que
el administrador de la plataforma decidiera sean adecuados. Para conseguir esto se
implementaron estas funcionalidades en una tarea sincronizada de Moodle. Las tareas

sincronizadas son ejecutadas a través del proceso Cron de Moodle' que es un script

LCron de Moodle: https://docs.moodle.org/all/es/Cron

31


https://docs.moodle.org/all/es/Cron

Capitulo 4. Implementacion, Pruebas y Resultados 32

PHP contenido en el cédigo fuente que debe ejecutarse regularmente en segundo
plano y se encarga de ejecutar las tareas sincronizadas en sus intervalos agendados.
El programa cron.php de Moodle debe ser invocado regularmente, esto con
el fin de que las tareas sincronizadas se ejecuten correctamente en los intervalos
establecidos. Ya que PHP permite ejecutar programas desde la consola de comandos
de linux se configur6 el Crontab de Linux para que ejecute cron.php cada minuto.

En el sistema operativo Unix, cron es un administrador regular de procesos en
segundo plano que ejecuta procesos o rutinas a intervalos regulares como se especi-
fican en el fichero crontab.

La configuraciéon de la tarea sincronizada creada para ejecutar la solicitud de
recomendaciones y el envio de métricas al recomendador externo se encuentra en
db/tasks.php dentro de la carpeta de la extensién y contiene la especificacion del
intervalo en el que se debe correr.

El archivo classes/task/http_ requests.php contiene las funciones que se

ejecutaran en esta tarea.

http_ requests.php:

<7php

//

// This file is part of Moodle - http://moodle.org/

//

// Moodle is free software: you can redistribute it and/or modify

// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

//

// Moodle is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.

VAT

* This file contains the scheduled tasks needed by the plugin.
%



Capitulo 4. Implementacion, Pruebas y Resultados 33

* Qpackage cachestore_download_optimizer

* Qcopyright 2020 Gustavo Mej’ia <bfmvtm@gmail.com>

* @license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
*/

namespace cachestore_download_optimizer\task;
include_once($CFG->dirroot.’/cache/stores/download_optimizer/lib.php’);

/*%

* Scheduled task to request new recommendations and send metrics.
*/

class http_requests extends \core\task\scheduled_task {

/%%
* Return the task’s name as shown in admin screemns.
*
* Qreturn string
*/
public function get_name() {
return get_string(’httprequests’, ’cachestore_download_optimizer’);

3

/%%

* Execute the task.

x/

public function execute() {
check_metrics_availability();

send _metrics();
$recommendations = get_recommendations();

clear cache($recommendations) ;
retrieve_files($recommendations) ;

Las actividades a ejecutar se encuentran en el cuerpo de la funciéon execu-
te. En primer lugar, se invoca a la rutina check__metrics_ availability que se
encarga de verificar que se encuentren las entradas necesarias en la tabla down-

load__optimizer__metrics como se muestran en la figura 4.1 y de no encontrarse



Capitulo 4. Implementacion, Pruebas y Resultados 34

de este modo, se crean. Esto es 1til como seguridad para evitar errores que se puedan

presentar al momento de escribir los aciertos y errores en la tabla.

i metric value
1 fail 0

2 success 0

[ [ [HUILL |
Figura 4.1: Estructura que debe tener la tabla download optimizer metrics.

Posteriormente se invoca la rutina send__metrics que envia las métricas cap-
turadas al recomendador. Esta funcién se encarga de recuperar de la base de datos
los valores capturados de aciertos y errores para el tiltimo listado de recomendaciones
y enviarlos en una peticion HTTP de tipo POST usando la biblioteca cURL de

PHP. Una vez finalizado el envio de la peticion se reestrablecen los valores de la tabla

a Ccero.

Funcién send__metrics:

function send metrics() {
global $DB;

$success = $DB->get_field(’download_optimizer_metrics’, ’value’,
[’metric’ => ’success’]);
$fail = $DB->get_field(’download_optimizer_metrics’, ’value’, [’metric’
=> fail’]);
$metrics = array(
’success’ => $success,

’fail’ => $fail
)

$payload = json_encode(array(’metrics’ => $metrics));

$url = ’https://obscure-lake-39056.herokuapp.com/api/get-metrics’;
$ch = curl_init($url);

curl_setopt( $ch, CURLOPT_POSTFIELDS, $payload );



Capitulo 4. Implementacion, Pruebas y Resultados 35

curl_setopt( $ch, CURLOPT_HTTPHEADER,
array(’Content-Type:application/json’));

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$response = json_decode(curl_exec($ch));

curl close($ch);

clean metrics_values();

La funciéon get_ recommendations se encarga de solicitar al recomendador
una lista de recomendaciones actualizada. Para conseguir esto también se hace uso
de la biblioteca cURL pero en este caso se envia una peticion de tipo GET. Esta
rutina retorna un arreglo que contiene los identificadores de los archivos mas concu-
rridos en cada una de sus posiciones. En caso de que ocurra un fallo, se retorna un

mensaje de error.

Funcién get_ recommendations:

function get_recommendations() {
$url =
’https://obscure-lake-39056.herokuapp.com/api/send-recommendations-aux’;
$ch = curl _init($url);

curl_setopt($ch, CURLOPT_HTTPGET, 1);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$response = json_decode(curl_exec($ch));
$recommendations = $response->recommendations;

curl_close($ch);

if ($response->success) {
return $recommendations;
} else {
return ’There was an error retrieving recommendations’;
}




Capitulo 4. Implementacion, Pruebas y Resultados 36

4.1.2. Memoria caché

En este proyecto se implementd una memoria caché utilizando el motor de base
de datos en memoria Redis el cual es posible manejar desde nuestro plugin a través
de la librerfia de PHP PhpRedis? que proporciona una API para comunicarse con
el almacenamiento clave-valor usando cédigo PHP. Su instalacion se detalla en el
apéndice B.

La funcién clear__cache se encarga de remover de la memoria caché los archi-
VOS que ya no son necesarios, es decir, que no se encuentran en el listado recibido.
Esta rutina toma un array conteniendo el nuevo listado de recomendaciones y se
conecta con Redis usando la instrucciéon connect de la libreria PhpRedis que reci-
be como argumentos la direccién y el puerto del servidor Redis y obtiene todas las
claves contenidas en la memoria con la instruccion keys, estas claves corresponden
a los identificadores de los archivos como se encuentran registrados en la base de
datos de Moodle. Al comparar los identificadores contenidos en caché con los que
se encuentran en el nuevo listado de recomendaciones se obtiene un arreglo con las
claves innecesarias. La instrucion del toma como argumento el arreglo de las claves a
eliminar y las remueve del servidor. De ser removidos todos los archivos innecesarios,
la funcién retorna el valor booleano TRUE, en caso contrario, Muestra un mensaje

de error en la consola y retorna el valor booleano FALSE.

Funcién clear_cache:

function clear_cache($recommendations) {
$redis = new Redis();
$redis—>connect(’127.0.0.1°, ’6379%);

$allkeys = $redis->keys(’*’);
$unnecessarykeys = array_diff ($allkeys, $recommendations);
if ($redis->del($unnecessarykeys) == count($unnecessarykeys)) {

echo "All keys cleaned.\xA";
return true;

}

2Repositorio de PhpRedis: https://github.com/phpredis/phpredis


https://github.com/phpredis/phpredis

Capitulo 4. Implementacion, Pruebas y Resultados 37

echo "There was a problem removing unnecessary files from cache.\xA";

return false;

}

La funcién retrieve__files recibe como argumento el array de recomendaciones
recibido desde el recomendador y se encarga de copiar los archivos desde el alma-
cenamiento de Moodle a la memoria caché. Ya que esta funcién también debe velar
que el limite para la caché establecido por el administrador no se exceda se usa la
instruccion info, en este caso con el argumento "MEMORY" para obtener el espa-

cio utilizado actualmente.

Funciéon retrieve  files:

function retrieve_files($recommendations) {
global $DB;

$redis = new Redis();
$redis—>connect(’127.0.0.17, ’63797);

$info = $redis->info ("MEMORY");

$usedmemory = $info[used_memory];
$memorylimit = get_cache_limit();

var_dump ($memorylimit) ;
var_dump ($usedmemory) ;

for ($i=0; $i < count($recommendations); $i++) {
$id = $recommendations[$i];

// Retrieve the file from the Files API.
$fs = get_file_storage();

$file = $fs->get_file by_id($id);
$filesize = $file->get_filesize();

var_dump($filesize);

if (($usedmemory+$filesize) > $memorylimit)
continue;



Capitulo 4. Implementacion, Pruebas y Resultados 38

if (1$file) {
echo "File with id ".$id." not found.\xA"; // The file does not
exist.
} else {
$contents = $file->get_content();

if (lredis_save_file($id, $contents)) {
echo "There was a problem saving file ".$id." in Redis.\xA";

} else {
$info = $redis->info("MEMORY");
$usedmemory = $infol[used_memory];
var_dump ($usedmemory) ;
echo "File saved in Redis successfully.\xA";

}

}
}
}

La funcién get_ cache_ limit obtiene el tamano de la memoria RAM del
computador y retorna el limite de la memoria caché en funciéon a la anterior. Para
este proyecto se estimo usar la tercera parte del total de la memoria fisica del compu-
tador (aproximadamente 800MB en este caso) pero este valor puede ser modificado

a conveniencia del administrador.

Funcion get__cache_ limit:

function get_cache_limit() {
$fh = fopen(’/proc/meminfo’,’r’);
$mem = 0;

while ($line = fgets($fh)) {
$pieces = array();
if (preg_match(’/"MemTotal:\s+(\d+)\skB$/’, $line, $pieces)) {
$mem = $pieces[1];
break;
}
}

fclose($fh);

return ($mem*0.3333)*1024;



Capitulo 4. Implementacion, Pruebas y Resultados 39

La rutina retrieve__files itera sobre cada identificador contenido en el arreglo
de recomendaciones recibido y para cada caso usa la API de archivos (File API?)
de Moodle, que es la interfaz de programacion de aplicaciones que Moodle provee
para manejar los archivos en la plataforma, con el fin de obtener los metadatos del
archivo en cuestién junto con su contenido. Si no existe espacio disponible suficiente
para almacenar este archivo, se procede con el siguiente y asi sucesivamente. Si por
el contrario el espacio disponible es suficiente se utiliza la funciéon redis__save_ file
que recibe como argumentos el identificador del archivo y el contenido del mismo y
lo almacena en la memoria caché usando la instruccién set de PhpRedis. De ser
satisfactorio el proceso, se actualiza la variable que contiene el valor de la memoria
utilizada y se procede con el siguiente archivo. Por el contrario, si el proceso falla, se
retorna un mensaje de error a la consola y se procede de igual forma con el siguiente

archivo.

Funcién redis__save file:

function redis save file($id, $file) {
$redis = new Redis();

if ($redis->connect(’127.0.0.1°, ’6379°)) {

if ($redis->exists($id)) {
echo "File ".$id." is already cached.\xA";
return false;

} else {

if ('$redis->set($id, $file)) {
return false;

}

return true;

}
} else {
echo "Can’t connect with Redis.\xA";

3Documentacién del File APIL: https://docs.moodle.org/dev/File_API


https://docs.moodle.org/dev/File_API

Capitulo 4. Implementacion, Pruebas y Resultados 40

return false;
}
}

4.1.3. Descargas

Para implementar el uso del componente en el flujo normal de descargas de
Moodle se requirié realizar una modificacién al cédigo fuente de Moodle. La rutina
pluginfile.php mencionada en el capitulo anterior es la encargada de gestionar las
descargas de todos los médulos de la plataforma.

Los cambios realizados al archivo comienzan con la inclusién de la libreria de
nuestro componente. De ser encontrada se procede a revisar si la tabla encargada
de almacenar las métricas se encuentra disponible. El método tradicional de las
descargas directas se inserté en la funciéon serve_ file_ from_ storage. De esta
forma, se mantendria a disposicion en caso de ser requerido.

Luego de establecer una conexiéon con Redis se toman los argumentos del
archivo solicitado y se hace uso de la API de archivos de Moodle para extraer la
informacién necesaria para mapear el archivo en la memoria caché.

Se consiguié un error con las imagenes de visualizacién de los cursos. Debido
a que estos archivos no son encontrados por la API de archivos, el flujo normal
ocasionaba que estas imagenes no fueran servidas correctamente. Por ende se agregd
una condicional en la que de no encontrarse el archivo requerido a pluginfile.php
automaticamente se desviara el flujo a la funciéon serve__ file_ from_ storage.

De encontrarse el archivo se verifica su existencia en la base de datos de
Redis. Si este se encuentra en la misma, se procede a invocar la funcién ser-
ve__file_ from_ cache que toma como argumentos el identificador del archivo en
la base de datos, su nombre y su tamano para extraerlo desde la memoria caché
y servirlo al usuario. En caso de no existir el archivo en la memoria se procede a
servirse de forma tradicional.

Una vez completado el proceso se actualizan las métricas en la base de datos.
Como se detall6 en la planificacién, si el archivo fue servido desde la memoria caché
representaria un acierto que se suma a la cantidad de aciertos registrada en la tabla.

En caso contrario, si el archivo debi6 ser servido desde el almacenamiento, se registra



Capitulo 4. Implementacion, Pruebas y Resultados 41

un fallo en la recomendacién agregandose en la tabla.

Para finalizar el flujo se escribe en la base de datos, especificamente en la ta-
bla download__optimizer_ logs los logs generados en el proceso, como el tiempo
tomado para servir el archivo en su totalidad. Cabe resaltar que este tiempo no es

el tiempo de descarga, el cual se ve afectado por otras condiciones.

Funcién serve_file from_ cache:

function serve file from cache($id, $filename, $filesize)q{
$redis = new Redis();
$redis—->connect(’127.0.0.17, ’63797);

$content = $redis->get($id);

header (’Content-Disposition: attachment; filename=’.$filename);
header (’Content-Type: application/force-download’);

header (’Content-Length: ’ . $filesize);

header (’Connection: close’);

echo $content;

Rutina pluginfile.php:

<7php

// This file is part of Moodle - http://moodle.org/

//

// Moodle is free software: you can redistribute it and/or modify

// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

//

// Moodle is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License
// along with Moodle. If not, see <http://www.gnu.org/licenses/>.



Capitulo 4. Implementacion, Pruebas y Resultados

42

/ k%

*

* K X X ¥

*

This script delegates file serving to individual plugins

Opackage core

@subpackage file

Qcopyright 2008 Petr Skoda (http://skodak.org)

@license http://www.gnu.org/copyleft/gpl.html GNU GPL v3 or later
/

// Disable moodle specific debug messages and any errors in output.
define (’NO_DEBUG_DISPLAY’, true);

require_once(’config.php’);
require_once(’lib/filelib.php’);
require_once($CFG->dirroot.’/cache/stores/download_optimizer/lib.php’);

if (function_exists(’serve_file from_cache’)) {

check_metrics_availability();

$table

’download_optimizer_metrics’;

$redis = new Redis();
$redis—>connect(’127.0.0.17, ’63797);

$args = explode(’/’, ltrim(get_file_argument(), ’/’));

$fs = get_file_storage();
$file = $fs->get_file($args[0], $args[1], $args[2], $args[3], ’/’,
$args[4]1);

if (1$file) {
serve_file_from_storage();
return;

¥

$id = $file->get_idQ);
$filename = $file->get_filename();
$filesize = $file->get_filesize();

if ($redis->exists($id)){
serve_file_from_cache($id, $filename, $filesize);

$success = $DB->get_field($table, ’value’, [’metric’ => ’success’]);



Capitulo 4. Implementacion, Pruebas y Resultados 48

$DB->set_field($table, ’value’, ++$success, [’metric’ => ’success’]);

}
elseq
$fail = $DB->get_field($table, ’value’, [’metric’ => ’fail’]);
$DB->set_field($table, ’value’, ++$fail, [’metric’ => ’fail’]);
serve_file_from_storage();
}
} else {

serve_file_from_storage();

function serve_file_from_storage() {

$relativepath = get_file_argument();

$forcedownload = optional_param(’forcedownload’, O, PARAM_BOOL);

$preview = optional_param(’preview’, null, PARAM_ALPHANUM) ;

// Offline means download the file from the repository and serve it,
even if it was an external link.

// The repository may have to export the file to an offline format.

$offline = optional_param(’offline’, O, PARAM_BOOL);

file_pluginfile($relativepath, $forcedownload, $preview, $offline);

4.2. Pruebas

4.2.1. Uso de las instrucciénes var__dump() y echo para ve-
rificar el estado del proceso

La instruccién var__dump() de PHP muestra informacién estructurada sobre
una o mas expresiones incluyendo su tipo y valor, esta se implementé como herra-
mienta para conocer informacion de utilidad en la ejecucion del proceso de limpiado
y llenado de la memoria caché, como por ejemplo el espacio disponible al almacenar
o remover un elemento de la misma.

Por otro lado, echo se define como un constructor del lenguaje, su funcion es

imprimir un texto dado. Su implementacion se aplicé para imprimir mensajes que



Capitulo 4. Implementacion, Pruebas y Resultados 44

explicaran de forma rapida y clara lo que estaba ocurriendo en dicho momento, un

ejemplo serfan los mensajes de éxito y/o error en algtin paso de la ejecucion.

4.2.2. Pruebas de rendimiento

Con el fin de conocer el rendimiento de nuestra extension y realizar las res-
pectivas comparaciones con el flujo normal que provee la plataforma por defecto, se
implementé un sistema de logs que son plasmados en la base de datos en una tabla
que lleva por nombre download__optimizer_logs. La informacion capturada en
esta corresponde al tiempo en microsegundos que se toma la plataforma en servir
un archivo especificado con su propio identificador, ya sea que fuese servido desde la

memoria caché o directamente desde el almacenamiento.

4.3. Resultados

A continuacién se muestran los resultados obtenidos tabulados para ambos
casos. Como se puede apreciar, se utilizaron archivos PDF, FLAC y MP4 de tamanos
variados con el fin de probar la mayor cantidad posible de comportamientos de
la plataforma. Estas pruebas de rendimiento fueron ejecutadas en un equipo que
contaba con un procesador Intel Core 2 Duo, un disco duro mecanico de 256GB de

almacenamiento y una memoria de acceso aleatorio DDR de 2GB.

4.3.1. Resultados para archivos PDF

= Archivo 1: Archivo .pdf de 12.74 MB.
= Archivo 2: Archivo .pdf de 126.12 MB.

= Archivo 3: Archivo .pdf de 395.89 MB.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) | Servidor(ms) Cache(ms) | Servidor(ms) Cache(ms) | Servidor(ms
0.0013147 | 0.0712364 | 0.0391349 | 0.0450909 | 0.1339281 | 0.7795469
0.0006478 | 0.0071478 | 0.0508111 | 0.0482569 | 0.1019279 | 0.0440559




Capitulo 4. Implementacion, Pruebas y Resultados 45
0.0008741 | 0.0004878 | 0.0425971 | 0.0337379 | 0.1095259 | 0.0783770
0.0014752 | 0.0016478 | 0.0404260 | 0.0339191 | 0.1336439 | 0.0623741
0.0004318 | 0.0013712 | 0.0525000 | 0.0977330 | 0.1212389 | 0.0561211
0.0001687 | 0.0004048 | 0.0446059 | 0.0707841 | 0.1059069 | 0.0951399
0.0013548 | 0.0009379 | 0.0130169 | 0.0695179 | 0.1041231 | 0.0578520
0.0017493 | 0.0017519 | 0.0858491 | 0.0737338 | 0.0945940 | 0.1038241
0.0001975 | 0.0009794 | 0.0460801 | 0.0814800 | 0.1542399 | 0.0923815
0.0001647 | 0.0002159 | 0.0125771 | 0.0513611 | 0.1144018 | 0.0686631

Tabla 4.1: Tabla de tiempos de ejecucién registrados para
archivos PDF.

4.3.2. Resultados para archivos FLAC

= Archivo 1: Archivo .flac de 23.20 MB.
= Archivo 2: Archivo .flac de 125.92 MB.
s Archivo 3: Archivo .flac de 329.74 MB.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) | Servidor(ms) Cache(ms) | Servidor(ms) Cache(ms) | Servidor(ms
0.0037560 | 0.1219440 | 0.6077996 | 0.5212248 | 0.1339281 | 0.5204261
0.0089550 | 0.0028629 | 0.5650714 | 0.6311146 | 0.1019279 | 0.6689912
0.0036220 | 0.0064800 | 0.4697466 | 0.4330288 | 0.1095259 | 0.8216092
0.0030441 | 0.0026130 | 0.5227754 | 0.3726597 | 0.1336439 | 0.6835562
0.0046251 | 0.0021999 | 0.4451844 | 0.5112276 | 0.1212389 | 0.6589940
0.0028789 | 0.0038180 | 0.4551816 | 0.6686376 | 0.1059069 | 0.7788810
0.0037561 | 0.0027082 | 0.3066165 | 0.5357898 | 0.1041231 | 0.8164040
0.0051291 | 0.0027139 | 0.3669856 | 0.5888186 | 0.0945940 | 0.5807952
0.0044241 | 0.0085749 | 0.6025944 | 0.6738428 | 0.1542399 | 0.7365850




Capitulo 4. Implementacion, Pruebas y Resultados 46
0.0039530 | 0.0047879 | 0.5345924 | 0.6006356 | 0.1144018 | 0.7484020
Tabla 4.2: Tabla de tiempos de ejecucion registrados para

archivos FLAC.
4.3.3. Resultados para archivos MP4
s Archivo 1: Archivo .mp4 de 23.20 MB.
= Archivo 2: Archivo .mp4 de 125.92 MB.
= Archivo 3: Archivo .mp4 de 329.74 MB.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) | Servidor(ms)) Cache(ms) | Servidor(ms) Cache(ms) | Servidor(ms
0.0004151 | 0.0434270 | 0.5390871 | 0.8578963 | 0.7674171 | 0.8148802
0.0010800 | 0.0008411 | 0.4963589 | 0.5342097 | 0.8146889 | 0.6295554
0.0006000 | 0.0008581 | 0.4410341 | 0.7198433 | 0.6293641 | 0.5916842
0.0004342 | 0.0009189 | 0.4940629 | 0.7728721 | 0.5914929 | 0.7676084
0.0004079 | 0.0013142 | 0.5138969 | 0.6933227 | 0.6948019 | 0.7844012
0.0004609 | 0.0010289 | 0.3864691 | 0.4253199 | 0.7047991 | 0.7049904
0.0004429 | 0.0009379 | 0.3753290 | 0.8367132 | 0.5562340 | 0.5564253
0.0006721 | 0.0254129 | 0.2982731 | 0.6041239 | 0.6166031 | 0.6167944
0.0010161 | 0.0009000 | 0.5338819 | 0.6526911 | 0.7422029 | 0.7423942
0.0006471 | 0.0009441 | 0.4658799 | 0.6047307 | 0.7842099 | 0.6949932

Tabla 4.3: Tabla de tiempos de ejecucion registrados para

archivos MP4.

En la siguiente tabla podemos ver una comparacién entre las medias de los

tiempos de respuesta del servidor capturados en ambos casos.



Capitulo 4. Implementacion, Pruebas y Resultados 47
Archivo 1 Archivo 2 Archivo 3
Cache(ms) | Servidor(ms) Cache(ms) | Servidor(ms) Cache(ms) | Servidor(ms
0.0008379 | 0.0086181 | 0.0427598 | 0.0605615 | 0.1173530 | 0.1438336
Tabla 4.4: Tabla de medias de tiempos de ejecuciéon re-

gistrados para archivos PDF.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) | Servidor(ms)) Cache(ms) | Servidor(ms) Cache(ms) | Servidor(ms
0.0044143 | 0.0158703 | 0.4876548 | 0.5536980 | 0.6993443 | 0.7014644

Tabla 4.5: Tabla de medias de tiempos de ejecucion re-
gistrados para archivos FLAC.

Archivo 1 Archivo 2 Archivo 3
Cache(ms) | Servidor(ms)) Cache(ms) | Servidor(ms) Cache(ms) | Servidor(ms
0.0006176 | 0.0076583 | 0.4544273 | 0.6701723 | 0.6901814 | 0.6903727

Tabla 4.6: Tabla de medias de tiempos de ejecucion re-

gistrados para archivos MP4.

En general podemos notar que en las pruebas para los distintos tipos de ar-
chivo se percibié una mejora. Se pudo apreciar que el rendimiento en los archivos
mas pequenos fue mejor que en los archivos con mayor tamano, alcanzando mejo-
ras de 91.28% en archivos PDF, 72.19 % en archivos de audio FLAC y 91.94% en
archivos de video MP4. También podemos notar que el rendimiento en general de

la plataforma para servir archivos de audio y video reduce con mayor proporciéon en



Capitulo 4. Implementacion, Pruebas y Resultados 48

comparacion con archivos de texto PDF a medida que aumenta el tamano de los

mismos.



Capitulo 5

Conclusiones y Recomendaciones

En este proyecto se logré disenar e implementar una extension en la plataforma
Moodle con el fin de mejorar los tiempos de respuesta de la plataforma al momento
de servir recursos a los usuarios.

Para llevar esto a cabo, se aplicé una metodologia de desarrollo basada en
funcionalidades, a partir de la cual se pudo organizar el trabajo en 5 procesos: Desa-
rrollar un modelo global, construir una lista de caracteristicas, planificar, disefiar e
implementar.

Luego de desarrollar un modelo global 6ptimo, se construyé una lista de ca-
racteristicas enfocada en satisfacer las necesidades planteadas en el proceso anterior
con el fin de cumplir con los objetivos planteados al inicio del proyecto. Posterior-
mente se realiz6 la planificacion y el diseno de cada funcionalidad por separada pero
manteniendo la integridad del sistema para finalmente realizar la implementacién.

Con la extension implementada, se realizaron las pruebas de funcionamiento
y rendimiento correspondientes, en las cuales se determind que el trabajo realizado
cumplia con los objetivos planteados resultando en una implementacion completa-
mente funcional del modelo disenado como primer paso en este proyecto.

En base a los resultados obtenidos, se puede comprobar que efectivamente
la extension aqui implementada mejorara la experiencia del usuario dentro de la
plataforma al momento de acceder a algin recurso de alta demanda optimizando los
tiempos de respuesta de la misma dependiendo de las propiedades los archivos.

Como recomendaciones encontradas durante este estudio, hemos planteado las

siguientes:

49



Capitulo 5. Conclusiones y Recomendaciones 50

= Desplegar el cliente de Moodle que hara uso de este plugin en un sistema

operativo basado en Linux.

» Configurar el crontab del sistema operativo para que ejecute el proceso cron
de Moodle en intervalos de menos de un (1) minuto. Para garantizar que se

mantenga un listado de recomendaciones actualizado.

= Configurar un limite seguro desde la consola de Redis ademas del limite esta-

blecido desde la extensiéon con el fin de evitar eventuales desbordamientos.

= Modificar el limite de memoria principal utilizada por la extension, por defecto
la extension utilizara una tercera parte (1/3) de la memoria que se posee en el

servidor.

= Integrar este esquema con el sistema recomendador para optimizar la gestion

de almacenamiento de Moodle.



Apéndice A: Instalaciéon de un
Plugin

Instalacion directa desde el directorio de plugins de
Moodle

1. Ingrese a su sitio como administrador y vaya a Administracion >Administra-
cién del sitio > Plugins >Instalar plugins. (Si Usted no puede encontrar este

lugar, esto es debido a que en su sitio estd prohibido instalar plugins).
2. Elija el boton que dice Instalar plugins desde el directorio de plugins de Moodle.

3. Busque un plugin que tenga un botén para instalar (Install) que asegura que
es compatible con su version de Moodle), elija el botén para instalar (Install)

y luego elija continuar (Continue).
4. Revise que aparezca el mensaje de que paso la validacion (Validation passed!)

y después elija el botén para instalar el plugin (Install add-on).

Instalacion mediante archivo ZIP subido al sitio

1. Vaya al Moodle plugins directory', seleccione su versién actual de Moodle
(2.5/2.6/3.0/...), después elija un plugin que tenga un botén para Descargar
(Download) y descargue el archivo ZIP.

2. Ingrese a su sitio Moodle como administrador y vaya a Administracién >Ad-

ministracion del sitio > Plugins >Instalar plugins.

! Directorio de plugins: https://moodle.org/plugins

51


https://moodle.org/plugins

APENDICE A 52

3. Suba el archivo ZIP, seleccione el tipo apropiado de plugin, acepte la casilla
de aceptacion, después elija el botén para Instalar un plugin desde un archivo
ZIP’.

4. Revise que aparezca el mensaje de que pasé la validaciéon (Validation passed!)

y después elija el botén para Instalar el plugin (Install add-on).

Instalacion manual en el servidor

En primer lugar, establezca el sitio correcto dentro del arbol de directorios de

Moodle en donde debe de ir el tipo de plugin. Las localizaciones comunes son:

/ruta/a/moodle/theme/ - temas gréficos

/ruta/a/moodle/mod/ - recursos y médulos de actividad

/ruta/a/moodle/blocks/ - bloques que van a un lado

/ruta/a/moodle/question/type/ - tipos de preguntas

/ruta/a/moodle/course/format/ - formatos de curso

» /ruta/a/moodle/admin/report/ - reportes administrativos

1. Vaya al Moodle plugins directory?, seleccione su versiéon actual de Moodle
(2.5/2.6/3.0/...), después elija un plugin que tenga un botén para Descargar
(Download) y descargue el archivo ZIP.

2. Subalo o copielo a su servidor Moodle.

3. Descomprima (unzip) el archivo al lugar apropiado para el tipo de plugin (o

siga las instrucciones del plugin).

4. En su sitio Moodle (como administrador) vaya a Configuraciones >Adminis-
tracién del sitio >Notificaciones (para la mayoria de los plugins, Usted deberia

de ver un mensaje que le diga que el plugin estd instalado).

2Directorio de plugins: https://moodle.org/plugins


https://moodle.org/plugins

Apéndice B: Instalaciéon Redis en
Linux

Instalacion usando la linea de comandos

Actualice el cache de su apt e instale Redis escribiendo en la consola:

$ sudo apt update
$ sudo apt install redis-server

De esta forma se descargara e instalara Redis y sus dependencias. Seguido de
esto, hay un cambio importante en las configuraciones que se debe realizar en el
archivo de configuracion de Redis, el cual fue generado automaticamente durante la
instalacion.

Abra este archivo con el editor de texto de su preferencia:

$ sudo nano /etc/redis/redis.conf

Dentro del archivo, busque la instruccién supervised. Esta instruccion le per-
mite declarar un sistema de arranque para manejar Redis como un servicio, propor-
cionando al administrador un mayor control sobre sus operaciones. La instruccién
estd establecida en no por defecto. En sistemas basados en Debian, cambie esta con-

figuracién a systemd.

Archivo /etc/redis/redis.conf

# If you run Redis from upstart or systemd, Redis can interact with your
# supervision tree. Options:
# supervised no - no supervision interaction

53



APENDICE B 54

# supervised upstart - signal upstart by putting Redis into SIGSTOP mode
# supervised systemd - signal systemd by writing READY=1 to
$NOTIFY_SOCKET

# supervised auto - detect upstart or systemd method based on

# UPSTART_JOB or NOTIFY_SOCKET environment variables

# Note: these supervision methods only signal "process is ready."

# They do not enable continuous liveness pings back to your
supervisor.

supervised systemd

Guarde y cierre el archivo y recargue el archivo de servicio de Redis para reflejar

los cambios realizados en el archivo de configuracion.

Instalacion de PhpRedis

El método recomendado para instalar PhpRedis es usando pecl.

Instalar pecl:

$ sudo apt install pkg-php-tools

Instalar PhpRedis:

$ sudo pecl install redis



Referencias

Scott W. Ambler. Feature driven development (fdd) and agile modeling. 2002. URL
http://agilemodeling.com/essays/fdd.htm.

R. Bello Diaz. Educacign virtual: Aulas sin paredes. Ciudades Virtuales Latinas,
2005.

Mark Newnham Damien Regad y The ADOdb Community. Adodb - database abs-
traction layer for php. 2014. URL https://adodb.org/dokuwiki/doku. php.

Francisco Hidrobo Gabriel Barrios, Yaneth Moreno. Entendiendo el funcionamiento
de moodle: un enfoque basado en un marco de modelado. RISTI-Revista Ibérica
de Sistemas e Tecnologias de Informagao, (20):327-337, 2019.

Guillermo Garcia. Design and implementation of a mobile application based on cor-
dova framework and web technologies for a university intranet. Telecomunicacion,
2017.

Sam Hemelryk. Alternative php cache (apc). 2014. URL https://moodle.org/

plugins/cachestore_apc.

Raul Ivorra Oltra y Sergio Lujan-Mora. Ampliacién de moodle: Creaciéon de modulo

actividad. 2009.

Eric Merrill. Memcache cluster. 2014. URL https://moodle.org/plugins/

cachestore memcachecluster.

Mohamed A Mgheder y Mick J Ridley. Automatic generation of web user interfaces
in php using database metadata. En IEEE, ed., Internet and Web Applications

55


http://agilemodeling.com/essays/fdd.htm
https://adodb.org/dokuwiki/doku.php
https://moodle.org/plugins/cachestore_apc
https://moodle.org/plugins/cachestore_apc
https://moodle.org/plugins/cachestore_memcachecluster
https://moodle.org/plugins/cachestore_memcachecluster

Referencias 56

and Services, 2008. ICIW’08. Third International Conference on, pags. 426-430.
2008.

Moodle. Acerca de moodle. 2019. URL https://docs.moodle.org/all/es/

Acerca_de_Moodle.

Daniel Sanchez, Oscar Mendez, y Hector Florez. Applying the 3-layer model in
the construction of a framework to create web applications. En IIIS, ed., The
8th International Multi-Conference on Complexity, Informatics and Cybernetics,
2017., pag. 3647369. 2017.

Hunt Tim. A basic introduction to the moodle architectu-
re. 2010. URL  https://www.slideshare.net/tjh1000/

a-basic-introduciton-to-the-moodle-architecture-5442122.


https://docs.moodle.org/all/es/Acerca_de_Moodle
https://docs.moodle.org/all/es/Acerca_de_Moodle
https://www.slideshare.net/tjh1000/a-basic-introduciton-to-the-moodle-architecture-5442122
https://www.slideshare.net/tjh1000/a-basic-introduciton-to-the-moodle-architecture-5442122

	Desarrollo de un Esquema de Rendimiento para MOODLE
	ae315cf3a8917168c3150df71ffa35cdec3fc9f72a7468385ca6f8eca3338e77.pdf
	Desarrollo de un Esquema de Rendimiento para MOODLE
	Resumen
	Introducción
	Antecedentes
	Planteamiento del Problema
	Justificación del Proyecto
	Objetivos del Proyecto
	Metodología
	Alcances

	Marco Referencial
	Entorno Virtual de Aprendizaje(EVA)
	MOODLE
	Estructura de un plugin
	Instalación de un plugin

	Memorias caché
	Herramientas tecnológicas

	Análisis, Planificación y Diseño de funcionalidades
	Desarrollo de un modelo global
	Construcción de una lista de funcionalidades
	Planificación por funcionalidades
	Diseño de funcionalidades
	Recomendaciones
	Memoria caché
	Descargas


	Implementación, Pruebas y Resultados
	Implementación de funcionalidades
	Recomendaciones
	Memoria caché
	Descargas

	Pruebas
	Uso de las instrucciónes var_dump() y echo para verificar el estado del proceso
	Pruebas de rendimiento

	Resultados
	Resultados para archivos PDF
	Resultados para archivos FLAC
	Resultados para archivos MP4


	Conclusiones y Recomendaciones
	Apéndice A: Instalación de un Plugin
	Instalación directa desde el directorio de plugins de Moodle
	Instalación mediante archivo ZIP subido al sitio
	Instalación manual en el servidor

	Apéndice B: Instalación Redis en Linux
	Instalación usando la línea de comandos
	Instalación de PhpRedis

	Referencias




