ALY

UNIVERSIDAD
DE LOS ANDES

ProYECTO DE GRADO

Presentado ante la ilustre UNIVERSIDAD DE LOS ANDES

INTEGRACION DE GRAFOS ACICLICOS DIRIGIDOS PARA
MEJORAR LA ESCALABILIDAD EN LA CADENA DE

BLOQUES

Por

Br. Ana Elizabeth Guerrero Lopez

Tutor: Ph.D José Luis Paredes

Febrero, 2020

(©2020 Universidad de Los Andes Mérida, Venezuela

Integraciéon de grafos aciclicos dirigidos para mejorar la

escalabilidad en la cadena de bloques

Br. Ana Elizabeth Guerrero Lopez
Proyecto de Grado — Sistemas Computacionales, 65 paginas

Resumen: Desde el surgimiento de bitcoin en 2008, la tecnologia de cadena de bloques
ha tenido gran auge en los tltimos anos; con ella se pueden realizar transacciones sin
necesidad de terceros lo que ha causado un gran impacto en las divisas digitales. Sin
embargo, ha presentado problemas por los altos tiempos de procesamiento y validacion
de las transacciones. Innumerables desarrollos se han enfocado en mejorar dichos
tiempos de validacion, es por esto que en este trabajo se propone la inclusion de grafos
aciclicos dirigidos como estructura de datos dentro de la cadena de bloques, enfocandose
en mejorar la escalabilidad de los sistemas. El desarrollo de la red tiene como algoritmo
de consenso el algoritmo de transacciones como prueba de participacion con el cual se
obtienen métricas de rendimiento satisfactorias similares a las de las criptomonedas
mas importantes. Asi mismo, la red es implementada en un caso de uso demostrando
que el campo de aplicacion de la cadena de bloques es mas amplia que el mundo de las

divisas digitales.

Palabras clave: cadena de bloques, grafo aciclico dirigido, DAG, blockdag,
escalabilidad.

Indice general

Indice de Tablas VII

Indice de Figuras VIII

Indice de Algoritmos X

Agradecimientos XI

1. Introducciéon 1

1.1. Antecedentes 2

1.2. Planteamiento del problema 3

1.3. Objetivos e 4

1.3.1. General 4

1.3.2. Especificos 4

1.4. Justificacion 5

1.5. Alcance 6

1.6. Metodologia 6

1.7. Estructura del documento 7

2. Marco Teoérico 8
2.1. Cadena de bloques

2.1.1. Aplicaciones de la cadena de bloques 9

2.1.2. Algoritmos de consenso 15

2.1.3. Funcién Hash 17

2.1.4. Meétricas de rendimiento 18

v

2.2. Criptografia
2.2.1. Criptografia Simétrica
2.2.2. Criptografia Asimétrica.

2.3. Teoriade grafoso
2.3.1. Definicién de grafos
2.3.2. Grafos aciclicos dirigidoso

2.4. Modelo de desarrollo de software incremental

. Diseno y pruebas

3.1. Requerimientos del sistema
3.1.1. Requerimientos funcionales
3.1.2. Requerimientos no funcionales
3.1.3. Eleccién del lenguaje para la cadena de bloques

3.2. Comparacion de la cadena de bloques con y sin DAG
3.2.1. Estructura de las transacciones
3.2.2. Estructura de los participantes
3.2.3. Modulo de cadena de bloques 0L
3.2.4. Mobdulo de cadena de bloques con DAG
3.25. Cifrado.o
3.2.6. Consenso
3.2.7. Comparacion de redes y eleccion de algoritmo de consenso
3.2.8. Rendimiento de la red y algoritmo de consenso elegido

3.3. Comparacion de los resultados obtenidos con algunas criptomonedas . .

. Implementaciéon

4.1. Requerimientos del sistema L.
4.1.1. Requerimientos funcionales
4.1.2. Requerimientos no funcionales

4.2. Arquitectura cliente-servidor
4.2.1. Elementos de la arquitectura

4.3. Diseno de la base de datos

4.4. Implementacion L

26
26
26
27
27
28
29
30
30
33
37
38
43
48
o1

4.4.1. Envio de mensajeso 56

4.4.2. Historial de mensajes 58

5. Conclusiones y recomendaciones 59
5.1. Conclusioneso 59
5.2. Recomendaciones Lo 60

Bibliografia 62

Indice de tablas

3.1.
3.2.

3.3.

3.4.

Comparacion de rendimiento entre ECC y RSA. 38
Rendimiento de prueba de trabajo y prueba de transacciones como
participacion. Lo 44
Rendimiento de la red con algoritmo prueba de transacciones como
participacion. Lo 49

Comparacion de indicadores entre la red y algunas criptomonedas. . . . 51

VII

Indice de figuras

2.1.
2.2.

2.3.
2.4.
2.5.
2.6.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.

4.1.
4.2.
4.3.

Estructura de un bloque en bitcoin. Adaptado de Nakamoto (2008). . . 11
Esquema de transacciones de una criptomoneda. Adaptado de Nakamoto

(2008). . . . 12
Ejemplo de una funcion hash. Adaptado de Dacak (2015).. 18
Criptografia Simétrica. Fuente Paredes (2006). 20
Criptografia Asimétrica. Fuente Paredes (2006). 20
Fases de modelo incremental. Fuente Pressman (2005). 24
Estructura de un bloque dentrode lared.. 31
Estructura de cadena principal. 33
Estructura del DAG dentrode lared. 34
Estructura del DAG con bloque génesis. 35
Transacciones por segundo para PoW. 45
Transacciones por segundo para TaPoS. 45
Tamano de cola para PoW. 46
Tamano de cola para TaPoS. 46
Tiempo de cola promedio para PoW. 47
Tiempo de cola promedio para TaPoS. 47
Transacciones por segundo. 49
Tamano de cola. 50
Tiempo de cola promedio. L 50
Esquema de arquitectura cliente servidor. 55
Diseno de la base de datos. L. 55
Vista de envio de mensajes. 56

4.4. Diagrama de caso de uso para el envio de mensajes

4.5. Vista de envio de mensajes e historial de mensajes.

Indice de algoritmos

3.1. Creacién de una transaccion. 30
3.2. Creacion del bloque «génesis». L. 32
3.3. Creacion de un nuevo bloque. 33
3.4. Creacion del bloque «génesis» en un DAG. 36
3.5. Creacion de un nuevo bloque en el DAG. 37
3.6. Consenso de participantes. 39
3.7. Prueba de trabajo.o 40
3.8. Validar prueba de trabajo. oo 41
3.9. Seleccion de testigosen lared.00 42
3.10. Algoritmo de transacciones como prueba de participaciéon. 42
3.11. Validar transacciones como prueba de participacion. 43

Capitulo 1
Introducciéon

Uno de los nuevos avances tecnologicos que ha tenido gran auge recientemente
es la cadena de bloques. Esta nueva tecnologia comenzé con el lanzamiento de la
criptomoneda bitcoin (Nakamoto, 2008). Hoy en dia han nacido nuevas vertientes para
migrar la cadena de bloques a nuevos enfoques y ayudar a resolver diferentes problemas
como en el Internet de las cosas, big data, asi como todo aquel sistema que contenga
grandes cantidades de datos y se quieran manejar de forma descentralizada.

La seguridad que aporta la cadena de bloques ha sido muy bien aceptada y acertada
en esta era tecnoldgica donde los ataques a los sistemas estan a la orden del dia. Es
por esto, que se quiere brindar esta seguridad en nuevos campos de aplicaciéon que hoy
en dfa son vulnerables. Se han tomado varios enfoques para resolver los problemas de
escalabilidad y adaptacion de la cadena de bloques a estos sistemas, uno de ellos es la
inclusion de grafos aciclicos dirigidos como base de su estructura (Choi y col., 2018a).

Los grafos aciclicos dirigidos aportan la escalabilidad y rapidez que es necesaria en
la cadena de bloques, es por ello que es uno de los enfoques més acertados para resolver
esta problemética.

La presente investigacion pretende ser una incursion académica en el area de
la cadena de bloques y grafos aciclicos dirigidos, enfocdndose principalmente en el
desarrollo de una red que ayude a resolver la problemética expuesta aprovechando las

virtudes de cada tecnologia.

1.1 ANTECEDENTES 2

1.1. Antecedentes

En este trabajo se tiene como antecedentes todos aquellos trabajos en el ambito de la
cadena de bloques donde se han implementado grafos aciclicos dirigidos como estructura
de datos. Se concentrara la atenciéon en aquellos trabajos donde la contribuciéon sea la
mas relacionada con los objetivos a cumplir.

En el trabajo de Popov (2018), se tiene como estructura de datos un grafo aciclico
dirigido que llaman “el enredo” en el cual son guardadas las transacciones. La red esta
compuesta por nodos que son entidades que emiten y validan transacciones. Para emitir
una transaccion, los usuarios deben trabajar para aprobar otras transacciones; por lo
tanto, los usuarios que emiten una transaccion contribuyen a la seguridad de la red. En
dicho trabajo el objetivo es obtener un sistema de libro mayor distribuido sin el uso de
la cadena de bloques para obtener caracteristicas como cero comisiones, escalabilidad,
transacciones rapidas y transferencias de datos seguras, enfocado principalmente en ser
aplicado en el Internet de las cosas. La soluciéon propuesta a este problema viene siendo
el protocolo “Tangle” o “el enredo” basado en la estructura de datos de grafos aciclicos
dirigidos y el procesamiento de transacciones en paralelo. Este desarrollo se encuentra
implementado en la criptomoneda IOTA.

Por otro lado, Churyumov (2016) propone una criptomoneda llamada Byteball que
se encuentra disenada sobre un grafo aciclico dirigido, por lo tanto sustituyen la cadena
de bloques por esta estructura de datos. Cada transaccion pertenece a un nodo de la
red, no hacen uso de la prueba de trabajo que es el algoritmo mas comin en las
criptomonedas mas antiguas. La principal diferencia con Popov (2018), es la manera de
confirmar transacciones ya que en este caso si es necesario pagar un monto equivalente al
tamano de la transaccion, ademas de esto el nodo encargado de validar puede confirmar
un grupo de transacciones acumuladas. La propuesta de este trabajo es realizar un
sistema para el almacenamiento descentralizado e inmutable de datos arbitrarios como
el dinero.

Del mismo modo, el trabajo realizado por Choi y col. (2018a) es importante en esta
area ya que hace uso de grafos aciclicos dirigidos sin eliminar la cadena de bloques,

manteniendo la estructura de la cadena principal con un protocolo al que denominan

1.2 PLANTEAMIENTO DEL PROBLEMA 3

“Lachesis”. Este protocolo hace uso de la asincronidad para sacar el mejor provecho
de la red donde cada nodo puede crear libremente nuevos eventos al mismo tiempo.
Se encuentra implementado en la criptomoneda denominada Fantom. El objetivo de
Fantom es lograr un alto rendimiento y un almacenamiento de datos seguro haciendo
uso de grafos aciclicos dirigidos y la cadena de bloques. La propuesta realizada es
un libro de contabilidad distribuido basado en grafos aciclicos dirigidos, un sistema
escalable y adaptable a diversos escenarios como ciudades inteligentes, manejo de tréfico
y educacion.

De los trabajos anteriormente expuestos se tomaron ideas para resolver el problema
en cuestion. Cada uno de ellos tienen enfoques diferentes para resolver el problema
de velocidad y escalabilidad de la cadena de bloques. En el caso de Popov (2018) se
obtiene una red sin cadena de bloques, enfocada completamente en el uso del grafo
aciclico dirigido donde se obtienen resultados muy satisfactorios en la criptomoneda
implementada. Por su parte, Churyumov (2016) ademés de eliminar la cadena de
bloques, elimina el concepto de bloques de la red. Por otro lado, el trabajo propuesto
por Choi y col. (2018a) es implementado bajo el concepto de unificacion de cadena
de bloques con grafos aciclicos dirigidos, manteniendo las bondades de cada uno.
Cada uno de ellos realizan un manejo diferente de los datos dentro del DAG, de los

cuales se tomaron ideas principalmente del trabajo expuesto por Choi y col. (2018a) y

Churyumov (2016).

1.2. Planteamiento del problema

Desde el comienzo de la primera criptomoneda propuesta por Nakamoto (2008)
hasta las nuevas criptomonedas propuestas por Ethereum (Buterin, 2013) e Hyperledger
(Blummer, 2018), se ha dejado en evidencia su eficacia con respecto a transacciones.
Sin embargo, cuando se quiere usar su tecnologia base de cadena de bloques para el
manejo de datos se comienza a ver fallos principalmente en su capacidad de volverse
exponencial. Con la cadena de bloques cualquier nodo puede construir bloques y
propagarlos por la red, todos y cada uno de los nodos tienen esa informacion del

nuevo bloque y, ademas la informacién de todos los bloques anteriores. Pero qué pasa

1.3 OBJETIVOS 4

si ese bloque contiene imagenes o un gran tamano de datos o peor atin todos los nodos
comienzan a enviar bloques de gran tamano, la red podria convertirse en una cadena
de bloques fuera de control.

Aunado a este problema se encuentra que para que un bloque sea valido y aceptado
por los nodos de la red debe cumplir una prueba de trabajo que por naturaleza ofrece la
cadena de bloques. Los nodos mineros deben competir entre ellos para poder incluir un
nuevo bloque en la cadena y ganar una recompensa, pero en muchos casos es necesario
de un computador muy potente para poder resolver los problemas computacionales y
obtener la recompensa. Se han realizado muchos esfuerzos para disminuir el tiempo de
inserciéon de un nuevo bloque a la cadena pero los mismos han tenido dificultades ya
que se incurre en pérdidas de seguridad. De igual forma, la estructura de la cadena de
bloques es limitada y no permite la escalabilidad de los sistemas. Cuando se habla de
escalabilidad, en blockchain se hace referencia a la cantidad de transacciones que una
red puede procesar.

Uno de estos enfoques ha sido migrar la cadena de bloques a la estructura de grafos
aciclicos dirigidos, al hacer esto se gana rapidez en la inclusion de nuevos bloques
pero se ve afectada la seguridad ya que se elimina o se vuelve casi nula la prueba de
trabajo, por ende se han propuestos nuevos algoritmos de consenso como es el caso de

criptomonedas como Byteball o IOTA.

1.3. Objetivos

1.3.1. General

Mejorar la escalabilidad de sistemas basados en cadena de bloques con la inclusion

de grafos aciclicos dirigidos a su estructura.

1.3.2. Especificos

= Realizar una revision bibliografica sobre grafos aciclicos dirigidos y cadena de

bloques.

1.4 JUSTIFICACION 5

= Definir un protocolo de consenso que se ajuste a la estructura de grafos aciclicos

dirigidos.

= Implementar grafos aciclicos dirigidos como estructura de datos en la cadena de

bloques.

» Ejecutar pruebas de rendimiento y comparacion entre grafos aciclicos dirigidos y
la cadena de bloques tradicional mediante las métricas encontradas en la revision

bibliografica.

= Desarrollar un ambiente de prueba donde se aplique el sistema en un caso de uso.

1.4. Justificaciéon

Con la nueva era tecnologica cada vez es mas imprescindible tener seguridad en
los datos que se manejan desde pequenas empresas como grandes conglomerados
empresariales. La cadena de bloques o blockchain (término en inglés) ha prometido
ser la solucion a los problemas de seguridad necesarios debido a que cada nuevo bloque
anadido a la cadena es inmutable y no puede ser modificado. Este proceso es caro y
lento en comparacion a la cantidad de transacciones que el mundo necesita realizar cada
segundo, aunque es justificable si el fin que se quiere lograr es eliminar a los usuarios
maliciosos en la red.

En este sentido, los grafos aciclicos dirigidos aportan rapidez debido a que su
estructura permite realizar inserciones con una dependencia clara y ya no es necesario
recorrer toda la cadena para revisar un orden cronolégico de la transaccion. Asi mismo,
si el caso es la resolucion de un problema se puede insertar un orden de pasos a
realizar para resolver dicho problema. Esta virtud se puede traducir en un recorrido
computacionalmente menos costoso que el recorrido que se requeriria hacer en la cadena
de bloques para realizar la misma acciéon. De igual manera, permiten que los sistemas
puedan adaptarse a otros campos de aplicaciéon y no solo limitarse a transacciones.
Estas virtudes permiten ganar rapidez pero se pierde seguridad ya que el mecanismo

no aporta la inmutabilidad de los datos.

1.5 ALCANCE 6

Al evaluar la eficacia de la cadena de bloques se puede observar que es seguro,
inmutable y transparente, lo cual aporta grandes cambios a los procesos de hoy en
dia. Por otro lado, los grafos aciclicos dirigidos aportan escalabilidad y rapidez a las
transacciones de datos. Al unir estas virtudes se saca gran provecho ya que se puede
obtener un potente servicio que eliminaria las limitaciones de ambas tecnologias. Por
esta razon se pretende aprovechar la estructura del grafo para mejorar la escalabilidad

de sistemas basados en cadena de bloques.

1.5. Alcance

Disenar e implementar una red que incluya grafos aciclicos dirigidos como estructura
de datos en una cadena de bloques, aprovechando las virtudes de tener un sistema
descentralizado y una estructura de datos que permite realizar una validacion de
bloques mas rapida sin perder seguridad. Asi como la inclusién y escalabilidad en
otros casos de estudio. En este sentido, se pretende realizar un desarrollo de una red

que cumpla ese objetivo.

1.6. Metodologia

A continuaciéon se muestran los procedimientos més relevantes necesarios para

alcanzar los objetivos planteados.

= En primer lugar, se realizara una revision bibliografica exhaustiva sobre grafos
aciclicos dirigidos y cadena de bloques para obtener los conocimientos e ideas

necesarias para cumplir los objetivos planteados.

» Para definir el protocolo de consenso se estudiaran los protocolos desarrollados
hasta el momento para grafos aciclicos dirigidos y se escogeré aquel que se adapte

mejor.

= Una vez seleccionado el protocolo de consenso se procedera a la implementacion
de grafos aciclicos dirigidos como estructura de datos en la cadena de bloques,

siguiendo las fases de la metodologia de desarrollo incremental.

1.7 ESTRUCTURA DEL DOCUMENTO 7

= Por dltimo se realizara una serie de pruebas funcionales y de rendimiento para
comprobar la tasa de éxito o fracaso de la implementacion, asi como el desarrollo

de un ambiente de prueba donde sea aplicado el sistema en un caso de uso.

1.7. Estructura del documento

El documento se organiza de la siguiente manera: el capitulo 2 presenta las bases
teoricas del presente trabajo. Se describen los conceptos basicos de cadena de bloques
asi como los campos de aplicacién donde ha sido usado. De igual forma se realiza un
resumen de los protocolos de consenso mas relevantes en el campo y las métricas de
rendimiento importantes para la aplicacion de la cadena de bloques. Adicionalmente,
se describe la teoria de grafos y los conceptos de grafos aciclicos dirigidos, los cuales
son conceptos claves para la investigacion.

En el capitulo 3 se presenta el disenio y desarrollo de la red de cadena de bloques
con la integracion de grafos aciclicos dirigidos.

El capitulo 4 se desarrolla la integracion de los moédulos desarrollados en el Capitulo
3 a un caso de uso para verificar su funcionamiento.

Finalmente, en el capitulo 5 se presentan las conclusiones y recomendaciones del

trabajo realizado.

Capitulo 2
Marco Teoérico

El siguiente capitulo presenta una breve descripcion de los conceptos claves

necesarios para comprender las bases tedricas de la problemética que se quiere resolver.

2.1. Cadena de bloques

De acuerdo con Rennock y col. (2018) una cadena de bloques o blockchain es
un libro de contabilidad digital de transacciones entre pares que puede distribuirse
de forma publica o privada a todos los usuarios (y, por lo tanto, se dice que esta
descentralizado y distribuido). La tecnologia blockchain utiliza la criptografia y un
mecanismo de consenso para verificar las transacciones, lo que garantiza la legitimidad
de una transaccion, evita el doble gasto y permite transacciones de alto valor en un
entorno de confianza. Ademés de esto ofrece transparencia y elimina la necesidad de
intermediarios o administradores de terceros.

La cadena de bloques tiene miltiples campos de aplicaciéon ya que puede aportar
valor anadido tedricamente, a aquellas actividades que cumplan con las siguientes

condiciones (Roig y Montero, 2018):

1. Requieran almacenar datos

2. Precisen que el acceso a estos datos sea compartido entre diferentes partes y

2.1 CADENA DE BLOQUES 9

3. Estas partes no se conozcan entre ellas o no exista confianza mutua por otro

motivo.

Segun Garay y col. (2015) la creacion de una blockchain robusta debe garantizar

dos propiedades fundamentales:

= Disponibilidad: Asegura que una transacciéon honesta que ha sido emitida acabe
siendo anadida a la cadena de bloques, evitando que se produzca una denegacion

de servicio (Denial of Service, DoS)* por parte de nodos corruptos.

s Persistencia: Cuando un nodo da una transaccién como estable, el resto de nodos,

si son honestos, validaran ésta como estable haciéndola inmutable.

2.1.1. Aplicaciones de la cadena de bloques

Actualmente, sin duda alguna, una de los principales aplicaciones de la tecnologia
blockchain es el uso en criptomonedas. Sin embargo, el campo de aplicacién de esta

tecnologia es mucho mas amplio como se explica a continuacion.

2.1.1.1. Criptomonedas

La cadena de bloques puede disenarse como una base de datos verdaderamente
descentralizada y sin una autoridad central. Puede, por tanto, servir como centro de
intercambios de confianza entre multiples entidades sin que unas deban confiar en la
otras, eliminando por ejemplo a las autoridades centrales (como bancos), asi mismo
el criterio de emision de nuevas unidades monetarias se encuentra prefijado (Retamal
y col., 2017).

Una criptomoneda es un medio de cambio digital que utiliza tecnologia criptografica
para asegurar la veracidad de las transacciones. Se denomina transaccion a la
informacién correspondiente a la acciéon de transferir un monto de dinero entre dos

partes (Vilerifio, 2017).

IMétodo utilizado para interrumpir el acceso de los usuarios legitimos a una red o recurso web
objetivo. Por lo general, se logra sobrecargando el destino con una gran cantidad de trafico, que
provoca que el recurso objetivo funcione mal o se bloquee por completo (Academy, 2019).

2.1 CADENA DE BLOQUES 10

Bitcoin

Con el nacimiento de Bitcoin, las criptomonedas tomaron impulso en el mundo de
la computacion. Bitcoin fue propuesta en el 2008 por una persona bajo el seudénimo
«Satoshi Nakamoto» (Nakamoto, 2008). Fue la primer criptomoneda descentralizada
que resolvia el problema de doble gasto sin necesidad de confiar en una tercera parte

de confianza.

Estructura de los bloques

» El valor hash? del bloque previo. Este valor permite que los bloques queden

vinculados secuencialmente formando una cadena.

» Marca de tiempo (timestamp). Esta marca de tiempo permite identificar el

instante en el que fue creado el bloque.
» La dificultad con la que ese bloque fue hallado.
= Un conjunto de transacciones ordenadas.

» El valor del nonce?, este es el valor encontrado por fuerza bruta en el proceso de
minado; el minero prueba muchos nonce diferentes y el hash se vuelve a calcular
para cada valor hasta que se encuentre un hash que contenga el nimero necesario

de bits a cero.
= Un ntimero de version.
» Informaciéon. Por altimo, el bloque contiene la informacion.

En la siguiente Fig. 2.1 se observa un ejemplo de como es la estructura de un bloque

en bitcoin.

2Funcién matematica para transformar una informacion determinada (como un texto o un bloque)
en una una secuencia alfanumérica tnica de longitud fija. Ver Secciéon 2.1.3.
3Valor que se establece de modo que el hash contenga un nimero determinado de ceros.

2.1 CADENA DE BLOQUES

11

Bloque
» | Hash previo Nonce
TX Tx TX
Marca de N° de
tiempo version

Bloque
» | Hash previo Nonce
Tx TX Tx
Marca de N° de
tiempo version

Figura 2.1: Estructura de un bloque en bitcoin. Adaptado de Nakamoto (2008).

Transacciones Cuando se requiere realizar una transferencia de dinero digital de

un usuario a otro usuario, el proceso que se lleva a cabo para generar la transaccion es

crear la firma digital del hash criptografico del par formado por la transaccién anterior

que usd ese dinero y la clave publica del destinatario. De esta forma, el destinatario

puede verificar que el emisor era realmente el dueno del dinero, verificando la firma

digital contra la transaccién con el hash dado, y ademéas, puede volver a transferirla

usando su propia clave privada. En la Fig. 2.2 se presenta una esquematizacion de este

proceso, en donde se realizan tres transacciones de la criptomoneda.

En este sentido, de acuerdo con Vilerino (2017) una transaccion en bitcoin esta

compuesta por una lista de entradas (hash, indice, clave, firma) que hacen referencias

a salidas de transacciones anteriores. Una entrada contiene:

2.1 CADENA DE BLOQUES

12

Transaccion

Clave Publica
de A

Firma de
z

Transaccion

Clave Publica
de B

de A

Clave Privadal’”

" Firma de

A

Transaccion

Clave Publica
de C

de B

Clave Privadal”

~ Firma de

B

Clave Privada
de C

Figura 2.2: Esquema de transacciones de una criptomoneda. Adaptado de Nakamoto

(2008).

El hash de la transaccion a la que hace referencia.

La clave publica correspondiente a dicha salida.

correspondiente a la clave publica de la entrada.

El indice de la salida (output) deseada dentro de la transaccion.

Una firma digital del hash de la transaccion usando la clave privada

La forma de verificar la validez de las referencias a salidas de transacciones anteriores

es como se explica a continuacion: se calcula el hash de la clave publica y se verifica
que sea igual al que figura en la salida referenciada; luego basta con verificar la firma
digital con esa clave publica. Después de verificar la validez de la misma es agregada a

la cadena de bloques a formar parte de un bloque.

Nodos de la red Para que la red funcione correctamente es necesario el consenso
de nodos que es la validacion democrética de la misma. En el consenso de nodos es

donde se validan todas las transacciones y son propagadas por la red, con el fin de

evitar ataques maliciosos y dobles gastos.

2.1 CADENA DE BLOQUES 13

En bitcoin existen nodos creadores de transacciones y nodos mineros, los primeros
son los encargados de crear transacciones. Por su parte los nodos mineros son aquellos
encargados de propagar la informacion por la red; ante la llegada de un bloque a un
nodo, éste lo valida, lo agrega a la cadena de bloques y lo retransmite a sus nodos
vecinos (Nakamoto, 2008).

Para conseguir este consenso se parten de unas condiciones muy sencillas: cualquier
agente puede conectarse a otro nodo de la red, y recibir transacciones para formar un
bloque con ellas. Un bloque tiene un tamano maximo de un megabyte. Cuando tienen un
bloque formado, intentan resolver un rompecabezas computacional. El rompecabezas
consiste en encontrar un parametro (nonce) que consiga que al hacer el hash sobre
todo el bloque (incluido el nonce) se obtenga un valor inferior a la dificultad actual
establecida por la red.

Dicho de otra forma, se trata de encontrar un nonce que consiga un valor hash del
bloque con un determinado ntimero de ceros al inicio. Debido a las caracteristicas de
la funcién de hash, no es posible calcular estos valores analiticamente, es decir, para
obtener un bloque valido, el minero debe recurrir a la fuerza bruta: probar valores del
parametro nonce hasta hallar uno valido. Ademés, en el caso de que el agente haya
agotado todos los nonces sin cumplir el objetivo, puede actualizar la marca de tiempo
que posee la cabecera del bloque para variar igualmente el resultado del hash (Camara,
2018).

Existen decenas de criptomonedas, todas ellas comparten su utilidad como sistema
de pago. Algunas utilizan una blockchain propia y otras funcionan encima de la
blockchain de bitcoin. Su funcionamiento es bastante heterogéneo y todas ellas

pretenden aportar alguna mejora respecto a bitcoin.

2.1.1.2. Internet de las cosas y la cadena de bloques

A medida que la Internet de las cosas o IoT (de sus siglas en inglés, Internet
of Things) vaya convirtiéndose en realidad, el niimero de dispositivos conectados a
la red de redes crecera exponencialmente (Greenough, Jhon, 2015). Ahora, ademéas
de computadores y equipos de red, se van conectando a Internet electrodomésticos,

dispositivos de vigilancia y seguridad, sensores de todo tipo, entre otros, sin duda este

2.1 CADENA DE BLOQUES 14

nuevo ecosistema ofrece una flexibilidad sin precedentes.

Sin embargo, este paradigma tiene también algunos retos a resolver. Entre ellos,
destaca el ambito de la seguridad; uno de los primeros problemas de seguridad que
aparece en el entorno IoT es el nivel de supervision de los dispositivos. En este sentido,
en el entorno IoT, muchos dispositivos no estan supervisados con los niveles usados
en el mundo de la computacion (ordenadores personales o teléfonos inteligentes). Este
escenario, bien podria solucionarse con una blockchain; en este caso, se aprovecharia
tanto su caracteristica de sistema distribuido y su transparencia, como su robustez y

fiabilidad.

2.1.1.3. Seguridad en Big Data

Varias técnicas de big data se usan actualmente para analizar la blockchain e
incrementar sus niveles de seguridad. Estas técnicas permiten deducir las identidades
de los nodos en las criptomonedas, detectar fraudes y mapear los flujos reales de dinero
(Farell, 2015).

La relacion inversa, sin embargo, es aun mas prometedora de acuerdo con
Es-Samaali y col. (2017): utilizar la tecnologia blockchain para dar seguridad y
verificabilidad a entornos empresariales de big data. Con la explosion del big data,
practicamente toda empresa con un minimo de clientes esta interesada en sacar el
maximo partido a sus datos para asi mantenerse competitiva. Se trata de datos que
habitualmente provienen de diversas fuentes, en diversos formatos, y son utilizados
en diversos procesos por distintos departamentos de la empresa. Los peligros de
estos sistemas resultan bastante evidentes: manipulaciéon de los datos por parte
de trabajadores internos, proveedores maliciosos, corrupcién de los datos, fallos de
almacenamiento, uso defectuoso, incumplimiento de legislaciones respecto a los datos
personales y un largo etcétera.

En este contexto, la blockchain tiene mucho que aportar: transparencia,
verificabilidad y portabilidad. Mediante blockchain, cada anadido en los datos, cada
cambio, cada extracciéon para su uso o cada visualizacién se podria realizar utilizando
un registro transparente y seguro.

Los anteriores ejemplos son de las aplicaciones mas importantes que ha tenido la

2.1 CADENA DE BLOQUES 15

tecnologia de la cadena de bloques en nuevos campos de estudio, siendo estos algunos

campos de estudio en que se ha aplicado.

2.1.2. Algoritmos de consenso

De acuerdo con Blummer (2018), el consenso se refiere al proceso de lograr un
acuerdo entre los participantes de la red sobre el estado correcto de los datos en el
sistema. El consenso lleva a que todos los nodos compartan exactamente los mismos
datos. Por lo tanto, asegura que los datos en el libro mayor son los mismos para todos
los nodos de la red y, a su vez, evita que los actores malintencionados manipulen los
datos. Existen multiples algoritmos de consenso en la actualidad, cada uno con sus

ventajas y desventajas. Entre ellos se pueden nombrar como principales los siguientes:

Prueba de trabajo (PoW, del inglés Proof of work) Nakamoto (2008) describe
la prueba de trabajo como un proceso que implica la busqueda de un valor que, cuando
se utiliza el hash, como con SHA-256, éste comienza con un ntmero de bits definidos en
cero. El trabajo promedio requerido es exponencial en el niimero de bits cero requeridos
y se puede verificar ejecutando un solo hash.

En otras palabras, la prueba de trabajo requiere que los participantes realicen un
trabajo intensivo desde el punto de vista computacional pero facil de verificar por
otros miembros en la red. En el caso del bitcoin, los mineros compiten por anadir un
conjunto de transacciones (el bloque), al blockchain global mantenido por la red. Para
hacer esto, un minero debe ser el primero en descifrar correctamente el “nonce”, para
crear un hash que comienza con un namero requerido de ceros. El minero ganador se
anuncia publicamente y el resto puede comprobar facilmente que hizo bien la prueba
de trabajo. Una vez que todos estan de acuerdo agregan el bloque a la cadena y el ciclo

se repite.

Prueba de participacién (PoS, del inglés Proof of stake) El algoritmo de
prueba de participacion es descrito por Camara (2018), como un algoritmo que hace
que la probabilidad de que un nodo sea elegido para generar o validar el siguiente

bloque, sea proporcional a lo que tiene invertido en el blockchain, normalmente en

2.1 CADENA DE BLOQUES 16

forma de monedas. La recompensa suele ser en forma de comisiones por transaccion.
El algoritmo se basa en la preseleccion del nodo que generara el siguiente bloque de
entre una serie de nodos validadores que deben bloquear parte de su criptomoneda para
poder optar a crear nuevos bloques. Tras la generacion, el bloque debe ser aceptado por
el resto de los nodos validadores mediante un proceso de votaciéon. Los nodos reciben
recompensa por participar en la generacion y en la validacion de la cadena.

La principal ventaja que ofrece la prueba de participacion con la prueba de trabajo
es la disminucion del costo computacional que se requiere en PoW, por esta razéon ha
sido una de la propuestas méas aceptadas por las criptomonedas. Un posible riesgo que
debe tenerse en cuenta al implementar este tipo de algoritmos es el posible beneficio
que un nodo puede obtener de votar en varios bloques a la vez, atn sabiendo que uno

de ellos no es valido.

2.1.2.1. Algoritmos de consenso aplicados a grafos aciclicos dirigidos

Prueba de Participacion Delegada (DPoS, del inglés Delegated Proof of
Stake) En la prueba de participacion delegada, en lugar de apostar monedas para
validar transacciones, los propietarios de tokens votan por un grupo selecto para que
cumpla la funciéon de validar transacciones. El DPoS permanece “descentralizado”
en el sentido de que todos los participantes de la red participan en la seleccion de
los nodos que validan las transacciones, pero centralizado en el sentido de que un
grupo mas pequeno toma decisiones que aumentan la velocidad y la verificacion de las
transacciones.

Las implementaciones del DPoS mantienen una reputacién, un proceso de votacion
continuo y un sistema de reorganizacion que mantiene a los validadores electos
responsables y honestos. Las ventajas del DPoS con respecto a la prueba de trabajo es
que es un algoritmo que permite la escalabilidad y proporciona una rapida verificacion
de las transacciones, pero la desventaja es que estd parcialmente centralizado y el
modelo de gobernanza aiin se encuentra en estudios e implementaciones en proyectos

de gran envergadura.

2.1 CADENA DE BLOQUES 17

Transacciones como Prueba de Participacion (TaPOS, del inglés Transaction
As Proof Of Stake) Las Transacciones como Prueba de Participacion, es una
de las caracteristicas tnicas de DPoS. Esta permite que cada transaccion en la red
pueda incluir opcionalmente el hash de un bloque reciente. Con ello, el firmante de la
transaccion puede estar seguro de que su transaccion no puede aplicarse a ninguna otra
instancia.

Esta caracteristica evita situaciones de doble gasto. Ademaés, su uso ayuda a que
todas las partes terminen certificando la integridad del historial de transacciones

(Larimer, 2018b).

2.1.3. Funcion Hash

La palabra hash tiene diferentes significados, pero el area de interés en este
desarrollo es en el contexto de una funcién criptografica. De acuerdo con Lizama
y col. (2019), una funcién hash es un procedimiento criptografico donde se emplea
un algoritmo especifico para transformar una informaciéon determinada en una
una secuencia alfanumérica tnica de longitud fija, denominada hash. Entre las
caracteristicas esenciales de las funciones hash para el area de cadena de bloques se

tiene:

= Es una funciéon unidireccional, es decir, es facil generar el hash pero es

practicamente imposible reconstruir los datos.

= Es una funcién determinista, para una misma informaciéon de entrada siempre se

genera un valor hash idéntico.

= Es resistente a las colisiones ya que el valor del hash debe ser tinico para cada

contenido.

En la Fig. 2.3 se observa un breve ejemplo del funcionamiento de una funcion hash.

2.1 CADENA DE BLOQUES

18

Entrada

Zorro —> | Funcién hash

El zorro rojo

corre a través del| == | Funcién hash

hielo

El zorro rojo

camina a través | == | Funcién hash

del hielo

Figura 2.3: Ejemplo de una funcién hash. Adaptado de Dacak (2015).

2.1.4. Meétricas de rendimiento

—

Salida

DFCD3454

52ED879E

46042841

Mahesh (2018) enumera las métricas de rendimiento como se explican a

continuacion:

1. Latencia de lectura: es el tiempo entre el momento en que se envia la solicitud

de lectura y cuando se recibe la respuesta. Su formula se expresa en la Ec. 2.1.

Latencia de lectura = Tiempo en que se recibio la respuesta

— tiempo de envio de solicitud

2. Rendimiento de lectura: es una medida de cuantas operaciones de lectura

(2.1)

se completan en un periodo de tiempo definido, expresado como lecturas

por segundo (RPS, del inglés Readings Per Second). Esta métrica puede ser

informativa, pero no es la medida principal del rendimiento de la cadena de

bloques. De hecho, los sistemas normalmente se implementarédn adyacentes a la

cadena de bloques para facilitar lecturas y consultas significativas. El rendimiento

de lectura se calcula como se expresa en la Ec. 2.2.

2.2 CRIPTOGRAFIA 19

Operaciones de lectura totales

Rendimiento de lectura = (2.2)

tiempo total en sequndos

3. Latencia de transaccion: es la cantidad de tiempo necesario para que el efecto de
una transaccion sea utilizable en toda la red. La mediciéon incluye el tiempo desde
el momento en que se envia hasta el punto en que el resultado estd ampliamente
disponible en la red. Esto incluye el tiempo de propagacion y cualquier tiempo de
establecimiento debido al mecanismo de consenso establecido. La ecuacién que
define la latencia de transaccion es la Ec. 2.3. Esta medida de rendimiento es

cominmente llamada tiempo de cola de la red.

Latencia de transaccion = tiempo de confirmacion - tiempo de envio (2.3)

4. Rendimiento de transaccion: es la tasa a la cual las transacciones validas son
confirmadas en todos los nodos de la red de la cadena de bloques en un periodo
de tiempo definido. El rendimiento de transacciéon es calculado segin la Ec. 2.4.

Esta medida de rendimiento es cominmente llamada transacciones por segundo

(tps).

Total de transacciones firmadas

Rendimiento de transacciones =

2.4
tiempo total en sequndos (24)

2.2. Criptografia

Bajo la definicion dada por Paredes (2006) la palabra criptografia proviene en
un sentido etimoloégico del griego Kriptos = ocultar, Graphos = escritura, lo que
significaria ocultar la escritura, o en un sentido mas amplio seria aplicar alguna técnica
para hacer ininteligible un mensaje. La criptografia es la ciencia encargada de disenar
funciones o dispositivos, capaces de transformar mensajes legibles a mensajes cifrados
de tal manera que esta transformacion (cifrar) y su transformacion inversa (descifrar)

s6lo pueden ser factibles con el conocimiento de una o mas claves.

2.2 CRIPTOGRAFIA 20

La criptografia se puede clasificar histéricamente en dos: La criptografia clasica y
la criptografia moderna. El uso de criptografia en blockchain ha sido la criptografia
moderna bajo el grupo de criptografia asimétrica, pero para entender el concepto se

explicara también el grupo de criptografia simétrica.

2.2.1. Criptografia Simétrica

La criptografia simétrica o de clave secreta es aquella que utiliza algin método
matematico llamado sistema de cifrado para cifrar y descifrar un mensaje utilizando
tnicamente una clave secreta. Se puede observar en la Fig. 2.4 que la linea punteada
es el eje de simetria: lo mismo que hay de un lado existe exactamente igual en el otro,

esto ilustra el hecho del porqué se le da el nombre de criptografia simétrica.

Llave secreta: k Llave secreta: k

cifrado cifrado

Figura 2.4: Criptografia Simétrica. Fuente Paredes (2006).

2.2.2. Criptografia Asimétrica

ILIave secreta: kll ILIa\.'e secreta: k2|

l y

cifrado cifrado

Figura 2.5: Criptografia Asimétrica. Fuente Paredes (2006).

2.2 CRIPTOGRAFIA 21

Si se observa la Fig. 2.5, que ilustra la idea de criptografia de clave publica, se puede
ver claramente que no existe simetria en ella, ya que de un lado de la figura se cifra o
descifra con una clave piblica y en el otro lado con una privada. De este hecho es de
donde la criptografia asimétrica debe su nombre. Para este tipo de criptografia lo que
se cifra con una clave se puede descifrar con la otra clave. Algunos ejemplos de este
tipo de criptografia son RSA y Curvas Elipticas.

Este sistema de criptografia asimétrica es uno de los pilares de la tecnologia de la

cadena de bloques.

2.2.2.1. Rivest-Shamir-Adleman (RSA)

De acuerdo con Bhanot y Hans (2015), RSA significa Ron Rivest, Adi Shamir y
Leonard Adleman, quienes lo desarrollaron y lo describieron publicamente en 1978.
Un usuario de RSA crea y luego publica el producto de dos ntmeros primos grandes
(P * Q), junto con un valor auxiliar (I), como su clave publica. Los factores primos
(P * Q) deben mantenerse en secreto. Cualquiera puede usar la clave publica para
cifrar un mensaje, pero con los métodos publicados actualmente, si la clave publica es
lo suficientemente grande, solo alguien con conocimiento de los factores primos puede
decodificar el mensaje de manera factible. El algoritmo RSA se puede usar tanto para
el cifrado de clave publica como para las firmas digitales. Su seguridad se basa en la

dificultad de factorizar enteros grandes.

2.2.2.2. Criptografia de curva eliptica

La criptografia de curva eliptica (ECC, por sus siglas en inglés Elliptic Curve
Cryptography) fue descubierta en 1985 por Victor Miller de IBM y Neil Koblitz de
la Universidad de Washington como un mecanismo alternativo para implementar la
criptografia de clave publica.

Segtn Bhanot y Hans (2015), ECC se basa en estructuras algebraicas de curvas
elipticas sobre campos finitos, es decir, teoria de curvas elipticas. ECC crea claves mas
rapidas, mas pequenas y mas eficientes en comparacion con otros algoritmos de cifrado.
Este algoritmo es tan eficiente que puede proporcionar un nivel de seguridad con una

clave de 164 bits que otros sistemas requieren una clave de 1.024 bits para alcanzar

2.3 TEORIA DE GRAFOS 22

ese nivel de seguridad, es decir, ofrece la méxima seguridad con tamanos de bits mas
pequenos, por eso consume menos energia.

Bésicamente, una curva eliptica es una curva plana sobre un campo finito (en lugar
de numeros reales). El cifrado se realiza en forma de ecuaciéon de curva eliptica que
consiste en los valores puntuales que satisfacen la ecuacion: y? = 23 + Az + B, donde
A y B son los valores constantes de un punto.

La principal ventaja de ECC utiliza una longitud de clave corta que conduce a una
velocidad de cifrado rdpida y a un menor consumo de energia. La desventaja de ECC es
que aumenta el tamano del texto cifrado y la segunda desventaja es que ECC depende
de ecuaciones muy complejas que conducen a aumentar la complejidad del algoritmo

de cifrado.

2.3. Teoria de grafos

2.3.1. Definicién de grafos

Un grafo es una estructura que representa relaciones e interdependencias entre
objetos, y las caracteristicas que los relaciona. Se definiré el concepto de grafos aciclicos
dirigidos (DAG, del inglés Directed Acyclic Graph) segin lo que explica Riiegg y col.
(2016)

2.3.2. Grafos aciclicos dirigidos

Definicion 1. Un grafo G es un par G = (V, E) consistente de un conjunto finito
V # () y un conjunto E de dos elementos subconjuntos de V. Los elementos de V'
son llamados vértices. Un elemento e = {a,b} de E es llamada una arista con vértices
finales a y b. Se dice que a y b son incidentes con e y que a y b son adyacentes o vecinos

uno de otro, y se define como e =ab o a e b.

Definicién 2. Para determinar la relacion que existe entre la informacion de los
vértices (que las conexiones no modelan) se define un digrafo. Un digrafo, existe cuando

el conjunto de conexiones A = A(G) es dirigido, es decir, se distinguen entre las

2.4 MODELO DE DESARROLLO DE SOFTWARE INCREMENTAL 23

conexiones e;; = (v;,v;) v €j; = (vj,v;), entonces el grafo D = (V, A) se denomina

grafo dirigido o digrafo.

Definicion 3. Ahora, si entre las conexiones el digrafo tiene relacionado un niimero
T'(v;,v;) que representa el costo de comunicacion entre el vértice v; y el vértice v;, se
tiene un grafo ponderado. Un grafo ponderado, es un par (G, W) donde G es un grafo
y W es una funcion W : E — R™, de esta manera el peso de una conexion e es W (e).
El peso del grafo es W(G) = 3. . W e).

Definicion 4. Un grafo que no tiene ciclos en conexiones paralelas es decir no tiene

conexiones de la forma: e,,,, se denomina un grafo aciclico.

Definicion 5. Dado un DAG G = (V, E), donde cada nodo v € V' tiene una anchura
positiva w,; una division por capas o niveles de G, (también llamada, estratificacion
de G) es una particion de su conjunto de nodos V' dentro de subconjuntos disjuntos
Vi, Vo, ...,V , tal que si (u,v) € E donde u € V; y v € V; entonces ¢ > j. Un DAG

con una estratificacion o division por niveles, es llamado un digrafo estratificado.

Definicién 6. La altura de un digrafo estratificado, es el niimero de niveles h, del

digrafo.

Definicién 7. La anchura de un nivel V}, es tradicionalmente definido como, w(Vj) =
> vev, Wo ¥ la anchura de un digrafo estratificado (dividido en capas o niveles) es

definido por la ecuacion w = maz<p<pw(Vy).

2.4. Modelo de desarrollo de software incremental

El modelo incremental es usado cuando los requerimientos iniciales del software
estan razonablemente bien definidos, pero el alcance general del esfuerzo de desarrollo
imposibilita un proceso lineal. Cada secuencia lineal produce “incrementos” de software

susceptibles de entregarse de manera parecida a los incrementos producidos en un flujo

2.4 MODELO DE DESARROLLO DE SOFTWARE INCREMENTAL 24

de proceso evolutivo (Pressman, 2005). Las fases del modelo incremental se pueden

observar en la Fig. 2.6.

A

|:| Comunicacion

D Planeacién Incremento # n

Modelado I_I"
S) |:'"|_)--_,

D .
. espliegue ..
®

entrega del n-esimo
incremento

Incremento # 2

I e
|:'-‘--‘- entrega del segundo

Incremento # 1 incremento

-" entrega del primer
incremento

Funcionalidad y caracteristicas del software

Calendario del proyecto

Figura 2.6: Fases de modelo incremental. Fuente Pressman (2005).

= Comunicacion: En esta fase se recopilan, estudian y comprenden los objetivos
centrales y especificos que persigue el proyecto, asi como los requerimientos que

ayuden a definir las caracteristicas y funciones del software.

= Planeacion: En esta etapa se definen varios incrementos en donde cada uno
proporciona un subconjunto de la funcionalidad del sistema realizando un plan

de proyecto de software.

= Modelado: Seguidamente, se procede a realizar el diseno del software que ayude
a entender mejor los requerimientos del software y el diseno que lo satisfara. Asi
como la definiciéon de los requerimientos que se van a entregar para el primer

incremento o el siguiente incremento.

2.4 MODELO DE DESARROLLO DE SOFTWARE INCREMENTAL 25

= Construccion: La siguiente fase consiste en la generacion de codigo y las pruebas

que se requieren para descubrir errores en el desarrollo del incremento realizado.

= Despliegue: Por tltimo, se entrega el software al consumidor que lo evaltua y se
obtiene retroalimentaciéon para el siguiente incremento, hasta que se llegue a la

version final.

Con la finalizacion de este capitulo se obtienen los conocimientos necesarios para

implementar los objetivos planteados.

Capitulo 3

Diseno y pruebas

A continuacioén, se presenta el diseno de la red de cadena de bloques. En este capitulo
se toman decisiones importantes a la hora de la elecciéon del algoritmo de consenso
mas adecuado a la estructura de la red. Del mismo modo, se obtienen estadisticos

importantes al medir el rendimiento de la misma.

3.1. Requerimientos del sistema

La definicion de los requerimientos del sistema ayuda a especificar que es lo que el
sistema debe hacer, lo esencial del sistema asi como entender y tener una idea de lo que
el cliente tiene en su mente. Para el comienzo del desarrollo, bajo la metodologia de
modelo incremental, es necesario tener unos requerimientos establecidos y muy claros
de lo que se quiere; la recoleccion de los mismos fue realizada en reuniones con el tutor
semanalmente, el cual estuvo muy involucrado como usuario del sistema y cliente. De
igual forma, el tutor figura como usuario del sistema para pruebas; es importante
destacar que los requerimientos fueron cambiando a medida que se realizaban las

entregas incrementales propias de la metodologia seguida.

3.1.1. Requerimientos funcionales

Los requerimientos funcionales son las sentencias de los servicios que debe proveer

el sistema, la forma en que se debe comportar o las cosas que no deberia hacer. A

3.1 REQUERIMIENTOS DEL SISTEMA 27

continuacion, se listan los requisitos funcionales del sistema:

1. Cada participante de la red debe poder comunicarse con todos los demés

participantes de la red.
2. Se debe incluir grafos aciclicos dirigidos como estructura de datos en la red.
3. Se debe incluir un algoritmo de consenso que maximice velocidad.
4. Debe poseer 2 tipos de participantes en la red: Creador de transacciones y minero.

5. El participante creador de transacciones es el encargado de generar transacciones

dentro de la red.

6. El participante minero es el encargado de validar transacciones e incluirlas en los

bloques.

3.1.2. Requerimientos no funcionales

Los requerimientos no funcionales del sistema son aquellas restricciones sobre los

servicios o funciones que ofrece el sistema. Ellos son:
= Se debe crear una red descentralizada.

= Los participantes de la red deben comunicarse bajo protocolos estandares de

seguridad.

= La red debe ser implementada en un caso de uso que permita evaluar todos los

protocolos de una red de cadena de bloques.

s Cada participante de la red solo debe ser capaz de ver las transacciones o

informacion que lo involucra.

3.1.3. Elecciéon del lenguaje para la cadena de bloques

En el mundo blockchain los lenguajes preferidos para desarrollo son C/C++, java
y python, de acuerdo con Maldonado (2018). Cada uno de ellos tiene sus ventajas y

beneficios que aportan a los desarrollos.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 28

3.1.3.1. C/C++

Las ventajas que provee este lenguaje es que debido a su “bajo nivel” sus binarios
son més rapidos y su capacidad de portabilidad es muy alta. Esta caracteristica
permite que las plataformas blockchain sean muy rapidas, con gran capacidad de
escalabilidad, ademas de esto su capacidad de portabilidad hace que el sistema pueda

ser multiplataforma sin grandes cambios.

3.1.3.2. Java

Java es un lenguaje muy versatil y multiplataforma, siendo usado para el front-
end de varias criptomonedas ya que permite crear interfaces multiplataforma de forma

rapida y sencilla.

3.1.3.3. Python

Por su parte, python se esta convirtiendo en el software de anélisis de datos por
excelencia. Ademas su diseno orientado a objetos lo hace muy simple, tiene gran
portabilidad, proporciona estructuras de alto nivel y puede ampliarse con bibliotecas
adaptables. Es un lenguaje de uso simple y rapido, tiene muchas herramientas ya
listas para su uso, ademéas que el codigo generado es elegante, ordenado y de facil
entendimiento. Asi mismo, la comunidad que da soporte a python es amplia, lo cual es
importante para el desarrollo.

Si bien python no es un lenguaje 6ptimo para alcanzar grandes velocidades, para
este estudio se eligié por sus bondades y su portabilidad, lo cual es importante para
cumplir con los objetivos planteados. Ademés de esto se tenia conocimientos en el

mismo lo que facilitaba la programacion de los médulos.

3.2. Comparacién de la cadena de bloques con y sin

DAG

Para cumplir con los requerimientos antes expuestos se debe construir una red de

cadena de bloques y a su vez una red de cadena de bloques con grafos aciclicos dirigidos

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 29

como estructura de datos. Para ello se toma como base del desarrollo una estructura

de transaccion fija, para que la red pueda funcionar de forma similar en ambos casos.

3.2.1. Estructura de las transacciones

Una transacciéon es una transicion de estado que cambia los datos dentro de la
cadena de bloques de un valor a otro, pero una transacciéon puede ser un pago, una
remesa, un contrato inteligente, una recompensa, es decir cualquier tipo de intercambio
de informacién en la red.

La estructura de las transacciones propuesta es la siguiente:

= Autor.
m Destino.
s Contenido.

s Fecha.

Las cuales pertenecen a un bloque, donde es indiferente si se trata del modulo
de cadena de bloques o el mdédulo de cadena de bloques con DAG. La decision
de la estructura anteriormente mencionada proviene de la clasica estructura de un
bloque en bitcoin explicada anteriormente (véase Fig. 2.2). Donde la clave publica
de un participante A estd representado con el campo Autor, la clave publica de
un participante B estd representado con el campo Destino, el campo adicional de
Contenido es necesario para incluir los datos a transmitir y el campo Fecha es
utilizado para trazar la cronologia de las transacciones.

La autenticacion de las transacciones se basa en la criptografia asimétrica. Cada
participante tiene 2 claves, una piblica que es conocida por todos los participantes de
la red y una privada que es secreta; al crear una transaccion el participante la firma
con la clave publica del destinatario y el destinatario al recibirla la desencripta con su
clave privada. El Algoritmo 3.1 muestra el procedimiento llevado a cabo para crear una

transaccion dentro de la red.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 30

Algoritmo 3.1: Creaciéon de una transaccion.

1 def crearTransaccion(autor, contenido, destino):

2 origen < fecha < objetivo < vacio;

3 para participante in participantes hacer

4 si autor == participante.destino entonces

5 origen = participante.clavePublica;

6 si destino == participante.destino entonces

7 contenido < encriptar(contenido, participante.clavePublica);

8 fecha «+ fechaActual();

9 objetivo <— participante.clavePublica;
10 blockchain.agregarTransaccion(origen, objetivo, contenido, fecha);
11 fin def

3.2.2. Estructura de los participantes

Los participantes de la red son todos aquellos colectivos que van a jugar un papel
dentro de la misma. En el caso de este desarrollo se hace uso de la siguiente estructura

para cada participante:

= Una ip obtenida de la ip publica desde donde se conecta el participante.
= Una clave publica identificadora del participante.

= Un estado para identificar si se encuentra activo. Tiene dos posibles valores:

cierto o falso.

= Un tipo de participante, para determinar si es un participante creador de

transacciones o minero.

3.2.3. Moédulo de cadena de bloques

Para la elaboracion del moédulo de cadena de bloques se opt6 por seguir la estructura

base de una criptomoneda, la cual esta dada por Nakamoto (2008). Los elementos

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 31

principales de una cadena de bloques son las transacciones, los bloques y el consenso.

3.2.3.1. Bloques

En la red de cadena de bloques cada bloque puede contener una transaccién o un
listado de transacciones, las mismas forman parte de un bloque que tiene la estructura

presentada en la Fig. 3.1:

Marca de
tiempo

Bloque indice |Nash previo Hash |Transaccion| Nonce Minero

Figura 3.1: Estructura de un bloque dentro de la red.

» Un indice identificador del bloque.
= La transaccion o transacciones que pertenecen al bloque.

= La marca de tiempo que permite identificar el instante exacto en que fue creado

el bloque.

= El valor del hash anterior que es el hash perteneciente al bloque inmediatamente
anterior. Este valor es el que permite que los bloques estén vinculados

secuencialmente formando una cadena de bloques.
= El valor del hash calculado para el bloque.
= El nonce que es un valor que identifica la dificultad de la prueba de trabajo.

= El campo minero que es el identificador del participante minero que logré minar

el bloque.

La estructura anteriormente expuesta es la estructura basica de una red de cadena
de bloques (definido anteriormente en el Capitulo 2) con sus respectivas variaciones

propias de este desarrollo.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 32

3.2.3.2. Cadena Principal

La principal caracteristica de la cadena principal es la concatenacion de bloques,
para comenzar a formar la misma se realiza la creacién de un bloque llamado el bloque
«génesisy. Este bloque es creado como bloque principal y a partir de él se comienza a
formar la cadena principal. El Algoritmo 3.2 muestra el procedimiento llevado a cabo

para la creacion del mismo.

Algoritmo 3.2: Creacion del bloque «génesis».

1 si No existe bloque «génesisy entonces
2 bloque Bloque;

3 bloque.indice < 0;

4 bloque.transaccion < “génesis”;

5 bloque.hashPrevio < 0;

6 algoritmoConsenso < algoritmoDeConsenso(bloque);
7 nuevoBloque(bloque, algoritmoConsenso);
8 fin

En el momento de iniciar la red si no existe este bloque «génesis» no se puede
formar la cadena principal, debido a que no se puede llenar el campo de hash previo en el
bloque que esta por crearse. El bloque génesis se puede crear con cualquier informacion,
lo realmente importante de este bloque es crear el primer hash para formar la cadena
principal.

El proceso de formacion de la cadena principal comienza con el bloque «génesisy,
luego los siguientes bloques comienzan a concatenarse uno detras de otro formando
una lista doblemente enlazada, como se observa en la Fig. 3.2. El procedimiento para

crear un nuevo bloque es presentado en el Algoritmo 3.3.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 33

Algoritmo 3.3: Creaciéon de un nuevo bloque.

1 def nuevoBlogue(bloque, algoritmoDeConsenso):

2 hashPrevio < blockchain.hashDelBloqueAnterior;

3 si validarAlgoritmoDeConsenso() == Falso entonces
4 t retornar Falso;

5 transaccionesNoConfirmadas < |[;

6 bloque.hash <+ algoritmoDeConsenso;

7 anadirBloqueEnCadena(bloque);

8 retornar True;

9 fin def

Con la definiciéon de la cadena principal se logra la inmutabilidad de la red, ya que
si se quiere alterar un bloque de la red debe estar enlazado en la cadena y los hashes

deben estar concatenados uno detras del otro.

Génesis Bloque 1 Bloque 2 Bloque N
Hash previo j==—=p| Hash previo je==p| Hash previo | | Hash previo

Marca de Marca de Marca de Marca de
tiempo tiempo tiempo tiempo

Hash Hash

Figura 3.2: Estructura de cadena principal.

3.2.4. Mobdulo de cadena de bloques con DAG

3.2.4.1. Estructura del DAG

Un grafo es una estructura que representa relaciones e interdependencias entre

objetos, y las caracteristicas que los relaciona. Un grafo aciclico dirigido es un grafo

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 34

que no tiene ciclos, es decir que para cada vértice v no hay un camino directo que
empiece y termine en v. En el caso del desarrollo la estructura del DAG es la siguiente,

representada en la Fig. 3.3.

» Vértices: Representan los bloques de la red.

= Aristas: Representan la dependencia de inclusion con respecto a los nodos.

mmi

Figura 3.3: Estructura del DAG dentro de la red.

3.2.4.2. Bloques

La estructura de los bloques no varia con respecto a la estructura de un bloque
en la cadena de bloques, basada en listas doblemente enlazadas. La diferencia entre
las estructuras radica en la forma de concatenar los bloques con el hash del bloque
anterior.

El DAG comienza con una entidad llamada «génesisy, similar al comienzo de la
estructura de la cadena de bloques en (Nakamoto, 2008), presentado en el Algoritmo
3.4. De igual forma, se puede observar como se forma el DAG en la Fig. 3.4

representando el bloque génesis de color azul.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 35

L

DT

Figura 3.4: Estructura del DAG con bloque génesis.

En el momento en que un participante quiere incluir un nuevo bloque a la estructura
es referenciado al hash de la entidad génesis. Luego la inclusion de un nuevo bloque
es referenciado al bloque anterior y asi sucesivamente crece el DAG, sin limitaciones
de inclusion de bloques consecutivos. Esta estructura es similar a la estructura de la
cadena de bloques, su principal diferencia radica en que no se sigue un orden de incluir
un bloque detras de otro. En el DAG existen bifurcaciones propias de la estructura,
donde se pueden seguir caminos diferentes pero manteniendo la relaciéon entre hashes
de hijos a padres.

Con esta estructura se logra mantener la inmutabilidad de los datos de la cadena de
bloques, ya que si se quiere alterar un bloque cambiara el hash del mismo y no coincidira
con el siguiente bloque. Esto es debido a que cada bloque sigue siendo confirmado por
su padre, por todos los padres de padres y asi sucesivamente. Este comportamiento
se reflejaria en todos los hijos siguientes y romperia la referencia a este bloque por su

hash.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 36

Algoritmo 3.4: Creacion del bloque «génesis» en un DAG.

1 si No existe bloque «génesisy entonces
2 bloque DAG;

3 bloque.indice < 0;

4 bloque.transaccion < “génesis”;

5 bloque.hashPrevio < 0;

6 algoritmoConsenso < algoritmoDeConsenso(bloque);
7 nuevoBloque(bloque, algoritmoConsenso);
8 fin

3.2.4.3. Cadena Principal

La cadena principal de Nakamoto (2008) es computacionalmente sencilla de
calcular, usa una lista doblemente enlazada asi que solo tiene que recorrerla para
obtenerla. Sin embargo, en el caso del desarrollo se tiene un DAG como estructura
de datos; por lo tanto no es tan sencilla la obtenciéon de la misma por lo que se tienen
que encontrar formas de usar la estructura del grafo para obtener una cadena principal.

En tal sentido, el algoritmo que la red presenta consiste en recorrer cada uno de los
arcos del DAG en el orden en que se crearon, de forma que se tenga un orden cronolégico
de las lista de bloques. Luego cada una de estas listas se ordenan en una lista mayor;
una vez ordenada la lista con cada uno de los arcos, se procede a comprobar mediante
el hash el orden de precedencia en la inserciéon de los mismos.

Seguidamente, en el Algoritmo 3.5 se presenta la variacion realizada para la creacion

de un nuevo bloque en la estructura de datos DAG.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 37

Algoritmo 3.5: Creaciéon de un nuevo bloque en el DAG.

1 def nuevoBlogue(bloque, algoritmoDeConsenso):

2 hashPrevio < blockdag.hashDelBloqueAnterior;

3 si validarAlgoritmoDeConsenso() == Falso entonces
4 retornar Falso;

5 fin

6 | transaccionesNoConfirmadas < [|;

7 bloque.hash <« algoritmoDeConsenso;

8 anadirBloqueEnDAG();

9 retornar True;
10 fin def

3.2.5. Cifrado

Existen numerosos estudios donde se puede comparan los algoritmos ECC con
algoritmos tradicionales como RSA. Uno de ellos es el realizado por Mashrufee y col.
(2016), la Tabla 3.1 muestra los resultados obtenidos por este estudio.

En el estudio se concluye que el algoritmo de ECC es mas eficiente con un tamano de
clave méas pequeno en comparacion con el algoritmo RSA y se considera principalmente
para dispositivos con recursos limitados. Es por esta razéon que las bondades del ECC
son satisfactorias para el desarrollo, brindando seguridad y velocidad al mismo tiempo.
La ventaja de este algoritmo es garantizar una alta seguridad con un tamano de
clave més corto que los tradicionales, ademas de esto permite realizar calculos de alta

velocidad.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG

38

Tabla 3.1: Comparacion de rendimiento entre ECC y RSA.

Parametros ECC RSA

Se pueden guardar
Gastos generales _

aproximadamente 10 | Més que ECC
computacionales

veces mas que la de RSA

Tamano de clave

Los parametros del
sistema y el par de claves

son mas cortos para el

ECC

Los parametros del
sistema y el par de claves
son mas grandes para el

RSA

ECC ofrece un
Ahorro de ancho de | considerable ahorro | Mucho menos ahorro de
banda de ancho de banda sobre | ancho de banda que ECC
RSA
Generacion de clave Maés rapido Més lento

Cifrado

Mucho mas rapido que

A buena velocidad pero

RSA
Mas lento que RSA

més lento que ECC
Mas rapido que ECC

Descifrado

Eficiencia en dispositivos))
Mucho més eficiente Menos eficiente que ECC

pequenos

3.2.6. Consenso

Un algoritmo de consenso es el que se encarga de la toma de decisiones dentro de
una red de cadena de bloques. En cada red se implemento un algoritmo de consenso
para determinar cuél de ellos era el que se adaptaba de mejor forma al DAG. De
igual manera, la red hace uso de un consenso de reconocimiento de participantes: en
el momento en que un participante se conecta a la red, cada participante expone los
participantes que el reconoce como pertenecientes a la red, se realiza un consenso
y aquellos participantes que tengan més del 51 % de reconocimiento son aceptados.

Este proceso se realiza para eliminar participantes sospechosos o que quieren incluirse

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 39

de forma malintencionada en la red. En el Algoritmo 3.6 se detalla paso a paso el

procedimiento para llevar a cabo el consenso de participantes en la red.

Algoritmo 3.6: Consenso de participantes.

1 def consensoDeParticipantes():

2

3

4

10

11

12

13

14

15

16

17

18

19

20

nuevosParticipantes + {};

para participante en blockdag.participantes hacer

si nuevosParticipantes existe entonces
nuevosParticipantes|‘cont’| <— nuevosParticipantes|‘cont’|+1;
en otro caso

inicializar nuevosParticipantes como participante;

si participante == participanteEjecutor entonces

continuar

participantesDeUnParticipante <— obtenerParticipantes(participante);

para valores en participantesDeUnParticipante hacer
si nuevosParticipantes contiene valores entonces

‘ nuevosParticipantes|‘cont’| < nuevosParticipantes|‘cont’] + 1;
en otro caso

t inicializar nuevosParticipantes como participante;

para participantes en nuevosParticipantes hacer

si nuevosParticipantes[‘cont’] >len(nuevosParticipantes) * 0.51
entonces
‘ anadirParticipante(participante);

en otro caso

t eliminarParticipante(participante);

21 fin def

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 40

3.2.6.1. Prueba de trabajo

El algoritmo de prueba de trabajo implementado se rigié6 por el propuesto por
(Nakamoto, 2008). Como primer paso se requiere tener un participante del tipo minero
el cual trabaja en segundo plano dentro de la red. Este participante debe encontrarse
atento a cualquier nueva transaccion que se genere dentro de la red. En el momento en
que se crea una nueva transaccion el participante minero procede a comenzar con su
tarea: calcula un hash, si éste no cumple con la dificultad asignada por la red aumenta
en 1 el valor del nonce y calcula de nuevo el hash. Este proceso es repetido por el
participante minero tantas veces sea necesario para cumplir la dificultad asignada.

Este proceso es explicado en el Algoritmo 3.7.

Algoritmo 3.7: Prueba de trabajo.

1 def hashCalculado(bloque):

2 bloque <« CifrarECC(bloque);

3 bloque «— ConvertirUTF8(bloque);

4 bloque < ConvertirHexadecimal(bloque);
5 retornar bloque;
6 fin def

7 def pruebaDeTrabajo(bloque):

8 calcularHash = hashCalculado(bloque);

9 mientras calcularHash no comience con Blockchain.dificultad ceros hacer
10 Bloque.nonce < Bloque.nonce + 1;

11 calcularHash <— hashCalculado();

12 retornar calcularHash;

13 fin def

Seguidamente, el primer participante minero que consiga el hash envia la
informacion al resto de participantes para que ellos corroboren la validez del mismo.
Si el bloque es aprobado por el 50 % +1 de los participantes del consenso se considera

valido y es anadido a la cadena, si es invalido es descartado.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 41

La prueba de trabajo es un proceso computacionalmente costoso, pero que su
resultado puede ser verificado rdpidamente por la red, el Algoritmo 3.8 demuestra esta

premisa.

Algoritmo 3.8: Validar prueba de trabajo.
1 def validarPruebaDeTrabajo(bloque, hashBlogque):

2 si hashBlogque comienza con Blockchain.dificultad ceros y hashBloque ==
bloque. calcularHash() entonces

3 ‘ retornar Cierto;

4 en otro caso

5 ‘ retornar Falso;

6 fin

7 fin def

3.2.6.2. Transacciones como prueba de participacion

Como se explica en la Seccion 2.1.2.1 el algoritmo de prueba de participacién tiene
dos variantes que son aplicadas en los grafos aciclicos dirigidos: El algoritmo de prueba
de participacion delegada y el algoritmo de transacciones como prueba de participacion.
Para la red se decidi6 usar el algoritmo de transacciones como prueba de participacion
debido a que no se estaba desarrollando una red con tokens que pudieran ser usados
para el algoritmo de prueba de participacion delegada. Este algoritmo es una variante
del algoritmo de consenso de prueba de participacion delegada.

DPOS fue creado por Larimer (2018a) en el inicio de las redes BitShares para
favorecer la escalabilidad de los sistemas sin perjudicar la descentralizacion en la
creacion de bloques. Funciona mediante el uso de sistemas de reputaciéon y votacion
en tiempo real para crear un panel de partes confiables limitadas. Estas partes son
llamadas testigos, los cuales son seleccionados por los accionistas.

Los accionistas son todos los participantes de la red que tienen mayor cantidad de
votos directamente proporcional a la cantidad de tokens que poseen. En el caso de
Prueba de participacion por transacciones es usado como valor de peso son la cantidad

de transacciones que posee el participante. En el Algoritmo 3.9 se explica como se

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 42

realiza la eleccion de los testigos por parte de los accionistas de la red, en este caso

aquellos participantes con el mayor ntimero de transacciones.

Algoritmo 3.9: Seleccion de testigos en la red.

1 def seleccionTestigos():

2 participantes <— blockchain.participantes;

3 para participante en participantes hacer

4 participante.cont trans <— calcularNumeroTransacciones(participante);
5 fin

6 | participantes.cont_trans.sort() /* ordenar de mayor a menor */
7 retornar participantes|0:21];

8 fin def

Los testigos son los encargados de tomar las decisiones dentro de la red para crear
y rechazar bloques, ademas de la validacion de transacciones. Si un testigo realiza mal
su trabajo o se comprueba que esta realizando transacciones fraudulentas es removido
de su posicion y suplantado por otro participante. En el Algoritmo 3.10 se muestra el

procedimiento llevado a cabo para realizar el consenso.

Algoritmo 3.10: Algoritmo de transacciones como prueba de participacion.

1 def transacionesComoPruebaDeParticipacion(bloque):
2 testigos < seleccionTestigos();

3 calcularHash < hashCalculado(bloque);

4 bloque.minero < testigos.pop(0).public_ key;

5 validarBloque(bloque);

6 nuevoBloque(bloque, calcularHash);
7 testigos.append(bloque.minero);
8 fin def

En el momento de validar la informacion devuelta por el anterior algoritmo, se
hace uso del Algoritmo 3.11. El cual cumple el mismo objetivo que el realizado por la

validacion para la prueba de trabajo: verificar la validez del hash encontrado.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 43

Algoritmo 3.11: Validar transacciones como prueba de participacion.

1 def walidarTaPoS(bloque, hashBloque):

2 si hashBloque == bloque.calcularHash() entonces
3 ‘ retornar Cierto;

4 en otro caso

5 t retornar Falso;

6 fin def

3.2.7. Comparacion de redes y eleccibn de algoritmo de

consenso

Como siguiente paso, se requiere realizar un experimento haciendo uso de los
dos algoritmos de consenso anteriormente explicados. De igual forma, comprobar
las diferencias de las estructuras de datos en cada una de las diferentes redes. Este
experimento se realiza con el objetivo de corroborar conceptualmente los algoritmos

explicados con anterioridad.

3.2.7.1. Diseno del experimento

Para el experimento se gener6é un script con 2 participantes de prueba en cada
red (cantidad minima de participantes para establecer una comunicacion). Cada red
ejecuta un algoritmo de consenso diferente: Prueba de trabajo para la red de blockchain
y transacciones como prueba de participacion para la red blockdag. El objetivo del

experimento consiste en probar el rendimiento en transacciones con indicadores de:

= Numero de transacciones por segundo.
s Tamano de la cola de transacciones.

= Tiempo de cola promedio.

En la simulaciéon cada algoritmo recibe 50 transacciones por segundo para validar.

Se quiere verificar cual de los dos algoritmos valida mas transacciones por segundo.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 44

Para el algoritmo de la prueba de trabajo se establecié un nonce con dificultad 4 que
tarda aproximadamente 10-20 segundos para minar cada bloque. El experimento se

realiz6 por 300 segundos.

3.2.7.2. Resultados

Los resultados obtenidos para este experimento se resumen en la Tabla 3.2. Para el
indicador de transacciones por segundo se obtuvo que por prueba de trabajo se validan
maximo 0,73 transacciones por segundo, mientras que con transacciones como prueba
de participaciéon se obtuvo un maximo de 23,22 transacciones por segundo, como se

puede verificar en las Fig. 3.5 y Fig. 3.6.

Tabla 3.2: Rendimiento de prueba de trabajo y prueba de transacciones como

participacion.
Indicadores Prueba de trabajo | Transacciones como
Prueba de participacion
Transacciones por segundo | 0,73 23,22
Tamano de cola 7072 29
Tiempo de cola promedio | 147,97 0,332

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 45

0.7 4

0.6 ~

0.5 4

0.4

0.3 4

N° de transacciones

0.2 A

0.1+

0.0 4

50 100 150 200 250 300
segundos

o4

Figura 3.5: Transacciones por segundo para PoW.

20 4

15 A

10 A

N°® de transacciones

50 100 150 200 250 300
segundos

o4

Figura 3.6: Transacciones por segundo para TaPoS.

En el caso de tamano de cola se obtuvo como resultado para el algoritmo de consenso
de prueba de trabajo un tamano de cola de 7072 transacciones y para transacciones
como prueba de participacion un tamano de cola de 29 transacciones, como se puede

observar en las Fig. 3.7 y Fig. 3.8.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 46

7000 -

6000 -

5000

4000 4

3000

2000

N° de transacciones

1000 A

50 100 150 200 250 300
segundos

[am |

Figura 3.7: Tamano de cola para PoW.

W
=]
L

M
L%]
L

=)
[a=]
L

N° de transacciones
[
(9]
1

101
5 -
0 4
0 50 100 150 200 250 300
segundos

Figura 3.8: Tamano de cola para TaPoS.

Del mismo modo, para el tiempo de cola promedio en el caso del algoritmo de prueba
de trabajo fue de 147,97 segundos en cola mientras que para transacciones como prueba
de participacion se tiene un maximo de cola de 0,332 segundos, como se muestra en las

Fig. 3.9 y Fig. 3.10.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 47

140 4

120 A

100 -

80 4

segundos

60 4

40

20 4

50 100 150 200 250 300
segundos

o4

Figura 3.9: Tiempo de cola promedio para PoW.

0.30 ~

segundos
=] =]
) [\
o (%))
1 1

o

i

wn
1

0.10 ~

50 100 150 200 250 300
segundos

o4

Figura 3.10: Tiempo de cola promedio para TaPoS.

3.2.7.3. Conclusiones

En los resultados obtenidos se puede observa la clara diferencia entre las dos redes.

Por un lado la red blockchain con el algoritmo de prueba de trabajo se observa en la

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 48

Fig. 3.5 que al pasar el tiempo el tps comienza a disminuir; este comportamiento se
puede ver también en las Fig. 3.7 y Fig. 3.9 al aumentar el tamano de la cola y el
tiempo de cola de promedio.

Por su parte, la red blockdag con el algoritmo de transacciones como prueba de
participacion obtuvo resultados satisfactorios como se puede observar en la Fig. 3.6
donde se mantiene en crecimiento el nimero de transacciones validadas por segundo;
a pesar que el tiempo de cola promedio se ve en aumento (Fig. 3.10) no presenta un
incremento significativo para la red.

Con los resultados obtenidos queda en evidencia la rapidez que aporta el algoritmo
de transacciones como prueba de participaciéon a la red. Por esta razon se determind

que es el algoritmo que mejor se adapta a los requerimientos expuestos.

3.2.8. Rendimiento de la red y algoritmo de consenso elegido

Seguidamente, se realizo una prueba de estrés para comprobar la estabilidad de la
red. Se desea obtener mejores resultados del algoritmo de consenso al incrementar el
nimero de participantes involucrados en la simulacion.

3.2.8.1. Diseno del experimento

En este caso, se realizo un script el cual involucra 12 participantes activos al mismo
tiempo en la red. El objetivo de la prueba es maximizar los resultados obtenidos para

los indicadores de:

= Numero de transacciones por segundo.
= Tamano de la cola de transacciones.

= Tiempo de cola promedio.

En la simulaciéon el algoritmo recibe 200 transacciones por segundo para validar.

De igual forma, el experimento se realiz6é por 300 segundos continuos.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 49

3.2.8.2. Resultados

Los resultados de este experimento se resumen en la Tabla 3.3. Para el caso de
transacciones por segundo se obtuvo un resultado de 57.40 tps, representado en la Fig.
3.11. Este ntumero es considerablemente més alto que el obtenido en el experimento

anterior.

Tabla 3.3: Rendimiento de la red con algoritmo prueba de transacciones como

participacion.
. Transacciones como
Indicadores
Prueba de participacion
Transacciones por segundo 57,40
Tamano de cola 403,63
Tiempo de cola promedio 2,73

60

50 A

40

30 A

20 A

N° de transacciones

10 A

0 50 100 150 200 250 300
segundos

Figura 3.11: Transacciones por segundo.

En el caso del indicador de tamano de cola de transacciones se evidencié un maximo

de 403.63 transacciones. En la Fig. 3.12 se puede observar el comportamiento de la red.

3.2 COMPARACION DE LA CADENA DE BLOQUES CON Y SIN DAG 50

400 -

350 4

300 -

250

200

150 1

N° de transacciones

100 1

50 A

50 100 150 200 250 300
segundos

[|

Figura 3.12: Tamano de cola.

Asi mismo, para el indicador tiempo de cola promedio se observo que el pico maximo

obtenido de cola fue de 2.73 segundos, como se puede apreciar en la Fig.3.13.

251
2.0 1
n
o
o
5 1.5
o
4
1.01
0.5 1
0 50 100 150 200 250 300
segundos

Figura 3.13: Tiempo de cola promedio.

3.3 COMPARACION DE LOS RESULTADOS OBTENIDOS CON ALGUNAS CRIPTOMONEDAS 51

3.2.8.3. Conclusiones

Al comparar los resultados de los dos experimentos es evidente la velocidad que
aporta el algoritmo de consenso de transacciones como prueba de participacion. Se
puede observar que el niimero de transacciones validadas por segundo aumenta de 23
tps a 57,4 tps. Del mismo modo, el tamano de cola tiene un pico de 403,63 transacciones
en cola pero con el pasar del tiempo desciende.

Este comportamiento de la red se debe a que mientras la red va creciendo y existen
mas participantes activos dentro de la misma, la velocidad con que se validan las

transacciones aumenta.

3.3. Comparacion de los resultados obtenidos con
algunas criptomonedas

A continuacioén, en la Tabla 3.4 se presenta una recoleccién de indicadores de las

criptomonedas bitcoin, bitcoin cash, ethereum e iota.

Tabla 3.4: Comparacion de indicadores entre la red y algunas criptomonedas.

Red Transacciones Tamano de cola | Tiempo de cola
por segundo promedio

Bitcoin 7 tps 267,52 t/seg 430,98 seg

Ethereum 14,15 tps 571,1 t/seg 13,2 seg

Bitcoin Cash | 61 tps 315 t/seg 587,76 seg

IOTA 50 No proporcionado | 84 seg

BLOCKDAG | 57,40 tps 403,63 t/s 2,73 seg

Con respecto a las transacciones por segundo, la red logra uno de los tps mas alto de
la red, superando incluso a la criptomonoda IOTA que tiene una estructura de grafos
aciclicos dirigidos. Asi mismo, cuenta con uno de los tamano de cola més pequeno, asi
como el menor tiempo promedio de cola. Esto demuestra que el desarrollo es capaz de

soportar el flujo de transacciones introducidos sin sobrecargarse.

3.3 COMPARACION DE LOS RESULTADOS OBTENIDOS CON ALGUNAS CRIPTOMONEDAS 52

De igual forma, los resultados obtenidos fueron satisfactorios ya que se logro obtener
unas métricas de rendimiento muy similares (y en algunos casos mejores) que las
criptomonedas en curso. Es importante resaltar, que estos valores son obtenidos para
una red que no se encuentra en producciéon y es una prueba bastante reducida con
respecto a las transacciones que reciben las redes de criptomonedas; de la misma
manera, no se tienen otros factores que influyen en ambientes de producciéon como

retrasos en la conectividad de los participantes.

Capitulo 4
Implementacion

En el presente capitulo se lleva a cabo la implementaciéon de la red en un caso de
uso. Para esto, la red se implement6 en un sistema de envio de mensajeria seguro, en

el cual las transacciones representan los mensajes intercambiados entre dos usuarios.

4.1. Requerimientos del sistema

La recoleccion de los requisitos del presente modulo fue realizada de la misma forma

explicada en el capitulo anterior: se realizaron reuniones semanales con el tutor.

4.1.1. Requerimientos funcionales

Permitir enviar mensajes de forma segura entre los usuarios.

» Un usuario puede ser emisor y receptor de mensajes a la vez.

Cada usuario debe tener un historial de conversaciones.

Cada conversacion solo puede ser vista por los usuarios que pertenezcan a ella;

para cualquier usuario sin permiso debe estar encriptada.

4.1.2. Requerimientos no funcionales

= Hacer uso de la cadena de bloques para el manejo seguro de la informacion.

4.2 ARQUITECTURA CLIENTE-SERVIDOR 54

4.2. Arquitectura cliente-servidor

La arquitectura cliente-servidor tiene dos partes claramente diferenciadas, una de
ellas es el servidor y por otro lado se encuentra el cliente o el grupo de clientes que
haran uso del servidor. Para la integracion de la red con el caso de uso es necesaria la

inclusion de una arquitectura que se adapte a las necesidades del sistema.

4.2.1. Elementos de la arquitectura

4.2.1.1. Cliente

Un cliente puede ser un equipo que requiere los servicios de un equipo servidor,
o bien un proceso que solicita los servicios de otro. Normalmente estas peticiones son

realizadas por un usuario o esta involucrado directamente de interactuar con el usuario.

4.2.1.2. Servidor

Un servidor por su parte, es un equipo que ejecuta servicios para atender las
demandas de diferentes clientes, también es un proceso que ofrece el recurso o recursos
que administra los clientes que lo solicitan.

La arquitectura cliente-servidor es propicia ya que la red se comporta como servidor
y el caso de uso como cliente. Como se puede apreciar en la Fig. 4.1 un cliente A realiza
la peticion al servidor (red blockdag) para enviar un mensaje; el servidor responde la

peticion enviando el mensaje al cliente B.

4.3 DISENO DE LA BASE DE DATOS 55

RED BLOCKDAG

CLIENTE A

SERVIDOR

CLIENTE B

Figura 4.1: Esquema de arquitectura cliente servidor.

4.3. Diseno de la base de datos

El envio de mensajeria seguro requiere estar adaptado a la estructura de las
respuestas que obtiene de la red blockdag, por tanto se diseno la base de datos que

se observa en la Fig. 4.2.

usuarios mensajes bloque
crea

clavePrivada 1..n autor indice
clavePublica destino pertenece marcaDeTiempo
ip] contenido 1..n] hashAnterior
estado destino fecha nonce
tipo 1 minero

1)

L valida j<

Los usuarios de la base de datos representan los participantes de la red, los cuales

Figura 4.2: Diseno de la base de datos.

4.4 IMPLEMENTACION 56

estan formados por la estructura de un participante: clave privada, clave publica, ip
y estado; no contiene tipo ya que todos los usuarios son creadores de transacciones
y la red es la que aporta los participantes validadores. De igual forma, los mensajes
representan las transacciones de la red, donde el autor figura como el usuario que envia
el mensaje, el destino es el usuario que recibird el mensaje, el contenido del mensaje
que se enviard y el campo fecha guarda el momento en el que el mensaje fue enviado.
Por su parte, manteniendo la estructura de la red blockdag, se tiene una entidad bloque

en la cual se encuentran encapsulados los mensajes.

4.4. Implementaciéon

La red blockdag al fungir como servidor tiene varios servicios que aporta. Entre ellos

se encuentran el envio de mensajes y el historial de mensajes recibidos.

4.4.1. Envio de mensajes

El proceso de enviar mensajes es muy sencillo, tal cual como funciona enviar
un mensaje en cualquier plataforma. La diferencia con otros sistemas es que cada
participante puede enviar mensajes a cualquier usuario de la red, es decir sus contactos
estan conformados por todos los participantes que se encuentren activos dentro de la
red. Seguidamente, se muestra la vista implementada para el envio de mensajes en la

Fig. 4.3.

ENVIO DE MENSAJES

Envio de Mensajes
Rt 192 168737002 .

Este mensaje €5 un texto de prucba

Figura 4.3: Vista de envio de mensajes.

Como primer paso, el usuario emisor del mensaje selecciona un usuario receptor del

4.4 IMPLEMENTACION 57

mensaje (de la lista de participantes). Seguidamente, procede a escribir el mensaje y
por tltimo envia el mensaje. Por su parte, el usuario receptor del mensaje recibira el

mensaje. Estas tareas son especificadas en la Fig. 4.4

Pagina Web

Seleccionar usuario
receptor del mensaje

Escribir mensaje

Usuario emisor - Enviar mensaje Usuario receptor
de mensajes de mensajes

Recibir mensaje

Figura 4.4: Diagrama de caso de uso para el envio de mensajes.

En este procedimiento, la red blockdag tiene un papel fundamental ya que es la que
se encarga de obtener todos los participantes que se encuentran activos dentro de la
red. De igual forma al usuario emisor enviar el mensaje, la red se encarga de crear la
transaccion, encriptarla y encapsularla en un bloque, asi como de transmitir el mensaje
creado a toda la red. Por parte del usuario receptor, la red se encargar de desencriptar

la informacioén en la que él se encuentra involucrado.

4.4 IMPLEMENTACION 58

4.4.2. Historial de mensajes

En la vista de historial de mensajes se tienen todos aquellos mensajes que el usuario
ha recibido. Como se puede ver en la Fig. 4.5 los campos se encuentran completamente

visibles, es decir desencriptados.

ENVIO DE MENSAJES

Envio de Mensajes
nitp 52168737002 .

Este mensaje es un texto de prusba

ﬁ Autor: http://192.168.7.3:7002

Figura 4.5: Vista de envio de mensajes e historial de mensajes.

Cualquier otro usuario que no se encuentre involucrado en la conversacion, vera la
informacion encriptada. Esto se debe a que la informacion se encuentra piblica para
cualquier participante de la red, pero tendrda campos encriptados en aquellos casos
donde no se encuentre involucrado para brindar privacidad de los mensajes enviados.

En el caso en que un participante intente desencriptar la informaciéon no podré
ya que los datos se encuentran encriptados con la clave piblica del usuario al que va

dirigido y solo puede ser desencriptada con la clave privada del mismo.

Capitulo 5

Conclusiones y recomendaciones

5.1. Conclusiones

Al culminar el desarrollo se obtuvieron resultados favorables en la investigacion, los

cuales son resumidos a continuacion.

= Con los resultados obtenidos se logra cumplir el objetivo deseado de este trabajo:
verificar que la inclusion de grafos aciclicos en una red blockchain es viable y

presenta resultados satisfactorios.

= De igual forma, se pudo verificar en la Secciéon 3.2.7 que el algoritmo de consenso
de transacciones como prueba de participacién se acopla correctamente a la

estructura de grafos aciclicos dirigidos.

» Por su parte, las pruebas de rendimiento realizadas a la red en la Secciéon 3.2.8,
muestran como el algoritmo de transacciones como prueba de participaciéon aporta

velocidad a la misma sin perder seguridad en ciertos procesos.

= Asi mismo, los resultados obtenidos de los experimentos en las Secciones 3.2.7
y 3.2.8 demuestran que, a pesar de que la red se ejecuta en una escala reducida
para un ambiente académico, puede llegar a métricas de rendimiento similares
a las que obtienen otras redes blockchain. Si bien es cierto que estos valores son

satisfactorios, es necesario realizar pruebas exhaustivas en un ambiente real de

5.2 RECOMENDACIONES 60

produccién donde se corrobore su correcto funcionamiento bajo medidas de estrés

reales.

= Se mejora la escalabilidad de los sistemas con esta nueva estructura, ya que al
demostrar que es posible la inclusion de grafos aciclicos dirigidos se elimina el
limite tedrico al que la cadena de bloques esta sometida con las listas doblemente

enlazadas y el consumo de memoria.

= De igual manera, se demuestra que esta nueva estructura blockdag es capaz de
adaptarse a nuevos casos de uso como el envio de mensajes implementado en este
trabajo. Esto abre muchas posibilidades a la hora de adaptar la cadena de bloques
en nuevos enfoques en los cuales puede ser totalmente tutil. Es decir, puede ser
utilizado en cualquier actividad donde se requieran almacenar datos, se precise

que el acceso a los datos sea compartido y las partes no se conozcan entre si.

= Por otro lado, el algoritmo de consenso de participantes (ver Algoritmo 3.6),
aporta un poco mas de seguridad a la red sin afectar su funcionamiento. Esta
es una medida de seguridad extra que puede ser tomada en cuenta en futuros

desarrollos.

5.2. Recomendaciones

Se recomienda realizar esfuerzos en mejorar la robustez del desarrollo con la
inclusion de contratos inteligentes, asi como implementar una arquitectura que permita
un manejo de los datos de forma mas 6ptima. Con estos aportes se obtendria un
desarrollo mas compacto y con una estructura més segura a la hora de ser aplicada en
otro desarrollo. De igual forma, se puede evaluar la inclusion de un token dentro de
la red para modificar el algoritmo de transacciones como prueba de participaciéon con
recompensas a los participantes testigos.

Asi mismo, aplicar otras medidas de seguridad tradicionales al desarrollo, como
limitar la red a que cada participante pueda estar conectado desde una sola
computadora; estas medidas de seguridad sencillas pueden brindar mayor solidez en

la seguridad de la red. Por otro lado, la inclusiéon de arboles de Merkle puede ser

5.2 RECOMENDACIONES 61

satisfactorio al brindar rapidez en la busqueda de hashes dentro de la red. Todas estas
consideraciones tendrian como resultado una mejora considerable en la API de la red.

Para casos de uso donde se requiera el uso de un token o moneda virtual, se
recomienda cambiar el algoritmo de consenso al algoritmo de prueba de participacion
delegada, explicado en la Secciéon 2.1.2.1. La razon de esta consideracion es que DPOS

ha demostrado ser un algoritmo muy beneficioso en redes con monedas virtuales.

Bibliografia

Academy, B. (2019). JQué es un ataque DoS? Recuperado de:
https://www.binance.vision/es/security /what-is-a-dos-attack. Consultado el:
17-05-2019.

Bhanot, R. y Hans, R. (2015). A review and comparative analysis of various encryption

algorithms. International Journal of Security and Its Applications, 9(4):289-306.

Blummer, B. (2018). An Introduction to Hyperledger. Reporte técnico,
www.hyperledger.org. Recuperado de: https://www.hyperledger.org/wp-
content /uploads/2018/08 /HL _Whitepaper IntroductiontoHyperledger.pdf.
Consultado el: 12-04-2019.

Buterin, V. (2013). Ethereum white paper: a next generation smart contract &

decentralized application platform. ethereum.org, 1:22-58. Ethereum.

Camara, R. (2018). FEstudio de tecnologias Bitcoin y Blockchain. Tesis de pregrado.
Universitat Oberta de Catalunya (UOC). Barcelona, Espana.

Choi, S.-M., Park, J., Nguyen, Q., y Cronje, A. (2018a). Fantom: A scalable framework
for asynchronous distributed systems. Reporte técnico, FANTOM. Recuperado de:
https://arxiv.org/pdf/1810.10360.pdf. Consultado el: 10-04-2019.

Choi, S.-M., Park, J., Nguyen, Q., Cronje, A., Jang, K., Cheon, H., Han, Y.-S.,
y Ahn, B.-I. (2018b). OPERA: Reasoning about continuous common knowledge
in asynchronous distributed systems. Reporte técnico, FANTOM Lab, FANTOM
Foundation. Recuperado de: https://arxiv.org/pdf/1810.02186.pdf. Consultado el:
23-04-2019.

BIBLIOGRAFIA 63

Churyumov, A. (2016). Byteball: A decentralized system for storage and transfer of
value. Reporte técnico, Byteball. Recuperado de: https://obyte.org/Byteball.pdf.
Consultado el: 24-06-2019.

Dacak, C. (2015). Firma digital. Recuperado de: https://docplayer.es/12045256-
Firma-digital-claudia-dacak-direccion-de-firma-digital-direccion-general-de-firma-

digital-y-comercio-electronico.html. Consultado el: 25-09-2019.

Es-Samaali, H., Outchakoucht, A., y Leroy, J. P. (2017). A blockchain-based
access control for big data. International Journal of Computer Networks and

Communications Security, 5(7):137-147.

Farell, R. (2015). An analysis of the cryptocurrency
industry. Wharton Research — Scholars. Recuperado de:
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1133&context—=wharton
research _scholars. Consultado el: 05-07-2019.

Foundation, F. (2018). Fantom: Whitepaper. Reporte técnico, FANTOM. Recuperado
de: https://fantom.foundation. Consultado el 01-04-2019.

Garay, J., Kiayias, A., y Leonardos, N. (2015). The bitcoin backbone protocol:
Analysis and applications. En Annual International Conference on the Theory and

Applications of Cryptographic Techniques, p. 281-310. Springer.

Greenough, Jhon (2015). The Internet of everything:2015. Recuperado
de: https://www.businessinsider.com/internet-of-everything-2015-bi-2014-12.
Consultado el: 10-06-2019.

Kusmierz, B. (2017). The first glance at the simulation of the Tangle:
discrete model. Reporte técnico, http:/iota.org. Recuperado de:
https://assets.ctfassets.net /r1dr6vzixhev /2Z05XxwehymSMsgusUEGY G /f15{457150
0a64b7741963df5312¢7e7/The First Glance of the Simulation Tangle -

_ Discrete_ Model v0.1.pdf. Consultado el 05-06-2019.

BIBLIOGRAFIA 64

Larimer, D. (2018a). Delegated proof-of-stake consensus. Reporte técnico,
Bitshares. Recuperado de: https://bitshares.org/technology /delegated-proof-of-
stake-consensus/. Consultado el: 16-07-2019.

Larimer, D. (2018b). (Qué es DPoS? Recuperado de:
https://academy.bit2me.com/que-es-dpos/. Consultado el: 10-07-2019.

Lizama, L., Montiel-Arrieta, L., Herndndez-Mendoza, S., Flor, Lizama-Servin, L., y
Simancas-Acevedo, E. (2019). Firma electronica por medio de funciones hash para

dispositivos moviles. Ingenieria Investigacion y tecnologia, 20(2):1-10.

Mahesh, S. (2018). Hyperledger Blockchain Performance Metrics. Reporte
técnico, www.hyperledger.org. Recuperado de: https://www.hyperledger.org/wp-
content /uploads/2018/10/HL_Whitepaper Metrics PDF _V1.01.pdf. Consultado
el: 16-04-2019.

Maldonado, J. (2018). Recuperado de: https://www.criptotendencias.com/base-
de-conocimiento/los-5-lenguajes-de-programacion-mas-usados-en-proyectos-

blockchain/. Consultado el: 10-06-2019.

Mashrufee, A., Jahan, 1., Rozario, L., y Jerin, I. (2016). A Comparative Study of RSA
and ECC and Implementation of ECC on Embedded Systems. International Journal
of Innovative Research in Advanced Engineering, 3(3):86-93.

Nagpal, A. y Gabrani, G. (2019). Python for Data Analytics, Scientific and Technical
Applications. En 2019 Amity International Conference on Artificial Intelligence
(AICAI), p. 140-145. IEEE.

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Reporte técnico,
www.bitcoin.org. Recuperado de: https://bitcoin.org/bitcoin.pdf. Consultado el: 01-
03-2019.

Paredes, G. G. (2006). Introduccion a la Criptografia. Rewvista digital universitaria,
7(7):1-17.

Popov, S. (2018). The tangle. cit. on, 1.4.3:131.

BIBLIOGRAFIA 65

Pressman, R. S. (2005). Software engineering: a practitioner’s approach. Palgrave

Macmillan, 8 edicion.

Rennock, M., Cohn, A. y Butcher, J. (2018). Blockchain technology. The Journal, 1:35—
43. Recuperado de: https://www.steptoe.com/images/content/1,/7/v3/171269/LIT-
FebMar18-Feature-Blockchain.pdf.

Retamal, C. D., Roig, J. B., y Tapia, J. L. M. (2017). La blockchain: fundamentos,
aplicaciones y relacién con otras tecnologias disruptivas. FEconomia industrial,

1(405):33-40.

Roig, N. P. y Montero, M. P. C. (2018). Tecnologia blockchain: funcionamiento,
aplicaciones y retos juridicos relacionados. Actualidad juridica Uria Menéndez,

1(48):24-36.

Riiegg, U., Ehlers, T., Spéonemann, M., y von Hanxleden, R. (2016). A generalization of
the directed graph layering problem. En International Symposium on Graph Drawing

and Network Visualization, p. 196-208. Springer.
Sommerville, 1. (2005). Ingenieria del software. Pearson educacion, Madrid, Espana,
7 edicion.

Stephen, ONea (2019). La competencia en curso de las blockchain por las transacciones
por segundo. Recuperado de: https://es.cointelegraph.com /news/who-scales-it-best-

inside-blockchains-ongoing-transactions-per-second-race. Consultado el: 05-05-2019.

Vilerino, S. (2017). Estudio de los limites de generacion de bloques en blockchain. Tesis

de Doctorado, Universidad de Buenos Aires, Argentina.

	Índice de Tablas
	Índice de Figuras
	Índice de Algoritmos
	Agradecimientos
	Introducción
	Antecedentes
	Planteamiento del problema
	Objetivos
	General
	Específicos

	Justificación
	Alcance
	Metodología
	Estructura del documento

	Marco Teórico
	Cadena de bloques
	Aplicaciones de la cadena de bloques
	Algoritmos de consenso
	Función Hash
	Métricas de rendimiento

	Criptografía
	Criptografía Simétrica
	Criptografía Asimétrica

	Teoría de grafos
	Definición de grafos
	Grafos acíclicos dirigidos

	Modelo de desarrollo de software incremental

	Diseño y pruebas
	Requerimientos del sistema
	Requerimientos funcionales
	Requerimientos no funcionales
	Elección del lenguaje para la cadena de bloques

	Comparación de la cadena de bloques con y sin DAG
	Estructura de las transacciones
	Estructura de los participantes
	Módulo de cadena de bloques
	Módulo de cadena de bloques con DAG
	Cifrado
	Consenso
	Comparación de redes y elección de algoritmo de consenso
	Rendimiento de la red y algoritmo de consenso elegido

	Comparación de los resultados obtenidos con algunas criptomonedas

	Implementación
	Requerimientos del sistema
	Requerimientos funcionales
	Requerimientos no funcionales

	Arquitectura cliente-servidor
	Elementos de la arquitectura

	Diseño de la base de datos
	Implementación
	Envío de mensajes
	Historial de mensajes

	Conclusiones y recomendaciones
	Conclusiones
	Recomendaciones

	Bibliografía

