PROYECTO DE GRADO

Presentado ante la ilustre UNIVERSIDAD DE LOS ANDES como requisito parcial para

obtener el Titulo de INGENIERO DE SISTEMAS

DISENO E IMPLEMENTACION DE UNA APLICACION WEB
PARA EL CONTROL DE SUMINISTRO DE COMBUSTIBLE.

Por

Br. Gabriel Alejandro Quintero Uza

Tutor: Dr. Gerard Paez Monzon

Febrero 2021

UNIVERSIDAD
DE LOS ANDES

MERIDA VENEIVELA

©2021 Universidad de Los Andes Mérida, Venezuela

Disefio e Implementacion de una Aplicacion Web para el Control de

Suministro de Combustible

Br. Gabriel Alejandro Quintero Uza

Proyecto de Grado — Sistemas Computacionales, 71 paginas

Escuela de Ingenieria de Sistemas, Universidad de Los Andes.

Resumen: Este trabajo presenta los procesos de disefio e implementacion de una aplicacion web, que
permite servir como plan de contingencia ante la escasez de combustible que se presenta en Venezuela,
dada la naturaleza del sistema, se busca minimizar los tiempos de aprendizaje y uso de la aplicacion por
parte de los usuarios, por ello se considera de gran importancia que el mismo posea una interfaz
intuitiva y de facil acceso. El sistema se realizo siguiendo la metodologia White WATCH, y se
implemento haciendo uso del framework Laravel de PHP para sustentar el desarrollo de las funciones.
Esta aplicacion web permite a los propietarios y conductores de automoviles realizar solicitudes de
combustible desde cualquier ubicacion con acceso a internet, y esperar a que la gestion automatizada de
combustible le notifique cuando puede dirigirse a la estacion de servicio de su preferencia, buscando

mejorar asi la calidad de vida de los usuarios y optimizar el proceso de suministro de combustible.

Palabras clave: Combustible, Aplicacion Web, Laravel, Autogestion

e iii
Indice de Tablas..............oiiii e vi
indice de FIguras. vii
Capitulo 1 INErOAUCCIONt 1
O O N S Yol e 13§ L 2
1.2 Planteamiento del Problema...... ... 3
1.3 ALCANICE et 3
N O 103 5 4
1.4.1 Objetivo General ..ot 4
1.4.2 Objetivos Especificos ..o 4

1.5 Metodologiao.ooiiiiiiiii 5
Capitulo 2 MArCO TEOTICO .. vttt e e e e e e e e ettt 6
2.1 Generalidades y conceptos basicos.ooooiiiiii 6
2.1.1 GaSOLINA ..t 6

2.2 Bases de Datos. .. uiii e 7
2.2.1 Bases de Datos Relacionalesouiuiiiiiiiiiiii 7
2.2.2 Sistemas de Gestion de Base de Datosoooiviiiiiiiiiiiiii 7

2.3 UML (Unified Modeling Language)ooooiii 8
2.3.1 Diagrama de Clases ... 8
2.3.2 Diagrama de Casos de USo..............ooiiiiiiiiiiii 8

2.4 Metodo de desarrollo White WATCH ...ttt 9
2.4.1 Procesos GErencialesouiiuiuiitiiii it 9
2.4.2 Procesos TECIICOS ... uuin e 9

2.5 Modelo Vista Controlador (MVC)oiuiiiiiiiii e 10
2.5.1 MOELO ..o 10
T v S P 11
2.5.3 Controlador 11

2.6 Framework. 11

iii

2.7 PHP: Hipertext Preprocessoroooiiiiiii 12

2.8 Laravel . . 12
2.8.1 L0 Y a7 1 o 13
Capitulo 3 Ingenieria de Requisitos ..o 14
3.1 Requisitos No Funcionales ... 14
3.2 Requisitos Funcionales.....................o 15
3.2.1 ReGISTIarseoiuii i 15
3.2.2 TG0) o) W 16
3.2.3 Recuperar ContraseNa..............oouiiiiiiiiiiii 17
3.2.4 Gestiondel Perfil ... 17
3.2.5 GeStION d€ USUATIOS ..evtnitet et 18
3.2.6 Gestion de AUtomoOvIles.oiiiei i 20
3.2.7 Consulta de AUtomoOVilesoooiiiiii 21
3.2.8 Gestion de Estaciones de Servicioooiiiiiiiii e 23
3.2.9 Gestion de Transporte............ooiiiiiiiiiiiiiii 25
3.2.10 Gestion de SolICItUAEsouininini i 27
3.2.11 Gestion de Combustible.........oiuiiiiiii i 28
3.2.12 Asignacion de Combustible..................... 30
Capitulo 4 Diseno del SOftwWare..........ovii i 32
4.1 Identificacion de SUbSIStEMASiviuititit it 32
4.2 Disefio de SUDSIStEIMAS ...\ .uuetii it e 33
4.2.1 Registro de usuarios ... 33
4.2.2 Inicio de Sesion y Recuperacion de Contrasena..................ooooiiiiiiii. 33
4.2.3 GeStion de USUariosueuieeie et e 34
424 Gestion de AUtOmOVIIES.....o.ivieiii i 34
4.2.5 Gestion de Estaciones de Serviciooooiuiiiiiiiiiiiiiiiii e 35
4.2.6 Gestion de Transporte.............oooiiiiiiiiiiiiiiii i 36
4.2.7 Gestion de Solicitudesooiiiiii 36
4.3 Disefio de INTErfazouiuii i 37
4.4 Disefio del Modelo de Datos.ouueuinieinii e 41
4.4.1 Modelo Entidad-Relacioncooiiiiiiiii 41

iv

4.4.2 Modelo Relacional ..o e 42

4.5 Despliegue de la aplicacion ... 43
Capitulo 5 Desarrollo de Versiones..........oo.iiuiiuii e 45
5.1 Aprovisionamiento de CompoNentesoooiiiiiiiiiiiiiiiii 45
5.2 Primera [Eeracionooiiii i 46
5.3 Segunda Iteracion ... 47
5.4 Tercera Iteracionooiuiiii e 47
5.5 CUArta JEeraCION ...ttt 49
5.6 QuUINta [EeraCiOn.uiit e 51
5.7 SeXta JEEIACION. ...ttt e 52
Capitulo 6 Pruebas del Sistemaot 55
6.1 Mecanismos de prueba...............o 55
6.2 Casosdeprueba...............o 55
6.3 Pruebas Realizadas...........oooiiiiiiiii 57
6.3.1 INICIO d€ SESION ...enitti e 57
6.3.2 Gestion de AutomOvIles.ouiuieie 60
6.3.3 Gestion de Estaciones de SErvicioovieieiiiiiiiiiiie e 62
6.3.4 Gestion de SOHCItUEsouiiniii e 65
Capitulo 7 Conclusiones y Recomendaciones........................ 67
7.1 CONCIUSIONES ..ttt 67
7.2 ReCOMENAACIONES. ...\ttt ittt ettt e e e et et et et et eeeaeans 69
Bibliografia........ ... 70

Indice de Tablas

Tabla 3.1: Caso de uso: Reg@istrarse.................oooiiiiiiiii 15
Tabla 3.2: Caso de uso: INICIar SESION ...\ viviiiiii e e e e et et eaaaaas 16
Tabla 3.3: Caso de uso: Recuperar contrasefaooooiiiiiiiiiiiiiiiiii 17
Tabla 3.4: Caso de uso: Gestion de perfil ... 18
Tabla 3.5: Caso de uso: Gestion de USUATIOSvuieieieiii e eaas 19
Tabla 3.6: Caso de uso: Gestion de automOviles ..ot 20
Tabla 3.7: Caso de uso: Consulta de automoviles ..ot 22
Tabla 3.8: Caso de uso: Gestion de estaciones de ServiCio..........ouviviiiiiiiiiiiiiie e, 23
Tabla 3.9: Caso de uso: Gestion de transporte.cooiiiiiiiiiiiiiii 25
Tabla 3.10: Caso de uso: Gestion de solicitudes.........oooiiiiiiii e 27
Tabla 3.11: Caso de uso: Gestion de combustible................ooiii 28
Tabla 3.12: Caso de uso: Asignacion de combustible......................... 30
Tabla 6.1: Plan de pruebas funcionales ... 56

vi

Indice de Figuras

Figura 2.1: Modelo de procesos del método White Watch ... 10
Figura 2.2: Modelo Vista Controlador (MVC) ..., 11
Figura 3.1: Diagrama de caso de uso: Iniciar sesion........................ 16
Figura 3.2 Diagrama de caso de uso: Gestion de usuariosooi . 19
Figura 3.3: Diagrama de caso de uso: Gestion de automoviles...................... 21
Figura 3.4: Diagrama de caso de uso: Consulta de automoviles ... 22
Figura 3.5: Diagrama de caso de uso: Gestion de estaciones de servicio ..., 24
Figura 3.6: Diagrama de caso de uso: Gestion de transporte..................c.ooiii . 26
Figura 3.7: Diagrama de caso de uso: Gestion de solicitudes........................ 28
Figura 3.8: Diagrama de caso de uso: Gestion de combustible 29
Figura 3.9: Diagrama de caso de uso: Aprobacion de combustible........................... 31
Figura 4.1: Modelo de datos: Registro de usuarios 33
Figura 4.2: Modelo de datos: Inicio de sesion y recuperacion de contrasefia......................ooeeeennn. 34
Figura 4.3: Modelo de datos: Gestion de automoviles ... 35
Figura 4.4: Modelo de datos: Gestion de estaciones de servicio ..., 35
Figura 4.5: Modelo de datos: Gestion de transporte...................ooooiiiiii 36
Figura 4.6: Modelo de datos: Gestion de solicitudes 37
Figura 4.7: Diagrama jerarquico de pantallas 38
Figura 4.8: Perfiles del sistema: Usuario..................ooooiiiiiiiii 39
Figura 4.9: Perfiles del sistema: Administradoro 40
Figura 4.10: Diagrama de Modelo Entidad-Relacion. 41
Figura 4.11: Diagrama de Modelo Relacional........................o 42
Figura 4.12: Diagrama de Despliegue ... 43
Figura 5.1: Visualizacion de la interfaz de autenticacion ... 46
Figura 5.2: Visualizacion de la interfaz de gestion de usuarios 47
Figura 5.3: Visualizacion de la interfaz de gestion de automoviles ... 49
Figura 5.4: Visualizacion de la interfaz de gestion de estaciones de servicio.........................o.. 50
Figura 5.5: Visualizacion de la interfaz para generar nuevas solicitudes 51

vii

Figura 5.6: Visualizacion de la interfaz de consulta de solicitudes.......................... 52
Figura 5.7 Visualizacion de la interfaz del modulo de gestion de combustible 53
Figura 5.8: Visualizacion de la interfaz de asignacion de combustible 54
Figura 6.1: Resultado de la prueba de inicio de sesion con datos invalidos 58
Figura 6.2: Resultado de la prueba de inicio de sesion con datos en blanco 59
Figura 6.3: Resultado de la prueba de inicio de sesion con datos correctosoooec. 59
Figura 6.4: Resultado de la prucba de gestion de automoviles con datos correctos........................ 61
Figura 6.5: Resultado de la prueba de gestion de automoviles con datos invalidos......................... 62
Figura 6.6: Resultado de la prucba de gestion de estaciones de servicio con campos vacios.............. 64
Figura 6.7: Resultado de la prueba de gestion de estaciones de servicio con datos correctos 64
Figura 6.8: Resultado de prueba de gestion de solicitudes........................ 66
Figura 6.9: Resultado de prueba de gestion de solicitudes con datos repetidos............................. 66

viii

Capitulo 1

Introduccion

La gasolina es una mezcla de hidrocarburos obtenida de la destilacion fraccionada del petroleo, y se
utiliza principalmente como combustible en motores de combustion interna. Estos hidrocarburos se
pueden originar a partir de restos de plantas y microorganismos enterrados durante millones de afios y
sujetos a distintos procesos fisicos y quimicos. Alrededor del 80% de la energia utilizada para el
transporte es proporcionada por combustibles provenientes del refinamiento petrolero y la demanda

diaria global de gasolina supera los 4,8 billones de litros.

Venezuela es el pais con las mayores reservas probadas de crudo pesado en el mundo, y sin
embargo debido a multiples factores politicos, sociales y economicos, se encuentra envuelta en una gran
crisis que ha generado como una de sus consecuencias la escasez de combustible para cubrir la demanda
interna. Pero aun en este contexto el estado venezolano mantiene el subsidio del combustible. Segan el
Fondo Monetario Internacional (FMI) los subsidios totales en el area energetica le costaron al gobierno
venezolano aproximadamente un 8,9 por ciento del PIB, con subsidios a la gasolina del 7,1 por ciento
(Di Bella et al., 2015, p. 10). Esto permite que el precio de la gasolina en el pais contintie siendo el mas
economico del mundo, y una reduccion substancial del subsidio parece politicamente inviable, incluso

en momentos de gran inestabilidad economica y fiscal.

A medida que la tecnologia ha ido avanzando se han podido desarrollar diferentes alternativas
buscando el beneficio de la sociedad, mediante aplicaciones que facilitan la administracion de tareas
especificas, permitiendo asi economizar recursos y tiempo, a partir de esto surgen metodologias que
orientan el desarrollo rapido de aplicaciones a traves de Frameworks los cuales han mostrado ser

herramientas Gtiles para dar apoyo al proceso de construccion de software, debido a que impulsan la

reutilizacion del codigo, al prescribir y soportar una arquitectura estandarizada que garantiza su

mantenibilidad.

1.1 Antecedentes

Durante la altima década el uso de las nuevas tecnologias informaticas se ha convertido en un aspecto
imprescindible, ya que ofrecen una gran cantidad de beneficios en la gestion operativa y la
automatizacion de procesos, tanto en las empresas privadas como en las ptblicas. Puron-Cid. G., Gil-
Garcia R., (2013), a traves de su articulo: “Analisis de politicas publicas y tecnologias de informacion:
oportunidades y retos para América Latina y el Caribe”, realiza una sintesis donde se describe el
incremento de usuarios y las grandes oportunidades para la implementacion de iniciativas de gobierno
electronico, donde se logra entrever el aumento de la cantidad de usuarios y como este suceso aumenta

las posibilidades de desarrollo de iniciativas tecnologicas en america latina.

Tomando esta consideracion, encontramos diferentes modelos de planificacion para el
abastecimiento de combustible, como es el caso de Santelices R. (2007) de la Universidad de Talca el
cual nos describe en su tesis de grado: “Propuesta de un Sistema de Planificacion para el Abastecimiento

de Combustible.”, un estudio donde se estiman las demandas para distintas plantas de

b

aprovisionamiento, utilizando como metodologia para el desarrollo de los pronosticos mensuales

diferentes modelos estocasticos, dada la escasa informacion de la demanda.

Distintos trabajos han venido desarrollando aplicaciones web para control del abastecimiento de
combustible. Tal es el caso de Dominguez L. (2014) en su trabajo titulado “Sistema de Administracion
de las Operaciones de Marcacion de Combustible en Petroecuador E.P.”; donde puede observarse el
desarrollo de una aplicacion web que traslada la informacion de los niveles de combustible desde las
estaciones de servicio a través de cuadros estadisticos, permitiendo generar reportes sobre los niveles de

marcacion de los diferentes terminales, a fin de mejorar el control y la toma de decisiones.

En el afio 2016, de la misma manera, Carabali, G., Moyano, C., en su proyecto: “Aplicacion para
la Gestion de Abastecimiento de Combustible que Brinda la Empresa distribuidora Levox a gasolineras

Mobil.”, desarrolla una aplicacion que permite gestionar informacion relevante para los procesos de

logistica y abastecimiento de combustible de dicha empresa, con la finalidad de contar con informacion
veraz y actualizada al momento de gestionar la asignacion de recursos, optimizando asi los tiempos en

desplazamiento y evitando posibles errores de estimacion.

Este proyecto de grado tiene como finalidad desarrollar un software que permita la asignacion y
distribucion de gasolina de manera eficiente, como un mecanismo de contingencia para la escasez del

combustible.

1.2 Planteamiento del Problema

En Venezuela debido a la politica de subsidios y la incapacidad de la estatal petrolera para incrementar la
produccion de gasolina, se presenta un escenario donde no se puede cubrir la demanda interna de
combustible. Como una solucion ante esta problematica surge la idea de disehar e implementar una

aplicacion que permita la asignacion de combustible de manera eficiente.

Mediante este sistema se podra obtener informacion, controlar y tomar decisiones de manera
eficiente sobre la distribucion del combustible, ademas de permitirles a los usuarios realizar solicitudes
para la asignacion del mismo, lo que se presume disminuiria considerablemente los tiempos de espera

en las estaciones de servicio.

Cabe destacar que el aumento en el uso de tecnologias y acceso a internet propone un escenario
favorable para la implementacion de dicha aplicacion, que ademas de servir como mecanismo de
contingencia ante la escasez de combustible, tambi¢n debera permitir que los datos registrados sirvan

como fuente de informacion para su posterior analisis.

1.3 Alcance

Se realizara el diseno e implementacion de una aplicacion web cuyo proposito es servir como plan de
contingencia ante la escasez de combustible, optimizando la asignacion de recursos y evitando las
prolongadas esperas en las estaciones de servicio. Ademas, se podra acceder al mismo desde cualquier

lugar mediante un dispositivo que cuente con conexion a internet.

A través del sistema los usuarios tendran la facilidad de realizar solicitudes, verificar estatus de
solicitudes, consultar el historico de solicitudes, especificar informacion sobre sus vehiculos, y recibir

informacion sobre cualquier eventualidad en la distribucion del combustible.

Por otra parte, la aplicacion pondra a disposicion una serie de reportes donde se especifique
informacion relevante para el analisis y la toma de decisiones con respecto a la distribucion del

combustible.

1.4 Objetivos

1.4.1 Objetivo General

El presente proyecto pretende desarrollar un software que permita el control de la distribucion de
gasolina para de esta manera poder asignar este recurso de manera eficiente, implementando asi un
mecanismo de contingencia para esta problematica social. Los resultados generados por este trabajo,
pueden ser usados posteriormente para ampliar el enfoque del software o planificar el disefio de nuevos

mecanismos de Contingencia.

1.4.2 Objetivos Especiﬁcos

En la busqueda de lograr el objetivo general, se han identificado los siguientes objetivos especificos:

Identificar y clasificar los requisitos a partir del contexto.

® Implementar la aplicacion utilizando un marco de trabajo para el desarrollo de

aplicaciones web.

e Disenar la aplicacion que posea una interfaz grafica intuitiva.

e Crear un sistema de reportes que permita el analisis de los datos de manera
centralizada.

® Definir y realizar pruebas para comprobar el correcto funcionamiento del software

desarrollado.

1.5 Metodologl'a

Para el desarrollo de este proyecto se utilizara el método White WATCH (Montilva,]., Barrios, J.,
2010) el cual es definido como: “Un modelo de procesos que balancea la produccion de especificaciones
de producto que se transforman en la medida que se avanza en el proceso, con la disponibilidad en corto
tiempo de versiones parciales y operativas del producto.” Ademas, agregan que “Esta manera de
estructurar el marco metodologico permite que la ejecucion de los procesos de desarrollo sea ciclica,

iterativa y controlada.”

Este metodo describe una serie de actividades para los procesos gerenciales y los procesos
tecnicos o de desarrollo, estos Gltimos incluyen la ingenieria de requisitos, el disefio del sistema de
software, aprovisionamiento de componentes, implementacion, pruebas del sistema, y la entrega del
software, cada ciclo de procesos debe producir una nueva version del sistema debido a su enfoque
evolutivo y en cada uno de los ciclos se puede iterar entre los diferentes procesos técnicos a fin de

corregir errores, producir nuevos requisitos o mejorar el producto en desarrollo.

Por lo general en las aplicaciones web los requisitos varian a lo largo del tiempo por lo cual la
utilizacion de procesos iterativos y evolutivos podria ser beneficioso para este tipo de proyecto, y dado
que se trata de un plan de contingencia, es necesario que el producto est¢ disponible lo mas pronto
posible, esta necesidad lleva a plantear los objetivos mediante el uso del método de desarrollo de

software White WATCH.

Capitulo 2

Marco Teorico

Este capitulo realiza una revision sobre los principales conceptos teoricos que sirven como base para el
trabajo a realizar, partiendo desde los aspectos mas generales, y mediante la recopilacion de ideas y
definiciones de diferentes autores culminar con una descripcion detallada sobre los aspectos mas

relevantes del entorno en el cual se desarrollara el proyecto.

2.1 Generalidades y conceptos basicos.

En Venezuela existe un déficit de combustibles; como consecuencia no se logra satisfacer la demanda
interna considerando la produccion de las refinerias locales, sumado a la imposibilidad de importar
gasolina para satisfacer la demanda. El precio de comercializacion es subsidiado por el estado

venezolano teniendo entonces la gasolina mas economica del mundo.

2.1.1 Gasolina

La gasolina se obtiene a traves de la refinacion y tratamiento del crudo, tambien conocido como
petroleo. La composicion quimica del crudo permite que se puedan manipular sus atomos y moléculas
para producir un sinnimero de derivados, entre ellos la gasolina. Sin embargo, debe ser sometida a un
proceso de tratamiento ya que, en estado natural, su nivel de calidad y octanaje es muy bajo.

Por ello, la ciencia ha desarrollado procesos de refinamiento y mejoramiento para poder
comercializar una gasolina de calidad, Ademas, el desarrollo de nuevas tecnologias; como tambien el
desarrollo automotriz, apuntan al mejoramiento de gasolinas que gocen de un mayor indice de octanaje

y sean amigables con el medio ambiente. Es decir, libres de elementos contaminantes.

2.2 Bases de Datos

Una base de datos se puede considerar como un modelo de la realidad, es la representacion integrada de
los conjuntos de entidades del sistema de informacion y de sus interrelaciones. Esta representacion
informatica o conjunto estructurado de datos debe poder ser utilizada de forma compartida por muchos
usuarios de distintos tipos (Silberschatz, A., Korth, H., and S, S., 2002). Dicho de otro modo, una base

de datos es un conjunto de informacion relacionada que se encuentra agrupada o estructurada.

2.2.1 Bases de Datos Relacionales

Segin (Silberschatz, A., Korth, H., and S, S., 2002) Una base de datos relacional consiste en un
conjunto de tablas o repositorio compartido de datos, donde a cada tabla se le asigna un nombre
exclusivo. Cada tabla tiene una estructura donde cada fila de la tabla representa una relacion entre un

conjunto de valores.

Para hacer disponibles los datos de una base de datos relacional a los usuarios hay que
considerar varios aspectos, como la forma en que los usuarios solicitan los datos, la integridad de datos y
la seguridad. Es por ello que el modelo relacional se ha establecido actualmente como el principal

modelo de datos para las aplicaciones de procesamiento de datos.

2.2.2 Sistemas de Gestion de Base de Datos

Los Sistemas de gestion de base de datos son un tipo de software muy especifico, dedicado a servir de
interfaz entre la base de datos, el usuario y las aplicaciones que la utilizan. Se compone de un lenguaje

de definicion de datos, un lenguaje de manipulacion de datos y de un lenguaje de consulta.

El uso de sistemas de gestion de base de datos nos brinda una gran cantidad de beneficios como
el control sobre la redundancia de los datos, lo que nos permite mejorar la consistencia e integridad de
los mismos, ademas gestionan el acceso simultaneo y garantizan que no ocurran problemas de
concurrencia. Pero una de las principales razones de usar sistemas de gestion de bases de datos es tener

un control centralizado tanto de los datos como de los programas que acceden a ellos.

2.3 UML (Hniﬁed Modeling Language)

UML es un lenguaje de modelado visual de proposito general orientado a objetos para visualizar,
especificar, construir y documentar partes de un sistema software desde distintos puntos de vista
pueden usarse con cualquier proceso de desarrollo, a lo largo de todo el ciclo de vida y puede aplicarse

a todos los dominios de aplicacion y plataformas de implementacion.
UML 2.0 define trece tipos de diagramas, divididos en tres categorias:

1. Los diagramas de estructura: incluyen el diagrama de clase, el diagrama de objetos, el
diagrama de componentes, el diagrama de estructura compuesta, el diagrama de paquetes y
el diagrama de implementacion.

2. Los diagramas de comportamiento: incluyen el diagrama de casos de uso, diagrama
de actividad y diagrama de maquina de estado.

3. Los Diagramas de interaccion: incluyen el diagrama de secuencia, el diagrama de

comunicacion, el diagrama de tiempo y el diagrama general de interaccion.

A continuacion, definiremos los diagramas en los cuales haremos enfasis para la elaboracion de este

trabajo:

2.3.1 Diagrama de Clases

Es una coleccion de elementos de modelado estaticos como clases, tipos, sus contenidos y relaciones
que describen la vista estatica de un sistema. Son los diagramas mas comunes en el analisis y disefio de
un sistema ya que permiten explorar conceptos del dominio, analizar requisitos y describir el diseno

detallado de un software.

2.3.2 Diagrama de Casos de Uso

Los diagramas de casos de uso describen el comportamiento de un software o componentes a partir del
punto de vista del usuario, identificando roles de cada uno de los usuarios del sistema y los servicios o

funciones provistas por el sistema para estos.

2.4 Método de desarrollo White WATCH

Es un marco de trabajo que describe el conjunto de actividades necesarias para desarrollar un producto
de software, tomando como premisa la disminucion en el detalle de especificaciones de apoyo parcial,
lo que ofrece al equipo de desarrollo el cual no debe ser mayor a dos (02) personas mas tiempo para

dedicarle a las actividades de implementacion de versiones operativas y evolutivas del producto.

El modelo de procesos del metodo inspirado en la metafora del reloj de pulsera, organiza los
procesos tecnicos en forma circular y los procesos gerenciales en el centro lo que permite que la
ejecucion de los procesos de desarrollo se lleve a cabo de manera ciclica, iterativa y controlada. Cada
uno de los ciclos produce una version del sistema, sin embargo, en cada ciclo se puede iterar entre los

procesos técnicos a fin de corregir errores, o mejorar el producto.

2.4.1 Procesos Gerenciales

Son los encargados de describir las actividades que el lider del proyecto debe realizar, como la
planificacion, organizacion y control del desarrollo del proyecto, ademas de asegurar la calidad del
sistema mediante las validaciones pertinentes y gestionar los cambios en las especificaciones del

proyecto.

2.4.2 Procesos Técnicos

Estos describen los pasos a seguir para la elaboracion de un producto de software, contemplan
actividades como la ingenieria de requisitos, el diseno de software, el aprovisionamiento de
componentes, la implementacion del software y las pruebas. Cada uno de los procesos de este modelo

se asocia con pasos o subprocesos que indican de manera detallada el conjunto de acciones a ejecutar.

Teniendo presente el enfoque evolutivo del meétodo, cada una de las versiones debera ser el
resultado del refinamiento de la version previa, fundamentandose en la reutilizacion de componentes
como medio para acortar el tiempo total del desarrollo, y el uso de la notacion UML para la elaboracion

y mantenimiento de la documentacion tecnica del proyecto.

10

Modelade del
Negocio

Pruebas del
Sistema de
Software

Disefic dal
Sistema de
Software

Figura 2.1: Modelo de procesos del método White Watch

2.5 Modelo Vista Controlador (MVC)

El patron Modelo-Vista-Controlador (MVC) surge con el objetivo de reducir el esfuerzo de
programacion, necesario en la implementacion de sistemas multiples y sincronizados de los mismos
datos, a partir de estandarizar el disefio de las aplicaciones. Fue descrito por primera vez en 1979 por
Trygve Reenskaug. Una de sus caracteristicas principales esta dada por el hecho de que, el modelo, las
vistas y los controladores se tratan como entidades separadas; esto hace que cualquier cambio producido
en el modelo se refleje automaticamente en cada una de las vistas. MVC esta demostrando ser un patron
de diseno bien elaborado pues las aplicaciones que lo implementan presentan una extensibilidad y una

mantenibilidad tinicas comparadas con otras aplicaciones basadas en otros patrones.

2.5.1 Modelo

Es un conjunto de clases que representan la informacion del mundo real que el sistema debe reflejar. Es
la parte encargada de manejar los datos y controlar todas sus transformaciones. El modelo no tiene

conocimiento especifico de los controladores o de las vistas, ni siquiera contiene referencias a ellos. Es

11

el propio sistema el que tiene encomendada la responsabilidad de mantener enlaces entre el modelo y

sus vistas, y notificar a las vistas cuando cambia el modelo.

2.5.2 Vista

Son las encargadas de la representacion de los datos contenidos en el modelo al usuario. La relacion
entre las vistas y el modelo son de muchas a uno, es decir cada vista se asocia a un modelo, pero pueden
existir muchas vistas asociadas al mismo modelo. Todo esto se realiza mediante la interaccion con el

controlador.

2.5.3 Controlador

Es el encargado de interpretar y dar sentido a las ordenes del usuario, realizando acciones sobre los
datos representados por el modelo. Centra toda la interaccion entre la vista y el modelo. Cuando se

realiza alglin cambio, entra en accion, bien sea por cambios en la informacion del modelo o por

PE =
i

1T —» Dispatcher 2 — Controller

alteraciones de la vista.

Figura 2.2: Modelo Vista Controlador (MVC)

2.6 Framework

Un framework, es el esquema o estructura que se establece y que se aprovecha para desarrollar y
organizar un software determinado. Esta definicion, podria explicarse como el entorno pensado para

hacer mas sencilla la programacion de cualquier aplicacion o herramienta. Este sistema plantea varias

12

ventajas para los programadores, ya que automatiza muchos procesos y ademas facilita el conjunto de la
programacion. Es util, para evitar el tener que repetir codigo para realizar funciones habituales en un
rango de herramientas. Un framework sirve para poder escribir codigo o desarrollar una aplicacion de
manera mas sencilla. Es algo que permite una mejor organizacion y control de todo el codigo elaborado,
asi como una posible reutilizacion en el futuro. Debido a esto, garantiza una mayor productividad que
los métodos mas convencionales y una minimizacion del coste al agilizar las horas de trabajo volcadas en

el desarrollo.

2.7 PHP: Hipertext Preprocessor

PHP es un lenguaje de script de proposito general adecuado para el desarrollo web, el cual es de codigo
abierto y puede ser incrustado en HTML. En lugar de usar muchos comandos para mostrar HTML
como en otros lenguajes de programacion las paginas de PHP contienen HTML con codigo PHP
incrustado el cual esta encerrado entre las etiquetas especiales de comienzo y final. Lo que distingue a
PHP es que el codigo es ejecutado del lado del servidor, generando HTML y enviandolo al cliente, por

lo que el cliente recibe el resultado del script, pero no sabra cual era el codigo.

El lenguaje fue creado originalmente por Rasmus Lerdorf en el ano 1995, y actualmente el
lenguaje sigue siendo desarrollado con nuevas funciones por el grupo PHP. Es destacable el hecho de
que PHP puede emplearse en casi todos los sistemas operativos, admitiendo la mayoria de los servidores
web usados hoy en dia, y brindado soporte para una gran variedad de bases de datos. Ademas de estas
caracteristicas tambien cuenta con la posibilidad de utilizar programacion por procedimientos o

prograrnacic')n orientada a objetos.

2.8 Laravel

Laravel es un framework de codigo abierto para desarrollar aplicaciones y servicios web con PHP, con
sintaxis expresiva y elegante, el cual tiene como objetivo facilitar las tareas comunes utilizadas en la
mayoria de los proyectos web. Fue creado en 2011 por Taylor Otwell, Esta basado en el patron de
disefio Modelo Vista Controlador (MVC) desarrollado para incrementar la productividad del

programador y reducir las barreras a la programaci()n de aplicaciones web.

13

2.8.1 Caracteristicas

El uso de un framework como Laravel nos ofrece ademas de integracion, escalabilidad y facilidad de
mantenimiento ciertas caracteristicas que nos suponen una ventaja a la hora de desarrollar una

aplicacion web como lo son:

® Incluye un ORM (Mapeo Objeto-Relacional) llamado Eloquent, el cual provee una forma de
mapear los datos que se encuentran almacenados en la base de datos sin necesidad de usar
lenguaje SQL dentro de las clases de PHP. Sin embargo, tambien se pueden hacer consultas
directas a la base de datos mediante el uso de Query Builder.

e Utiliza un motor de plantillas para las vistas llamado Blade, el cual permite usar estructuras de
control y variables de PHP de manera mas simple y elegante, ademas de modularizar las vistas

mediante la extension y uso de plantillas o secciones creadas en otras vistas.

® Proporciona un método muy simple y expresivo para definir las rutas, las cuales permiten
determinar que funcion de un controlador se desea ejecutar.

® Facilita el manejo de la base de datos mediante un sistema de migraciones, el cual permite un
mayor control de las versiones de la base de datos y provee portabilidad para diferentes gestores
usando el mismo codigo PHP.

® Incorpora una interfaz de linea de comandos llamada Artisan, la cual es un medio de
interaccion que proporciona un conjunto de comandos los cuales facilitan la realizacion de

diferentes tareas durante el desarrollo de la aplicacion.

Capitulo 3

Ingenierl'a de Requisitos

Este capitulo contempla las primeras fases del proceso de desarrollo definidas por el metodo White
WATCH como lo son el descubrimiento, analisis y especificacion de los requisitos del sistema. Este
conjunto de procesos técnicos detalla las caracteristicas que debe tener la aplicacion, proporcionando
una base que sera usada posteriormente en el desarrollo del sistema. Se identificaron las necesidades, y

se definieron los requerimientos funcionales y no funcionales del sistema.

3.1 Requisitos No Funcionales

Los requerimientos no funcionales representan algunas propiedades generales que la aplicacion debe
tener, tales como la capacidad de uso, el desempefio, las restricciones de desarrollo, entre otros

aspectos. Para este proyecto se definieron los siguientes:

® Se utilizara el lenguaje de script PHP, a traves del framework Laravel.

® Los estilos visuales deben ser amigables e intuitivos al usuario, mostrando mensajes de error
que sean informativos.

® Elsistema debe asegurar que los datos estén protegidos del acceso no autorizado.

® El acceso a las diferentes funciones del sistema vendra dado segln el rol que cada uno de los
usuarios tenga asignado.

® El uso de las funcionalidades del sistema debera estar documentada mediante manuales que

faciliten la operatividad por parte de los usuarios.

15

3.2 Requisitos Funcionales

Con el objetivo de generar especificaciones que describan con claridad y de manera consistente los
servicios que el sistema debe proporcionar, Se observaron las actividades que realizaban los usuarios, y
mediante su posterior analisis, se definieron una serie de requerimientos que luego fueron validados a

traves de las iteraciones y seran presentados en el presente proyecto como casos de uso.

Los casos de uso son una descripcion de la forma particular en que el sistema es empleado por
los usuarios para alcanzar sus objetivos, permitiendo asi definir los limites del mismo y como se
relaciona con su entorno. Surgen de la necesidad de observar el comportamiento del sistema desde el

punto de vista del usuario, bajo la forma de acciones y reacciones.

3.2.1 Registrarse

Para ingresar al sistema por primera vez cualquier usuario debera ingresar sus datos personales como
nombre, apellido, correo y contrasefia. Esto le permitira a cualquier invitado registrarse en la base de

datos. En la tabla 3.1 se define este requerimiento

Tabla 3.1: Caso de uso: Registrarse

Nombre: Registrarse

Descripcién: Le permite a cualquier invitado registrarse en la base de datos

Actores: Invitado

Precondiciones: Ninguna

1. El usuario selecciona la opcion “Registrarse” en la pagina de inicio
Flujo Normal: 2. El usuario rellena sus credenciales en el formulario de registro, y pulsa

“Registrar”

)) Si los datos no son correctos o son duplicados en la base de datos, se validara el
Flujo Alternativo:

. . .
formulario y se mostrara un mensaje de error.

o Un nuevo usuario con sus correspondientes campos es creado en la base de
Postcondiciones:
datos de la aplicacion y este es redlrlgldo a la pantalla principal.

Notas: Ninguna

16

3.2.2 Iniciar sesion

Luego de estar registrado en el sistema cada vez que se desea acceder al mismo, es necesario que el

usuario del sistema ingrese las credenciales correspondientes para cambiar el rol de invitado por el de

usuario registrado. En la tabla 3.2 se define este requerimiento y en la figura 3.1 se visualiza el diagrama

de caso de uso.

Tabla 3.2: Caso de uso: Iniciar sesion

Nombre:

Iniciar Sesion

Descripcion: Le permite a un usuario no autenticado ingresar al sistema.

Actores:

Invitado

Precondiciones:

1. El usuario debe estar registrado en el sistema.

Flujo Normal:

1. El usuario llena los campos con sus credenciales.

2. Pulsa el boton Iniciar Sesion.

Flujo Alternativo:

Si las credenciales no son correctas, el sistema devuelve error.

El Invitado cambia de rol y pasa a ser usuario registrado en el sistema. Siendo es

Postcondiciones:
redirigido a la pantalla principal.
Notas: Ninguna
Caso de uso: Iniciar sesién/
Registrarse
<-:in':l'udex.
Iniciar Sesion
Invitado

Figura 3.1: Diagrama de caso de uso: Iniciar sesion

17

3.2.3 Recuperar contraseina

Un usuario registrado en el sistema debe poder recuperar sus credenciales en caso de olvidar alguna de
ellas, con la finalidad de mantener la seguridad e integridad de los datos en el sistema, la recuperacion
de contrasefia debe realizarse mediante ¢l envid de un correo electréonico. En la tabla 3.3 se define este

requerimiento.

Tabla 3.3: Caso de uso: Recuperar contrasefia

Nombre: Re cup erar contrasena

Descripcion: Le permite a un usuario registrado recobrar su contrasena.

Actores: Invitado.

Precondiciones: 1. El usuario debe estar registrado en el sistema.

1. El usuario presiona el link “olvide mi contrasena” en la pantalla de
) inicio de sesion.

Flujo Normal:
2. Introduce su direccion de e-mail y pulsa el boton “Enviar”.

3. Se envia un correo con un enlace para restablecer la contrasena.

Flujo Alternativo: | Si el email es incorrecto, el sistema devuelve error.

Postcondiciones: El usuario recupera su contrasefa para acceder al sistema.

Notas: Ninguna.

3.2.4 Gestion del Perfil

Cada usuario del sistema debe poseer un perfil con sus datos personales, el cual debe completar al
ingresar por primera vez en el sistema y el cual debe poder modificar en caso de ser necesario, con la
finalidad de no comprometer la integridad de los datos, algunos datos personales como la cedula de
identidad y el correo electronico solo podran ser modificados por un administrador, sin embargo es

. . , . . ~ ,
pertinente que el usuario posea de un modulo que le permita gestionar su contrasefia de acceso por si
mismo. En la tabla 3.4 se define este requerimiento, donde el usuario previamente autenticado podra

gestionar su perfil de usuario segt’m considere el mismo.

18

Tabla 3.4: Caso de uso: Gestion de perfil

Nombre:

Gestion de pertfil

Descripcion: Un usu

ario puede gestionar el perfil con sus datos personales.

Actores:

Usuario.

Precondiciones:

1. El usuario debe estar autenticado.

Flujo Normal:

1. El usuario selecciona “Perfil de Usuario” en la barra de navegacion.

2. Se cargan los datos personales ingresados por el usuario en el sistema
de manera que este puede observar una ficha con los datos actuales de
su perfil donde dispondra de dos (02) opciones.

2.1. Modificar los datos personales llenando el formulario
correspondiente y pulsando el boton “Actualizar Datos”.

2.2, Seleccionar la pestafia contrasena para cambiar de formulario y
llenar los campos requeridos para realizar el cambio de

contrasena y pulsar el boton “Actualizar Contrasefia”.

Flujo Alternativo:

2A Si el usuario no ha completado su perfil se le mostrara un formulario donde
pueda completar los datos correspondientes.

2.1A Si los datos no son correctos, se validara el formulario y se mostrara un
mensaje de error.

2.2A Si los datos no son correctos, se validara el formulario y se le mostrara un

mensaje de error.

Postcondiciones:

Los datos del usuario seran actualizados en el sistema.

Notas:

Ninguna .

3.2.5 Gestion de usuarios

Un administrador debe tener la capacidad para editar y eliminar la informacion de los otros usuarios del

sistema, ademas de a

dministrar los roles de cada uno de los usuarios del sistema, todo esto sin

comprometer la integridad de los datos. En la tabla 3.5 se define este requerimiento y en la figura 3.2

se puede apreciar el diagrama de caso de uso, donde el administrador previamente autenticado, podra

gestionar los usuarios registrados en el sistema segﬁn sea conveniente.

19

Tabla 3.5: Caso de uso: Gestion de usuarios

Nombre:

Gestion de usuarios

Descripcion: Un administrador puede gestionar los usuarios existentes en el sistema.

Actores:

Administrador

Precondiciones:

1. El administrador debe estar autenticado.

Flujo Normal:

1. El usuario selecciona “Gestionar Usuarios” en la barra de navegacién.
. Se cargan todos los usuarios registrados en el sistema de manera que e
2. S todos 1 trad I sist d 1

administrador dispone de dos (02) opciones:

2.1. Eliminarlos pulsando el icono en forma de cubo de basura.
2.2. Modificar sus datos seleccionando el icono con forma de
lapiz.

2.2.1. El administrador modifica los datos y el rol

del usuario seleccionado, y pulsa “Aceptar”.

Flujo Alternativo:

2.2.1A Si los datos no son correctos, se validara el formulario y se mostrara un

mensaje de error.

Postcondiciones:

Los usuarios correspondientes se veran actualizados o eliminados del sistema.

Caso de uso: Gestion de usuarios /

Ingresar al Sistema

'
'
1
i
«includex
'
'
'
'

\Ver

vl

Usuarios

Administrador

Editar Usuarios

Figura 3.2 Diagrama de caso de uso: Gestion de usuarios

20

3.2.6 Gestion de Automoviles

Un usuario puede tener uno o mas automoviles, por lo que es necesario un modulo de gestion que

permita agregar, ver, editar y eliminar los datos de los mismos. En la tabla 3.6 se define este

requerimiento y en la figura 3.3 se visualiza el diagrama de caso de uso donde el usuario luego de haber

realizado el proceso de autenticacion para ingresar al sistema, puede realizar cambios u obtener

informacion sobre los automoviles que el previamente haya registrado.

Tabla 3.6: Caso de uso: Gestion de automoviles

Nombre:

Gestion de automoviles

Descripcion: Permite a un usuario ingresar, observar y modificar la informacion sobre sus

automoviles.
Actores: Usuario
Precondiciones: 1. El usuario debe estar autenticado en el sistema.

Flujo Normal:

1. El usuario selecciona “Automoviles” en la barra de navegacion.
2. Se cargan todos los automoviles registrados previamente por ese
usuario de manera que este dispone de tres (03) opciones:
2.1. Eliminarlos pulsando el icono en forma de cubo de basura al
lado de cada registro.
2.2. Modificar los datos, seleccionando el icono en forma de lapiz
que se encuentra al lado de cada registro.
2.2.1. El usuario modifica los datos del automo6vil seleccionado
en el formulario que se muestra en pantalla y pulsa
“Actualizar”.
2.3. Agregar un nuevo automovil pulsando el boton “Agregar
Automovil”.
2.3.1. El usuario llena un formulario con los datos del automoévil

a ingresar y pulsa “Agregar”

Flujo Alternativo:

2.2.1A Si los datos no son correctos, se validara el formulario y el sistema

devolvera un mensaje de error.

2.3.1A Si los datos no son correctos, se validara el formulario y se mostrara un

21

mensaje de error.

Los automoviles correspondientes se veran actualizados o eliminados del

Postcondiciones:
sistema. Los nuevos automoviles seran agregados a la base de datos.
Notas Ninguna.
Caso de uso: Gestion de automoviles /
Ingresar al Sistema
5 I A Agregar Automoviles
«include» S
«{:xten'd»
g Ver Automéviles
«extends»
“eextendy-- . _ . el
Editar Automoviles
UJsuario wextends N
(" Eliminar Automéviles

Figura 3.3: Diagrama de caso de uso: Gesti6on de automoviles

3.2.7 Consulta de Automoviles

Es fundamental para el manejo centralizado de la informacion que los administradores tengan la
capacidad de consultar todos los automoviles registrados en el sistema a fin de estimar la demanda del
combustible y facilitar de esta manera la toma de decisiones, en la tabla 3.7 se define este requerimiento

y en la figura 3.4 se visualiza el diagrama de caso de uso.

22

Tabla 3.7: Caso de uso: Consulta de automoviles

Nombre:

Consulta de automoviles

Descripcion: Un administrador puede consultar todos los automoviles que hayan sido ingresados por

los usuarios al sistema.

Actores: Administrador
1. El administrador debe estar autenticado.
Precondiciones:
2. Deben existir automoviles registrados.
3. El administrador selecciona “Automoviles” en la barra de navegacion.
Flujo Normal: 4. Se cargan una lista todos los datos de todos los automoviles registrados
en el sistema.
Flujo Alternativo: | Ninguno.
Postcondiciones: Ninguna.
Notas: Ninguna.

Caso de Uso: Consulta de automdviles

Administrador

Ingresar al Sistema

i

i
wincludes

i

i

Consulta de Automoviles

--wexiends 2

Vier Automdviles

Figura 3.4: Diagrama de caso de uso: Consulta de automoéviles

23

3.2.8 Gestion de Estaciones de Servicio

Con la finalidad de poner a disposicion del usuario toda la informacion referente a las estaciones de

servicio, los administradores podran agregar, editar y eliminar la informacion de las estaciones

disponibles para surtir combustible. En la tabla 3.8 se define este requerimiento y en la figura 3.5 se

observa el diagrama de caso de uso correspondiente, donde se aprecia como los usuarios del sistema

solo podran visualizar las estaciones de servicio mientras que los administradores podran gestionar las

mismas segfm consideren necesario.

Tabla 3.8: Caso de uso: Gestion de estaciones de servicio

Nombre:

Gestion de estaciones de servicio

Descripcion: Permite a un administrador ingresar, observar y modificar la informacion sobre las

estaciones de servicio, para posteriormente ser mostrada a los usuarios.

Actores: Administrador.
Precondiciones: 1. El usuario debe estar autenticado en el sistema.
1. El administrador selecciona “Estaciones de Servicio” en la barra de
navegacion.
2. Se visualizan todas las estaciones de servicio registradas previamente,

Flujo Normal:

permitiendo gestionarlas mediante (03) opciones:

2.1.

2.2.

2.3.

Eliminar las estaciones existentes pulsando el icono en
forma de cubo de basura al lado de la ficha de cada
estacion.
Modificar los datos de la estacion de servicio pulsando
el icono con forma de lapiz.
2.2.1. El wusuario modifica los datos de la
estacion de servicio seleccionada en el
formulario que se muestra en pantalla y
pulsa “Actualizar”.
Agregar una nueva estacion de servicio pulsando el
boton “Agregar Estacion”
2.3.1. El administrador llena un formulario con

los datos de la estacion de servicio a

24

ingresar y pulsa “Agregar”

Flujo Alternativo:

devolvera un mensaje de error.

mensaje de error debajo de los campos correspondientes.

2.2.1A Si los datos no son correctos, se validara el formulario y el sistema

2.3.1A Si los datos no son correctos, se validara el formulario y se mostrara un

Postcondiciones:

Las estaciones de servicio correspondientes se veran actualizadas o eliminadas

del sistema. Las nuevas estaciones de servicio seran agregadas a la base de datos.

Notas:

Ninguna .

Administrador

Caso de Uso: Gestion de estaciones de servicio /

Ingresar al Sistema

«includex» -’

Agregar Estaciones

Eliminar Estaciones

' «extend»

» . «extend}:
Gestion de Estaciones de .-

Servicio

1<extend;»
Editar Estaciones

Ver Estaciones

Figura 3.5: Diagrama de caso de uso: Gestion de estaciones de servicio

Usuario

25

3.2.9 Gestion de Transporte

Con la finalidad de mantener un mayor control sobre los envios de combustible se debera crear un
modulo para la gestion de transporte, donde los administradores, previamente autenticados, podran
ingresar al sistema toda la informacion referente a los camiones cisterna, los cuales se utilizan para llevar
el combustibles desde las plantas de despacho, hasta las estaciones de servicio, estos pueden transportar
aproximadamente 40.000 litros de combustible, contando con dispositivos electronicos que miden
permanentemente la carga. En la tabla 3.9 se define este requerimiento y en la figura 3.6 se visualiza el
diagrama donde el administrador puede listar las unidades existentes, y gestionarlas, agregando nuevas
unidades, editando la informacion de las ya existentes, o eliminando alguna de ellas segan se considere

pertinente.

Tabla 3.9: Caso de uso: Gestion de transporte.

Nombre: Gestion de transporte

Descripcion: Permite a un administrador ingresar, observar y modificar la informacion sobre las

unidades que transportaran el combustible.

Actores: Administrador

Precondiciones: 1. El usuario debe estar autenticado en el sistema.

1. El administrador selecciona “Transporte” en la barra de navegacion.
2. Se visualizan todos los transportes de combustible registrados
previamente, permitiendo gestionarlas mediante (03) opciones:
2.1. Eliminar una unidad existente pulsando el icono en
forma de cubo de basura.
2.2. Modificar los datos de la unidad pulsando el icono con
forma de lapiz.
Flujo Normal:
2.2.1. El wusuario modifica los datos del
transporte seleccionado en el formulario
que se muestra en pantalla y pulsa
“Actualizar”.
2.3. Agregar una nueva unidad pulsando el boton “Agregar
Transporte”

2.3.1. El administrador llena un formulario con

26

los datos de la unidad a ingresar y pulsa

“Agregar”

2.2.1A Si los datos no son correctos, se validara el formulario y el sistema
devolvera un mensaje de error.

Flujo Alternativo:
2.3.1A Si los datos no son correctos, se validara el formulario y se mostrara un

mensaje de error debajo de los campos correspondientes.

Las unidades de transporte correspondientes se veran actualizadas o eliminadas
Postcondiciones:)
del sistema. Las nuevas unidades seran agregadas a la base de datos.

Notas Ninguna

Caso de Uso: Gestion de transporte /

Ingresar al Sistema

'
'
lude» A
|
U

«in

I3

Agregar Transporie

Eliminar Transporte

cextends
Gestion de Transporte 7%
«extend»
*
Administrador
«éxtend»

Ver Transpories

Figura 3.6: Diagrama de caso de uso: Gestion de transporte

27

3.2.10 Gestion de Solicitudes

Un usuario del sistema debera poder realizar solicitudes de combustible cuando asi lo considere

necesario, es por ello que al acceder al sistema encontrara un modulo que le permitira de manera rapida

y sencilla realizar solicitudes de combustible para cualquiera de los automoviles previamente

registrados. En estas solicitudes debera escoger ademas del automovil al cual desea surtir de

combustible, la estacion de servicio provista por el administrador que mejor se adapte a sus

necesidades. En la tabla 3.10 se define este requerimiento y en la figura 3.7 se visualiza el diagrama

donde el usuario puede agregar o eliminar solicitudes seglin su criterio.

Tabla 3.10: Caso de uso: Gestion de solicitudes

Nombre:

Gestion de solicitudes.

Descripcion: Un usu

ario podra agregar o eliminar solicitudes de combustible.

Actores: Usuario.
1. El usuario debe estar autenticado.
Precondiciones:
2. Deben existir automoviles y estaciones de servicio.
1. El usuario selecciona “Solicitudes” en la barra de navegacion.
2. Se cargan todas las solicitudes de combustible registrados en el sistema

Flujo Normal:

por el usuario de manera que este dispone de dos (02) opciones:
2.1. Eliminar la solicitud.
2.1.1. El usuario pulsa el icono del cubo de basura al lado de la
solicitud.
2.2, Agregar una nueva solicitud.
2.2.1. El usuario pulsa “Agregar Solicitud” en la barra de
navegacion.
2.2.2. Selecciona el automovil que desea surtir de combustible y

la estacion de servicio, y pulsa “Agregar”.

Flujo Alternativo:

2.2.2A Si existe una solicitud en espera de asignacién para el automovil que se

esta seleccionando se arroja un mensaje de error.

Postcondiciones:

La solicitud de combustible se crea o elimina de la base de datos.

Notas:

Luego que la solicitud sea aprobada ya no podra ser eliminada.

28

Caso de Uso: Gestion de solicitudes

Ingrasar al Sistema

]
4
wincludex -
i
U

¥ Agregar Solicitud

t-:&xlendn
Gestion de Solicitudes - - wextends - Eliminar Solicitud
Usuario
c-:-:ixlendn

Ver Solicitudes —

113

Administradaor

Figura 3.7: Diagrama de caso de uso: Gestion de solicitudes

3.2.11 Gestion de Combustible

Un administrador debe poder asignar envios de combustible a las diferentes estaciones de servicio, para
ello debera indicar informacion relevante para el despacho como los datos del transporte, la cantidad de
combustible asignada a la estacion de servicio, y la fecha estimada de recepcion. Estos envios permitiran
realizar calculos a posteriori de la oferta de combustible. En la tabla 3.11 se describe este requerimiento

yenla figura 3.8 se observa el diagrarna de caso de uso correspondiente.

Tabla 3.11: Caso de uso: Gestion de combustible

Nombre: Gestion de Combustible.

Descripcion: Un administrador podra agregar informacion sobre un envi6 de combustible a una

./ ..
estacion de SErviClo.

Actores: Administrador

1. El usuario debe estar autenticado.
Precondiciones:
2. Deben existir unidades de transporte y estaciones de servicio.

Flujo Normal: 1. El administrador selecciona “Combustible” en la barra de navegacién en

29

el cual tendra dos (02) opciones.
1.1. Selecciona la opcion “Nuevo Envié de Combustible”
1.1.1. Indica los datos que solicita el formulario y pulsa
“Aceptar”.
1.2. Selecciona la opcion “Consulta de envios”, donde se desplegara

una lista con la informacion detallada de todos los envios.

Flujo Alternativo:

1.1.1A Si los datos no son correctos, se validara el formulario y el sistema

devolvera un mensaje de error.

Postcondiciones:

Los datos del envié de combustible son agregados a la base de datos.

Notas:

Ninguna .

Caso de Uso: Gestion de combustible /

Administrador

Ingresar al Sistema

'
:
«includex

Agregar Envio

S
-

«extend»

-

Gestion de Combustible

Figura 3.8: Diagrama de caso de uso: Gestion de combustible

30

3.2.12 Asignacion de Combustible

Para que el sistema cumpla con su objetivo debera existir un modulo que les permita a los

administradores aprobar las solicitudes de gasolina realizadas por los usuarios en funcion de la cantidad

enviada a cada estacion de servicio, dado el proposito del sistema es pertinente que el proceso de

asignaci(')n de combustible se realice de manera automatizada sucesivo a la aprobacion del

administrador. En la tabla 3.12 se describe este requerimiento y en la figura 3.9 se observa el diagrama

de caso de uso correspondiente.

Tabla 3.12: Caso de uso: Asignacién de combustible

Nombre:

Asignacic')n de Combustible.

Descripcion: Un administrador podra aprobar la asignacion del combustible procedente de una

gesti()n de despacho.

Actores:

Administrador.

Precondiciones:

1. Deben existir una gestion de combustible.

Flujo Normal:

1. El usuario selecciona “Asignacion de Combustible” en la barra de
navegacion.

2. Se cargan todas las gestiones de combustible registrados en el sistema
por el usuario de manera que este dispone de dos (02) opciones:

2.1. Eliminar la gestion, el administrador pulsa el icono del cubo de
basura al lado de la gestion, confirma pulsando “aceptar” en la
modal de comprobacion.

2.2. Aprobar la gestion, el administrador pulsa el icono con la
forma de campana y aprueba las solicitudes correspondientes a

la gestic')n de combustible seleccionada.

Flujo Alternativo:

Ninguno

Las solicitudes correspondientes cambiaran su estatus a aprobadas y la cantidad

Postcondiciones: de litros disponibles de la gestion se reducira segtn la capacidad de los carros
asignados.
Una vez aprobada la gestién y notificados los usuarios esta no podra ser
Notas:

eliminada.

31

Caso de Uso: Asignacion de combustible /J

Ingresar al Sistema

wincludes

Eliminar Gestidn

.

wextends

-

Asignacion de Combustible -
agxtends

Administradar

Figura 3.9: Diagrama de caso de uso: Aprobaciéon de combustible.

Este capitulo definio los requerimientos necesarios para el desarrollo de la aplicacion, lo que
nos proporciona una base estable de cuales deben ser las restricciones y el comportamiento que debe
tener nuestro sistema. Se tiene una serie de requisitos funcionales que ofrecen una experiencia de uso
completa, ya que abarcan todos los aspectos del proceso de suministro de combustible, desde las
perspectivas del usuario y del administrador. Teniendo como premisa la facilidad y eficacia del sistema
en la integracion ambos roles encontramos operaciones basicas de gestion de usuarios como
autenticacion, registro de automoviles, necesarias para poder llevar a cabo las solicitudes del usuario.
Ademas, se definieron especificaciones que deben ser llevadas a cabo por los administradores de la
aplicacion con la finalidad de permitir la correcta funcionalidad del sistema y brindar informacion que
pueda ser utilizada a posteriori para toma de decisiones. Los requerimientos no funcionales definidos
establecen reglas acerca de la implementacion y gestion del proyecto, como lenguaje de programacion,

estilos visuales y control de versiones.

Capitulo 4

Diseno del Software

Continuando el proceso de desarrollo definido por el método White WATCH encontramos el disefio
del software, el cual tiene como objetivo describir la arquitectura que tendra el sistema, y el disefio de
cada uno de los componentes que integren dicha arquitectura, en este capitulo se contemplan los
procesos de identificacion de subsistemas, disefio de interfaz de usuario, disefio de modelo de datos y
despliegue del sistema. Los cuales fueron refinados en cada una de las iteraciones de la fase de

desarrollo.

4.1 Identificacion de Subsistemas

Con el objetivo de reducir la complejidad y facilitar el disefio del sistema, se realiza una descomposicion
del sistema en subsistemas, la identificacion de estos se puede realizar mediante la continuidad directa
de los modelos de analisis de requerimientos o aplicando nuevos criterios de diseno tales como la
facilidad de mantenimiento, la reutilizacion de elementos del propio sistema y la optimizacion de

recursos.

Adoptando criterios logicos como la homogeneidad de los procesos y la afinidad de los
requisitos podemos identificar los siguientes subsistemas para el sistema en desarrollo: Registro de un
usuario, inicio de sesion y recuperacion de contrasena, gestion de usuarios, gestion de automoviles,

gestion de estaciones de servicio, gestion de transporte y gestion de solicitudes.

33

4.2 Diseno de Subsistemas

Con el proposito de definir comportamientos especificos para cada una de los subsistemas identificados
en terminos de colaboracion entre elementos, Se identificaran y definiran las dependencias entre

subsistemas, ademas, se asignaran los requisitos correspondientes a cada uno de los subsistemas.

4.2.1 Registro de usuarios

Este componente esta relacionado con el caso de uso presentado en la tabla 3.1. Y comprende el
registro de los usuarios en el sistema, incluye datos basicos para el uso del sistema como nombre
completo del usuario, correo electronico y contrasena con el cual realizara el proceso de autenticacion

posteriormente. Para ello es necesario el modelo de datos presentado en la figura 4.1.

personas

PK cedula

password
remember_token
created_at
updated_at

email_verified_at

telefonos name
PK id lastname
numero tipocedula
Role
cedula_persona created_at
PK id

created_at updated_at

ES name
updated_at

slug
1 description
users special
PK email created_at
cedula_persona updated_at

Figura 4.1: Modelo de datos: Registro de usuarios

4.2.2 Inicio de Sesion y Recuperaci()n de Contrasena

Este subsistema se relaciona con los casos de uso presentados en las tablas 3.2 y 3.3, su funcionalidad se

basa en el proceso de autenticacion de los usuarios al ingresar al sistema, incluyendo el proceso de
. - .)

recuperacion de contrasena en caso de perder el acceso al sistema. Para ello es pertinente el uso del

modelo de datos presentado en la figura 4.2,

34

Role

PK

id

personas

PK cedula

name

lastname

tipocedula

created_at

updated_at

users

PK email

token

created_at

telefonos
PK id

numero
cedula_persona
created_at
updated_at
password_resets

PK email

cedula_persona
password
rememibrer_token
created_at
updated_at

email_verified_at

name
slug
description
special
created_at

updated_at

Figura 4.2: Modelo de datos: Inicio de sesién y recuperaciéon de contraseiia

4.2.3 Gestion de Usuarios

En este modulo se engloban las actividades mostradas en las tablas 3.4 y 3.5, en las cuales se definen las

tareas de ver, editar y eliminar usuarios. Algunas de estas pueden ser ejecutadas por el mismo usuario,

sin embargo, la mayor parte de ellas seran llevadas a cabo por los administradores del sistema; Entre las

tareas del subsistema se adjunta la posibilidad de edicion de roles de usuarios. El modelo de datos

necesario ya fue desarrollado en la figura 4.1.

4.2.4 Gestion de Automoviles

Este subsistema contempla las actividades relacionadas con los casos de uso presentados en la tabla 3.6 y

3.7, las cuales incluyen la creacion, edicion, visualizacion y eliminacion de automoviles, aunque estas

tareas estan reservadas en su mayoria para los usuarios, este modulo tiene la particularidad de englobar

informacion de especial interés para los administradores, para ello es necesario el modelo de datos

presentado en la figura 4.3.

35

telefonos

P

id

numero
cedula_persona
created_at

updated_at

password_resets

PK

email

token

created_at

4.2.5

personas Role
PK cedula PK id
name name
lastname slug
tipecedula description
created_at special
updated_at created_at
T updated_at
x
Lo
users cars
PK email PK placa
cedula_persona HH—, marca
password modelo
remember_token anno
created_at (] conductor_id
updated_at capacidad
email_verified_at created_at
updated_at

Gestion de Estaciones de Servicio

Figura 4.3: Modelo de datos: Gestion de automoéviles

Este componente se relaciona con los casos de uso presentados en la tabla 3.8, donde se incluyen las

actividades de crear, editar, ver y eliminar estaciones de servicio, las cuales se realizan con la finalidad

de brindar al usuario informacion que le permita escoger la estacion que mejor se adapte a sus

necesidades, para llevarlo a cabo es necesario el modelo de datos que observamos en la figura 4.4.

personas

PK

cedula

name
lastname
tipocedula
created_at

updated_at

users

PK

email

cedula_persona
password
remember_token
created_at
updated_at

email_verified_at

Figura 4.4:

cars

PK

placa

solicitudes

PK

marca
modelo
anno
conductor_id
capacidad

created_at

updated_at

cdigo

placa_car
rif_estacion
capacidad_car
status
aprobacion
created_at

updated_at

estacionservicio

PK

i

nombre
direccion
surtidores
capacidad

created_at

updated_at

Modelo de datos: Gestion de estaciones de servicio

36

4.2.6 Gestion de Transporte

El modulo de gestion de transporte se relaciona con los casos de uso presentados en la tabla 3.9, en
ellos se contemplan las actividades de crear, editar, ver y eliminar los datos de un camion cisterna los
cuales son fundamentales para la asignacion de combustible a las estaciones de servicio, es necesario el

uso del modelo presentado en la figura 4.5 ya que nos ofrece datos de gran importancia para los envios.

users cars solicitudes

PK email PK placa PK cdigo

cedula_persona
password

remember_token

lastname

S

marca
modelo

anno

placa_car
ril_estacion

capacidad_car

anno

created_st conductor_id status
updated_at capacidad aprobacion
email_wverified_at created_at created_at
T updated_at updated_at
+ transportes estacionservicio
personas PK placa PR rif
PK cedula marca nombre
name modelo direccion

surtidores

tipocedula H conductor_cedula capacidad

created_at capacidad created_at

updated_at created_at updated_at
updated_at

Figura 4.5: Modelo de datos: Gestion de transporte

4.2.7 Gestion de Solicitudes

El subsistema de solicitudes abarca los casos de uso presentados en la tabla 3.10, en la cual se incluyen
las actividades de crear, ver y eliminar solicitudes, este modulo cuenta con una variable de estado,
mediante la cual evalta si la solicitud ya ha sido aprobada o sigue a la espera de asignacion, este
componente es de gran importancia ya que como se observa en la figura 4.6 funciona como tabla de
./ . . ./ . 1A . .
union o intermedia, en la relacion de muchos a muchos que existe entre los automoviles y las estaciones

de servicio.

37

personas cars solicitudes
PH cedula PH placa PK cdigo
name marca placa_car
lastname modelo rif_estacion =ie]
tipocedula anno capacidad_car
created_at — O conductor_id H——C=<] status
updated_at capacidad aprobacion
T created_at created_at
updated_at updated_at
users estacionservicio
PK | email PK | nf H—
cedula_persona nombre
password direccion
remember_token surtidores
created_at capacidad
updated_at created_at
email_verifled_at updated_at

Figura 4.6: Modelo de datos: Gestion de solicitudes

4.3 Diseno de Interfaz

Se realizo el disefio de una interfaz que pretende ser intuitiva y amigable, mediante el uso de prototipos
de interfaces los cuales no permiten hacernos una idea mas precisa de las interfaces que proveera el
sistema, también se realizo la definicion de un diagrama jerarquico de pantallas el cual nos permite
apreciar cuales seran las vistas del sistema y como esta estructurada cada una de las opciones a fin de
contribuir de forma positiva con la experiencia del usuario. Este diagrama tambien nos facilitara la tarea
de describir los perfiles del sistema, mostrando los privilegios que tendra cada uno de los roles
asignados. En la figura 4.7 encontraremos el diagrama jerarquico de pantallas, el cual es utilizado para

definir los perfiles del sistema en las figuras 4.8y4.9.

38

Menu Principal
0. Ingreso al Sistema

4[1. Nombre de Usuario

i

y

1.1. Cerrar
Sesion

4[2. Perfil de Usuario

J I |

—[3. Gestion de Usuario

—[4 Solicitudes

4[5. Automoviles

4[6. Transportes

—[7. Gestion de Combustible

27 DEfe 2.2. Contrasefia
Personales
1
J I |
s
4.1. Nueva 42 Consulta de
Solicitud Solicitudes
]
) I |
7 ™ -
5.1. Gestion de 52 Lista
Automdviles de Automdviles
1
J [|
s s
7.1. Nuevo 7.2. Lista de
Envio Envios

4[8. Asignacion

4[9. Informes

9.1.
Asignaciones
Exitosas

Figura 4.7: Diagrama jerarquico de pantallas

39

Menu Principal
0. Ingreso al Sistema

1. Nombre de Usuario

i

s

1.1. Cerrar
Sesion

2. Perfil de Usuario

J I

4 Solicitudes

21. Datos 2.2 Contrasefia
Personales
]
) I |
-
4.1. Nueva 4.2 Consulta de
Solicitud Solicitudes

5. Automoviles

) I

y

5.1. Gestién de
Automdviles

-

Figura 4.8: Perfiles del sistema: Usuario

40

—[1. Nombre de Usuario i

-
1.1. Cerrar
Sesion
4[2. Perfil de Usuario } I |
21l Dee 2 2. Contrasefia
Personales
4[3. Gestion de Usuario
- —[4 Solicitudes] |
4
4.2 Consulta de
Solicitudes
Menu Principal
0. Ingreso al Sistema
—[5. Automdviles] 1
Ve -
5.2. Lista
de Automdviles
—[6. Transportes
4[7. Gestion de Combustible } [|
-
7.1. Nuevo 7.2 Lista de
Envio Envios
4[8. Asignacién]

4[9. Informes

9.1.
Asignaciones
Exitosas

Figura 4.9: Perfiles del sistema: Administrador

41

4.4 Diseno del Modelo de Datos

El diseno del modelo de datos o modelado de la base de datos, consiste en la estructuracion de los datos
con el fin de facilitar el analisis y la integracion de los mismos, para ello se utilizo el modelo de entidad-

relacion y el modelo relacional.

4.4.1 Modelo Entidad-Relacion

El modelo de entidad-relacion posee como una de sus principales caracteristicas un alto nivel de
abstraccion lo que permite ver con mayor claridad la informacion utilizada. En la figura 4.10 podemos

observar el diagrama entidad-relacion del sistema.

es_un

capacidad 4

translada

Usu Automovil
N

Combustible

Roles

Persona - Transporte

Estacion de
Servicio

Solicitudes

Figura 4.10: Diagrama de Modelo Entidad-Relacion.

42

Figura 4.11: Diagrama de Modelo Relacional

1 pslepdn
1E"pelepdn P8
EEET] 1€ pajepdn uolsegoide
sl 1€ palean SNIELS
0U2edsaD By JE7 peDiede)
W4 ———o04 uonssipl| W4 po—H ¥4
W prp0sT00paY | 314 W & pagEpan
ol s SIS | 06003 | Md gl Epaleal)
we:a:mmm §§320N8 S$8pnIdijos :o:u 59D U_\co,mm,ctwn
onjs pralo
1€ palepdn 1€ palepdn 1€ paEpdn Bl H—04 R
EpalEs 1€ p3iean JECIET] Pl X a0l Uoissiuad
PepIzede) pepioede DEpIZedE suolssiwiad
1 palendn
ENp3dIojanpuod SaJ0pLns pilojanpuoa
ETpales)
ouuE ouuE
1€ palepdn
ojpow alquou # H ojgpow
1€ p3iean
BlEW alquou Blew
Isn
EXd| W Il W EXd| Wd
i uolssiued alleu
sajiodsuel) 0IIAIZSUOIIBISE [31:4]
Pl dd PIl ¥d
Jasnuoisiuwad §8]0J
1€ pajepdn W w
e 1E PRI IEWs 1 pelepdn
1€7p3lepdn S ~ 1€ palepdn tH——od 1€ 8IE3N
N 1E paleald .
L EETH - IE pajean Jsn
sy} - -
enpadody | v Uakol Isquawal L]
. [EE } ,
aleulse| sovoam _ m plowssed Dl W
sjasal plomssed - —
BUEY Euosiad Enpa? Iasn a0
EDE1 | d [i | W
seuossad s1asn

El modelo relacional nos proporciona un modelo basado en la teoria de conjuntos, cuya idea es el uso

de relaciones. En la figura 4.11 se observa el resultado de la integracion de los modelos de datos.

4.4.2 Modelo Relacional

43

4.5 Despliegue de la aplicacion

En la figura 4.12 se muestra el diagrama de despliegue de la aplicacion, resaltando una arquitectura de

tres capas y dos niveles, donde del lado del cliente encontramos el navegador web y del lado del

servidor se encuentra el servidor web HTTP apache principal encargado de soportar la aplicacion.

«Devices
Cliente

«Navegador Webs
HTML5/CSS

zInternets

«Devices
Servidor

Figura 4.12: Diagrama de Despliegue

«Servidor Webs
HTTP Apache

Vistas

Controladores

Modelos

«3GBD»
MY SQL

El Servidor aloja el sistema, incluyendo el servidor web el cual procesa y dirige las peticiones

HTTP realizadas por el cliente, y el sistema gestor de bases de datos. Este disefo arquitectonico busca

el correcto funcionamiento del sistema y a su vez permite que el mismo cumpla sus objetivos, siendo

uno de ellos el ser accesible para cada uno de los usuarios desde cualquier dispositivo con acceso a

internet.

44

En este capitulo se especificaron todos los aspectos del disefio arquitectonico del sistema. Se
definieron cada uno de los subsistemas mediante la continuidad directa de los modelos de analisis de
requerimientos, indicando los modelos de datos necesarios para el correcto funcionamiento,
encontrando comportamientos especificos en términos de colaboracion entre elementos. Se realizo el
diseno de la interfaz y se definieron los accesos a cada una de las vistas del sistema para los perfiles de
usuarios correspondientes partiendo de un diagrama jerarquico de pantallas. También se formalizo el
modelado para una base de datos relacional buscando facilitar el analisis y la integracion de la
informacion suministrada por los usuarios y, por ultimo, se planteo un disefio que cuenta con

arquitectura compuesta por tres capasy dos niveles.

Capitulo 5

Desarrollo de Versiones

Segtn el metodo White WATCH, el desarrollo del producto debe realizarse de manera iterativa.
Usando el enfoque progresivo o evolutivo, al final de cada ciclo se debe obtener una version funcional
del sistema. En este proyecto se realizaron seis (06) iteraciones que abarcaron todos los aspectos

definidos en la fase de ingenier{a de requisitos.

5.1 Aprovisionamiento de Componentes

Antes de comenzar a detallar las fases de desarrollo de la aplicacion, es necesario mencionar los
elementos que forman parte de la infraestructura del software requerida para desarrollar el sistema. La

plataforma de desarrollo cuenta con las siguientes herramientas:

e Servidor de Base de Datos MySQL, version 5.7.29.
e MySQL Workbench, version 6.3.8.

® Framework Laravel, version 6.18.0.

® Navegador Web Google Chrome, version 80.0.

e Editor de texto Sublime Text, version 3.2.2.

e Composer, version 1.9.1.

46

5.2 Primera Iteracion

Durante esta primera fase de desarrollo se realizo un modulo de registro y autenticacion de usuarios,
donde las personas que deseen ingresar al sistema podran registrar sus datos teniendo como premisa la
simplicidad y amigabilidad de la interfaz, por esta razon se toma la decision de utilizar los componentes
provistos por el framework Laravel para el desarrollo de los modulos de registro, autenticacion y
recuperacion de contrasefia, estos componentes fueron modificados para adaptarlos a las necesidades de
la aplicacion, Ademas, se desarrollo una pagina de bienvenida para los usuarios autenticados donde
resalta la implementacion de una barra de navegacion lateral que servira como una plantilla de diseno

para toda la aplicacion.

Se destaca de esta version, el manejo de las sesiones de usuarios, la creacion y diseno de los
formularios para guardar los datos y el almacenamiento de los mismos en la base de datos. En la figura
5.1 se muestra una visualizacion de la interfaz de acceso al sistema, donde encontramos ciertos
clementos que son recurrentes en la mayoria de las paginas de autenticacion, esto con la finalidad de

hacerlo lo mas intuitivo posible a los usuarios que apenas ingresan al sistema.

Iniciar Sesion

Email

Contrasena

Recuerdame Olvidaste tu contrasena?

INICIAR SESION

res Nuevo? Registrate

Figura 5.1: Visualizacion de la interfaz de autenticacion

47

5.3 Segunda Iteracion

Durante esta segunda iteracion del desarrollo incremental, se realizo el modulo de gestion de usuarios
para cumplir con los casos de uso especificados en las tablas 3.4 y 3.5, Se crearon formularios para la
edicion de usuarios y se realizaron las validaciones para cada uno de los campos del formulario en el
controlador usando el método validate. Ademas, se adquirio el paquete shinobi para el manejo de los
roles y permisos del sistema. Lo que permitira a partir de esta iteracion limitar los accesos al sistema
segun los roles que posea cada usuario mediante el uso de middlewares, e igualmente de manera visual
haciendo uso de la funcion can. En la figura 5.2 se muestra una visualizacion general del modulo de
gestion de usuarios, donde se aprecia como un administrador puede consultar, editar y eliminar

cualquiera de los demas usuarios del sistema.

Editar Usuario
Nombre Apellido
Gabriel Quintero

Cedula Telefono

\ v 23716595 04247527343

Email

gabrieluza24@gmail.com

Administrador
Usuario

Figura 5.2: Visualizacion de la interfaz de gestion de usuarios

5.4 Tercera Iteracion

En esta iteracion del desarrollo incremental se realizo el modulo de gestion de automoviles, usando el
patron MVC del framework Laravel se construyeron controladores RESTful, que corresponden a las
dependencias GET, POST, PUT, DELETE, PATCH. Los controladores se almacenan en el directorio
de la aplicacion App/Http/Controllers/, y para este modulo la estructura del controlador

correspondiente a los automoviles se creo de la siguiente manera:

48

* App/Http/Controllers/cars/index

* App/Http/Controllers/cars/create

* App/Http/Controllers/cars/edit

* App/Http/Controllers/cars/show

* App/Http/Controllers/cars/store

* App/Http/Controllers/cars/update
* App/Http/Controllers/cars/destroy

Se empleo la funcion __construct, la cual funcion6 como un contendor de inyeccion de
dependencias ya que resuelve automaticamente todas las dependencias y las inyecta a instancias del
controlador, esta se utilizo para emplear los middlewares y limitar los permisos a cada una de las
funciones del controlador. También se realizaron las validaciones para cada uno de los campos del
formulario en el controlador usando el método validate, una funcion provista por el framework la cual
evalta si el formulario cumple con las reglas de validacion, en ese caso el codigo continuara
ejecutandose normalmente, de lo contrario se lanza una excepcion y se retorna un mensaje con el error.
Este m¢todo nos permitio definir las reglas de validacion para cada formulario y personalizar los

mensajes de error.

En la figura 5.3 observamos el modulo de automoviles, donde se nos presenta una tabla con la
informacion de cada uno de los automoviles registrados por el usuario, y botones con las acciones
posibles para cada automovil, correspondientes con su respectiva dependencia del controlador antes
mencionada. Asi se cumplio con los casos de uso especificados en las tablas 3.6 y 3.7 del analisis de

requisitos.

49

Suministro de Gasolina Gabriel Quintero ~

8 Perfil de Usuario

Placa Marca Modelo Ano (ofelelelellelole] Accion
O solicitudes

XNZ229 TOYOTA COROLLA 1991 40 litros 7

& Automoviles

O Estaciones de Servicio
+ NUEVO

Figura 5.3: Visualizacion de la interfaz de gestion de automéviles

5.5 Cuarta Iteracion

En esta iteracion se desarrollo el modulo de gestion de estaciones de servicio y gestion de transporte,
con el fin de brindarle al usuario toda la informacion que este requiera al momento de realizar su
solicitud de combustible. Las estaciones de servicio juegan un rol fundamental para la solucion del
problema, es por ello que se determin6 realizar una ficha de cada una de las estaciones disponibles,
donde el administrador introduce informacion de cada una de las estaciones de servicio existentes para
que los usuarios puedan observar estas fichas y determinar cual se adapta mejor a sus necesidades, esta
informacion también es importante para la toma de decisiones a posteriori. La estructura RESTful del

controlador correspondiente quedo de la siguiente manera:

* App/Http/Controllers/EstacionesServicio/index
* App/Http/Controllers/EstacionesServicio/ create
* App/Http/Controllers/EstacionesServicio/ edit

* App/Http/Controllers/EstacionesServicio/show

* App/Http/Controllers/EstacionesServicio/store

* App/Http/Controllers/EstacionesServicio/update

* App/Http/Controllers/EstacionesServicio/ destroy

50

Para el modulo de transporte, se desarrollo un formulario el cual permite ingresar toda la

informacion relevante de un camion cisterna, incluyendo los datos del conductor. La estructura

RESTful del controlador se creo de la siguiente manera:

* App/Http/Controllers/Transportes/index

* App/Http/Controllers/Transportes/ create

* App/Http/Controllers/Transportes/edit

* App/Http/Controllers/Transportes/show

* App/Http/Controllers/ Transportes/store

* App/Http/Controllers/Transportes/update
* App/Http/Controllers/ Transportes/destroy

En ambos modulos, las reglas de validacion respectivas para cada campo del formulario se realizaron

en el controlador, usando el método validate del objeto Iluminate/Http/Request. Y se emplearon

middleware para definir los permisos de acuerdo a cada uno de los roles del sistema. En la figura 5.4 se

muestra la interfaz del modulo de estaciones de servicio para un usuario.

Suministro de Gasolina Usuario Admin v

Perfil de Usuario + AGREGAR

& Gestion de Usuarios
) Solicitudes

& Automoviles

O Estaciones de Servicio

Estacion Bella Vista

® Transporte . .
Av Universidad sector

o vuelta de Lola
Gestiones

l2 Informes

Figura 5.4: Visualizacion de la interfaz de gestion de estaciones de servicio

51

5.6 Quinta Iteracion

Durante la quinta iteracion se realizo el modulo de gestion de solicitudes. Partiendo de la premisa de
obtener un sistema completo, pero de uso simple, se desarrollo el modulo mediante dos interfaces, la
primera encargada de la creacion de nuevas solicitudes, se realizo tomando las funcionalidades obtenidas
en las iteraciones anteriores. Obteniendo un formulario en el que el usuario debe indicar cual de los
automoviles registrados en el sistema desea cargar de combustible y en cual de las estaciones de servicio
puestas a disposicion. En la figura 5.5 se visualiza la interfaz mediante la cual el usuario realiza las

solicitudes.

Suministro de Gasolina Gabriel Quintero v

Perfil de Usuario Realizar Solicitud de Combustible

B solicitudes . .
Seleccione el Vehiculo

— v

& Automoviles

. o Seleccione la Estacion de Servicio
& Estaciones de servicio

-3 v

Figura 5.5: Visualizacion de la interfaz para generar nuevas solicitudes

Es importante resaltar que, aunque el formulario sea de seleccion se deben realizar las
validaciones correspondientes para mantener la seguridad y la integridad de la aplicacion en todo
momento, también se valida que, si un automovil tiene una solicitud en espera para una estacion de
servicio, no debe poder realizar mas solicitudes hasta tanto no elimine la solicitud en proceso o la misma
sea aprobada. Las reglas de validacion se realizaron en el controlador, usando el metodo validate del

objeto Iluminate/Http/Request.

52

La segunda interfaz del modulo de solicitudes, pone a disposicion de todos los usuarios del
sistema un mecanismo de consulta de las solicitudes, indicandoles el estatus de la misma y en caso de
estar aprobada la fecha en la que debera asistir a la estacion de servicio. Tambien permite eliminar
alguna solicitud si esta ain no ha sido aprobada. Los administradores podran observar una lista de todas
las solicitudes del sistema. En la figura 5.6 observamos una visualizacion de la interfaz para el modulo de

gesti(')n de solicitudes.

Suministro de Gasolina Gabriel Quintero ~

Perfil de Usuario

D Vehiculo Placa Estacion De Servicio Estatus Aprobacion
] solicitudes

Estacion de Servicio erra En Espera [}

& Automoviles

(-4

Estaciones de Servicio

Figura 5.6: Visualizacion de la interfaz de consulta de solicitudes

5.7 Sexta Iteracion

En esta iteracion del proceso de desarrollo se lograron concluir todos los casos de uso definidos en los
requerimientos del proyecto mediante la realizacion del modulo para la gestion y asignacion de
combustible. El cual consistio en un formulario que establece envios de combustible a las estaciones de
servicio indicando una fecha estimada de arribo y el transporte que realiza ¢l envio. Al igual que en
todas las demas iteraciones las validaciones para cada campo del formulario se realizaron en el
controlador, usando el método validate. En la figura 5.7 observamos el formulario para la creacion de

un nuevo envio de combustible.

53

Suministro de Gasolina Usuario Admin v

Perfil de Usuario Nuevo despacho de combustible

=2 Gestion de Usuarios]
Seleccione un Transporte

I solicitudes - v
seleccione la Estacion de Servicio

& Automoviles

— v

O Estaciones de Servicio
Indique una fecha de recepcion

W Transporte dd/mm/aaaa

£ Gestiones Seleccione la Cantidad de litros a enviar

0 v

L2 informes

Figura 5.7 Visualizacion de la interfaz del m6dulo de gestion de combustible

Durante el desarrollo de esta iteracion tambien se desarrollo un modulo de informes que les
permite a los administradores visualizar todos los envios de combustible realizados, con la finalidad de

obtener informacion veridica sobre la oferta de combustible.

Una vez aprobado ¢l envio del combustible a una estacion de servicio, el sistema debe asignar
de manera automatica esa cantidad de combustible a los automoviles que posean una solicitud en espera
para la dicha estacion, en caso de ser insuficiente el combustible para la cantidad de solicitudes, se deben
comparar ciertos de criterios como la antigiiedad de la fecha de la solicitud para realizar la asignacion.
Laravel permite la creacion de comandos personalizados que pueden ser ejecutados desde la linea de
comandos de una terminal del sistema, se cre6 un comando que realiza la asignacion de combustible,
dicha tarea debe ejecutarse de manera automatica. En la figura 5.8 observamos una lista con los envios
de combustible que aun poseen combustible sin asignar cuyo valor ira disminuyendo a medida que

surjan nuevas solicitudes.

54

Suministro de Gasalina Usuario Admin v

Perfil de Usuario

Estacion Fecha De

Gestion de Usuarios

is

Tranporte Placa De Servicio Recepcion Combustible Accion

L solicitudes 1 JAC AAD224S Estacion de 2020-03-04 14000 litros

-
AN

& Automoviles

O Estaciones de Servicio
® Transporte

£ Gestiones

L2 informes

Figura 5.8: Visualizacion de la interfaz de asignacion de combustible

De esta manera se cumplieron todos los requerimientos funcionales definidos para este proyecto,
aplicando el enfoque evolutivo el cual consistio de seis (06) iteraciones, las cuales comenzaron con un
modulo de autenticacion de usuarios, que permitio ingresar los datos de los usuarios al sistema dandole
paso a un modulo de gestion de usuarios donde se le permitio a los administradores asignar o quitar
permisos a ciertos usuarios de acuerdo al rol que estos ocupasen. Se avanzo con las siguientes
iteraciones aplicadas de manera metodica, realizando primero aquellos modulos que eran necesarios
para la elaboracion de los demas, tal es el caso del modulo de solicitudes el cual requirio de la existencia
de los componentes de gestion de automoviles y el de gestion de estaciones de servicio antes de poder
ser creado. La ultima iteracion se enfoco mas en el desarrollo de mecanismos para atender a las
solicitudes de los usuarios, teniendo presente en cada una de las iteraciones la validacion de los
formularios y los permisos correspondientes para cada uno de los perfiles de usuarios. Cumpliendo asi

con los objetivos planteados por los casos de uso definidos en el desarrollo de requerimientos.

Capitulo 6

Pruebas del Sistema

El metodo White WATCH, contempla la realizacion de pruebas al sistema en cada una de sus versiones
con el objetivo detectar errores en el codigo e implementacion y corregirlos, reduciendo asi la cantidad

de fallos y comprobando que el sistema cumple con los requisitos.

6.1 Mecanismos de prueba

El framework Laravel permite la inclusion de un paquete llamado Laravel Dusk el cual consiste un
sistema de pruebas cuyo objetivo es proporcionar una forma de lograr pruebas de interaccion dentro del
navegador, tales como hacer clic, interactuar con formularios y modificar la base de datos tal como lo
harfa un usuario, es por esta razon que se utilizo este sistema para crear pruebas funcionales

automatizadas.

6.2 Casos de prueba

Se realizaron una serie de casos de pruebas funcionales, en los cuales se tomaron algunas de las
funcionalidades del sistema con un resultado esperado, si la prueba concluye con el resultado esperado,
se tomara como una prueba exitosa y se determinara como correcta, de lo contrario, debe evaluarse el
sistema hasta encontrar el origen de la falla, corregirse y probarse nuevamente. Las pruebas se daran
por finalizadas cuando se garantice la funcionalidad esperada. En la tabla 6.1 se muestra el plan de

pruebas.

56

Tabla 6.1: Plan de pruebas funcionales

Parametros de

Subsistema Codigo Salida Esperada
Entrada
Usuario valido.
Inicio de sesion Datos correctos Cédigo 6.1 Retorna a la pégina
principal.
Datos incorrectos.
Usuario o contrasefia Regreso al formulario,
Inicio de sesion Cédigo 6.1
invalidos mensaje de error en el
campo incorrecto.
Regreso al formulario,
Usuario o contrasena mensaje de campo
Inicio de sesion Cédigo 6.1
en blanco obligatorio en el campo
correspondiente.
Mensaje de éxito,
Gestion de
Datos correctos Cédigo 6.2 retorna a la lista de
Automoviles
automoviles.
Gestion de Namero de placa
Cédigo 6.2 Mensaje de error.
Automoviles existente
Mensaje de éxito,
Gestion de Estaciones
Datos correctos Cédigo 6.3 retorna a vista de
de Servicio
estaciones.
Gestion de Estaciones RIF o nombre en
Cédigo 6.3 Mensaje de error.
de Servicio blanco
Mensaje de éxito,
Gestion de Solicitudes Datos correctos Codigo 6.4 retorna a la lista de
solicitudes.
Mensaje de error,
) Automo6vil con ,
Gestion de Solicitudes Codigo 6.4 retorna a formulario de

solicitud en espera

solicitudes

57

6.3 Pruebas Realizadas

A continuacion, se detalla cada una de las pruebas realizadas, siguiendo el plan de pruebas se desarrollo
un archivo de prueba para cada uno de los subsistemas, en las cuales se consider6 cada uno de los
parametros de entrada propuestos, los cuales arrojaron una captura de pantalla del resultado obtenido.

Este resultado se comparo con la salida esperada.

6.3.1 Inicio de Sesion

Se probo el componente de inicio de sesion para un usuario mediante tres pruebas, En el codigo 6.1,
. L - L .
podemos observar como en la prueba primero se direcciono el navegador a la pagina de inicio de sesion,
luego se introdujeron datos invalidos, posteriormente se regreso a la pagina de inicio de sesion
nuevamente esta vez dejando los campos en blanco, y finalmente se ingreso al sistema haciendo uso de

las credenciales del usuario por defecto que posee el sistema.

1. <?php

2.

3. namespace Tests\Browser;

4.

5. use Illuminate\Foundation\Testing\DatabaseMigrations;
6. use Laravel\Dusk\Browser;

7. use Tests\DuskTestCase;

8.

9. class LoginTest extends DuskTestCase

10. {

11. JB%

12. * A Dusk test example.

13. &7

14. * @return void

15. */

16. public function testLogin ()

17. {

18. Sthis->browse (function (Browser S$browser) ({
19. Sbrowser->visit ('/login')

20. ->type ('email', 'nodata@gmail.com')
21. ->type ('password', '"holamundo')
22. ->press ('INICIAR SESION')

23. ->pause ('400")

24 ->screenshot ('loginl') ;

N
(€}
—

58

26.

27. Sthis->browse (function (Browser S$browser) ({
28. Sbrowser->visit ('/login')

29. ->press ('INICIAR SESION')

30. ->pause ('400")

31. ->screenshot ('login2') ;

32. }y:

33.

34. Sthis->browse (function (Browser S$browser) |{
35. Sbrowser->visit ('/login'")

36. ->type ('email', 'admin@gmail.com')
37. ->type ('password', '00000000")

38. —>press ('INICIAR SESION')

39. ->pause ('500")

40. ->screenshot ('login3"')

41. ->assertAuthenticated() ;

42 . Fy:

43,

44 }

45, }

Cédigo 6.1: Prueba de inicio de sesion.

El resultado de esta prueba fue capturado empleando el método screenshot. Se observa en las figuras

6.1, 6.2 y 6.3 los resultados correspondientes para cada uno de los parametros de entrada.

Iniciar Sesion

Email

nodata@gmail.com

Los datos ingresados no son validos, por faver verifique

Contrasena

Recuerdame Olvidaste tu contrasena?

INICIAR SESION

Eres Nuevo? Registrate

Figura 6.1: Resultado de la prueba de inicio de sesi6on con datos invalidos

59

Iniciar Sesion

Email
Contrasena ‘ . Completa este campo
& Recuerdame Olvidaste tu contrasefa?

INICIAR SESION

Eres Nuevo? Registrate

Figura 6.2: Resultado de la prueba de inicio de sesion con datos en blanco

Suministro de Gasaina

Estaciones de 5

Transporte
Gestiones

nfarmes

Figura 6.3: Resultado de la prueba de inicio de sesion con datos correctos

Usuario Admin ~

60

6.3.2 Gestion de Automoviles

Para el subsistema de gestion de automoviles, se realizaron dos pruebas. En el codigo 6.2 se muestra
como primero se autentica el usuario empleando el método LoginAs. Luego se procedio a direccionar
el navegador al modulo de automoviles, para finalmente ingresar datos correctos de un automovil
mediante el uso de la ventana modal, posteriormente se procede a tratar de ingresar los mismos datos
nuevamente esperando una respuesta diferente en esta oportunidad ya que se estaria repitiendo la

misma placa para dos automoviles.

1. <?php

2.

3. namespace Tests\Browser;

4,

5. use Illuminate\Foundation\Testing\DatabaseMigrations;
6. use Laravel\Dusk\Browser;

7. use Tests\DuskTestCase;

8.

9. class AutomovilesTest extends DuskTestCase

10. {

11. Jx*

12. * A Dusk test example.

13. *

14. * @return void

15. 74

16. public function testAutomoviles ()

17. {

18.

19. Sthis->browse (function (Browser S$Sbrowser) {
20. Suser = \App\User::FindOrFail (2) ;
21. Sbrowser->loginAs (Suser) ;

22. Sbrowser->visit ('/cars"')

23. ->press ('"NUEVO'")

24. ->waitFor ('#crearAuto', 'l")
25. ->whenAvailable ('#crearAuto', function (Smodal)
26. {

27. Smodal

28. ->type ('placa', 'XNz229")
29. ->type ('marca', 'Toyota')
30. ->type ('modelo', '"Corolla')
31. ->select ('anno', '1991")
32. ->select ('capacidad', '40")
33. ->press ('Guardar') ;

34.

35. })

36. ->pause ('400")

37. ->screenshot ("Autol'")

38. ->assertSee ('El Automovil Fue Agregado');

61

39. }y:

40.

417 . Sthis->browse (function (Browser S$browser) |

42. Sbrowser->visit ('/cars')

43. —->press ('NUEVO"')

44 ->waltFor ('#crearAuto','l"'")

45, ->whenAvailable ('#crearAuto', function (Smodal)

46. {

47 . Smodal

48. ->type ('placa', 'XNZ229")

49. ->type ('marca', 'Ford')

50. ->type ('modelo’', 'Focus')

51. ->select ('anno', '2006")

52. ->select ('capacidad', '50")

53. ->press ('Guardar') ;

54. })

55. ->pause ('400")

56. ->screenshot ('Auto2"'")

57. ->assertSee ('Este automovil ya ha sido
registrado') ;

58. }Y:

59. }

60. }

Cédigo 6.2: Prueba de gestion de automoviles.

Se utilizo el metodo screenshot, para tomar registro de los resultados obtenidos y en la figura 6.4 y

6.5 se muestra como los resultados de la prueba fueron exitosos

El Automovil Fue Agregodo

Figura 6.4: Resultado de la prueba de gestion de automoéviles con datos correctos

62

)

Este automovi ya ha sida registrado

Figura 6.5: Resultado de la prueba de gestion de automoviles con datos invalidos

6.3.3 Gestion de Estaciones de Servicio

En el subsistema de gestion de estaciones de servicio también se realizaron dos pruebas. En el codigo
6.3 se puede observar como para esta prucba se ingreso al sistema haciendo uso del metodo LoginAs,
para luego ser direccionados a la vista de estaciones, una vez alli se intento registrar una nueva estacion
de servicio dejando el campo RIF en blanco, esperando un error por parte del sistema y posteriormente

se procedio a completar todos los campos del formulario.

<?php
namespace Tests\Browser;
use Illuminate\Foundation\Testing\DatabaseMigrations;

use Laravel\Dusk\Browser;
use Tests\DuskTestCase;

O J o Ul W

[anliNe)
O .

class EstacionesTest extends DuskTestCase

{

=
N

/**

* A Dusk test example.

* @return void

7
public function testExample ()
{

N
o U W

63

17.
18.
19,
20.
21.
22.
23.

24.
25.
26.
27 .
28.

29,
30.
31.
32.
33.
34.
35.
36.
37.
38.
39,
40.
41.
42.
43.

44,
45.
46.
47.
48.

49.
50.
SN
52 .
53
54.
55.
56.

57.
58
59,
60.

Sthis->browse (function (Browser S$browser) ({
Suser = \App\User::FindOrFail (1) ;
Sbrowser->loginAs (Suser) ;
Sbrowser->visit ('/estaciones')
->press ('AGREGAR')
->waitFor ('#crearEstacion','l'")
>whenAvailable ('#crearEstacion', function (Smodal)
{
Smodal
->type ('rif','")
->type ('nombre', '"Estacion Bella Vista')
->type ('direccion', 'Av Universidad sector
vuelta de Lola')
->select ('surtidores','2")
->select ('capacidad', '144000")
->press ('Guardar') ;

)
->pause ('400")
->screenshot ('Estacionl')
->assertSee ('El campo rif es requerido.');
}) s

Sthis->browse (function (Browser Sbrowser) {
Sbrowser->visit ('/estaciones')
->press ("AGREGAR")
->wailtFor ('#crearEstacion', '1l")
>whenAvailable ('#crearEstacion', function (Smodal)
{
Smodal
->type ('rif', 'J-00304500-6")
->type ('nombre', '"Estacion Bella Vista')
->type ('direccion', 'Av Universidad sector
vuelta de Lola')
->select ('surtidores','2")
->select ('capacidad', '144000")
->press ('Guardar') ;

})
->pause ('400")
->screenshot ("Estacion2')
->assertSee ('La estacion de servicio Fue
Agregada.');
b))

Céodigo 6.3: Prueba de gestion de estaciones de servicio.

64

En las figuras 6.6 y 6.7 observamos los resultados exitosos para los diferentes parametros de entrada,

obtenidos mediante el método screenshot.

>

£l campo rif es requerido.

Figura 6.6: Resultado de la prueba de gestion de estaciones de servicio con campos vacios

v

La estacion de servicio Fue Agregada

Figura 6.7: Resultado de la prueba de gestiéon de estaciones de servicio con datos correctos

65

6.3.4 Gestion de Solicitudes

Para la gestion de solicitudes se plantean los mismos parametros de entrada, esperando resultados
diferentes en cada ejecucion, esto ocurre porque un automovil solo puede tener una solicitud en espera
al mismo tiempo. En el codigo 6.4 se observa como utilizando los parametros creados en las pruebas
anteriores se procede a crear una nueva solicitud de combustible esperando ser retornados a diferentes

rutas mediante los métodos AssertPathls y AssertPathIsNot.

1. <?php

2.

3. namespace Tests\Browser;

4. use Illuminate\Foundation\Testing\DatabaseMigrations;

5. use Laravel\Dusk\Browser;

6. use Tests\DuskTestCase;

7.

8. class SolicitudesTest extends DuskTestCase

9. {

10. Vak

11. * A Dusk test example

12. VA

13. public function testExample ()

14. {

15. Sthis->browse (function (Browser S$Sbrowser) {
16. Suser = \App\User::FindOrFail (2) ;

17. Sbrowser->loginAs (Suser) ;

18. Sbrowser->visit ('/solicitudes/create')
19. ->select ('car', "XNz229")

20. ->select ('estacion', 'J-00304500-6")
21. ->press ('Aceptar')

22. ->pause ('400")

23. ->screenshot ('Solicitudl"'")

24 . ->assertPathIs ('/solicitudes') ;

25.) ;

26. Sthis->browse (function (Browser Sbrowser) {
27 Sbrowser->visit ('/solicitudes/create')
28. ->select ('car', "XNz229")

29. ->select ('estacion', 'J-00304500-6")
30. ->press ('Aceptar')

31. ->pause ('400")

32. ->screenshot ('Solicitud2"'")

33. ->assertPathIsNot ('/solicitudes') ;
34. b

35. }

36. }

Codigo 6.4: Prueba de gestion de solicitudes.

66

En las figuras 6.8 y 6.9 observamos los resultados exitosos de la prueba, obtenidos mediante el método
screenshot. Destacando los mensajes de éxito y error para la misma solicitud hasta tanto no se elimine

o apruebe la anterior.

v

la solicitud Fue Ganerada Correctamente

Figura 6.8: Resultado de prueba de gestion de solicitudes

Q)

E5te outomovil ya tiens Una sokcitud activa

Figura 6.9: Resultado de prueba de gestion de solicitudes con datos repetidos

Capitulo 7

Conclusiones y Recomendaciones

7.1 Conclusiones

Venezuela, un pais sumergido en una profunda crisis economica, social y politica, sin embargo atn
mantiene el precio del combustible mas econémico del mundo lo cual nos presenta un escenario donde
los conductores de automoviles deben esperar largos periodos de tiempo a las afueras de las estaciones
de servicio, sin ninguna seguridad de obtener el combustible necesario para realizar sus actividades
diarias, por esta razon surge la idea de desarrollar una aplicacion web con la finalidad de optimizar y
controlar los procesos de suministro de combustible. Para ello se uso el metodo de desarrollo White
WATCH, el cual nos provee una metodologia de trabajo bien definida donde se incluye una serie de
procesos tecnicos para el desarrollo de software como la ingenieria de requisitos, el disefio de la
arquitectura, la implementacion del sistema y las pruebas del mismo, este modelo de desarrollo
balancea la produccion de especificaciones en la medida que se avanza en el desarrollo, por lo que cada

uno de los procesos fueron refinados a lo largo de las versiones de desarrollo.

La ingenieria de requisitos permitio tanto identificar y analizar los problemas de informacion
del contexto, como especificar mediante la elaboracion de casos de uso cada uno de los aspectos
funcionales de la aplicacion. Para el diseno del sistema se defini6 una estructura inicial mediante la
continuidad directa de los modelos de analisis de requerimientos donde se relacionaron cada uno de los
requisitos obtenidos con la arquitectura del sistema. Para facilitar la integracion de la arquitectura del
software con el diseno de la interfaz y los modelos de datos, se dividio el sistema en subsistemas,

obteniendo asi una especificacion completa del diseno.

68

El desarrollo de las versiones de software y la ejecucion de las pruebas de validacion
automatizadas permitieron ir refinando los requerimientos del sistema, sin salirse de los parametros o
alcance definido para el proyecto. El uso del framework Laravel para la implementacion de esta
aplicacion fue clave ya que el uso de sus componentes o metodos helpers facilito el trabajo de
integracion y simplifico el proceso de realizar consultas complejas a la base de datos a traves de su
ORM. El uso de Composer, nos permitio gestionar las dependencias del proyecto e instalar paquetes

que fueron de gran ayuda para el desarrollo del mismo.

Los objetivos del proyecto fueron abarcados y cumplidos, bien sea durante la fase de estudio o
durante el desarrollo del software, logrando disefiar e implementar una aplicacion web para el control

de suministro de combustible.

69

7.2 Recomendaciones

Segfm Peter Drunkel “Innovar es encontrar nuevos o mejorados usos a los recursos de que ya
disponemos”. En la busqueda de continuar innovando se hacen una serie de recomendaciones orientadas

a la mejora de la calidad del software y de las funciones que ofrece:

* Promover el desarrollo de la metodologia White WATCH como marco metodologico para la

elaboracion de software en equipos de desarrollo pequenos.
* Incluir un modulo de noticias en la pégina principal de la aplicacion que le permita a todos los
usuarios del sistema estar al tanto de cualquier eventualidad que pueda ocurrir con respecto a

sus asignaciones.

* Ampliar la creacion de estadisticas en el sistema, con la finalidad de facilitar el analisis y

encontrar soluciones a largo plazo para el suministro de combustible.

* Agregar la funcionalidad de descarga de datos, para su aprovechamiento fuera de la plataforma.

* Elaborar un manual de usuario para proporcionar la informacion adecuada para el correcto uso

de esta aplicacion.

Bibliograffa

The World Factbook, Country comparison crude oil-proved reserves, (2018), ubicacion:

https:// www.cia.gov/ library/publications/ the-world-factbook/fields/ 264rank. html#VE

Peters, S., (2019), Sociedades rentistas: Claves para entender la crisis venezolana, Revista Europea de

Estudios Latinoamericanos y del Caribe. No 108

Puron-Cid, G., Gil-Garcia, J., (2013), Analisis de politicas publicas y tecnologias de informacion:
oportunidades y retos para América Latina y el Caribe, Revista del CLAD Reforma y Democracia.

No. 55.

Carabali, G., Moyano, C., (2016), Aplicacion para la Gestion de Abastecimiento de Combustible que
Brinda la Empresa distribuidora Levox a gasolineras Mobil, Universidad Politécnica Salesiana,

Guayaquil, Ecuador.

Santelices R., (2007), Propuesta de un Sistema de Planificacion para el Abastecimiento de Combustible,

Universidad de Talca, Chile

Dominguez L., (2014), Sistema de Administracion de las Operaciones de Marcacion de Combustible en

Petroecuador E.P., Universidad Israel, Quito, Ecuador.

Barrios, J., Montilva, J., White-WATCH: Meétodo para desarrollo de proyectos pequefios y poco
complejos, Version 1.2, Informe técnico, Proyecto Methodius, 2010, Recuperado desde

http://www.methodius.info.ve

71

Silberschatz, A., Korth, H., and S, S., (2002), Fundamentos de Bases de Datos, Madrid, Espafa.

Unified ~ Modeling ~ Language, Introduction to omg's Unified Modeling Language,

https:// Www.uml.org/ what-is-uml.htm

Junta de Andalucia, (2014), Patron Modelo Vista Controlador, URL:

http://www .juntadeandalucia.es/servicios/madeja/ contenido/recurso/ 122

Garcia, F., Moreno, M., Garcla, A., (2018), UML. Unified Modeling Language, Universidad de

Salamanca, Espafia.

Gutierrez,]., (2012), ;Que es un Framework Web?, URL:

http://www.cssblog.es/ guias/Framework.pdf

CakePhp, Entendiendo Modelo-Vista-Controlador, URL:https://book.cakephp.org/1.3/es/The-
Manual/Beginning-With-CakePHP/ Understanding-Model-View-Controller.html

The PHP Group, Manual de PHP, URL: www.php.net/manual/es

Read the Docs, (2019), Laravel Guide, URL:https://laravel-guide.readthedocs.io/en/latest/

Gitbook, Laravel 5, URL:https://richos.gitbooks.io/laravel-5/

Flowchart Maker & Online Diagram Software, URL:https//www.draw.io

https://richos.gitbooks.io/laravel-5/

	4b04b35e18a5a1e4f6f7ca919f8a8902c26e59dc0cf7da08e512114969452fed.pdf
	4b04b35e18a5a1e4f6f7ca919f8a8902c26e59dc0cf7da08e512114969452fed.pdf
	4b04b35e18a5a1e4f6f7ca919f8a8902c26e59dc0cf7da08e512114969452fed.pdf

