UNIVERSIDAD
DE LOS ANDES

WERIDA VENEZIUELA

PROYECTO DE GRADO

Presentado ante la ilustre UNIVERSIDAD DE LOS ANDES como requisito parcial para
obtener el Titulo de INGENIERO DE SISTEMAS

INTEGRACION DE LA INTERFAZ DE PROGRAMA DE APLICACION PARA EL
BRAINCEMISID EN UNA ARQUITECTURA DE SOFTWARE MULTINIVEL

Por
Br. Kristo Lopez

Tutor: Dr. Gerard Paez

Enero 2020

©2020 Universidad de Los Andes Mérida, Venezuela.

INTEGRACION DE LA INTERFAZ DE PROGRAMA DE APLICACION PARA
EL BRAINCEMISID EN UNA ARQUITECTURA DE SOFTWARE MULTINIVEL

Br. Kristo Rafael Lopez Rojas
Proyecto de Grado -Sistemas Computacionales-52 paginas

Resument: El BrainCEMISID es un proyecto creado en el Centro de Estudios en Micro-Computacion y
Sistemas Distribuidos, el cual ha desarrollado un cerebro artificial basado en redes neuronales logrando
asi emular comportamientos del cerebro humano tales como el reconocimiento de patrones, ejecutar
operaciones de adicion, comprension del concepto de cantidad, lectura de palabras, silabas y estado
mental de la intencion. Sin embargo, este proyecto estaba integrado a una interfaz que ofrecia una
interaccion rustica con el usuario, haciendo su uso complicado y que llevara mucho tiempo para generar
un estimulo. Es por esto que se llevo a cabo una migracion del BrainCEMISID a una arquitectura
multinivel y se desarrollé un conjunto de interfaces de programa de aplicacion para el soporte de varios
usuarios con la posibilidad de tener varios proyectos almacenados y que se lograra establecer un protocolo

de comunicacion con un cliente web.

Palabras claves: Cerebro Artificial, Interfaz de programa de aplicacion, Estimulo, Neurona artificial,

Protocolo.

II

Indice

INdiCe v
fndice de figuras VIII
Capitulo 1. .. o 1
INEEOAUCCION. et et 1
ToT ANEECEAEIITES ..ttt e e 1
1.2 Planteamiento del problema...................o 3
1.3 ODBJEtIVOS. . - .t et e 3
1.3.1 Objetivos generales ..o 3
1.3.2 Objetivos especificosot 3

104 JUSTEICACION. ..t 4
1.5 Alcance WA MM VWL B SR ARG AR ~RA A AR N, 4
1.6 Metodologia............iiiii i 5
1.6.1 Descripcion de la metodologia modelo espiral ... 5
1.6.2 Fases de lametodologia.................ooooii 5
1.6.3 Descripcion de las fases de la metodologia......................... 6

1.7 Estructura del doCUmMEnto oot 7
Capitulo 2. ... o 8
MATCO TEOTICO ettt et e e et e e 8
2.1 El cerebro artificial..........oiiii i 8
2.2 Redes neuronales artificialesooiiiiiiii 8
2.2.1 Neuronas artificiales. 10

2.3 Programacion POT CAPASuueiuuniintii ettt e e e 10
2.3.1 Estructura cliente-servidor.o.oiiuiiii e 11

v

23 2 N . e 12

2.4 Interfaz de Programa de Aplicacion...................ooooiii 12
24 T REST API o 13
2.5 Tecnologlascooouiii 14
2.5 1 Python ..o 14
25 LAk e 15
2.5.3 PostgreSQL ... 15
254 MONGO L. iiiiii i 16
2.5.5 DJAN@O ..ot 16

2 5 6 PH P o 16

2 B T Laravel ..o 17
2.5 8 RUbY....o 18
2.5.9Ruby onrails ..o 18
Capitulo 3. .. 19
Arquitectura de Software ... 19
3.1 Vista general de la estructura.................ooooi 19
3.2 Diseno del frontendo 20
3.3 Diseno del bakend...... ..o 20
3.3 T ENFULAOT e 21
3.3.2 ConjuNtos de VISTAS ... e.euitinitit ettt 22
3.3.3MOdElO oo 27
3.3.4 Base de datos ... 27
3.3.5 Sistema de archivos e it 28
336 KEINEL oo 28
3.3.6.1 ACtUaliZacionie e 28
3.3.6.2 Cambio de gestion de almacenamiento de datos ... 29

3.3.6.3 Reestructuracion parcial del kernel.................... 29

Capitulo 4. ..o o 30
Pruebas. . .o oe 30
4.1 Planificacion de pruebas....... ... 30
4.2 Criterios de las pruebas....... ... 30
4.3 Pruebas realizadaso 31

4.3.1 Registro del usuario ... 31
4.3.1.1 Fluyjode laprueba.............oooooi 31
4.3.1.2 POSTCONAICIONES ...ttt ittt ettt et e 31

4.3.2 Inicio de sesion del USUArIO.iieieirit i 33
4.3.2.1 Fluyjode laprueba.............oooooi 33
4.3.2.2 POSTCONAICIONES ...\ttt ittt ettt et e e ae e 33

4.3.3 Creacion del Proyectocoooiiiiiiiiiiiiiii i 34
4.3.3.1 Fluyjode laprueba..............ooo 34
4.3.3.2 POSTCONAICIONES ...ttt et e e 34

434 Aprendizaje ... 35
4.3.4. 1 Fluyjode laprueba.............oooo 35
4.3.4.2 POSTCONAICIONES ...ttt ettt et e e e 35

4.3.5 ReCONOCIMICIITO ..\uitititit ittt e 37
4.3.5.1 Flujode laprueba ... 37
4.3.5.2 POSTCONAICIONES ... 0. tuititii ittt 37

4.3.6 Insercion de la tarjeta ...t 38
4.3.6.1 Flujode laprueba...............oooi 38
4.3.6.2 POSTCONAICIONES ... 0. iuititii ittt 38

4.3.7 Visualizacion de neuronas del o1do ... 40

VI

4.3.7.1 Fluyjode laprueba..............ooooii 40

4.3.7.2 POSCONAICIONES ... 0.ttt ittt et 40
4.3.8 Visualizacion de neuronas de la vistaooooiiiiiiiiii 41
4.3.8. 1 Flujode laprueba..............ooooi 41
4.3.8.2 POSTCONAICIONES ... e\ttt ettt e 41
Capitulo 5., . .o 43
Conclusiones y Trabajos FUturosoooiiiiii 43
5.1 CONCIUSIONES ...ttt 43
5.2 Trabajos fULUIOSvtitiit it 44
5.2.1 Implementacion de un sistema de seguridad mas robusto........................... 44
5.2.2 Creacion de un entorno contenerizado para el despliegue del BrainCEMISID 45
5.2.3 Fragmentacion del BrainCEMISID dentro del conjunto de vistas para su optimizacion...... 45
5.2.4 Implementacion del modulo de prediccion musical y paralelizacion de funciones............ 45

5.2.5 Creacion de un entorno de vida para el BrainCEMISID e implementacion de un nuevo modelo

para generar cambios de su estado INterno.................oooi 46
Bibliografia............coooiiiii 47
ANIEXOS ettt e 51
Anexo A. Repositorio del proyecto.................ooo 51
Anexo B. Modelos almacenados en la base de datos de PostrgreSQL 52

VII

Indice de figuras

Figura 1.1 Modelo en espiral. Tomada de (Sommerville, 2005). ... 5
Figura 2.1 Capas de una red neuronal artificial. Tomada de (Matich, 2001)................................. 9
Figura 2.2 Estructura cliente-servidor. Tomada de (Ortiz, 2000)..................ooooiii. 11
Figura 2.3 Arquitectura MVC de laravel. Tomada de (Medium, 2016) 17
Figura 2.4 Arquitectura MVCR de ruby on rails. Tomada de (Medium, 2017 18
Figura 3.1 Vista general del proyecto BrainCEMISID 3.0.................oooo 19
Figura 3.2 Vista detallada del disefio del backend del BrainCEMISID 3.0..........................oo. 20
Figura 3.3 Conjunto de vistas del kernel ... 23
Figura 3.4 Conjunto de vistas ProjectSummaryooo 24
Figura 3.5 Conjunto de vistas DesiredStateViewSet.....................oo 24
Figura 3.6 Conjunto de vistas UserCollection........................ 24
Figura 3.7 Conjunto de vistas AllCollections ... 25
Figura 3.8 Conjunto de vistas del registro.....................oo 25
Figura 3.9 Conjunto de vistas del inicio de sesion. 25
Figura 3.10 Conjunto de vistas de informacion del usuario. 25
Figura 3.11 Conjunto de vistas SightNeuronsViewSet. 26
Figura 3.12 Conjunto de vistas HearingNeuronsViewSetooocoii . 26
Figura 3.13 Conjunto de vistas EpisodicMemoryViewSet.................cooooiiii . 26
Figura 3.14 Conjunto de vistas RelNetworkViewSet ... 27
Figura 4.1 Prueba de registro de usuario ... 32
Figura 4.2 Entrada para el conjunto de vistas RegisterAPI provisionada por el cliente................... 32
Figura 4.3 Salida del RegisterAPL ... 32
Figura 4.4 Prueba de inicio de sesion.................... 33
Figura 4.5 Entrada para el conjunto de vistas LoginAPI provisionada por el cliente. 33

VIII

Figura 4.6 Salida del LoginAPL. ... 34
Figura 4.7 Prueba de creacion de proyecto ... 34

Figura 4.8 Entrada para el método create del conjunto de vistas KernelViewSet provisionada por el

O] Y 35
Figura 4.9 Salida del KernelViewSet. ... 35
Figura 4.10 Prueba de aprendizaje.....................oo 36
Figura 4.11 Entrada de aprendizaje para el método put del conjunto de vistas KernelViewSet
provisionada por el cliente. ... 36
Figura 4.12 Salida de aprendizaje del KernelViewSet 37
Figura 4.13 Prueba de reconocimiento ... 37

Figura 4.14 Entrada de reconocimiento para el método put del conjunto de vistas KernelViewSet

provisionada por el cliente................oo 38
Figura 4.15 Salida de reconocimiento del KernelViewSet......................... 38
Figura 4.16 Prueba de insercion de tarjetaooooiiiiii 39

Figura 4.17 Entrada para el conjunto de vistas UserCollectionViewSet provisionada por el cliente... 39
Figura 4.18 Salida del UserCollectionViewSet remarcada con su entrada de datos....................... 39
Figura 4.19 Prueba de visualizacion de neuronas del oido......................... 40

Figura 4.20 Entrada para el conjunto de vistas HearingNeuronViewSet provisionada por el cliente .. 40

Figura 4.21 Salida del HearingNeuronViewSet....................ooo 41
Figura 4.22 Prueba de visualizacion de neuronas del oido.......................... 41
Figura 4.23 Entrada para el conjunto de vistas SightNeuronViewSet provisionada por el cliente...... 42
Figura 4.24 Salida del SightNeuronViewSet ... 42
Figura 0.1 Repositorio del proyecto.................ooooiiii 50
Figura 0.2 Modelos del BrainCEMISID 3.0 ... 52

IX

Capl'tulo 1

Introduccion

El desarrollo del software ha ido evolucionando de manera acelerada en estos tltimos afios, esto ha
dado lugar a distintas vertientes en distintas areas de trabajo, tales como la inteligencia artificial, analisis
estadistico, desarrollo web, software para celulares y televisores inteligentes entre otros, sin embargo,
debido a que los campos para el desarrollo son muy amplios, se han venido abriendo brechas en distintas
areas especializandose y consolidandose en una tecnologia en especifico. A Pesar que existen cierta
homogeneidad con respecto al desarrollo del software en un area en especifico siempre se es indispensable
la necesidad de comunicarse con otro tipo de sistema con una arquitectura diferente de manera eficiente,
inclusive, se ha dado pie a arquitecturas de multiples niveles que hacen necesaria la idea de tener algo
entre ambos limites de estos niveles para que se puedan comunicar. Es por esto que se plantea la idea de
crear una interfaz entre ellas que facilite esta comunicacion y que brinde todas las opciones necesarias
para poder manipular datos que son solicitados de un nivel a otro, esta interfaz es denominada entonces
“Interfaz de programa de aplicacion” (Application Program Interface en ingleés) que establece los

protocolos necesarios para la comunicacion y cumple con lo antes ya establecido.

1.1 Antecedentes

El termino cerebro artificial es utilizado habitualmente para describir la investigacion que pretende
desarrollar hardware y software con habilidades cognitivas similares a la del cerebro humano. Uno de los
enfoques mas comunes para desarrollar un cerebro artificial es usando redes neuronales artificiales sobre

una computadora.

Las redes neuronales artificiales son un modelo abstracto de su homologo biologico mucho mas
simplificado y menos complejo. Estas redes consisten en un conjunto de neuronas artificiales que son
conectadas entre ellas y se transmiten sefales las cuales son procesadas dentro de si mismas, dando lugar
a una salida como una respuesta ante el estimulo de esta red. Estos sistemas computacionales sirven para
resolver problemas tales como el reconocimiento de patrones para que luego estos sean almacenados,
etiquetados y sus conceptos sean comprendidos como lo seria una letra, una palabra, un color o inclusive,

el reconocimiento de un objeto o un ser vivo.

El BrainCEMISID es un cerebro artificial desarrollado por el Centro de Estudios en Microelectronica
y Sistemas Distribuidos (CEMISID) en la facultad de ingenieria de la Universidad de los Andes de
Venezuela. Este proyecto fue iniciado en el afo 2013 por el Dr. Gerard Paez, junto a un equipo de
estudiantes de Pregrado de Ingenieria de Sistemas. Este proyecto tiene la finalidad de construir un cerebro
artificial basado en redes neuronales mediante el dialogo socratico entre los estudiantes y el profesor, los
cuales presenta el desafio de “atacar la complejidad” mediante el uso de la creatividad. Uno de los
principios fundamentales de estos dialogos establecidos por el Dr. Paez es usando La Navaja de Ockham,
este termino se puede definir brevemente como, de varias teorias que expliquen un suceso, se debe tomar

la cual presente menos complejidad.

En el afio 2012 se daria a realizar la tesis “0” la cual seria la primera version del Brain CEMISID basada
en una red neuronal artificial de base radial en tecnologia VLSIC (Very Large Scale Integrated Circuits)
hecha por Andrade (2012), y Rangel (2012) quien desarrollo el mismo tipo de neurona en programacion

paralela en el ambiente CUDA, siendo esta las bases para los siguientes proyectos.

Luego de esto, se conocerta la version de este cerebro, pero en un ambiente virtualizado hecha por
Monsalve (2014) con una estructura de 4 esferas, siendo estas la esfera sensorial, la esfera perceptora, la
esfera vectorizadora y la esfera para los bloques neuro-sensoriales, todo esto llevado a cabo en la
plataforma de desarrollo de Nvidia, CUDA.

Un afio mas tarde Muchacho (2015) desarrolla las esferas analitica, relacional y cultural, para
resolver problemas de ambigiiedades a la hora que el cerebro recibiese un estimulo, mas aun, tambien se
logra relacionar los sentidos de la vista con ¢l oido. Luego de esto, Graterol (2015) le ahade la
caracteristica al cerebro de la comprension del concepto de cantidad y seguidamente Bruzual (2015) le
da la capacidad para la adicion de cantidades por medio de la memoria. Por otra parte, también se afiade

los protocolos necesarios para reconocimiento de letras y palabras.

En el afio 2016, Sosa (2016) crea la capacidad del cerebro de hacer procesamiento en paralelo,
tomando esta vez las ventajas que puede ofrecer un procesador multintcleos para realizar las tareas de
forma eficiente, en esta etapa se desarrolla la capacidad de pensamiento que se presenta como el flujo de
las diferentes esferas que constituyen el cerebro artificial. Seguidamente Fernandez (2016) hace una
reingenieria de software para mejorar la integracion de todas las versiones anteriores. Este trabajo deja

un marco de desarrollo para las siguientes versiones y se desarrolla el estado mental de la intencion.

Al siguiente ano EL Halabi (2017) ahade la caracteristica de un “soporte intermedio” (middleware

en inglés) para la mejora del rendimiento del procesamiento en paralelo del cerebro.

Finalmente, el trabajo mas actualizado de este proyecto es el de su desarrollo de Araujo (2019) por
el gusto de manera autonoma basado en la prediccion de eventos sonoros que en su primera instancia son
caracterizados para luego ser almacenados dentro del cerebro artificial en forma de neuronas y crear una

red de ellas con impulsos pseudoaleatorios que permiten soportar la teoria del gusto por la musica.

1.2 Planteamiento del problema

Hasta ahora, el cerebro tiene la capacidad de reconocer patrones graficos (Graterol, 2015),
conceptualizar cantidades (Monsalve, 2014), tener estado mental de la intencion (Fernandez, 2016),
poder hacer reconocimiento dental para aplicaciones odontologicas (Garcia, 2019) y tener gusto

autébnomo en la musica (Araujo, 2019).

Sin embargo, el cerebro presenta limitantes de capacidad de procesamiento y almacenamiento, por
esto, se plantea convertirlo a una arquitectura multinivel para poder interactuar de manera remota con
el cerebro. Se necesita que se almacene los datos y realice el procesamiento de forma independiente a la
aplicacion del usuario. Esta capacidad se adquiere cuando Vilchez (2019) hace el levantamiento del
BrainCEMISID a un dispositivo remoto, es entonces que se plantea el problema de comunicacion entre
el usuario y el cerebro. A pesar que el cerebro esta aislado, existe una comunicacion muy rustica y poco
eficiente para que el usuario pueda manejarlo, mas aun, existe la capa que se comunica con el usuario que
es la encargada de recibir sus solicitudes y mostrarselas desde una maquina externa de donde se encuentra
el cerebro artificial. Es por esto que surge la necesidad de poder crear un interfaz que sirva como una

conexion entre ellas para que asi el usuario pueda manejar el cerebro.

1.3 Objetivos
1.3.1 Objetivo general

El objetivo general de este proyecto es desarrollar una interfaz de programa de aplicacion para
establecer un protocolo de comunicacion con el cerebro en un entorno remoto y la siguiente capa de

comunicacion con el usuario.
1.3.2 Objetivo especificos

1. Estudiar acerca del funcionamiento de las entradas y salidas de datos del BrainCEMISID.

2. Disenar el protocolo de comunicacion entre el cerebro y la siguiente capa de

comunicacion con el usuario.

| 4

3. Implementar las funciones con los protocolos ya establecidos para que se hagan las
transformaciones necesarias para la comunicacion entre el cerebro y la siguiente capa de

comunicacion con el usuario.

1.4 Justificacion

Se define como Interfaz de programa de aplicacion por el diccionario de la universidad de Oxford
(2019) como un set de funciones y procedimientos que permiten la creacion de aplicaciones que acceden

a las caracteristicas o datos de un sistema operativo, aplicacion u otro servicio.

El BrainCEMISID se describe como un proyecto de un cerebro artificial que pretende llevar a cabo
tareas complejas y de multiples disciplinas que tiene desarrolladas y que se iran desarrollando acorde a
que se vayan implementando nuevos modulos en este proyecto. Este Cerebro parte de la premisa de el
uso de la creatividad para resolver problemas complejos, surgiendo asi, ideas intuitivas que son la solucion
alos problemas con respecto a su desarrollo. La idea de migrar este cerebro a una arquitectura de software
multinivel, emerge de la problematica de su capacidad de procesamiento y almacenamiento, Sin embargo,
se plantea que el cerebro debe ser movido a un entorno remoto, por esto el usuario esta alejado y con
una comunicacion rustica entre el cerebro y el, por ello, se planteo en primera instancia hacer una interfaz
de programa de aplicacion haciendo que esta capa sea la responsable de una comunicacion mas eficiente

entre el cerebro y la proxima capa que sera la responsable de comunicarse finalmente con el usuario.

1.5 Alcance

El alcance de este proyecto se limito a establecer una serie de funciones y procedimientos necesarios
y suficientes, que se rijan por un protocolo que definio los patrones para el envio y el recibimiento de los
datos requeridos por el usuario hacia el cerebro artificial, esto se hizo por medio de la construccion de
una interfaz de programa de aplicacion, para establecer una comunicacion eficiente entre la capa superior
que interacttia con el usuario y el BrainCEMISID. Ademas, se conto con una aislacion de los datos del
cerebro en una base de datos y se establecio una comunicacion igualmente entre el cerebro artificial y
ella.

1.6 Metodologl'a

1.6.1 Descripci(')n de la metodologia modelo espiral

El modelo espiral es una combinacion de un modelo en cascada y un modelo iterativo. Cada fase en
el modelo en espiral comienza con un objetivo de disefio y termina con el cliente revisando el progreso.

El modelo en espiral fue mencionado por primera vez por Barry Boehm en su articulo de 1986.

El equipo de desarrollo en el modelo Spiral-SDLC comienza con un pequefo conjunto de requisitos
y pasa por cada fase de desarrollo para ese conjunto de requisitos. El equipo de ingenieria de software
agrega funcionalidad para el requisito adicional en espirales cada vez mayores hasta que la aplicacion este
lista para la fase de produccion (Guru,2020).

1.6.2 Fases de la metodologia

Cada ciclo en la espiral representa una fase del proceso de desarrollo del software. Asi, el ciclo mas
interno podria referirse a la viabilidad del sistema, el siguiente ciclo a la definicion de requerimientos, el

siguiente ciclo al disefio del sistema, y asi sucesivamente.

Determinar objetivos,
alternativas y restricciones

Evaluar alternativas,
identificar, resolver riesgos

Plan de requerimientos
Plan de ddo de vida

Simulaciones, modelos,
Concepto pruebas comparativas
de operacién /Requeri-
mientos de
e/ Diseno del Drsefio

Validacion de producto/ detallado
requerimient Cédigo
Prueba de
Integracién y plan devav Prueba de
) i de prueba integracion,
Planificar la siguiente fase Prueba de Desarrollar, verificar
Servicio aceptacidn producto del siguiente nivel

Figura 1.1 Modelo en espiral. Tomada de (Sommerville, 2005).

1.6.3 Descripci(')n de las fases de la metodologl'a

Cada ciclo de espiral se divide en cuatro sectores:

1. Definicion de objetivos: para esta fase del proyecto se definen los objetivos
especificos. Se identifican las restricciones del proceso y el producto. Dependiendo de

estos riesgos, se planean estrategias alternativas.

2. Evaluacién y reduccion de riesgos: Se lleva a cabo un analisis detallado para cada
uno de los riesgos del proyecto identificados. Se definen los pasos para reducir dichos
riesgos. Por ejemplo, si existe el riesgo de tener requerimientos inapropiados, se puede

desarrollar un prototipo del sistema.

3. Desarrollo y validacion: Despues de la evaluacion de riesgos, se elige un modelo
para el desarrollo del sistema. Por ejemplo, si los riesgos en la interfaz de usuario son
dominantes, un modelo de desarrollo apropiado podria ser la construccion de prototipos
evolutivos. Si los riesgos de seguridad son la principal consideracion, un desarrollo
basado en transformaciones formales podria ser el mas apropiado, y asi sucesivamente.
El modelo en cascada puede ser el mas apropiado para el desarrollo si el mayor riesgo

identificado es la integracion de los subsistemas.

4. Planificacion: el proyecto se revisa y se toma la decision de si se debe continuar con
un ciclo posterior de la espiral. Si se decide continuar, se desarrollan los planes para la

siguiente fase del proyecto.

La diferencia principal entre el modelo en espiral y los otros modelos pertenecientes a la ingenieria
de software es la consideracion explicita del riesgo en el modelo en espiral. Informalmente, el riesgo
significa sencillamente algo que puede ir mal. Por ejemplo, si la intencion es utilizar un nuevo lenguaje
de programacion, un riesgo es que los compiladores disponibles sean poco fiables o que no produzcan
codigo objeto suficientemente eficiente. Los riesgos originan problemas en el proyecto, como los de
confeccion de agendas y excesos en los costos; por lo tanto, la disminucion de riesgos es una actividad

muy importante en la gestion del proyecto.

Debido a la naturaleza del proyecto, usar esta metodologia del proyecto no solo asegura un manejo
eficiente de “riesgos’ sino que es en cada iteracion se tendra una version parcial cada vez mas cercana a
los objetivos planteados haciendo esta aproximacion incremental sin comprometer la finalizacion del

proyecto.

1.7 Estructura del documento

La Estructura del documento se organiza de la siguiente manera:

El capitulo 1: Se da una breve introduccion acerca del proyecto, luego se describe conceptos
esenciales para la comprension del problema, tales como antecedentes que respaldan informacion acerca
de lo que se ha hecho hasta ahora en relacion al proyecto de grado, se exponen los objetivos generales y
especificos. Luego de esto se presenta la justificacion, el alcance y finaliza con la descripcion de la

metodologia seguida metodologia en el proyecto.

El capitulo 2: Contiene el marco teorico, en esta seccion se muestran las bases teoricas que sirven
para levantar el proyecto. Se describe que es un cerebro artificial, las redes neuronales artificiales,
neuronas artificiales. Luego se hablara de la arquitectura de software a utilizar, el tipo de interfaz de
programa de aplicacion necesario para la comunicacion del cerebro y el usuario y de las posibles

tecnologias que se pueden usar para construir toda esta estructura.

El capitulo 3: Contiene la arquitectura de software, en esta seccion se habla de como esta

estructurado el proyecto para poder sentar las bases de un modelo detallado de sus componentes.

El capitulo 4: Contiene la implementacion y pruebas, en esta seccion se habla a fondo de las
tecnologias escogidas y se justifica el uso de ellas en el proyecto, luego de esto se procede a describir la
implementacion de cada una de ellas en los componentes por separado, finalmente se habla sobre las
pruebas que se hicieron para el correcto funcionamiento del api, asi como también algunas otras

funcionalidades adicionales que el proyecto requeria.

El capitulo 5: Finalmente en esta seccion se habla de las conclusiones a las que se llegaron del

proyecto y se habla generalmente de posteriores trabajos usando el proyecto final.

Capl'tulo 2

Marco Teorico

2.1 El cerebro artificial

Se define como cerebro artificial como la combinacion de software y hardware con habilidades
cognitivas similares a los animales o al cerebro humano. De Garis, Shuo, Goertzel, & Ruiting, (2010)
plantean que, debido a los rapidos avances en hardware de computadora, neurociencia y ciencias de la
computacion, las investigaciones con cerebros artificiales y su desarrollo estan floreciendo. Una de las
formas de desarrollo de un cerebro artificial es basandose en redes neuronales artificiales, las cuales

permiten procesar varias entradas y generar una abstraccion de forma similar a su homonimo biologico.

2.2 Redes neuronales artificiales

Las redes neuronales artificiales son sistemas inspirados en los cerebros biologicos cuya intencion es
replicar la forma en la que los humanos u animales aprenden. Los Autores Russel & Norvig, (2004)
definen en su libro una neurona como una celula del cerebro cuya funcion principal es la recogida,
procesamiento y emision de sehales eléctricas. Se piensa que la capacidad de procesamiento de
informacion del cerebro proviene principalmente de redes de este tipo de neuronas. Russel et al (2004)
describen que, por esta razon, los primeros trabajos de Inteligencia artificial pretendian crear redes

neuronales artificiales.

Por lo general, se presentan como una organizacion de "neuronas" interconectadas que pueden
calcular valores a partir de entradas proporcionando informacion a través de la red. Las redes neuronales
estan caracteristicamente estructuradas en capas. Las capas estan formadas por una serie de 'nodos'
interrelacionados que contienen una 'funcion de activacion'. Los patrones estan disponibles para la red a
través de la 'capa de entrada', que se comunica con una o mas 'capas ocultas' donde el procesamiento
concreto se realiza mediante un sistema de 'conexiones' subjetivas. Las capas ocultas se unen a una 'capa

de salida' donde la respuesta es la salida final del sistema (Sthapak, Khopade, Kashid, 2013).

Cada neurona recibe como entrada un conjunto de sefales discretas o continuas, las pondera e

integra, y transmite el resultado a las neuronas conectadas a ella. Cada conexion entre dos neuronas tiene

una importancia determinada asociada, denominada peso. En los pesos se suele guardar la mayor parte

del conocimiento que la red neuronal tiene sobre la tarea en cuestion. El proceso mediante el cual se

ajustan estos pesos para lograr un determinado objetivo se denomina aprendizaje o entrenamiento

(Araujo, 2019).

Matich (2001) nos plantea que las Redes neuronales artificiales son redes interconectadas

masivamente en paralelo de elementos simples (usualmente adaptativos) y con organizacion jerarquica,

las cuales intentan interactuar con los objetos del mundo real del mismo modo que lo hace el sistema

nervioso biologico.

Entradas
A

2%

V
sepiyes

)

Capa de
entrada

<
- O
—

L
Capas Capa de
ocultas salida

Figura 2.1 Capas de una red neuronal artificial. Tomada de (Matich, 2001).

La misma esta constituida por neuronas interconectadas y arregladas en tres capas. Los datos ingresan

por medio de la “capa de entrada”, pasan a travées de la “capa oculta” y salen por la “capa de salida”. Cabe

mencionar que la capa oculta puede estar constituida por varias capas (Matich, 2001).

| 10

2.2.1 Neuronas artificiales

Kriesel (2005) define también, que una red neuronal consiste en simple unidades de procesamiento

llamadas neuronas las cuales tienen conexiones con direccion y peso entre ellas. Como su contraparte

biologica podemos hacer una abstraccion y hacer una aproximacion técnica.

Entrada Vectorial: Las entradas de las neuronas artificiales consisten en muchos componentes
es por esto que puede ser representado como un vector.

Salida Escalar: La salida de una neurona es un escalar, esto significa que la salida de la neurona
solo consiste en un componente. Varias salidas escalares conforman la entrada vectorial de otra
neurona.

Cambio de entrada por sinapsis: En las redes neuronales artificiales las entradas son pre
procesadas también. Estas son multiplicadas por un namero para obtener el peso. Los conjuntos
de estos pesos representan la informacion de almacenamiento de una red neuronal tanto en la
biologica como en la artificial.

Acumulamiento de entradas: En biologia, las entradas son resumidas a un pulso acorde a
cambios quimicos, por ejemplo, si son acumuladas, sin embargo, por el lado artificial esto es
realizado a menudo por la suma de pesos. Esto significa que después de las acumulaciones

nosotros solo continuamos con un valor, un escalar en lugar de vectores.

Caracteristicas no lineares: La entrada de la neurona artificial es también no proporcional a

su salida.

Pesos Ajustables: Los pesos pesando las entradas son variables, similares a los procesos
bl

quimicos en las hendiduras sinapticas. Esto afiade una gran dinamica a las redes porque una gran

parte del “conocimiento” de una red neuronal es guardada en los pesos y en la forma y poder de

procesos quimicos en una hendidura sinaptica.

2.3 Programacién por capas

La programacion por capas o arquitectura multinivel es un modelo de desarrollo de software en

donde la presentacion, el procesamiento de la aplicacion y el manejo de la data estan fisicamente

separados. Las aplicaciones por capas proveen un modelo por el cual los desarrolladores pueden crear una

aplicacion flexible y reusable. A traves de la segregacion de una aplicacion en varias capas, los

desarrolladores adquieren la opcion de modificar o afiadir una capa en especifico, en lugar de hacer una

reelaboracion completa de la aplicacion.

La clave para la aplicacion en capas es la gestion de dependencias. Los componentes en una capa
pueden interactuar solo con companeros en el mismo nivel o componentes de niveles mas bajos. Esto
ayuda a reducir las dependencias entre componentes en diferentes niveles. Hay dos enfoques generales

para la colocacion de capas: estrictamente estratificado y relajado (Microsoft, 2014).

Tal como define Microsoft (2014), es necesario definir una interfaz abstracta para cada componente
en una capa que es llamada por componentes en un nivel superior. Las capas superiores acceden a los
componentes de nivel inferior a traves de las interfaces abstractas en lugar de llamar directamente a los
componentes. Esto permite que la implementacion de los componentes de nivel inferior cambie sin

afectar los componentes de nivel superior.

2.3.1 Estructura cliente-servidor

Ortiz (2000) define esta estructura como una de dos niveles en principio y mas tarde, una mas
compleja de tres niveles. En esta arquitectura de tres niveles, cada nivel se ocupa en una tarea en

.
especifico.

Servidor de Datos
datos de negocios Servidor de Capa Media

regla de negocios

l Cliente
Presentacién Légica
= T U
A ',

Figura 2.2 Estructura cliente-servidor. Tomada de (Ortiz, 2000).

® Nivel 1: En este nivel se encuentra el cliente, este contiene la presentacion logica incluyendo
un control simple y una validacion de entrada del usuario. Esta aplicacion es también conocida
como “thin client”.

® Nivel 2: El nivel medio es conocido como la aplicacion del servidor, el cual provee el
procesamiento logico de los negocios y el acceso a la data.

® Nivel 3: Este tltimo nivel solo provee la data de negocios.

| 12

2.3.2 Nube

La nube es una estructura que ofrece servicios remotos a traves de una red que usualmente es
internet. Knorr (2018) Define a la nube como una piscina de recursos virtualizado que va desde poder en
bruto de computo a funcionalidad de aplicacion, que esta abierto a demanda, mas aun, la nube permite a

sus usuarios ganar nuevas capacidades sin necesidad de invertir en hardware o en software.

Knorr (2018) plantea que los servicios de computo de la nube disponible son vastos, pero la mayoria

cae en las siguientes categorias:

® SaaS (Software como servicio): Este tipo de computo de nube entrega aplicaciones sobre la
internet a través del navegador, Las aplicaciones SaaS ofrecen una extensa configuracion de
opciones, asi como también ambientes de desarrollo que permiten que los clientes codifiquen sus

propias modificaciones o adiciones.

¢ laaS (Infraestructura como servicio): A un nivel basico, las nubes proveedoras de laaS
ofrecen almacenamiento y computo de servicios sobre una base de pago-por usuario. Pero la
completa coleccion de servicios ofrecidos por la mayoria de los proveedores es asombrosa. Base
de datos altamente escalables, redes virtuales privadas, analisis de big data, herramientas de

desarrollados, machine learning, monitoreo de aplicacion y asi muchas mas.

¢ PaaS (Plataforma como servicio): PaaS provee un conjunto de servicios y flujo de trabajos
que especificamente apuntan a desarrolladores quienes pueden usar herramientas compartidas,

procesos y API’s para acelerar el desarrollo, testeo y despliegue de las aplicaciones.

¢ FaaS (Funciones como servicio): FaaS, la version de nube de un computo sin servidor que
anade otra capa de abstraccion a PaaS para que los desarrolladores estén completamente aislados
de todo en la pila debajo de sus codigos. En lugar de usar servidores virtuales, contenedores y
aplicaciones de tiempo de ejecucion, ellos suben poco a poco bloques funcionales de codigo y los

ponen de forma que sean disparados por un cierto evento.

2.4 Interfaz de programa de aplicaci()n

La interfaz programa de aplicacion es un codigo que permite la comunicacion entre componentes
de software. Se trata de un protocolo establecido conformado por un conjunto de subrutinas, funciones
y procedimientos, las cuales son llamadas que se hacen de ambos lados de donde se encuentra el api para
luego asi, hacer las transformaciones necesarias para que llegue a la siguiente capa. Estas llamadas

representan un método para extraer datos entre capas.

| 13

Cuando se hace un aproximamiento al enlazar lenguajes resulta que en realidad hay dos problemas
relacionados al describir los enlaces de idiomas a las interfaces API estandar. Uno de los problemas se
relaciona con la asignacion de caracteristicas y capacidades de lenguaje especificas a la interfaz, y el otro
problema se relaciona con la forma en que se documenta el enlace del idioma como estandar. La mayoria
de las API se describen en téerminos de un enlace de lenguaje especifico. Esto se debe al hecho historico
de que la mayoria de los estandares de API se derivan de la practica existente que evolucion6 en un
lenguaje de programacion especifico. Algunas API estan escritas para ser 'independientes del lenguaje de

programacion’, y utilizan un metalenguaje o un lenguaje de descripcion formal para especificar la interfaz
(Emery, 1996).

Existen varios tipos de estilo de arquitectura de API’s, sin embargo, en este trabajo se enfocara en
el estilo REST el cual proporciona interoperabilidad entre los sistemas informaticos en internet. Los
servicios web denominados RESTful permiten a los sistemas solicitantes acceder y manipular
representaciones textuales de recursos web mediante el uso de un conjunto uniforme y predefinido de

operaciones sin estado (stateless en ingles) (ficlding, 2000).

2.4.1 REST API

REST define un conjunto de principios arquitectonicos mediante los cuales puede disefar servicios
web que se centran en los recursos de un sistema, incluida la forma en que los estados de los recursos se
dirigen y transfieren a través de HTTP a través de una amplia gama de clientes escritos en diferentes

idiomas.

Si se mide por la cantidad de servicios web que lo utilizan, REST ha surgido solo en los altimos afios

como un modelo de diseno de servicios web predominante (Rodriguez, 2018).

El Estado de transferencia representacional (REST) es un estilo de abstraccion de unos elementos
de arquitectura dentro de un sistema de hipermedia distribuido. El REST ignora los detalles de
implementacion de componentes y sintaxis de protocolo por el motivo de enfocarse en los roles de
componentes, las restricciones sobre su interaccion con otros componentes y la interpretacion de

significado de elementos de datos (ficlding, 2000).

La naturaleza y el estado de los elementos de datos de una arquitectura es un aspecto clave de REST.
La razon de este diseno se puede ver en la naturaleza de hipermedia distribuida. Cuando se selecciona un
enlace, la informacion debe moverse desde la ubicacion donde se almacena a la ubicacion donde sera
utilizado, en la mayoria de los casos, por un lector humano. Esto es diferente a muchos otros paradigmas
de procesamiento distribuido, donde es posible, y generalmente mas eficiente, mover el "agente de
procesamiento" (por ejemplo, codigo movil, procedimiento almacenado, expresion de bsqueda, etc.) a

los datos en lugar de que mueva los datos al procesador (ficlding, 2000).

| 14

2.5 Tecnologl'as

En Esta seccion se hablara sobre las posibles tecnologias candidatas que abarcaran el desarrollo de la
REST API y la presentacion logica para la arquitectura de software multinivel que se empleara en el
BrainCEMISID, analizando brevemente sus caracteristicas para luego hacer una eleccion correcta que

ayude y facilite no solo la construccion del software sino el desempefio en su ejecucion.

2.5.1 Python

Python es un lenguaje de programacion creado por Guido van Rossum (2009) en el afio 1991, el
desarrollo de Python ocurre en el tiempo cuando muchos lenguajes de programacion dinamicos como
Tcl, Perl y ruby fueron tambic¢n siendo activamente desarrollados y ganando popularidad. este lenguaje
es fuertemente tipado y presenta multiples paradigmas, soportando programacion orientada a objetos,
programacion imperativa y programacion funcional. Otra de las caracteristicas de Python es que puede
incluirse en aplicaciones que necesitan una interfaz programable. Python presenta tambien la ventaja de
ser un codigo abierto, esto quiere decir que su modelo de desarrollo es en una comunidad abierta que se

dedica a colaborar con el mejoramiento del codigo y la implementacion de nuevos modulos.

Segtin la documentacion, Python (2019) es un lenguaje interpretado, a diferencia de uno compilado,
aunque la distincion puede ser borrosa debido a la presencia del compilador de bytecode. Esto significa
que los archivos de origen se pueden ejecutar directamente sin crear explicitamente un ejecutable que
luego se ejecuta. Los lenguajes interpretados generalmente tienen un ciclo de desarrollo y depuracion

mas corta que los compilados, aunque sus programas generalmente también se ejecutan mas lentamente.

El codigo fuente de Python se compila en el codigo de bytes, la representacion interna de un
programa de Python en el intérprete de CPython. El bytecode también se almacena en cache en archivos
“.pyc”, por lo que la ejecucion del mismo archivo es mas rapida la segunda vez (se puede evitar la
recompilacion desde el codigo fuente hasta el bytecode). Se dice que este “lenguaje intermedio” se ejecuta
en una maquina virtual que ejecuta el codigo de la maquina correspondiente a cada codigo de bytes. Tenga
en cuenta que no se espera que los codigos de bytes funcionen entre diferentes maquinas virtuales de

Python, ni que sean estables entre las versiones de Python.

| 15

2.5.2 Flask

Flask (2019) es un microframework escrito en el lenguaje de programacion Python creado por Armin
Ronacher en el afio 2010. Es una herramienta versatil que permite el desarrollo de varias caracteristicas
de una aplicacion como si esta estuviese basada en el por completo, una de estas caracteristicas que se
hara hincapi¢ es en “RESTful Request dispatching”, que es una extension que permite la implementacion
de soporte para rapidamente construir REST API’s, esta, sera la encargada para la comunicacion entre las

capas. Algunos de los componentes mas resaltantes de este marco de trabajo son:

® Werkzeug (2019): es una completa biblioteca de aplicaciones web WSGI. Comenz6 como una
simple coleccion de varias utilidades para aplicaciones WSGI y se ha convertido en una de las
bibliotecas de utilidades WSGI mas avanzadas. Flask envuelve a Werkzeug, usandolo para
manejar los detalles de WSGI mientras proporciona mas estructura y patrones para definir

aplicaciones poderosas.

e Jinja2 (2019): es un lenguaje de plantillas moderno y facil de usar para Python, inspirado en las
plantillas de Django. Es rapido, ampliamente utilizado y seguro con el entorno de ejecucion de

la plantilla de espacio aislado opcional.

2.5.3 PostgreSQL

PostgreSQL es un potente sistema de base de datos relacional de objetos de codigo abierto que usa
y amplia el lenguaje SQL combinado con muchas caracteristicas que almacenan y escalan de manera segura
las cargas de trabajo de datos mas complicadas. Los origenes de PostgreSQL se remontan a 1986 como
parte del proyecto POSTGRES en la Universidad de California en Berkeley y tiene mas de 30 afios de
desarrollo activo en la plataforma central. PostgreSQL se ha ganado una solida reputacion por su
arquitectura comprobada, confiabilidad, integridad de datos, conjunto de caracteristicas robustas,
extensibilidad y la dedicacion de la comunidad de codigo abierto detras del software para ofrecer
soluciones innovadoras y de alto rendimiento. PostgreSQL se ejecuta en todos los principales sistemas
operativos, cumple con ACID desde 2001 y tiene complementos potentes como el extensor de base de
datos geoespaciales PostGIS (PostgreSQL, 2020).

| 16

2.54 Mongo

MongoDB es un sistema de gestion de bases de datos de codigo abierto (SGBD) que utiliza un modelo
de base de datos orientado a documentos que admite diversas formas de datos. Es una de las numerosas
tecnologias de bases de datos no relacionales que surgieron a mediados de la decada de 2000 bajo el lema
NoSQL para su uso en aplicaciones de big data y otros trabajos de procesamiento que involucran datos
que no encajan bien en un modelo relacional rigido. En lugar de usar tablas y filas como en bases de datos

relacionales, la arquitectura MongoDB esta compuesta de colecciones y documentos (Margaret, 2019).

2.5.5 Django

Django es un marco web de Python de alto nivel que fomenta el desarrollo rapido y el disefo limpio
y pragmatico. Django se desarrollo originalmente en World Online, el departamento web de un
periodico en Lawrence, Kansas, EE. UU. Django usa una arquitectura de "nada compartido", lo que
significa que puede agregar hardware a cualquier nivel: servidores de bases de datos, servidores de
almacenamiento en caché o servidores de aplicaciones Web. El marco de trabajo separa de manera clara
los componentes, como la capa de base de datos y la capa de aplicacion. Y se entrega con un marco de

cache simple pero potente (Django, 2019).

2.5.4 PHP

PHP (acronimo recursivo de PHP: Hypertext Preprocessor) es un lenguaje de codigo abierto muy

popular especialmente adecuado para el desarrollo web y que puede ser incrustado en HTML.

PHP es un lenguaje de «scripting» que puede ser embebido en HTML. Gran parte de su sintaxis se
toma prestada de C, Java y Perl con un par de caracteristicas especificas propias de PHP. El objetivo del

lenguaje es permitir a los desarrolladores web escribir con rapidez paginas generadas dinamicamente
(PHP, 2019).

| 17

2.5.5 Laravel

Laravel es un marco web basado en PHP creado en el 2011, el cual se basa en gran medida en la
arquitectura MVC. Este marco de trabajo muestra ser accesible, pero potente, y proporciona las
herramientas poderosas necesarias para aplicaciones grandes y robustas. Una magnifica inversion del
contenedor de control, el sistema de migracion expresivo y el soporte de prueba de unidad estrechamente
integrado le brindan las herramientas que necesita para construir cualquier aplicacion que tenga a su cargo
laravel (2019).

Laravel presenta una arquitectura MVC que es un acréonimo de 'Model View Controller', esto
representa la arquitectura que los desarrolladores adoptan cuando construyen aplicaciones. Con la
arquitectura MVC, observamos la estructura de la aplicacion con respecto a como funciona el flujo de

datos de nuestra aplicacion (ighodaro, 2018).

Modelo

LNy Q\Q modelo devuelve 4.El controlador " |7

~

. los datos selecciona una/,yﬁa
2. El Controlador solita \\ Y
al modelo, los datos \ \}_“

N

\

5. Se devuelve a vista
~ s

/ seleccionada al

: controlador

Controlador

1. El usuario envia una
peticion al Controlador
via una url

6. El controlador devuelve una
vista (pdgina aspx) que carga los
datos del modelo seleccionado.

Usuario

(Navegador)

Figura 2.3 Arquitectura MVC de laravel. Tomada de (Medium, 2016).

Un modelo es una representacion de una instancia u objeto de la vida real en nuestra base de codigo.
La Vista representa la interfaz a traves de la cual el usuario interacttia con nuestra aplicacion. Cuando un
usuario realiza una accion, el Controlador maneja la accion y actualiza el Modelo si es necesario
(ighodaro, 2018).

| 18

2.5.7 Ruby

Ruby es un lenguaje de programacion dinamico de codigo abierto que se centra en la simplicidad y
la productividad. El enfoque orientado a objetos puro de Ruby se demuestra mas cominmente con un
poco de codigo que aplica una accion a un namero. En Ruby, todo es un objeto. Cada bit de informacion
y codigo puede tener sus propias propiedades y acciones. La programacion orientada a objetos llama a las
propiedades por las variables y acciones de la instancia de nombre que se conocen como métodos (Ruby,
2019).

2.5.8 Ruby on rails

Rails es un marco de desarrollo de aplicaciones web escrito en el lenguaje de programacion Ruby.
Esta disefiado para facilitar la programacion de aplicaciones web teniendo como base el concepto de
arquitectura MVC que es un acronimo de “Modelo Vista Controlador” (Model View Controller en

ingles), con algunos detalles diferentes (Rails, 2019). Sin embargo, como describe Fabela y Salas (2017):

Marco de Trabajo de Raik

I | s
+

~

Figura 2.4 Arquitectura MVCR de ruby on rails. Tomada de (Medium, 2017).

® Modelo: Define las relaciones del dominio que luego seran migradas a la base de datos.

® Vista: Es la capa que sera visible para el usuario final.

¢ Controlador: Define las acciones que se tomaran para generar cambios en las vistas y pide datos
del dominio al modelo.

¢ Enrutamiento: Asigna la ruta URL al controlador correcto. En el controlador se puede

obtener, guardar, editar, eliminar datos, y brindar una vista al usuario.

| 19

Capitulo 3

Arquitectura de software

En este capitulo se describe el disefio de la arquitectura de software que se uso para el
BrainCEMISID, se expondran las diferentes partes que compone la estructura y su funcionalidad a fondo

de cada una de ellas por separado.

3.1 Vista general de la estructura

La arquitectura que se adopto para el desarrollo del BrainCEMISID es la de una arquitectura por
capas, mas especificamente una estructura cliente servidor, en donde podemos apreciar que el lado del

cliente se encuentra en la parte del frontend del proyecto y el servidor es todo lo que comprende el

backend.

BrainCEMISID 3.0

Frontend Backend

Ty

Sistema de
archivos

R

Client App REST API Modelo

Ty
< < f—

Base de
- Datos

Figura 3.1 Vista general del proyecto BrainCEMISID 3.0.

3.2 Diseno del frontend

| 20

El diseno del frontend se lleva a cabo en la tesis de Vilchez (2020), una breve descripcion a primera

vista de este trabajo, es que este es el desarrollo de una interfaz grafica para que el usuario interactie con

el BrainCEMISID. Esto se logra en primera instancia por medio de una progressive web app hecha en

React que es una libreria de javascript desarrollado por Facebook que permite la generacion de vistas

(paginas) dinamicas con soporte de otra libreria de javascript llamada Redux que permite el manejo de

endpoints de manera segura y eficiente, logrando asi un puente entre React y el backend. La anterior

interfaz hecha en el trabajo de Fernandez (2016) proporciona un manejo muy rustico del cerebro, es por

esto que el rediseno de esta interfaz con un fin mas ergonomico esta tambien presente en el trabajo de

Vilchez.

3.3 Diseno del backend

Dejando a un lado el disefio del frontend, se enfoc6 en el disefio del backend y su estructura final.

El proceso de desarrollo del backend se realizo con la plataforma de Django en su version 3.0.2 junto a

su extension llamada Django Rest Framework en su version 3.11.0, que ofrece un kit de herramientas

para el desarrollo de web APIs mas ventajoso que la version por defecto que ofrece el marco de trabajo.

En la figura 3.2 se muestra de manera general, pero mas detallada en el diseno del backend del

BrainCEMISID 3.0.

Backend

REST API

Frontend Enrutador

Conjuntos de vistas

A

A

Modelo

———

Sistema de

archivos

o <

——

Base de

Kernel

Datos

Figura 3.2 Vista detallada del disefio del backend del BrainCEMISID 3.0

| 21

3.3.1 Enrutador

El enrutador es el encargado de manejar el despacho de datos del conjunto de vistas hacia la parte
del cliente y viceversa, de esta manera, el cliente (frontend) puede pedir varias solicitudes y ser atendidas
a traves de las terminales (endpoints) establecidas. Las diferentes rutas pueden ser agrupadas por su

aplicacion destinada:

Brain: Es el grupo de rutas en donde se aloja todo lo relacionado con el gestiona miento del cerebro,
esta ruta permite crear, destruir, procesar conocimiento y ver las respuestas que el cerebro puede darle

al usuario. En esta ruta se encontrar las siguientes rutas:

e api/kernel: Esta ruta es la que se utiliza para accionar las funciones del cerebro, en ella se pide
la solicitud de carga del cerebro, y se le envia un protocolo de tipo BBCC que es el protocolo
descrito por Fernandez (2016). Ademas de esto, se puede pedir la solicitud de la creacion y la
eliminacion del proyecto.

® api/user_projects: Esta ruta permite ver un prevista de algunos datos basicos del cerebro,
entre ellos se incluye, el nombre del cerebro, el estado interno del cerebro y su estado deseado.

Images_collection: En este grupo de rutas se pueden obtener las colecciones de los usuarios, es
decir, todo lo referente al banco de memoria de imagenes que un usuario y/o los usuarios puedan tener,
ahora bien, estas imagenes no deben confundirse con las imagenes que el cerebro ya tiene aprendida,

porque deberan ser aprendidas realizando solicitudes desde la anterior aplicacion ya antes mencionada.

e api/user_collection: En esta ruta se transmiten datos referentes a la coleccion que el usuario

tenga, aqui también, se puede borrar y eliminar todas y cada una de las imagenes almacenadas.

e api/all_collections: En esta ruta se transmiten los datos referentes a la coleccion de todos los

usuarios, haciendo asi posible que otros usuarios puedan ver imagenes de otras personas.

Accounts: En este grupo de rutas se gestiona todo lo referente a la cuenta del usuario
BrainCEMISID:

e api/auth/register: Esta ruta es la que se utiliza para el registro de usuario.
e api/auth/login: Esta ruta permite iniciar sesion al usuario.
e api/auth/user: Esta ruta permite obtener informacion con respecto al usuario.

¢ api/auth/logout: Esta ruta permite al usuario salirse de su sesion.

| 22

Sight network: Este es un grupo de rutas que abarca solo la siguiente ruta:

® api/sight_net: Esta ruta es para la obtencion de neuronas de vista de un proyecto especifico a

través de la base de datos.

Hearing network: Este es un grupo de rutas que abarca solo la siguiente ruta:

e api/hearing net: Esta ruta es para la obtencion de neuronas de oido de un proyecto especifico

a través de la base de datos.

Episodic_memory: Este es un grupo de rutas que abarca solo la siguiente ruta:

® api/episodicmemory: Esta ruta es para la obtencion de la informacion acerca de su memoria
episodica, en donde retorna el numero de la neurona y su estado interno en el momento de

aprendizaje.

Relational network: Este es un grupo de rutas que abarca solo la siguiente ruta:

e api/rel_net: Esta ruta es para la obtencion de las relaciones de las neuronas del oido con la
vista. Esta terminal retorna los identificadores de las neuronas pareadas, el peso de su relacion,

el estado de conocimiento de estas neuronas y su estado de reconocimiento.

3.3.2 Conjuntos de vistas

Un conjunto de vistas (viewset en inglés) es un controlador basado en clases que proporciona
meétodos basados en la arquitectura REST que permiten serializar y deserializar los datos de las solicitudes
que llegan por el enrutador. Cada conjunto de vistas es una clase que tiene su propio serializador
(serializer en inglés) que a su vez pueden estar o no relacionado con alguno o varios de los modelos
establecidos en el proyecto, pues puede haber solicitudes que no requieran directamente datos de la base
de datos como, por ejemplo, los datos de salida que genera el BrainCEMISID después de un estimulo. En
estos casos se generan clases apartes para esta salida y se llaman al conjunto de vistas para poner los datos
dentro de esta clase y luego ser serializada. Como en la anterior seccion, los conjuntos de vistas tambien

pueden ser agrupados por su aplicacion destinada:

Brain: Este conjunto de vistas permite gestionar el cerebro en su totalidad, es, en primera instancia,
donde se desarrolla mayor parte del api para las funciones principales del cerebro. Aparte de ofrecer la
funcionalidad de poder crearlo y eliminarlo, tiene soporte para el protocolo BBCC que establece una serie

de reglas para que el cerebro pueda interactuar con la otra interfaz del lado del cliente. Ademas de esto

| 23

ofrece un conjunto de vistas para ver el resumen de los otros proyectos del usuario que estan disponibles

y otro conjunto de vistas el estado deseado.

e KernelViewSet: El conjunto de vistas del kernel es una clase que ofrece la creacion, eliminacion

y uso del cerebro.

KernelViewSet

permission_classes : permissions(]
kernel : KernelBrainCemisid
h_knowledge : RbfkKnowledge[]
s_knowledge : RbfKnowledge[]
brain_output : BrainOutputClass[]

pass_kernel_inputs(self, hearing_pattern: list int , sight_pattern: list int, hearing_class: string,
intentions_input: list float, desired_input:list float, mode: string): void

show_kernel_outputs(self): void

bum(self, hearing_pattern: list int , sight_pattern: list int, hearing_class: string, intentions_input: list float,
desired_input: list float, mode: string): void

bip(self, hearing_pattern: list int , sight_pattern: list int, hearing_class: string, intentions_input: list float,
desired_input: list float, mode: string): void

check(self, hearing_pattern: list int , sight_pattern: list int, hearing_class: string, intentions_input: list float,
desired_input: list float, mode: string): void

clack(self, hearing_pattern: list int , sight_pattern: list int, hearing_class: string, intentions_input: list float,
desired_input: list float, mode: string): void

set_zero(self, hearing_pattern: list int , sight_pattern: list int, hearing_class: string, intentions_input: list
float, desired_input: list float, mode: string): void

set_add_operator(self, hearing_pattern: list int, sight_pattern: list int, hearing_class: string,
intentions_input: list float, desired_input: list float, mode: string): void

set_equal_sign(self, hearing_pattern: list int , sight_pattern: list int, hearing_class: string, intentions_input:
list float, desired_input: list float, rnode: string): void

create(self, request: rest_framework.request.Request): JSON
put(self, request: rest_framework.request.Request): JSON

delete(self, request: rest_framework.request.Request): JSSON

Figura 3.3 Conjunto de vistas del kernel.

¢ ProjectSummaryViewSet: Este conjunto permite acceder a la informacion basica de los
proyectos de un usuario en especifico, estos son, el nombre del proyecto, su estado interno y su

estado deseado.

| 24

ProjectSummaryViewSet

permission_classes : permissions[]
serializer_class : ProjectSummarySerializer

get_queryset(self) : return brain

Figura 3.4 Conjunto de vistas ProjectSummary.

® DesiredStateViewSet: Este conjunto de vista permite la obtencion del estado deseado del

cerebro y su modificacion.

DesiredStateViewSet

permission_classes : permissions[]

put(self, request: rest_framework.request.Request):JSON
list(self, request: rest_framework.request.Request): JSON

Figura 3.5 Conjunto de vistas DesiredStateViewSet.

Images_collections: En este grupo se definen los conjuntos de vistas para acceder a las imagenes

almacenadas en el sistema de archivos.

e UserCollectionViewSet: Este conjunto de vista permite gestionar la coleccion de imagenes
que el usuario puede tener, esto incluye, eliminacion, agregacion y hasta cierto punto

modificacion de los datos de la imagen.

UserCollectionViewSet

permission_classes : permissions[]
serializer_class : ImagesFromNeuronSerializer

get_queryset(self): ImageFromNeuron
perform create(self, serializer: ImageFrom NeuronSerializer): void

Figura 3.6 Conjunto de vistas UserCollection.

¢ AllCollectionsViewSet: Este conjunto de vista solo permite la vista a la coleccion de imagenes
de todos los usuarios en formato solo lectura (Read-Only). A través de ella cualquier usuario

puede ver la coleccion de imagenes de otros usuarios.

| 25

AllCollectionsViewSet

permission_classes : permissions[]
serializer_class : ImagesFromNeuronSerializer
queryset : ImageFromNeuron

Figura 3.7 Conjunto de vistas AllCollections.

Accounts: Este grupo de conjuntos de vistas fueron disenadas con el proposito de gestionar todo
lo referente a las cuentas de usuarios en la plataforma, incluyendo el registro, inicio de sesion y obtencion

de informacion del usuario.

® RegisterAPI: Este conjunto de vistas ofrece la funcionalidad de registro del usuario en la

plataforma.

RegisterAPI

serializer_class : RegisterSerializer

post(self, request: rest_framework.request.Request, *args, *kwargs): JSON

Figura 3.8 Conjunto de vistas del registro.

® LoginAPI: Este conjunto de vistas ofrece la funcionalidad de inicio de sesion de un usuario en

la plataforma.

LoginAPI

serializer_class : RegisterSerializer

post(self, request: rest_framework.request.Request, *args, *kwargs): JSON

Figura 3.9 Conjunto de vistas del inicio de sesion.

® UserAPI: Este conjunto permite la obtencion de informacion del usuario con inicio de sesion.

UserAPI

serializer_class : UserSerializer
permissions_class : permissionsy]

get_object(self): rest_framework.request.Request

Figura 3.10 Conjunto de vistas de informacion del usuario.

| 26

Sight network: Este grupo solo contiene un conjunto de vistas que se utiliza para obtener la red

neuronal de la vista de un cerebro en particular. Este conjunto de vistas se llama

SightNeuronsViewSet.

SightNeuronsViewSet

permission_classes : permissions(]
serializer_class : NeuronSightSerializer

get_queryset(self): RbfNeuronSight

Figura 3.11 Conjunto de vistas SightNeuronsViewSet.

Hearing network: Este grupo solo contiene un conjunto de vistas que se utiliza para obtener la
red neuronal del oido de un cerebro en particular. Este conjunto de vistas se llama

HearingNeuronsViewSet.

HearingNeuronsViewSet

permission_classes : permissions[]
serializer_class : NeuronHearingSerializer

get_queryset(self): RbfNeuronHearing

Figura 3.12 Conjunto de vistas HearingNeuronsViewSet.

EpisodicMemory: Este grupo solo contiene un conjunto de vistas que se utiliza para obtener la

memoria episodica de un cerebro en particular. Este conjunto de vistas se llama

EpisodicMemoryViewSet.

EpisodicMemoryViewSet

permission_classes : permissions|]
serializer_class : EpisodicMemorySerializer

get_queryset(self): OrderedDict

Figura 3.13 Conjunto vistas EpisodicMemoryViewSet.

Relational network: Este grupo solo contiene un conjunto de vistas que se utiliza para obtener

la red relacional de un cerebro en particular. Este conjunto de vistas se llama RelNetworkViewSet.

| 27

RelNetworkViewSet

permission_classes : permissions[]
serializer_class : RelNetworkSerializer

list(self, request: rest_framework.request.Request): RelNetworkClass

Figura 3.14 Conjunto de vistas RelNetworkViewSet.

3.3.3 Modelo

Como se describe en la documentacion de Django (2020) un modelo es la fuente tnica y definitiva
de informacion sobre los datos. Contiene los campos y comportamientos esenciales de los datos que estan

almacenando. En general, cada modelo se asigna a una sola tabla de base de datos.

Estos modelos ayudan a guardar los datos que necesita el kernel y los datos de los usuarios para que
la plataforma pueda funcionar. Ademas de esto, el marco de trabajo de Django ofrece una interfaz para
poder hacer consultas de manera mas sencillas a la base de datos denominada mapeo objeto-relacional
(Object-Relational Mapping en inglés). Esto facilita el desarrollo y ofrece seguridad en comparacion a su
contra parte, que seria el lenguaje de consultas estructurado (SQL en ingles) que la base de datos necesita
para ser accedida desde la plataforma, mas aun, ofrece tambien un soporte para la agregacion de imagenes
que se encuentran almacenadas en el sistema de archivos. Este modelo se puede ver graficamente en la

figura 0.2 del anexo B.

3.3.4 Base de Datos

La base de datos presenta un cambio con respecto al sistema de almacenamiento que se tenia en la
anterior version del BrainCEMISID, esto facilita almacenar multiples instancias del cerebro de manera
organizada para su carga en general y tambien para la seleccion de datos de una instancia en especifico. El
tipo de base de datos que se utilizo para el proyecto fue una base de datos relacional ya que presentaba
una similitud con respecto a la estructura del componente modelo por la estructura de sus sistemas que
funcionan con el paradigma de relaciones. La tecnologia que se utilizo para el desarrollo de esta parte fue

PostgreSQL en su version 12 junto con PgAdmin que es su interfaz grafica por defecto.

| 28

3.3.5 Sistema de archivos

Un sistema de archivos puede considerarse como un indice o base de datos que contiene la
ubicacion fisica de cada dato en el disco duro u otro dispositivo de almacenamiento. Los datos

generalmente se organizan en carpetas llamadas directorios, que pueden contener otras carpetas y
archivos (Fisher, 2019).

Django tiene la capacidad de poder interactuar con cualquier sistema de archivos que soporte el
marco de trabajo, dando lugar a la capacidad de poder almacenar imagenes, videos, musica y otros tipos
archivos de carga pesada. El sistema de archivo se utilizo para guardar las imagenes que los usuarios
almacenaban en la plataforma, siendo este una de las mejores formas de almacenamiento para este tipo

de datos en especifico.

3.3.6 Kernel

El kernel es el nacleo desarrollado por Fernandez (2016) en su tesis de grado, sim embargo, se
realizaron unas mejoras para poder ser utilizado en el proyecto. Estas Modificaciones se pueden organizar

de la siguiente forma:

3.3.6.1 Actualizacion

La version anterior del kernel estaba desarrollada en Python 2.7, lo cual hacia incompatible el uso
de este en el proyecto, pues la version que se utilizo de Django solo puede ser ejecutado en versiones de
Python 3 o superior. Sin embargo, a pesar de que se hubiese podido dejar la version 2.7 del kernel y
utilizar versiones mas viejas de Django, el proyecto no solo hubiese corrido el riesgo en caer en la
obsolescencia y falta de soporte por parte de los desarrolladores, sino que la version que ofrece para
Python 2 no tiene varias caracteristicas que sus versiones recientes tienen que facilitan significativamente
el desarrollo de la plataforma. Por esto se decidio hacer la actualizacion del codigo a Python 3.7 haciendo

cambios en cada uno de los modulos y resolviendo conflictos que emergian por cambio de version.

| 29

3.3.6.2 Cambio de gesti()n de almacenamiento de datos

El kernel utilizaba un metodo de almacenamiento por medio del sistema de archivos guardando los
datos serializados en una carpeta en el disco duro sin soporte para almacenar varios proyectos. Esto se
decidi6 pasar a la base de datos debido a la ventaja de poder organizar los datos de una manera mas eficaz

y poder dar un soporte para el almacenamiento de varios proyectos con un mayor manejo de los datos.

3.3.6.3 Reestructuracion parcial del kernel

Al pasar los datos a la base de datos se obtuvo una ventaja significativa para su gestion, sin embargo,
el proyecto requirio la carga externa de algunos modulos del cerebro para su observacion del lado del
cliente, esto hizo que algunos modulos se hayan tenido que reestructurar en su almacenamiento para
luego ser cargados al lado del cliente de manera optima. Los modulos que fueron reestructurados fueron
el sensory_neural_block que es el encargado de procesar las redes neuronales de la vista y el oido, y el

internal_state que es el modulo encargado de procesar el estado interno y el estado deseado.

| 30

Capﬁuk)4

Pruebas

En este capitulo se presentan las pruebas realizadas para los conjuntos de vistas del BrainCEMISID
3.0, cada conjunto de vista de cada modulo que conforma la plataforma sera puesto a prueba con el fin
de seguir el flujo de eventos y verificar que las funcionalidades que poseen las vistas estén operando

correctamente.

4.1 Planificacion de las pruebas

Las pruebas del sistema son realizadas de manera manual sobre cada conjunto de vista en cada
modulo de la plataforma. Vistas como pruebas funcionales, las pruebas del sistema implican la observacion
del conjunto de vista como una caja negra en donde la salida y entrada de un método de un conjunto de

vistas, se revisa para obtener una retroalimentacion de sus funcionalidades.

Para la Ejecucion de las pruebas del sistema se utilizo una version prototipo del trabajo de Vilchez
(2020), la cual provee las vistas (que es como ¢l llama a la parte visual de su aplicacion) necesarias para
probar los protocolos principales del API, esto no solo garantiza que si las pruebas son exitosas el api esta
funcionando, sino que también garantiza una integracion con respecto al trabajo hecho para el lado del

cliente.

4.2 Criterio de las pruebas

Las pruebas se hicieron por medio de la aplicacion cliente de modo que, se hizo una captura de los
datos de entrada serializados que se pasan al api y luego se hace otra captura de la respuesta serializada en
crudo de lo que retorna. De esta manera la prueba consisti6 en que, si la funcionalidad retornaba la
respuesta esperada, se tomo la evaluacion como exitosa. Sin embargo, si la prueba no retorna una

respuesta esperada se verificara el codigo del API para encontrar una posible falla, se corregira y luego se

| 31

aplicara la prueba nuevamente. Las pruebas se daran concluidas cuando todas las funcionalidades que estan

siendo usadas en el cliente demuestren un comportamiento esperado sin ningtn tipo de error.

4.3 Pruebas realizadas

4.3.1 Registro del usuario
4.3.1.1 flujo de la prueba

Se dirige a la pagina principal del cliente del BrainCEMISID y se selecciona la opcion registro, Se
llena la planilla de registro con la informacion pedida mostrado en la figura 4.1. Esto contiene los campos:
Usuario, correo electronico, contraseia y confirmar contrasena, luego de esto se selecciona la opcion
acepto términos y condiciones y se da al boton “registrate”. El enrutador debe recibir esta informacion y
luego debe pasarlo al método post del RegisterAPI generando una respuesta con los datos del nombre

de usuario, su correo electronico y un token de autenticacion.

4.3.1.2 postcondiciones

Como se muestra en la figura 4.2 la entrada de datos al api son los valores que le provisiono el cliente
de hecho en react, y luego, en la figura 4.3 se puede observar la respuesta que da el RegisterAPI es el
de los datos del usuario mas un token para validar y permitir el inicio de sesion del usuario en el lado del
cliente una vez que el este registrado en la plataforma. Podemos evaluar entonces esta prueba como

exitosa.

| 32

Registro

KristoLopez

kristolopez@gmail.com

escscscscse

sscscscscne

Acepto los términos y condiciones.
REGISTRATE

Figura 4.1 Prueba de registro de usuario.

username: tolLopez”, email: 21l. , password:
/ , passwordConfirm: :

username: "k t ez”

email: "kristol

password: "

passwordConfirm:

TERMINAL

Figura 4.3 Salida del RegisterAPI.

| 33

4.3.2 Inicio de sesion del usuario
4.3.2.1 flujo de la prueba

Se dirige nuevamente a la pagina para inicio de sesion, se rellenan los campos de usuario y contrasefia
como se muestra en la figura 4.4 y se le da a la opcion de “iniciar sesion”. El enrutador debe recibir esta
informacion y debe pasarlo al método post del conjunto de vistas LoginAPI y este debe enviar los datos

para inicio de sesion.
4.3.2.2 postcondiciones

Como se muestra en la figura 4.5 el cliente genera la entrada para el api del inicio de sesion que se
compone con el nombre del usuario y su contrasefia y en la figura 4.6 se observa la respuesta del api que
son el nombre el correo y el id del usuario junto al token para la autorizacion de inicio de sesion esto

significa que la prueba ha sido exitosa.

Autenticacion

KristoLopez
[Contrasena *
INICIAR SESION

Figura 4.4 Prueba de inicio de sesion.

v {username: ristolopez”, password:
username:

password:

Figura 4.5 Entrada para el conjunto de vistas LoginAPI provisionada por el cliente.

| 34

TERMIMNAL

Figura 4.6 Salida del LoginAPI.

4.3.3 Creacion de proyecto
4.3.3.1 flujo de la prueba

Con la sesion iniciada, en la pagina de creacion de proyecto, se introduce el nombre del proyecto
que se desee como se aprecia en la figura 4.7 y luego se da al boton de “create project”. El enrutador debe
recibir el nombre del proyecto y el token del usuario de la sesion iniciada y pasarselo al metodo create
del KernelViewSet.

4.3.3.2 postcondiciones

Como se muestra en la figura 4.8 el cliente genera una entrada para el api de la creacion del proyecto
que seria el nombre del proyecto mas el token de inicio de sesion, luego en la figura 4.9 se muestra la
salida del api que es el mensaje de creacion exitosa con el id del proyecto, lo que permite validar que la

prueba es exitosa.

Proyectos / N

Nombre del proyecto

proyecto 01

CREATE PROJECT CANCEL

Figura 4.7 prueba de creacion de proyecto.

| 35

project_name: proyecto 01

v {headers: {.}} B
» headers: {Authorization:
» __proto__: Object

Figura 4.8 Entrada para el método create del conjunto de vistas KernelViewSet provisionada por el

cliente.

TERMINAL

Quit the sem ith CTRL-BREAK.

Figura 4.9 Salida del KernelViewSet.

4.3.4 Aprendizaje
4.3.4.1 flujo de la prueba

En el tablero del proyecto se selecciona la opcion aprendizaje, posteriormente se procede a
seleccionar una tarjeta de las colecciones que tenga el usuario, se introduce la categoria del oido y se ajusta
la tolerancia al color como se muestra en la figura 4.10 con ajustes a los termometros biology, cultural y
feelings acorde al estado interno que se quiere generar. El enrutador debe recibir el token de

autenticacion del usuario mas los datos del estimulo al método put del KernelViewSet.

4.3.4.2 postcondiciones

En la figura 4.11 el cliente genera una entrada para el api siendo estos el patron de escucha, la clase
del oido, el patron de la vista, la entrada de intenciones como un vector de 3 variables biology, cultural
y feelings respectivamente, el id de la imagen que se desea parear con la neurona, opcion de
renombramiento imagen, nombre del conjunto y modo de aprendizaje del cerebro, luego en la figura
4.12 se puede apreciar el mensaje que se pasa al cliente que la neurona ha sido pareada exitosamente junto
al mensaje por defecto del protocolo http que el metodo put ha sido logrado satisfactoriamente. Este

resultado se puede evaluar como exitoso.

| 36

< Dashboard

men s3po

Categoria
sa00

o Ajustes del Patron Visual:

Previsualizacion

Tolerancia al Color @

j Biology

Figura 4.10 Prueba de aprendizaje.

v {headers: {~}} /B
v headers:
Authorization: "toke
» _proto__: Object
» __proto__: Object

v {CLACK: Array(1), mode:
v CLACK: Array(1)
vo:
hearing_pattern:
hearing_class:
» sight_pattern:
» intentions_input:
image_id:
rename
set: * 1
» __proto__: Object
length:
» __proto__: Array(9)
mode: “EF DES*™
» _proto__: Object

Figura 4.11 Entrada de aprendizaje para el método put del conjunto de vistas Kernel ViewSet

provisionada por el cliente.

CONSOLE DE DEBOGAGE ~ TERMINAL

d with image
182]

t id=23 HTTP/1.1" 288 42

Figura 4.12 Salida de aprendizaje del KernelViewSet.

| 37

4.3.5 Reconocimiento
4.3.5.1 flujo de la prueba

En el tablero del proyecto se selecciona la opcion reconocimiento, posteriormente se procede a
seleccionar una tarjeta de las colecciones que tenga el usuario, luego se ajusta el nivel de tolerancia al
color como se muestra en la figura 4.13 y se da a la opcion de reconocer. El enrutador debe recibir el

token de autenticacion del usuario mas los datos del estimulo al método put del KernelViewSet.

4.3.5.2 postcondiciones

Se muestra la figura 4.14 que el cliente genera una entrada para el api siendo estos el patron de
escucha en blanco, la clase del oido en blanco, el patron de la vista, la entrada de intenciones como un
vector de 3 variables biology, cultural y feelings respectivamente y modo de reconocimiento del cerebro,
luego en la figura 4.15 se puede apreciar la respuesta del kernel que es el patron del oido, la clase del
oido, el patron de la vista, el numero neuronal, los estados internos, los estados deseados, el id de la
imagen y el estado del cerebro, haciendo que este resultado es el esperado y se puede evaluar la prueba

como exitosa.

< Dashboard

Resumen

PROPIOS

Aprendizaje

Reconocimiento

& L9

Ajustes del Patron Visual:

© Vit
— Toersncs sl Coor ®

Episodios de Vida

>

Pagina Principa|

B Tocos los Proyectos

animal

8] CemarSesion

RECONOCER

Figura 4.13 Prueba de reconocimiento.

| 38

project_id:
t@
v headers:
Authorization: “"token 4e
» __proto__: Object
» _ _proto__: Object

Object @
v CHECK: Array(1)

r:
» hearing_pattern:
hearing_class: ""
» sight_pattern:
» intentions_input:
» _proto__: Object
length:
» __proto__: Array(@)
mode: "E DES*®
» __proto__: Object

Figura 4.14 Entrada de reconocimiento para el método put del conjunto de vistas Kernel ViewSet

provisionada por el cliente.

TERMINAL 1: pipenv

Figura 4.15 Salida de reconocimiento del KernelViewSet.

4.3.6 Insercion de tarjeta
4.3.6.1 flujo de la prueba

En la pagina de “Nueva Tarjeta” se introducen los datos solicitados “Nombre de la Nueva Tarjeta”,
“Clase de la Nueva Tarjeta” y se inserta la imagen que se desea como se muestra en la figura 4.16 y luego
se le da al boton “guardar”. Esto sera recibido por el enrutador que debera pasarle al metodo
perform_create del UserCollectionViewSet el token de autenticacion, el nombre de la tarjeta y el

nombre de la clase de la tarjeta.

4.3.6.2 postcondiciones

Se observa que en la figura 4.17 el cliente genera una entrada para el api de coleccion de imagenes
del usuario que serian los mismos datos que se introdujeron en la pagina, mas el token de autenticacion y
la especificacion del tipo de contenido que se le esta pasando. Luego en la figura 4.18 se muestra
nuevamente los valores que llegaron al api para remarcar la respuesta del servidor la cual es el codigo 201
que significa que la tarjeta ha sido creada satisfactoriamente. Este resultado indica que la prueba ha sido

exitosa.

| 39

Nueva Tarjeta

& Sube un Archivo]

GUARDAR

Figura 4.16 Prueba de insercion de tarjeta.

headers []
headers:
Content-Type: ™
Authorization: "
__proto__: Object
__proto__: Object
name, raton
name_class, animal

img, [object File]

Figura 4.17 Entrada para el conjunto de vistas UserCollectionViewSet provisionada por el cliente.

TERMINAL

dFile: usua

Figura 4.18 Salida del UserCollectionViewSet remarcada con su entrada de datos.

| 40

4.3.7 Visualizacion de neuronas del oido
4.3.7.1 flujo de la prueba

En el tablero del proyecto como se muestra en la figura 4.19 se selecciona a la opcion oido. Esta
senal genera una salida que recibe el enrutador para pasarsela al método get_queryset del

HearingNeuronViewSet.

4.3.7.2 postcondiciones

Se observa en la figura 4.20 que el cliente genera una entrada al api compuesta por el id del proyecto
y el token de autenticacion del usuario y esto a su vez genera una salida compuesta por las neuronas del
oido que tienen conocimiento que son del proyecto como se ve en la figura 4.21, lo cual indica un éxito

en la prueba realizada.

< Dashboard e

Wl Resumen
* Aprendizaje
Q Reconocimiento

=] Episodios de Vida

Estado Interno Deseado Estado Interno Actual
.3 Nueva Tarjeta
® Vista
@ oido Ll | Ll
Biology Cultural Biology Cultura
i Relaciones
=] Episodios de Vida
Resumen Neuronal
A Pagina Principal © Vista: 3
B Todos los Proyectos € oide:3
2] Cerrar Sesién -] Relacionales: 254

Figura 4.19 Prueba de visualizacion de neuronas del oido.

r {headers: {. [¢]
» headers: {Authorization:
» __proto__: Object

project id:

Figura 4.20 Entrada para el conjunto de vistas HearingNeuronViewSet provisionada por el cliente.

| 41

TERMINAL 1: pipenv

nHearing object (1602)>, <RbfNeuronHearing: RbfNeurontearing object (16@3)>1>

Figura 4.21 Salida del HearingNeuronViewSet.
4.3.8 Visualizacion de neuronas de la vista
4.3.8.1 flujo de la prueba

En el tablero del proyecto como se muestra en la figura 4.22 se selecciona a la opcion vista. Esta
senal genera una salida que recibe el enrutador para pasarsela al metodo get_queryset del
SightNeuronViewSet.

4.3.8.2 postcondiciones

Se observa en la figura 4.23 que el cliente genera una entrada al api compuesta por el id del proyecto
y el token de autenticacion del usuario y esto a su vez genera una salida compuesta por las neuronas de la
vista que tienen conocimiento que son del proyecto como se ve en la figura 4.24, lo cual indica un exito

en la prueba realizada.

< Dashboard e

ih Resumen
® Aprendizaje
Q Reconocimiento

fii=) Episodios de Vida

Estado Interno Deseado Estado Interno Actual
.3 Nueva Tarjeta
® Vista
@ oido L] L3
Biology Cultural 3 Biology

- Relaciones

=) Episodios de Vida

Resumen Neuronal

M Pagina Principal ® Vista:3
@@ Todos los Proyectos € oido:3
3] Cerrar Sesién " Relacionales: 254

Figura 4.22 Prueba de visualizacion de neuronas de la vista.

| 42

r {headers: {.. [¢]
» headers: {Authorization:
» __proto__: Object

project id:

1: pipenv

t (16@1)>, <RbfNeuronSight: RbfNeuronSight object (160 <RbfNeuronSight: RbfNeuronSight object (16@3)>]>
7:201 "GET /api/ ht /?proiect id=17 HITP/1.1" 2@8 1112

Figura 4.24 Salida del SightNeuronViewSet.

| 43

Capl'tulo 5

Conclusiones y trabajos futuros

5.1 Conclusiones

Los proyectos que involucran al BrainCEMISID han presentado ser un desafio que presenta un
paradigma que esta fuera de la zona de confort de sus contribuyentes, en este proyecto se presentaron
varios desafios, el primero de ellos era la adaptacion del cerebro a un modelo de arquitectura multinivel,
en donde surgieron varias posibilidades de como implementarlo a la plataforma; el segundo era el diseno
de la api como tal tomando en consideracion solo las posibilidades que no salieran del marco de trabajo
de Django o que no tomaran mucho tiempo en implementarlas asegurando que el proyecto fuese
fidedigno y por wltimo, la reestructuracion parcial de algunos datos que el cerebro almacenaba que
requerian esta caracteristica para facilitar algunas funcionalidades del API, todo esto requirio un estudio
del anterior proyecto de Fernandez (2016) junto a su codigo fuente que ofrecia con la problematica que
no existia un manual concreto que explicaba el funcionamiento del cerebro claramente. Al principio cada
decision que se tomaba en el proyecto era vital porque comprometia el disefio y su consistencia, sin
embargo, se tomaron decisiones en base al principio filosofico de la navaja de Ockham para poder resolver
todos los problemas, esto no solo facilito el desarrollo del API, sino que inclusive hizo que en ciertos
aspectos fuera mas confiable su adherencia para ambas partes, tanto al cerebro como a su interfaz. Una
vez tomada las decisiones mas generales de disefio, las siguientes decisiones no eran mas que la
especificacion mas detallada de estas, haciendo que el problema se redujera su complejidad

considerablemente y aumentando la productividad del desarrollo.

La nueva version del kernel esta actualizada a una version de Python con soporte de la comunidad y
que brinda nuevas caracteristicas que pueden requerirse en el futuro, mas aun, la forma en que se
implemento el kernel en la plataforma hace que sea como una especie de probeta (pipe en inglés) que se
inicialice y acte solo cuando el usuario lo requiera, haciendo que su funcionamiento solo sea el de

procesar datos y enviar salidas tanto para la base de datos como para el usuario.

El disefio del api y la realizacion del proyecto en el marco de trabajo de Django hacen que el proyecto
no solo mantenga su portabilidad, sino que también lo hace mas escalable, debido a que el marco da una
estructura para su desarrollo sin salirse de ciertos limites ademas de, poder tener apoyo por medio de su
documentacion y de su comunidad. Mas atn se cumple uno de los logros mas importantes que han sido
perseguidos en esta serie de proyectos que es poder tener el BrainCEMISID sobre la web, haciendo que

varias personas puedan tener acceso al proyecto para su uso y desarrollo. No obstante, este proyecto no

| 44

ha sido llevado hasta su despliegue (del inglés deployed) en una plataforma como servicio (PaaS sus siglas
en inglés) por problemas de tiempo y bloqueo nacional en servidores web que ofrecen recursos gratuitos
para este tipo de proyectos, sin embargo, se acotara mas adelante esta caracteristica agrupandola con otras
para proponer varios trabajos futuros sobre este proyecto para que asl se tome un acercamiento inicial

mucho mas sencillo y se invierta este tiempo en pensar mas detalladamente estos problemas.

Los objetivos que se plantearon en el proyecto fueron logrados porque se hizo un estudio analizando
las salidas y entradas del BrainCEMISID junto al disefio e implementacion del protocolo de comunicacion
entre ambas capas, esto solo fue posible en base a la creatividad y la identificacion de los verdaderos
problemas que necesitaban ser comprendidos, de esta forma, el proyecto demuestra que los procesos
algoritmicos para la resolucion de problemas no son siempre la solucion porque a veces se es mas dificil
encontrar la pregunta que detalle el problema que su misma respuesta, viendolo de este modo, se puede
describir este como un trabajo de ingenieria pura por que denota lo mas valioso e importante para esta
area de trabajo, estas serfan, la habilidad de comprension de un problema y la creatividad para poder

resolverlo.

5.2 Trabajos futuros

Los trabajos futuros que se describen en esta seccion del proyecto comprenden desde implementar
un sistema de seguridad mas robusto, crear un entorno para su recreacion, mejorar su percepcion de

animos, hasta ampliar y mejorar sus funcionalidades haciendolas mas precisas y refinadas.

5.2.1 Implementaci()n de un sistema de seguridad mas robusto

Aunque existe un sistema de seguridad para este proyecto ya implementado, puede haber acoples a
otras interfaces customizadas del lado del cliente, esto es debido a que las credenciales CORS que se usan
para pedir solicitudes a estos, tienen una leve seguridad que debe ser reforzada por medio del cambio de
credenciales a tipo CSP para garantizar completa seguridad a la hora de su ejecucion, esto permitira la

restriccion al lado del backend solo con aplicaciones certificadas con acceso a estas credenciales.

| 45

5.2.2 Creacion de un entorno contenerizado para el despliegue del
BrainCEMISID

El despliegue de la aplicacion es necesario para poder aprovechar un procesamiento por medio de la
nube que elevaria el rendimiento y ejecucion de la aplicacion considerablemente, mas atin puede ser una
muy buena forma de poder aprovechar las tecnologias mas recientes como Docker que usan el paradigma
de la contenarizacion (containerization en inglées) de aplicaciones para asi aprovechar al maximo los

recursos de la nube en donde se esté ejecutando.

5.2.3 Fragmentaci()n del BrainCEMISID dentro del conjunto de

vistas para su optimizaci(')n

A pesar de ser un requisito no funcional, el rendimiento y la escalabilidad son factores importantes
para cualquier desarrollo de software en mayor o menor medida dependiendo de los casos, sin embargo,
el BrainCEMISID puede aprovechar las ventajas que le ofrece la arquitectura multinivel en la que ya esta
instanciado y sufrir una fragmentacion parcial o total de su kernel, dispersandolas asi en el conjunto de
vistas que conforman su API. Esto pudiese ser parte de un proyecto que afronte mayores retos, pero a su
vez obtengan un soporte sustancialmente mejor a la hora de tener que actualizar un modulo o inclusive

ayudar a mejorar su vista general y asi facilitar la comprension de su funcionamiento como un sistema.

5.2.4 Implementacion del moédulo de prediccion musical y
paralelizacion de funciones

El modulo creado anteriormente por Araujo (2019) proporciona una funcionalidad importante para
la ampliacion de la percepcion que tiene el BrainCEMISID hasta ahora, este trabajo se puede afadir al
kernel para que se pueda aprovechar esta caracteristica que otorga un grado apreciacion de la musica e
inclusive, en segundo pensamiento, extrapolar y adaptar este modelo a otros sentidos como lo explica el
en su trabajo. A su vez las mejoras hechas por El Halabi (2016) podrian ser necesarias para la optimizacion
proyecto haciendo paralelo el trabajo de algunos modulos para aprovechar un procesador con arquitectura

multintcleos.

| 46

5.2.5 Creacion de un entorno de vida para el BrainCEMISID e
implementaci()n de un nuevo modelo para generar cambios de su

estado interno

La autonomia de este cerebro artificial se denota como uno de los fines que busca saciar este
proyecto, por esto, es necesario el planteamiento de la creacion de un entorno de vida en donde el cerebro
pueda descubrir lugares, aprender cosas nuevas y vivir episodios de vida. Esto a su vez, viene acompanado
por un cambio necesario en el modelo actual que el BrainCEMISID emplea para hacer cambios en su
estado interno. Acorde a sus necesidades y el deseo de poder satisfacerlas, se disefiaria entonces un modelo
que en primera instancia se tomaria como un conjunto de histeresis las cuales, al haber un cambio, crean

formas mas complejas de cambios en su estado interno.

| 47

Bibliografl'a

Araujo A. (2019). Estructura neuronal de Prediccion musical para el proyecto BrainCEMISID.
Proyecto de Grado EISULA, Universidad de los Andes, Escuela de Ingenieria de Sistemas.

Andrade, L. L. (2012). Diseno en VLSI (Very Large Scale Integration) y FPGA (Field Programmable
Gate Array) de una Red Neuronal. Tesis, Universidad de Los Andes, Mérida, Venezuela

Bruzual, R. A. (2015). Brain-CEMISID v1.4 - Disefio de un nticleo operacional para la construccion
de un kernel-cerebro artificial implementado en programacion paralela en el ambiente CUDA: Creacion

de la Lectura Comprensiva de Palabras. Tesis, Universidad de Los Andes, Mérida, Venezuela.

De Garis, H., Shuo, C., Goertzel, B., & Ruiting, L. (2010). A world survey of artificial brain
projects, Part I: Large-scale brain simulations. Neurocomputing, 74(1-3), 3—29. En Internet, pagina
web: https://www.sciencedirect.com/science/article/pii/S0925231210003279

El Halabi M. (2016). BRAIN-CEMISID version 2.1 - Construccion de un Kernel Cerebro Artificial
en Python: Creacion de un soporte intermedio para el procesamiento en paralelo. Tesis, Universidad de

Los Andes, Mérida, Venezuela.

Emery D. (diciembre 20, 1996). Standards, APIs, Interfaces and Bindings. En Internet, pagina
web:https: //web.archive.org/web/20150722003250/http: //www.acm.org/tsc/apis.html

Graterol, R. X. (2015). BRAIN-CEMISID V]&]. Ver R - Diseno de un ntcleo operacional para la
construccion de un kernel-cerebro artificial implementado en programacion paralela en el ambiente

CUDA: Creacion de la esfera de capacidades. Tesis, Universidad de Los Andes, Mérida, Venezuela.

Knorr E. (octubre 2, 2018). What is cloud computing? Everything you need to know now. En
Internet, pagina web: https://www.infoworld.com/article/2683784 /what-is-cloud-computing.html

Kriesel, D. (2005). A brief introduction to neural networks. En Internet, pagina web:

http://www.dkriesel.com/en/science/neural networks.

Fernandez B. (2016). BRAIN-CEMISID version 2.0 Construccion de un Kernel Cerebro Artificial
en Python: Reingenieria de Software y Creacion del Estado Mental de la Intencion. Tesis, Universidad
de Los Andes, Mérida, Venezuela.

Fisher T. (2019). What Exactly is a File System?. En Internet, pagina web:
https://www lifewire.com/what-is-a-file-system-2625880 - consultado el 15 de enero del 2020.

| 48

Fielding R. (2000). Representational State Transfer (REST). En Internet, pagina web:

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest arch style.htm - consultado el 15 de enero

del 2020.

Flask (2019). Flask-RESTful User’s Guide. En Internet, pagina web: https://flask-
restful.readthedocs.io/en/latest/ - consultado el 15 de junio del 2019.

Guru99 (2020). What is Spiral Model? When to Use? Advantages & Disadvantages. En internet,
pégina web: https: //www.guru99.com/what-is-spiral-model-when-to-use-advantages-
disadvantages.html consultado el 7 de enero del 2020.

Ighorado N. (mayo 24, 2018). How Laravel implements MVC and how to use it effectively.En

Internet, pagina web: https://blog.pusher.com/laravel-mvc-use/

Jinja2 (2019) Welcome to Jinja2. En Internet, pagina web: http://jinja.pocoo.org/docs/2.10/ -
consultado el 16 de junio del 2019.

Margaret R. (2019). Guide to NoSQL databases: How they can help users meet big data needs. En

internet, pagina web: https://searchdatamanagement.techtarget.com/definition/MongoDB -
consultado el 6 de enero del 2020.

Matich D. (2001). Redes Neuronales: Conceptos Basicos y Aplicaciones. Tesis, Universidad

Tecnologica Nacional, Facultad regional Rosario. Santa fe, Argentina.

https: / /www.frro.utn.edu.ar/repositorio/catedras/quimica/S anio/orientadoral /monograias/matic

h-redesneuronales.pdf

Medium (2016). Entendiendo M de MVC y sus problemas. En internet, pagina web:
https:/ /medium.com/ (@davidenq/ entendiendo-m-de-mve-y-sus-problemas-ebcOcbf518ec -
consultado el 8 de enero del 2020.

Medium (2016). Ruby on Rails: HTTP, MVC and Routes. En internet, pagina web
https:/ /medium.com/the-renaissance-developer/ruby-on-rails-http-mvc-and-routes-f02215a46a84 -
consultado el 8 de enero del 2020.

Microsoft (2014). Layered Application. En Internet, pagina web: https://docs. microsoft.com/en-

us/previous-versions/msp-n-p/ff650258(v=pandp.10) - consultado el 10 de junio del 2019.

Monsalve, J. J. (2014). BRAIN-CEMISID version J&] - Diseno de un ntcleo operacional para la
construccion de un kernel basico de un cerebro artificial implementado en programacion paralela en el
ambiente CUDA: Creacion del Estado Cerebral. Tesis, Universidad de Los Andes, Mérida, Venezuela.

Muchacho, J. C. (2015). BRAIN-CEMISID version J&] - Diseno de un nicleo operacional para la
construccion de un kernel cerebro artificial implementado en programacion paralela en el ambiente
CUDA: Creacion del Mundo Cerebral. Tesis, Universidad de Los Andes, Mérida, Venezuela.

| 49

NetScape (2002). netscape and sun announce javascript, the open, cross-platform object scripting
language for enterprise networks and the internet. En Internet, pagina web:
https:/ /web.archive.org/web/20070916144913 /http://wp.netscape.com/newsref/pr/newsrelease6
7.html - consultado el 30 de junio del 2019.

PHP (2019) Manual PHP. En Internet, pagina web: https://www.php.net/manual/es/ -
consultado el 14 de junio del 2019.

PostgreSQL (2020). About. En internet, pagina web: https://www.postgresql.org/about/ -
consultado el 6 de enero del 2020.

Python (2019). Python 3.7.4rc2 documentation. ~En Internet, pagina web:
https://docs.python.org/ - consultado el 15 de junio del 2019.

Rangel, C. R. (2012). Motor de Neuronas Programado en Paralelo Sobre el Ambiente CUDA.

Tesis, Universidad de Los Andes, Mérida, Venezuela.

React (2019). Empezando. En Internet, pagina web: https://es.reactjs.org/docs/ - consultado el
16 de junio del 2019.

Rodriguez A. (noviembre 6, 2008). RESTful Web services: The basics. En Internet, pagina web:
http://www.gregbulla.com/TechStuff/Docs/ws-restful-pdf. pdf

Ruby (2019). Documentation. ~En Internet, pagina web: https://www.ruby-

lang.org/en/documentation/ - consultado el 20 de junio del 2019.

Russell, S. J.; Norvig, P. (2004). Inteligencia Artificial. Un enfoque moderno Segunda edicion
Pearson Educacion, S.A., Madrid.

Salas F., Fabela C. (noviembre 23, 2017). Web App Development: Defining MVC on Ruby on Rails

Framework. En Internet, pagina web: https://www.itexico.com/blog/web-app-development-

defining-mvc-on-ruby-on-rails-framework

Shiwani S., Minal K., Chetana K. (2013). Artificial Neural Network Based Signature Recognition
& Verification, IJETAE, 3(8), 191-197. En Internet, pagina web:
http://www.cs.sjtu.edu.cn/~shengbin/course/SE/ Verification%?200f%20Digital%620Signature%20V
erification%20Using%20Artificial%20Neural%20Networks. pdf

Sommerville, I. (2005). Ingenieria de Software. Pearson Educacion S.A, Madrid, Espana, 7 edition.

Sosa, J. E. (2016). BRAIN-CEMISID version 1.5 Construccion de un Kernel Cerebro Artificial
Implementado en Programacion Paralela en el Ambiente CUDA: Ensamblaje de las Esferas Sensorial,
Analitica, Cultural, Relacional, de Capacidades y Perceptora. Tesis, Universidad de Los Andes, Mérida,

Venezuela.

| 50

Technopedia, (2020). Database (DB). En internet, pagina web :
https://www.techopedia.com/definition/1185/database-db - consultado el 15 de enero del 2020.

Ortiz A. (julio 1, 2000). Three-Tier Architecture. En Internet, pagina web:

https://www.linuxjournal.com/article /3508

Van Rossum G. (enero 20, 2009). A Brief Timeline of Python. En Internet, pagina web:
http://python-history.blogspot.com/2009/01/brief-timeline-of-python.html

Vilchez P. (2019). BrainCEMISID 3.0 - Reestructuracion de un kernel cerebro artificial para su

adaptacion a una arquitectura de software multinivel. Tesis, Sin Publicar.

Werkzeug (2019). Werkzeug. En Internet, pagina web:

https://www.palletsprojects.com/p/werkzeug/ - consultado el 16 de junio del 2019.

| 51

Anexos

Anexos A. Repositorio del proyecto

En el siguiente enlace: https:// github.com/ KristoLopez/BrainCEMISID-on-Web se encuentra
alojado el repositorio del proyecto: BrainCEMISID on web en el sitio web: https: //github.com/ para

proximas colaboraciones (ver Figura 0.1).

[KristoLopez / BrainCEMISID-on-Web © Unwatch~ | 1 * Star | 0 YFork | 0
<> Code ! Issues 0 1] Pull requests 0 Actions 1!l Projects 0 Wiki 1) Security Ii_Insights Settings
No description, website, or topics provided. Edit

Manage topics

D 72 commits ¥ 1branch (0 packages © 0 releases 2% 1 contributor

Branch: master v New pull request Create new file = Upload files = Find file Clone or download ~

KristoLopez credentials needed for acces all collections Latest commit 2e772fe 3 hours ago
B braincemisid_on_web credentials needed for acces all collections 3 hours ago
i miscellaneous adding instructions to the readme 9 days ago
B .gitignore releasing all functionalities of the kernel 8 days ago
&) Pipfile erasing psycopg2 6 days ago
[E) README.md erasing psycopg2 6 days ago
[E) proto.txt models changing serializer and api 3 months ago
[E) requestjson orm hearing 17 days ago
README.md s

Figura 0.1 Repositorio del proyecto.

Anexos B.

Modelos almacenados en la base de datos

PostrgreSQL.

brain_indexrecognizehearing

P
Index_recognize INTEGER

snb_heaing /4 INTEGER

auth_group.
e SERIAL
group_id INTEGER /" [auth_group
permission_id INTEGER /" P
name
auth_user goups [’ L
) SERIAL =
P e auth_permission
group_id INTEGER /" > . SERIAL
h name CHARACTER VARYING(255)

L» brain_snb_h BT
77 besin_nia WrEGER 7 Yo —
brain_rbfneuronhearing state. CHARACTER VARYING{(280) name. CHARACTER VARYING(250)
. L L] mcaseasy so;0em wrecER - =R
B e 1
radivs DOUBLE PRECISION s BYTEA
dograded BOOLEAN sytaties et BYTEA
inowedge JSONS words_net BYTEA
snb_hearing W INTEGER 2 s BYTEA
episodic_memary BYTEA
= = decisions block BYTEA
brain_| iternai st JSONB
e SERAL = brain_snb_s esced sie JSONS
index_recognize INTEGER P v FE 7 uses_id INTEGER
soupia wreceR [sute CHARACTER VARYINGI(Z80)
index_ready_to_lesm INTEGER
lastlesrned 4 INTEGER
brain_rbfneuronsight
) SERIAL
has_knowledge BOOLEAN . > %
images_collections_imagesfromneuron
racivs DOUBLE PRECISION P o
o = | e ey
o iy 27 name_class CHARACTER VARYING(Z50)
S e | | ===
= > m CHARACTER VARYING(100)
ownee i INTEGER

Figura 0.2 Modelos del BrainCEMISID 3.0.

CHARACTER VARYING(128)

TIMESTAMP() WITH TIME ZONE

| 52

de

