UNIVERSIDAD
DE LOS ANDES
MERIDA VENEZUELA

PROYECTO DE GRADO

Presentado ante la ilustre UNIVERSIDAD DE LOS ANDES como requisito final para

obtener el titulo de INGENIERO DE SISTEMAS

IMPLEMENTACION DEL ALGORITMO DE COLONIA DE HORMIGAS
PARA UN MOTOR DE JUEGOS SERIOS EMERGENTES

Por
Br. Andrés Roberto Trejo Sosa

Tutor: Dr. Jose Aguilar

Noviembre 2019

© 2019 Universidad de los Andes Mérida, Venezuela

IMPLEMENTACION DEL ALGORITMO COLONIA DE HORMIGAS

PARA UN MOTOR DE JUEGOS SERIOS EMERGENTES

Br. Andrés Roberto Trejo Sosa

Proyecto de Grado — Sistemas Computacionales — 45 péginas

Resumen: Un motor de juegos serios emergentes (MJSE) debe hacer explicito la posibilidad de emergencia
en un Juego Serio, a partir del manejo coordinado de tramas de juegos, adaptadas al contexto educativo
especifico donde se este desarrollando. Este proyecto se centra en la implementacion del algoritmo de
optimizacion de colonia de hormigas (ACO) para ser incluido dentro del MJSE de tal manera que se permita
la emergencia de tramas seglin el tema que se esta impartiendo dentro de un salon de clases inteligente. El
M]SE realiza la gestion de un conjunto de tramas de juegos que pueden ser de interés en un contexto-dominio
educativo, con el fin de adaptar el Juego Serio Emergente (JSE) inicialmente concebido al tema impartido en
el salon de clases inteligente, y de esta forma emerger el Juego Serio adecuado al proceso pedagogico en
curso. Adicionalmente, en este trabajo se realiza la comparacion de la propuesta con otros trabajos recientes

desde el punto de vista de que cualidades son o no implementadas dentro del MJSE.

Palabras claves: Motor de Juegos Serios Emergentes, Juegos Serios Emergentes, Algoritmo de Colonia de

Hormigas, Salon de Clases Inteligente.

Indice
TG LT TR v
Indice de FIGUIAS ..ootiiiiiiiecc s vii
INAICE d@ TADIAS.....cvoevvevevieeeeeetetcee ettt ettt e ettt as ettt ae e et et et esess et esesesess et esesese s esesesene s asesesensasanas viii
AgradeCimientos.ooiiiiiiiiii s ix
Capitulo 1
INEEOAUCCION. ...ttt ettt e e e e e e e e e e e e e s e bbb be e b et et e et teeaeaeaeaessesseassannnn 1
L1, ADNTECEAEINTES ..ttt ettt e bee bttt te e et eeeeeaeaaaeaesseessaaaaaaannnnnnnsnnrennes 1
1.2, Planteamiento del Problemauuuiiiiiiiiiiiiiiiiiieee e e e e 2
1.3. ODBJEtiVOS cooiuiiiiiiiiii it 3
1.3.1 Objetivos Generalesccocuiiiiiiiiiiiiiiiii i 3
1.3.2. Objetivos ESPecifiCoscccviiiiiiiiiiiii 3
14, JUSHHFICACION ..evvviiiiiiiiiiiicc i e 3
| B T N CoT: 1) OO O PP PP PP 4
1.6, Metodologia........ccoooiiiiiii s 4
1.6.1. Descripcion de la metodologia RAD (Rapid Application Development)........c.ccooveiennnnne 4
1.6.2. Fases de la Metodologia..........ccoviiiiiiiiiiniiicc 4
1.6.3. Descripcion de las Fases de la Metodologia...........c.coviiiiiiniiniiiiinnii e, 5
1.7. Organizacion de la Tesis..........ccoiiiiiiiiiiiiiiiiiiic 6
Capitulo 2. . 7
P Y oI K=Y) y T o OO PP P PP PPPPPPPP 7
2.1. Juegos Serios EMergentes.........cccviiiiiiiiiiiiiieiiieiie s 7
2.2. Emergencia de Secuencia/Tramasc.ccevieiiiiiniiiiiiiiiii 8
2.3. Arquitecturade un MJSEccooiiiiiiiiii 9
2.3.1. Ntcleo del Motor de Videojuego (NMV)......ccciiiiiiniiiniiiniiiniin e 9
2.3.2. Subsistemas de Emergencia del Videojuego (SEV) y de Adaptacion del Videojuego (SAYV)
.. 10
2.4. Algoritmo de Colonia de Hormigas (ACO)cccceeiimniinniinniiniiniicin s 12
Capitulo 3o 14
| DTS 5 Lo SO PSP P PP PPPPPPPPP 14

3.1. Disefio del M6dulo de Recuperacion de Trazasccocveviveiiniiniininnin s 14

Vi

3.2. Disefio del M6dulo de Emergencia de Secuencias...........ccccoecviiiiniininiiniinninis e, 18
3.2.1. Macroalgoritmo ACO para el STEccooooiiiiiiiiiiiii 20
Capitulo 4 ... 24
Protocolo Experimental ..ot 24
4.1. Contexto General Experimentalccccoooiiiiiiiiiiiiii s 24
4.2, Escenario N° 1: Analisis de los Métodos de Comparacion de Cadenascceeeieininnnnnnn, 27
4.3. Escenario N° 2: Umbral de Semejanzaccceeiiiiiiiiiiiiiiiiiiiii e, 28
4.4. Escenario N° 3 Numero de subtramas de la solucion final.............cccccooiiiiiiiiiiiiiiiiiniiiieeeee 29
Capitulo 5. ... 32
Comparacion con otros Trabajos..........ccviiiiiiiiiiiin 32
Capitulo 6........ .. 35
Conclusiones y Trabajo FULUIOcocciiiiiiiiiiii 35
6.1. (070 1 Vo] 11 T3 T3 s Lo PP P RO OUPSPPRNY 35
6.2. Trabajo FULUIOooiiiiiiiiii e 36
Bibliografia............... 37
ADIEXOS ..o 40
Anexo A. Repositorio del Proyecto...........ccociiiiiiiiiiiiiiiii 40

Anexo B. Funciones del Submotor de Trama Emergente.........ccocevniininniiininnieiecee s 41

vii

Indice de Figuras

Figura 1.1 Fases de la Metodologia RAD (tomado de [15]) evveeriieniimniiesiiniiniisinnis st 4
Figura 2.1 Arquitectura del Motor de Juegos Serios EMergentescvcuvivieinsiirniiiniiinnisiiensisses s 10
Figura 3.1 Diagrama de flujo del STE...cccoiiiiiiiiiii s 14
Figura 3.2 Diagrama de la clase LOmParser.....c.occuiiiiiiiiiiiiciicseie e 15
Figura 3.3 Diagrama de la clase ScoreModuleooeiiiiniiiniiiiiiiiii s 17
Figura 3.4 Diagrama de la clase ANt....eeiieciiiiiniii 18
Figura 3.5 Diagrama de la clase ENVIronmentcceoiiiiiieiiiiiiieniiiiicie e 19
Figura 3.6 Diagrama de 1a clase ACO vovvriiiiiiiiiiiiic e 20
Figura 3.7 Grafo de recorrido de ACO ...iciiiiiiiiiiiiiicc 20
Figura 3.8 Nodo del grafoc.viiiieiiiiiii 21
Figura 3.9 NUEVO JSE..cuiiiiiiiiiiei et 23
Figura 4.1 Lista de RA de diferentes tOpiCos ...evveruirreieniiniiniisieieis e 24
Figura 4.2 Ejemplo de resultado 6ptimo para el Escenario N° 3 ..oucoiiiiiniinniieiiinini e, 31

Figura 0.1 Repositorio del PrOYecto .ouiiuiiiiiiiiiiiiiiieciecce e 40

viii

Indice de Tablas

Tabla 4.1 Datos del tema deseado en €] CUISO 1 .ciiuuuiiiiiiiiiiiiiiiiiii e ere e e eeae e s e e aeae e e e eanaaeees 26
Tabla 4.2 Datos del tema deseado en €] CUISO 2 vivvvuuueuuuirirerreieieieiiiiiiiiiree e e eeeeteeerereeeaaseesseeseesemermsnnsanssseesaens 26
Tabla 4.3 Datos del tema deseado en €] CUISO 3 .ieivuuiiiiiiiiiiiiiiiiiie e s eerere e s e e rere e s eeeaaanees 27
Tabla 4.4 Resultados de las pruebas del Escenario N° 1 ..c.cioiiiiiiiiniiiiiiiiiiiiiiin e 28
Tabla 4.5 Resultados de las pruebas del Escenario N® 2cccciiiiiiiiiiiiiiiiiiiicici e 28
Tabla 4.6 Resultados de las pruebas del Escenario N° 3ooiiiiiiiiiiiiiiiiiiicic e 30

Tabla 5.1 Comparacion con otros Trabajosceiiieiiiiiiiiiiiiiiiii i 32

Capl'tulo 1

Introduccion

En este trabajo se propone el desarrollo de un motor de Juegos Serios Emergentes (M]SE),
concretamente el sub-motor de tramas, basado su implementacion en el algoritmo de optimizacion Colonias
de Hormigas (ACO, por sus siglas en inglés), los cuales permitiran la integracion y adecuacion autonomica
de varios Juegos Serios en un MJSE, el cual sigue las dinamicas de aprendizaje de un Salon de Clases. En ese
sentido, el MJSE posibilitara la adaptacion de los Juegos Serios Emergentes (JSE) al aula, a partir de la
emergencia de nuevos temas, reglas, estrategias, elementos, entre otros, de acuerdo a las necesidades de la
clase. De esa manera, un JSE es visto como un objeto mas de aprendizaje en el salon de clases que debe
adaptarse, de forma que sea posible coadyuvar a mejorar los procesos de aprendizaje que ocurren en un salon

de clases inteligente (SaClI).

1.1. Antecedentes

En [1] se define, explicitamente, el desarrollo y aplicacion de un algoritmo ACO para la resolucion del
problema del viajante asimétrico, (ATSP, por sus siglas en inglés), cuyo fin es encontrar una solucion que,
satisfaciendo las condiciones iniciales del problema, proporcione una ruta o circuito cerrado cuya longitud sea
la minima. Para ello, se realizaron una serie de pruebas, a través de las cuales se obtuvieron resultados que,
posteriormente, se evaluaron y valoraron mediante el uso de tecnicas estadisticas. En [2], el objetivo principal
del trabajo consiste en la comparacion y fusion de motivos de las proteinas amiloideas, extraidas de la base de
datos AMYPdb, denotadas como expresiones regulares usando las reglas PROSITE. El método de fusion de
motivos utiliza el algoritmo de optimizacion combinatoria ACO, haciendo uso de los aminoacidos del primer
motivo para construir el grafo donde las hormigas caminaran. En [3] se describe la aplicacion de un algoritmo
perteneciente a la metaheuristica ACO (MAX-MIN Ant System) a un problema de optimizacion
combinatoria. Ademas, se propone una técnica alternativa en la construccion de soluciones en algoritmos
ACO, inspirada principalmente en otra metaheuristica llamada Busqueda Tabu. El problema a resolver se
denomina Problema de Asignacion Cuadratica (QAP, por sus siglas en inglés, Quadratic Assignment
Problem); el cual es uno de los problemas de optimizacion combinatoria mas dificiles de resolver en la

practica.

Segtin [4], los Juegos Serios representan la Gltima innovacion en los videojuegos, por ello, proponen un
marco para la seleccion de motores de Juego Serios, caracterizando cinco elementos para la comparacion de
los mismos, los cuales son: Fidelidad Audiovisual y funcional, Composibilidad, Accesibilidad, Redes y
Heterogeneidad. Ademas, en ese documento describen varios motores de juegos (Cry Engine, Source Engine,
Unreal y Unity), adecuados para garantizar excelentes Juegos Serios. Por otro lado, [5] presenta el uso de los
Juegos Serios para fines terapeuticos, utilizados en personas que presentan estrés postraumatico, fobias y

trastornos mentales. En particular, presentan Snow World, un videojuego para pacientes con quemaduras en

su cuerpo, a los cuales se les coloca un casco y se les presentan imagenes de la antitesis del fuego, esto es, el
frio, representado por nieve, pingiinos, entre otros, con la finalidad de controlar el dolor o erradicarlo,

mientras se realiza la curacion del usuario.

En [6] se propone un framework para disenar y desarrollar videojuegos, el cual se basa en la
descomposicion de un motor de juegos, lo que permite la reutilizacion de sus submotores. Los submotores
en que se descompone el motor de juegos se separan en los sistemas de renderizado grafico, de deteccion de
colisiones, audio, objetos de juego y reglas. En [7] se disena un motor de eventos, que permite seguir la
dinamica del juego, transmitir comandos a la logica del juego, enviar y recibir mensajes; todo esto llevandose

a cabo segt’m los eventos recibidos.

Las bases teoricas de los Juegos Emergentes han sido introducidas en [8]. Ademas, en ese trabajo se
analizan el conjunto de reglas que conducen a estrategias de juego complejos, en los juegos de SimCity, Lincity
y Los Sims. Por otro lado, en [9] proponen el Juego Emergente denominado Metropolis, que parte de la
premisa que las ciudades son auto-gestionadas a traves decisiones tomadas en conjunto por sus habitantes
(jugadores), sin que exista un habitante con un papel mas importante. En Metropolis, emergen patrones
urbanisticos en la ciudad a partir de las decisiones que sus habitantes toman. Recientemente, en [10], se
propone una extension a Metropolis, introduciendo mecanismos emergentes a la dinamica del juego, para

que se adapte a sus jugadores.

1.2. Planteamiento del Problema

La metaheuristica de ACO fue propuesta en [11] como un meétodo para resolver problemas de
optimizacion combinatorios. Los algoritmos de optimizacion basados en colonias de hormigas son parte de la
rama de la inteligencia colectiva, este es el campo de investigacion que estudia algoritmos inspirados en la
observacion del comportamiento de enjambres (swarms). Los algoritmos de inteligencia colectiva estan
compuestos de individuos simples que cooperan a traves de la auto-organizacion, es decir, sin ninguna forma

de control central sobre los miembros del enjambre.

Un Juego Emergente, es un juego con vida propia, el cual toma en cuenta lo que haga el jugador y al

) , . S L
entorno, para responder. De esta manera, el guion no esta escrito de antemano, la historia no es tnica, no
hay un camino ni final ni definido. [12] sefiala que la programacion emergente se aplica en la creacion de
videojuegos, utilizando inteligencia artificial, haciendo las aplicaciones cada vez mas autonomas y

autodidactas.

Por otro lado, [13], sefala que los Juegos Serios son entornos donde los jugadores tienen objetivos y
desafios claros, no necesariamente vinculados con la victoria como meta final. Los juegos proporcionan un
ambiente motivador, un contexto de entretenimiento y auto-fortalecimiento, para que los jugadores
“aprendan haciendo" a través de sus propios errores, gracias a desafios adecuados a su nivel de competencia y
a una realimentacion constante. El fin de los Juegos Serios es coadyuvar, motivar, educar, entrenar, etc., a

los jugadores.

A pesar de la evidencia de la eficacia de los Juegos Serios en el ambito educativo, algunos autores han
encontrado obstaculos para su uso, como por ejemplo [14]: es dificil ajustar los horarios asignados a una
materia con el tiempo dedicado al juego, o los contenidos de los juegos muchas veces no responden a las

necesidades de las asignaturas, o son hechos para un contexto y objetivo preciso.

A su vez, las formas de emergencia en un juego se pueden expresar como [8, 10]: a) Por la aparicion de
nuevos comportamientos en el juego; b) Por la aparicion de nuevas secuencias/escenarios, tramas o tematicas
en los juegos; c) Por el surgimiento de nuevas propiedades en los objetos que los componen; d) Por la
aparicion de patrones que reflejan los resultados finales de los juegos; e) Por el surgimiento de modelos de
negocios alrededor de los juegos. Ahora bien, los actuales motores de juego permiten algunos tipos de
emergencia, con excepcion de los casos a, b y ¢, los cuales deben ser disenados de manera explicita por el

disenador del juego.

1.3. Objetivos

1.3.1 Objetivos Generales

Implementar el Algoritmo de Colonia de Hormigas para un MJSE, con el objetivo de permitir la

aparicion de nuevas secuencias o tramas en el juego.

1.3.2. Objetivos Especificos

® Especificar la arquitectura del algoritmo ACO para el MJSE, con el fin de permitir la aparicion de

nuevas secuencias o tramas en el juego.
e Implementar el algoritmo ACO en el MJSE.

® Realizar pruebas en el contexto de un salon de clases.

1.4. Justificacion

La presente investigacion se enfocara en el desarrollo de un MJSE orientado a la educacion, pues se
considera que si en un salon de clases se va a utilizar videojuegos continuamente, se requiere que se adapten
dinamicamente a las necesidades de aprendizaje del tema en un momento dado. En particular, un SaClI
requiere de Juegos Serios que no sean hechos para un contexto y objetivo especifico, que se puedan adaptar a
los requerimientos que vayan surgiendo en el aula, y en especial, la emergencia de nuevas tramas adecuadas a

las tematicas que se impartan en el SaCI.

1.5. Alcance

Al finalizar el proyecto, se contara con la especificacion detallada del submotor de tramas encargado de
la aparicion de nuevas secuencias o tramas en el juego, cuyo nicleo esta definido por un algoritmo ACO.
Ademas, tambicn se tendra su integracion en el MJSE, el cual lo invocara para adaptar los JSE a las necesidades
del tema de la clase que se esté impartiendo. Por otro lado, se elaborara un prototipo sobre la plataforma de

M]JSE, para evaluar su impacto en un salon de clases.

1.6. Metodologl'a

1.6.1. Descripcion de la metodologfa RAD (Rapid Application Development)

Rapid Application Development (RAD, por sus siglas en ingles) es un modelo de desarrollo agil enfocado
principalmente en la rapida creacion de prototipos de un producto de software, realizandose iteraciones
frecuentes basadas en retroalimentacion, y publicando continuamente versiones actualizadas de dicho

producto al mercado.

1.6.2. Fases de la Metodologia

En general, la metodologia RAD cuenta con cuatro fases principales:

Rapid Application Development (RAD)

Prototipo
Disefio de Construccion Fase de
Usuario Rapida Corte
Refinamiento Pruebas

Figura 1.1 Fases de la Metodologia RAD (tomado de [15])

1.6.3. Descripci()n de las Fases de la Metodologfa

La metodologia esta compuesta por las siguientes fases [16]:

Fase I: Planificacion de Requisitos: Esta fase es equivalente a una reunion de alcance. A pesar de

que la fase de planificacion es mucho mas corta en comparacion con otro tipo de metodologias, sigue siendo
un paso critico para el éxito del proyecto. Durante esta etapa, los desarrolladores, clientes (usuarios del
software), y los miembros del equipo se comunican para determinar las metas y expectativas del proyecto;
como también, los problemas actuales y potenciales que tienen que ser identificados durante el desarrollo del

producto.

® Una descomposicion basica de esta etapa implica:
° Investigacién del problema actual.
® Definicion de los requerimientos del proyecto.

® Finalizacion de los requerimientos, con la aprobacion del cliente.

Es importante que todos los participantes tengan la oportunidad de evaluar y dar su opinion sobre las
metas y expectativas del proyecto. Al tener la aprobacion de cada cliente y desarrollador, el equipo puede
evitar problemas relacionados con falta de comunicacion y cambios de decisiones, que a la larga pueden

significar costos muy elevados durante el proceso de desarrollo.

Fase II: Disefio de Usuario: El disefio comprende los fundamentos basicos de toda metodologia RAD.
Durante esta fase, los clientes trabajan en conjunto con los desarrolladores, para asegurar que las metas se

cumplan en cada paso del proceso de diseno.

Todos los errores son resueltos a través de un proceso iterativo: el desarrollador diseha un prototipo, el
cliente lo prueba, y luego se llega a un acuerdo de lo que funciona y lo que no. Esta forma de trabajo le da la
oportunidad a los desarrolladores de retocar el modelo durante todo el proceso de construccion, hasta lograr

un disefio satisfactorio.

Fase III: Construcciéon Rapida: La fase 3 toma los prototipos obtenidos en la fase de diseno y los

convierte en el modelo de trabajo. Debido a que la mayoria de los problemas y los cambios fueron
identificados durante la exhaustiva fase de disefo, los desarrolladores pueden construir el modelo de trabajo
final de una manera mucho mas rapida, en contraste con lo generado al aplicar un enfoque de gestion de

proyectos tradicional.

La fase se descompone de la siguiente manera:

® Preparacion para el proceso de construccion rapida.
® Desarrollo de programas y aplicaciones.
e (Codificacion.

® Prucbas unitarias, de integracion y de sistema.

El equipo de desarrollo de software trabaja en conjunto durante esta etapa, para asegurar que todo esté

funcionando correctamente y que el resultado final satisface las expectativas y los objetivos del cliente. Esta

tercera fase es importante debido a que el cliente atn tiene la oportunidad de opinar durante el proceso de
desarrollo, sugiriendo alteraciones, cambios, e incluso, nuevas ideas que pueden llegar a resolver problemas

de forma inmediata.

Fase IV: Fase de Corte: Esta es la fase donde el producto final se libera al mercado. Incluye procesos
de conversion de datos, pruebas y entrenamiento de usuarios. Todos los cambios finales son realizados,

mientras desarrolladores y clientes contintian buscando errores en el sistema.

1.7. Organizaci()n de la Tesis

Este trabajo se organiza a traves de seis capitulos a mencionar:

En el Capitulo 1 se introducen los conceptos basicos del problema, se describen los antecedentes
necesarios para fundamentar este proyecto, asi como se exponen los objetivos generales y especificos.

Finalmente, se presenta la metodologia y el alcance del proyecto.

En el Capitulo 2 se describen las bases teoricas que sirven como apoyo del proyecto. Se presentan una
serie de conceptos relacionados con los JSE, se especifica la arquitectura detras del funcionamiento de un
M]JSE, y por Gltimo, la definicion de ACO.

En el Capitulo 3 se presenta el disefio del Modulo de Recuperacion de Trazas y el Modulo de Emergencia
de Secuencias. Se especifica la arquitectura del software junto con las formulas utilizadas en cada componente,

que en conjunto, representan toda la funcionalidad del sistema.

El Capitulo 4 se enfoca en todo lo relacionado con las pruebas realizadas sobre el sistema. Se describen
los objetivos de las pruebas, las metricas utilizadas, los resultados obtenidos, y las conclusiones generadas a

partir de cada escenario.

Posteriormente, en el Capitulo 5 se realiza una comparacion de cualidades entre el proyecto y otros

trabajos que tienen relacion con el tema desarrollado.

Finalmente, en el Capitulo 6 se presentan algunas conclusiones acerca de las funcionalidades y el

desempenio de los métodos propuestos junto con algunas ideas para realizar investigaciones posteriores.

Capitulo 2
Marco Teorico

2.1. Juegos Serios Emergentes

En [4, 17, 18] definen a los Juegos Serios como juegos disefiados y desarrollados desde un objetivo
distinto a la pura diversion. Los Juegos Serios proveen un ambiente motivador, un contexto de
entretenimiento y auto-fortalecimiento, para que los jugadores “aprendan haciendo” a travées de sus propios

errores, gracias a desafios adecuados a su nivel de competencia y a una realimentacion constante.

Por otro lado, [8] define a un Juego Emergente como uno que se va desplegando de manera espontanea,
autonoma, y sin leyes explicitas, adecuandose a los jugadores. En [9] proponen el Juego Emergente
“Metropolis”, cuyo funcionalismo parte de la premisa que las ciudades generadas dentro del juego son auto-
gestionadas por decisiones tomadas en conjunto por sus habitantes (jugadores), sin que exista un habitante
con un papel mas importante. Concluyentemente, en Metropolis emergen patrones urbanisticos en la ciudad
por las decisiones que sus habitantes toman. [10] propone una extension a Metropolis con la incorporacion
de mecanismos emergentes que permiten adaptar sus propiedades a la dinamica del juego introducida por sus

jugadores.

A su vez, un JSE posiciona al jugador en un entorno de realimentacion de informacion y motivacion al
logro, guiado por un objetivo explicito distinto de la pura diversion, para superar desafios adecuados a su
capacidad, y aprender de sus propios errores. En especifico, el comportamiento que va dandose en el JSE
resulta espontanco, autonomo, y sin leyes explicitas, adecuandose a los jugadores y a sus entornos. En un JSE,

la historia, la dinamica, el guion que va surgiendo, depende del contexto donde se va dando el juego.
Segtin [12], los tipos de emergencia que se pueden dar en un JSE son los siguientes:

Estrategias: se generan nuevas logisticas (serie de acciones encaminadas hacia un fin determinado) y
tacticas (procedimiento o metodo que se siguen para ejecutar algo), siguiendo las normas, leyes y reglas del
videojuego. Estas emergencias no han sido disefiadas, creadas, ni predefinidas por el disefiador del juego; por
¢jemplo, la emergencia de estrategias de golpes, tacticas de combos de ataque, etc. en videojuegos de

combate.

Secuencia/Trama: se crean nuevas tramas (orden cronologico de los acontecimientos presentados) o
tematicas (contexto de su desarrollo) en los juegos, lo que puede implicar cambiar el ambiente del juego, los
eventos que aparecen en su dinamica, entre otras cosas. Por ejemplo: cambio de escenarios o de ¢poca en

juegos tipo “Los Sims”.

Propiedad: cambia las caracteristicas y capacidades en los objetos, lo que puede conllevar a nuevos
escenarios, personajes, etc. Eso puede implicar el cambio de normas, leyes y reglas en el videojuego, por

ejemplo: jugar en sentido de las agujas del reloj en el domino.

Final: determina cuando debe terminar el videojuego. Algunas cosas que podrian definirse en este tipo
de emergencia son: hacer emerger vidas infinitas, finalizar el juego cuando se alcance un objetivo, entre otras
cosas. Por ejemplo, en el juego “Metropolis” [10], al aparecer ciertos patrones de interes (patrones

urbanisticos), se podria dar por terminado el juego.

Modelo de Negocio: seglin [19], tiene que ver con el surgimiento de modelos de servicios alrededor
de los juegos. Por ejemplo, en algunos juegos aparece un sistema de comercio para comprar e intercambiar
personajes, herramientas, entre otras cosas, como es el caso de “Top Gear” con la compra de cauchos, de

motor, etc.

Utilidad: hace emerger como se va a utilizar el JSE, en funcion del contexto o la narrativa del ambiente
donde se usa. Por ejemplo: “Era Mitologica” puede ser utilizado para explicar hechos historicos, geograficos

o religiosos.

2.2, Emergencia de Secuencia/Tramas

Las tramas se refieren al orden cronologico de diversos acontecimientos presentados a un jugador en un
juego. Dichas tramas estan vinculadas a las narrativas (gameplay) que determinan las escenas en el mundo del
juego. Ast, la trama realiza la union del hilo historico de una narrativa. En este sentido, es un concepto referido
al conjunto de acontecimientos de una historia segtn el orden causal y temporal en el que ocurren los hechos.
En los videojuegos, la “historia” son secuencias animadas llamadas “escenas”, con o sin dialogo entre personajes
no jugables (NPC), mientras el jugador va controlando al Avatar o protagonista del juego. Por otro lado, la
“mecanica” del juego son reglas, procesos y datos, que definen como progresa un juego, que sucede cuando
se gana o se pierde, entre otras cosas. En un juego de computadora, estan incorporadas en el codigo del juego
[20]. Por otro lado, segin [21], la narrativa es el contexto que se establece alrededor de la mecanica en el

juego, y se visualiza mediante “escenas”, donde el jugador no tiene control de ellas. A continuacion,

)

describiremos los tipos de narrativas clasicos en los videojuegos:

Narrativa lineal: es como en una pelicula, tiene un comienzo, un medio y un final predeterminados.

Entonces, la linealidad existe en un juego desde que el jugador determina cuando comienza, qué sucede

. /. , .
mientras esta]ugando, y como termina.

Narrativa adaptada: no es lineal, no es planificado por el programador, como por ejemplo: comprar

productos dentro del juego, usar el juego en otro contexto, no terminar en el tiempo planificado.

Narrativa emergente: “aparece” cuando el jugador interacttia con el juego y “desaparece” cuando el
jugador deja de interactuar con el juego. Emerge de historias no creadas por el programador, cada vez que el

jugador realiza algin tipo de interaccion. Es, una narrativa no lineal.

2.3. Arquitectura de un MJSE

En [22] definen a los motores de juegos como los ambientes computacionales que permiten realizar
videojuegos. Pueden ser vistos como programas, librerias o frameworks, para el desarrollo de videojuegos.
Un motor de videojuegos es el ntcleo general que une todas las partes de un juego. Asi, los desarrolladores

se centran en las mecanicas, las logicas y las caracteristicas especificas del juego que esta concibiendo.

Por otro lado, en un JSE, el MJSE maneja un conjunto de tramas, y las va seleccionando y fusionando en
una Gnica trama, segun el contexto y el objetivo del juego. Para ello, el MJSE requiere realizar el siguiente

conjunto de tareas:

® Labusqueda y seleccion del conjunto de tramas adecuadas al contexto donde funcionara el JSE.

® Lafusion de algunas de las tramas seleccionadas en una tnica trama, segan los objetivos del Juego
Serio, que se desplegara inicialmente en el videojuego, y la supervision de la dinamica del
desarrollo del JSE, para adecuarlo a la dinamica del contexto donde funciona, a traves de la

adaptacion de sus tramas.

La arquitectura del MJSE que se presenta esta basada en [23, 24]. En dichos trabajos, el Motor se

encuentra dividido en capas jerérquicas, cuyos componentes son presentados en las siguientes subsecciones.

2.3.1. Nucleo del Motor de Videojuego (NMV)

Es el elemento central del MJSE, en ¢l se encuentran los seis submotores de base para cualquier

videojuego, los cuales son (ver Figura 2.1):

Submotor de graficos (SG): realiza y maneja los graficos, imagenes y dibujos primitivos, basados en

sus caracteristicas: texturizacion, mallas, terrenos, etc.

Submotor fisico (SF): se encarga de realizar los movimientos fisicos de los objetos en un ambiente

virtual.

Submotor de sonido (8S): se encarga de gestionar todo lo referente a lo audible: musica, audio,

. .
ruido, micr6fonos, entre otras cosas.

Submotor de interaccién (SI): se encarga de configurar las interacciones dentro y fuera de los

Videojuegos.

Submotor de video (SV): se encarga de la union del sonido y las imégenes en secuencias filmicas para

realizar videoclips, caricaturas, cortes de peliculas, etc., usadas en el videojuego.

Submotor de renderizacion (SR): se encarga de gestionar las imagenes en movimiento,

considerando aspectos como: mejorar la iluminacion, sombreado y oscuridad, definir sus efectos visuales,

entre otros.

10

1) /A
Submotor de Subsistema de Adaptacion de Videojuego Submotor
; Inteligencia de Trama o
Artificial Subsistema de Emergencia del Videojuego Emergente
\ W, A
- 4
~ N & ™
Submotor de Nucleo del Motor de Videojuego Submotor de)
Interaccion Renderizacién
> = Submotor Submotor \. /
A B : : 7 N\
Submotor de Video de Sonido Siibmater
Fisico de Gréficos

Figura 2.1 Arquitectura del Motor de Juegos Serios Emergentes

2.3.2. Subsistemas de Emergencia del Videojuego (SEV) y de Adaptaci()n del
Videojuego (SAYV)

Son las capas del MJSE que permiten hacer emerger un JSE [23]. En especifico, ambos subsistemas usan

los siguientes submotores:

Submotor de TA (SIA): se encarga de introducir comportamientos inteligentes en los diferentes

componentes del JSE. Para ello, en este componente se despliegan las diferentes técnicas usadas de la IA para
permitir la emergencia en un JSE. Un ejemplo de ello es el algoritmo ACO, utilizado por el Submotor de

Trama Emergente (STE) cuando es invocado por el SEV, para definir la primera version del JSE.

Submotor de Trama Emergente (STE): es el responsable de hacer emerger en el JSE las narrativas
y las secuencias de las tramas adaptadas al contexto. Para ello, recolecta la informacion del contexto, realiza

la gestion de escenas y eventos, ensambla subtramas/guiones de diferentes juegos, entre otras cosas.

2.3.2.1. Subsistema de Emergencia del Videojuego (SEV)

En el caso del STE, permite hacer emerger la primera version del JSE que sera ejecutada, segin los
objetivos que se deben cumplir. El STE, cuando es invocado por el SEV, esta compuesto por los siguientes
componentes (ver [23, 24], para mas detalles del STE):

Gestor de Materia (GM): determina la tematica que se esta tratando en el contexto para, a partir de

alli, establecer el objetivo que debe cubrir el JSE.

11

Gestor de Videojuegos (GV): busca en repositorios de videojuegos (por ejemplo, edugame,
advergame, etc.), subtramas o videojuegos para una tematica en particular. Dichas subtramas/videojuegos
son definidos como Recursos de Aprendizaje (RA). Para la busqueda, se realiza una comparacion entre los
metadatos de los RAs en los repositorios, y la tematica definida por el GM. Si no consigue al menos un

videojuego parecido a lo buscado, se hace un llamado al modulo siguiente.

Moébdulo de Generacion de JSE (MG]JSE): es el responsable del ensamblaje de un nuevo JSE usando
las subtramas provistas por el GV. En un trabajo previo, se ha disehado un MGJSE basado en ACO [3]. El
MG]SE tiene imbricadas las funciones de los siguientes tres componentes del SEV, para generar inicialmente

un JSE.

Storyboard (SB): se encarga de generar los guiones narrativos o subtramas del JSE.

Gestor de Escenas (GE): genera el ambiente, mundo o entorno, requerido por las tramas del JSE.

Sistemas de Eventos (SE): se encarga de generar eventos especializados requeridos por el SB, para

generar los comportamientos deseados en el JSE.

2.3.2.2. Subsistema de Adaptacion del Videojuego (SAV)

En el caso del STE, permite ir adaptando al JSE durante el desarrollo del mismo. La capa SAV permite
que en un JSE se generen comportamientos emergentes durante el juego, actuando sobre sus caracteristicas
de base. En particular, esta capa permite la adaptacion de las caracteristicas de sus elementos, la emergencia
de nuevas estrategias, secuencias de tramas, ambientes y eventos, en el videojuego. En [12] se proponen 6

niveles de emergencia en un Juego Emergente, que se dividen en dos modulos, a saber:

Modulo de Emergencia Fuerte: este modulo esta compuesto de tres subcapas que permiten la

emergencia fuerte en el videojuego, de la siguiente forma:

e [Estrategias: se generan nuevas tacticas y logistica en el juego, siguiendo reglas con variantes.

¢ Secuencia: se crean nuevos escenarios, tramas o tematicas en los juegos, cambiando el ambiente y

el contexto del juego.
® Propiedad: cambia las caracteristicas en los objetos.

¢ Modbdulo de Emergencia Débil: este modulo esta compuesto de tres subcapas que permiten la

emergencia débil en el videojuego, de la siguiente forma:

e Final: patrones que reflejan resultados de los juegos, o continuar el juego de forma infinita (en el

caso de los Juegos Serios no es necesario que termine el juego, ni que haya un ganador).

¢ Modelo de Negocio: por el surgimiento de mercados y servicios alrededor de los juegos.

e Utilidad: depende para que se va a utilizar el JSE.

12

2.4. Algoritmo de Colonia de Hormigas (ACO)

ACO es un tipo de meta heuristica basada en una poblacion, el cual esta inspirado en la conducta de las
colonias de hormigas reales cuando buscan comida. Ha sido utilizado para resolver problemas de optimizacion

combinatoria como se describe en [24, 25, 26]. ACO esta compuesto por:

Espacio de solucién: es un grafo o espacio que recorreran las hormigas para obtener soluciones.

Hormigas: caminan en el grafo.

Solucién: los nodos del grafo son marcados por una feromona, igual que los arcos que los
interconectan. Cuando converge el algoritmo, los nodos son seleccionados segan si su feromona pasa un

umbral, igual que los arcos que salen de ellos, como parte de la solucion final.

Feromonas: define lo deseable de los nodos y de los arcos que los interconectan, para pertenecer a la

solucioén final.

Funci6én Feromona: actualiza cada tipo de feromona, en funcion de la calidad de la solucion propuesta.

Funcién Heuristica: define la decision heuristica que toma una hormiga al estar en un nodo, con

respecto a que otro nodo debe continuar a visitar despues de el.

El macroalgoritmo clasico de ACO [24, 25, 26] se muestra a continuacion:

Inicializar parametros, feromonas y grafo
Repita Mientras (no se cumpla terminacion)
ConstruirSolucionesPorHormigas

ActualizarFeromona
ConstruirSolucionFinal

En general, las hormigas van recorriendo el grafo, y en la medida que lo recorren van construyendo una
solucion posible al problema estudiado. Durante el recorrido, ellos van tomando la decision de qué nodo
visitar segin una funcion heuristica que considera la cantidad de feromona depositada en el entorno y el
objetivo que se busca alcanzar en el problema. Finalmente, cada hormiga deposita feromona en el recorrido

realizado, segun la calidad de la solucion alcanzada.

Matematicamente, el macroalgoritmo ACO usa las siguientes ecuaciones. La hormiga k se mueve del

estado X al estado Y segun la siguiente probabilidad:

. @E@E)

. k
xy — Sty €]x
e k(T ()

13

Donde Tyy es la cantidad de feromonas que se han depositado en la transicion del estado X ay, 0 <
es un parametro para controlar la influencia de Tyy,, Nyy es la conveniencia de la transicion del estado x a y,
B = 1 es un parametro para controlar la influencia de Ny, y],’Cc es el conjunto de sitios que puede visitar la

hormiga k desde la posicion X.

Cuando todas las hormigas han completado una solucion, los rastros son actualizados por:
— k
Ty = (1= p)Tyy + Z Atyy
k

Donde Ty, es la cantidad de feromonas depositadas para la transicion del estado X @ y, p es el coeficiente

de evaporacion de feromonas y AT ,Ié’y es la cantidad de feromonas depositadas por la hormiga k.

14
Capl'tulo 3
Diseno

En este capitulo se presentan todos los aspectos del disefio e implementacion del Submotor de Trama
Emergente (STE) basado en el algoritmo ACO. En particular, se explicara cada uno de los componentes
principales del Modulo de Recuperacion de Trazas y del Modulo de Emergencia de Secuencias. El proceso de
desarrollo se llevo a cabo en su totalidad haciendo uso del lenguaje de programacion Java, en su version 1.8.0.

En la figura 3.1 se muestra de manera general, el flujo y los diferentes componentes del STE.

Mddulo de Reauperacion de Trazas
¢RA cumplen con

> | topico deseado? S
Comparaddn de & . RA como
(}—v RAS F} Parseo de Metadatos > >
Metadatos solucién final

~
A
No
f Tépico ;
Invoca w| Fusion de tramas
ACO como solucion final

Mddulo de Emergencia de Secuencias

Figura 3.1 Diagrama de flujo del STE

3.1. Diseno del Modulo de Recuperaci()n de Trazas

El Modulo de Recuperacion de Trazas esta compuesto por dos componentes principales: el componente
de parseo de metadatos y el componente de comparacion. Ambos componentes cumplen con un objetivo en
comun, el procesamiento de los recursos de aprendizaje (RA), para definir queé tan parecido es el contenido

de los RA del tipo Juegos Serios con respecto a la tematica que se este buscando.

Cada RA esta caracterizado por un metadato que sigue el estandar Learning Object Metadata (LOM)
[27]. Dicho archivo (usualmente codificado en XML) tiene la finalidad de describir a través de una serie de
atributos la tematica de cada Juego Serio (RA). A continuacion, se hace una descripcion de los atributos

tomados en cuenta durante el proceso de parseo (ver Figura 3.2):
Title: Es el nombre del RA.
Language: Es el lenguaje para el que fue hecho el RA.

Description: Contiene una descripcion del contenido del RA. Por ejemplo: “Juego de domino

interactivo que relaciona sus piezas segln las diferentes representaciones fraccionarias graficas o numericas”.

15

Keyword: Palabras claves que representan el tema principal del RA. Por ejemplo: fracciones, domino,
calculo, probabilidad.

Coverage: Describe la zona geogréfica o regién en la que es aplicable el RA.
Format: Identifica el software necesario para utilizar el RA.
TypicalAgeRange: Edad intelectual del destinatario tipico del RA. Por ejemplo: “7-97, “0-57, “15”.

Difficulty: Este elemento describe lo dificil que resulta el uso del RA para los usuarios tipicos. Por

ejemplo: muy dificil, dificil, medio, facil, muy facil.
Duration: Tiempo aproximado o tipico para asimilar el RA.

InteractivityLevel: El grado de interactividad que caracteriza a ese RA. Se mide como, muy alto, alto,

medio, bajo, muy bajo.

SemanticDensity: La densidad semantica de un RA puede ser estimada en funcion de su tamano,
ambito, o en el caso de recursos auto-regulados, tales como audio y video, su duracion. La densidad semantica

de un RA es independiente de su dificultad. Se mide como: muy alto, alto, medio, bajo, muy bajo.

IntendedEndUserRole: Usuario(s) principal(es) para el(los) que ha sido disenado el RA.
Context: El entorno principal para el que fue disenado el RA.

CognitiveProcess: Es el tipo especifico del proceso cognitivo del RA.

Cost: Indica si el RA requiere pago para su uso.

LomParser

+parseFilesifilesPath: String, topic:String[]): Graph
+parseLOM(file:File): String(]

Figura 3.2 Diagrama de la clase LomParser

En nuestro caso, las tramas de Juegos Serios es lo que se buscara como RA.

Una vez realizado el proceso de parseo, en donde se utilizan los metadatos LOM de los RA para extraer
los 15 atributos previamente descritos, es necesario comparar la informacion de cada atributo de la trama
(RA) con respecto a la informacion del curso establecida (topico que se desea impartir especificamente en el
curso). Eso determina el interés/parecido de dicha trama (RA) con respecto al curso a traves de un valor

numerico. Durante el proceso de comparacion se hacen uso de los siguientes criterios (ver Figura 3.3):

® Para el atributo “Title” se comparan las palabras que conforman al titulo del topico deseado con las
palabras del titulo del RA. Su valor determina la cercania de dicha comparacion, se devuelve 1 para

un resultado correcto y 0 para un resultado incorrecto.

16

Para el atributo "Language" se compara el lenguaje del tema deseado con el lenguaje del RA. Si son

iguales, el valor obtenido es 1, si son diferentes 0.

Para el atributo "Description" se comparan las palabras que corresponden a la descripcion del topico
deseado con cada una de las palabras que conforman la descripcion del RA. El valor obtenido

corresponde al mayor entre todas las comparaciones, en un rango [0,1].

Para el atributo "Keyword" se compara un conjunto de palabras clave separadas por coma, tanto del
topico deseado como del RA. Su valor determina la cercania de dicha comparacion, se devuelve 1

para un resultado correcto y O para un resultado incorrecto.

Para el atributo "Coverage" se compara la cobertura del tema deseado con la cobertura del RA. Si

son iguales el valor obtenido es 1, si son diferentes 0.

Para el atributo "Format" se comparan un conjunto de formatos separados por coma, tanto del topico

deseado como del RA. Si alguno de los formatos coincide, el valor obtenido es 1, de lo contrario es

0.

Para el atributo "TypicalAgeRange" se compara la edad especificada en el topico deseado con la edad

especificada en el RA. Si son iguales el valor devuelto es 1, si hay una diferencia de +/- 3 el valor

)

devuelto es 0.5, de lo contrario el valor devuelto es 0.

Para el atributo "Difficulty" se compara la dificultad especificada en el topico deseado con la dificultad
especificada en el RA. Usando una tabla como referencia, de acuerdo a la similitud entre las

comparaciones, se devuelve un valor que puede ser 0, 0.25, 0.50, 0.75 o 1.

Para el atributo "Duration" se compara la duracion en minutos especificada en el topico deseado con
la duracion en especificada en el recurso de aprendizaje. Si son iguales el valor devuelto es 1, si hay

una diferencia de +/- 30 minutos el valor devuelto es 0.5, de lo contrario el valor devuelto es 0.

Para el atributo "InteractivityLevel" se compara el nivel de interactividad especificado en el topico
deseado con el nivel de interactividad especificado en el RA. Usando una tabla como referencia, de

acuerdo a la similitud entre las comparaciones, se devuelve un valor que puede ser 0, 0.25, 0.50,

0.750 1.

Para el atributo "SemanticDensity" se compara la densidad semantica especificada en el topico
deseado con la densidad semantica especificada en el RA. Usando una tabla como referencia, de

acuerdo a la similitud entre las comparaciones, se devuelve un valor que puede ser 0, 0.25, 0.50,
0.750 1.

17

® Para el atributo "IntendedEndUserRole" se comparan un conjunto de palabras separadas por coma,
tanto del topico deseado como del RA. Si alguna de las palabras coincide, el valor obtenido es 1, de

lo contrario es 0.

® Para el atributo "Context" se comparan un conjunto de palabras separadas por coma, tanto del topico

deseado como del RA. Si alguna de las palabras coincide, el valor obtenido es 1, de lo contrario es 0.

® Para el atributo "CognitiveProcess" se comparan un conjunto de palabras separadas por coma, tanto
del topico deseado como del RA. Si alguna de las palabras coincide, el valor obtenido es 1, de lo

contrario es 0.

® Para el atributo "Cost" se compara el costo del tema deseado con el costo del RA. Si son iguales el

valor obtenido es 1, si son diferentes 0.

ScoreModule

+compare(topic: String[].resource: String[]): double
-titleCompare(topic: String,resource: String): double
-description Compare(topic:String.resource: Stringf]): double
-keywordCompare(topic: Strimgf] . resource: String[]): double
-equal Compare(topic:String[].resource:String[]): double
-ageCompare(topic:int,resource:mt): double
-durationCompare(topic:int,resource:int): double
-equals(topic: String.resource: String): double

“+averageString(topic:String.resource:Strimg): Strng

-+sumString(topic: Strmg,resource:String): String

Figura 3.3 Diagrama de la clase ScoreModule

El promedio de los valores se convierte en el indice de similitud entre el RA y el tema deseado. Una vez
que se realiza la comparacion de todos los Juegos Serios con el tema deseado, el Modulo de Recuperacion de

Trazas ejecuta el siguiente algoritmo:

Si (Similitud (metadata RA;, TemaDeseado) = 0.850)
entonces
Devuelve RA;con esa puntuaciéon como solucién final
Si (0.400 < Similitud(metadata RA;, TemaDeseado) < 0.850)
entonces
Invoca ACO

18

Ese algoritmo determina si hay algn Juego Serio que cumple con el tema deseado, de lo contrario, si
consigue algunos RA (tramas) mas o menos similares a la tematica buscada, intenta hacer emerger un Juego
Serio para el tema deseado usando ACO (ver seccion 3.2).

3.2. Diseno del Modulo de Emergencia de Secuencias

El Modulo de Emergencia de Secuencias utiliza a ACO, que se encarga de crear agentes hormigas, con
el fin de construir un JSE que cumpla con un objetivo especifico (tematica deseada). En particular, un
videojuego seleccionado para formar parte del grafo de solucion lo denominaremos subtrama, mientras que
una trama de un JSE es la union/fusion de una o mas subtramas para generar una solucion final. ACO esta

compuesto por:

Hormigas: son los agentes que caminan en el grafo de subtramas (ver Figura 3.4).

Ant

-tour Cost: double
-tour: int[]
-tourLength: int
-visited: boolean(]

-environment: Environment

clearVisited(): void

startAtRandomPosition(phase:mt): void
computeTourQuality(): double

fmishTour(phase:int): void
goToNNListAsDecisionRule(phase:int): void
-goToBestNeighbor(phase:int,sumProbabilities:double): void
getTourCost(): double

getRoutePhase(phase:int): int

getTour(): nt[]

getTourLength(): int

Figura 3.4 Diagrama de la clase Ant

Espacio de solucion: espacio que recorreran las hormigas para obtener soluciones. Es un grafo

compuesto por nodos que definen las subtramas seleccionadas desde los diferentes repositorios, y arcos que
establecen las relaciones de dependencia entre ellas, cuando existen. Los arcos establecen la secuencia logica

entre las subtramas. La figura 3.5 describe la clase que define el ambiente (grafo).

19

Environment

-arc Weight: double[][]

-nodeData: ArrayList<"Double>

-nodeTopic: ArrayList=<-String[]=

-NNList: int[][]

-pheromone: double[][]

-nodePheromone: HashMap<Integer.Double=
-nodelnfo: HashMap<-Integer String™>
-choiceInfo: double[][]

-ants: Ant(]

generateNearestNeighborList(): void
generateAntPopulation(): void
generateEnvironment(): void
-calculateChoiceInformation(): void
constructSolutions(): void
updatePheromone(): void
-evaporatePheromone(): void
-depositPheromone(ant:Ant): void
calculateStatistics(traces:int,topic: String[]): void
getNodesSize(): int
-getCost(from:mt,to:mt): double
getQuality(index:int): double
getAntPopSize(): int

i

fNNNode(from:mt,index:int): mt
tCostinfo(from:int,to :int): double

(18 rjg

Figura 3.5 Diagrama de la clase Environment

Soluciodn: las subtramas (nodos) son marcadas por una feromona en el grafo, igual que los arcos que los
interconectan. Cuando converge el algoritmo ACO, las subtramas son seleccionadas segin si su feromona
pasa un umbral, igual que los arcos que salen de ellas, los cuales establecen la secuencia logica de ejecucion

de las subtramas.

Feromonas: hay dos tipos, una para las subtramas (nodos) y otro para los arcos entre las subtramas. La
feromona define lo deseable de la subtrama y de los arcos que las interconectan, para pertenecer a la solucion

final.

Funci6én Feromona: actualiza cada tipo de feromona en funcion de la calidad del JSE propuesto.

Funciéon Heuristica: define la decision que toma una hormiga, al estar en una subtrama (nodo), con

respecto a que otra subtrama (nodo) debe continuar visitando desde ella.

20

ACO permite un proceso de aprendizaj e colectivo entre las horrnigas, para hacer emerger la nueva
configuracion del JSE. Asi, la solucion no es mas que una secuencia de subtramas, ordenadas seglin una

1
secuencia logica entre ellas.

3.2.1. Macroalgoritmo ACO para el STE

El macroalgoritmo utilizado es el clasico de ACO [24]. En especifico, en nuestro caso consiste de una
fase de inicializacion de parametros, un proceso iterativo hasta que el sistema converja, y la construccion de

la solucion final. Dicho macroalgoritmo se detalla en las siguientes secciones:

Aco

+startAlgonithm(filesPath:String,topic :String(],

fraces:int): void

Figura 3.6 Diagrama de la clase Aco

3.2.1.1. Creacion del grafo teorico de recorrido de las Hormigas

El grafo teorico es definido como G = (N, E’), donde N es un conjunto de nodos que representan las
subtramas (Juegos Serios seleccionados), y E un conjunto de arcos que conectan todos los nodos de N (ver
Figura 3.7). Por otro lado, se establece una funcion de peso d;j para determinar el peso de un arco (i,j) €
E, tal que es 1.0 si existe una relacion de dependencia secuencial entre dos nodos (JS;,/Sj, € N), y 0 en

caso contrario. Eso implica que d;j # 0 cuando entre dos nodos hay una relacion de dependencia entre ellos.
El valor de peso luego es utilizado para agilizar la transicion de las hormigas entre los nodos del grafo durante

su recorrido.

Figura 3.7 Grafo de recorrido de ACO

21

Los nodos del grafo guardan la informacion de la subtrama que representan (ID del nodo), pero
adicionalmente, almacenan el nivel de similitud entre el nodo y la tematica tratada (basado en sus metadatos,
calculado por el Modulo de Recuperacion de Trazas), y el nivel de feromona actualizado por las hormigas que

transitan a través de ellos, que indica la deseabilidad de dicho nodo (ver Figura 3.8).

ID del nodo: subtrama JS
Nodo Indice Similitud “n 5"

Nivel de Feromona “t,”

Figura 3.8 Nodo del grafo

3.2.1.2. Construccion de la solucién por parte de las hormigas

En esta fase, algunas consideraciones se realizan:

1) Se define el nimero de hormigas que integran la colonia.
2) Se define un valor aleatorio de feromona inicial para cada arco.
3) Cada hormiga inicialmente se coloca de modo aleatorio en el grafo para iniciar su recorrido, y

determina un JSE (una solucién).

Cada hormiga ejecuta una funcion heuristica (o de transicion) desde el nodo actual donde se encuentra,

para determinar el proximo nodo que visita que no haya previamente visitado. Esta funcion es definida como
la probabilidad de visitar desde el nodo 7 a cada uno de sus nodos contiguos S, en funcion del nivel de
feromona en el arco entre los nodos 7y s (7(7,5)), pesado por el pardmetro & que determina su influencia
(@ = 0), y del indice de similitud de cada nodo s ((S)) con respecto a la tematica buscada, el cual es
pesado por otro parametro 8 que determina su influencia (f = 0). Esa funcién heuristica se calcula para

todos los nodos aun no visitados por la hormiga k (]f), usando la siguiente ecuacion (1):

8
) o)

P(km) = Sis €Jk

B
Zue]ﬁ Tg”,u)' L

Ahora bien, una hormiga puede culminar en cualquier momento la construccion de una solucion (JSE),

o continuar paseando por los nodos, hasta recorrer a todos, basado en el siguiente algoritmo:

22

parar, NUMgieatorio > Umbral_parar

Recorrido Hormiga k = { . .
9 continuar constr. JSE usando ec. (1), caso contrario

3.2.1.3. Actualizacion de las Feromonas

En este caso hay dos feromonas, una para los arcos y otra para los nodos. Ambas son actualizadas al final
de cada iteracion (recorrido de cada hormiga). En ese sentido, cada hormiga actualiza la feromona de cada
arista y de cada nodo que visita. Para ello, se determina un indice de la calidad del JSE propuesto por cada
hormiga, el cual sera usado durante el proceso de actualizacion. Ese indice de calidad es calculado a partir del
nivel de similitud del JSE propuesto por cada hormiga, con respecto al tema deseado. El nivel de similitud
del JSE propuesto por una hormiga k no es mas que el indice de similitud “7(s)” derivado de la concatenacion
(fusion) de los atributos de las P subtramas que componen el JSE propuesto por la hormiga k (JSE¥), al

compararlo con la tematica buscada; a ese valor se le denominara Atk

De esta manera, una vez finalizado su recorrido, la hormiga k realiza la actualizacion de feromona de

cada arco (T(ys)) y nodo (T(;)) usando las ecuaciones genéricas siguientes:

Tirs) = Trns)(1 — p) + At* tal que (r,s) € JSE®

T = T»(1 — p) + At tal que r € JSE¥

Donde, p € (0,1) es el coeficiente de evaporacién de feromona. Para los arcos y nodos no recorridos

por la hormiga k, sucede un proceso de evaporacion de sus feromonas.

En general, este proceso se realiza repetidamente para todas las hormigas, hasta que la colonia converge

en un grupo de soluciones (JSEs).

3.2.1.4. Construccion de la solucion final

Una vez que la colonia concluye su trabajo, se debe pasar a construir la solucion final, es decir, la nueva
version del JSE que propondra ACO. Para ello, se hace un recorrido sobre todos los nodos del grafo,
seleccionandose los nodos con mayor valor de feromona, y los arcos que saldran de cada uno de ellos seran
seleccionados segtin si los interconectan y su valor de feromona (seran los que tengan valor mayor), tal que
se garantice que todos los nodos (subtramas) conformen un camino (esa sera la secuencia logica del nuevo JSE

propuesto, ver Figura 3.9).

Combinado

Ec. Frac.

| Alg. 0.817
& Cruce Frac,

0.644

Frac. Alg.

0.582

Figura 3.9 Nuevo JSE

23

24
Capl'tulo 4

Protocolo Experimental

En este capitulo se evalta el funcionamiento del STE. El objetivo del STE es, una vez recolectada la

informacion del entorno del SaCl, definir un JSE que se adapte a la tematica actual del curso.

4.1. Contexto General Experimental

El repositorio Agrega fue escogido como la fuente de los RA a utilizar en el experimento (ver Figura
4.1). La federacion de repositorios de objetos digitales educativos Agrega (ver, http:\\agrega.educacion.es)
es una plataforma con contenidos educativos que se pueden descargar y usar directamente. Para el desarrollo
de los distintos escenarios se procedio a seleccionar y descargar manualmente los metadadatos de varios RAs
(Juegos Serios) de diferentes topicos (matematica, fisica, lenguaje, historia y geografia), para ser utilizados

como datos de entrada.

®

|#’] (Biologia)_Adivina_adivinanza.xml || (Fisica)_Fuerza_de_inerciaxml| @ | (Fisica)_presion_(l).xml

9

|’ (Geografia)_El_petroleo,_energia_cla... | (Geografia)_En_la_piel_de_un_profe... | (Geografia)_Geografia_de_Europa._L...

/= (Geografia)_Que_es_la_geografia_._... | (Historia)_De_la_guerra_fria_al_nuev...

|2 (Geografia)_Recursos_naturales_y_s...

|| (Historia)_El_periodo_de_entreguerr... | (Historia)_Independencia_de_EEUU.... & (Historia)_Introduccion_a_la_Histori...

|&| (Historia)_Las_Migraciones.xml | (Lenguaje)_Aves._Consonantes_5.xml 2 (Lenguaje)_Bichitos,_consonantes_3...

|| (Lenguaje)_Cuentanos_una_historia... 1 (Lenguaje)_El_lenguajexml 2 (Lenguaje)_El_lenguaje_literario.xml

|2 (Lenguaje)_La_lengua_y_los_hablan... |2 (Lenguaje)_Lengua_y_sociedad.xml 2 (Lenguaje)_Vocales.xml

& (Matematica)_Domino_combinado.... |2 (Matematica)_Domino_combinado...] (Matematica)_Fracciones.xml

| (Matematica)_La_mirada_matemati... & (Matematica)_La_raiz_cuadrada.xml

| (Matematica)_TEOREMAS_DE_PITA...

& (Matematica)_Las_fracciones_en_la_...

[CEONCNONONONCNG
[CECHCRONONCNCNCNG
OPOPOPOOOBOOOO

| (Matematica)_Multiplos_y_divisores... 2 (Musica)_Lenguaje_musical.xml

Figura 4.1 Lista de RA de diferentes topicos

En el desarrollo de las pruebas se toman en cuenta tres parametros que cumplen una funcion especifica
dentro del sistema: el método de similitud usado para la comparacion de cadenas, el umbral de semejanza
entre el tema buscado y los RA, y el nimero de tramas usadas en la solucion final. Se consideraron esos
parametros, ya que tienen una gran influencia en la construccion de los JSEs. Con respecto al resto de
parametros de ACO, se uso como referencia las investigaciones de [28], en las cuales existen recomendaciones

sobre que parametros utilizar para lograr un correcto desempeiio del algoritmo ACO.

Método de similitud usado para comparar las cadenas: Durante el proceso de comparacion de

atributos se hace uso de un método que realiza la funcion de comparar la similitud entre cadenas de caracteres,
con el fin de evaluar la cercania de los atributos extraidos de un RA con el tema deseado. Particularmente se
eligieron los metodos, “Levenshtein Distance” [29], “Jaro-Winkler Distance” [30] y “Jaccard Index” [31]. El

25

meétodo de “Jaro-Winkler” fue elegido porque es uno de los métodos mas utilizados que cae dentro de la
categoria de los basados en el calculo de la distancia para la comparacion de cadenas. “Levenshtein” es un
metodo clasico de comparacion de cadenas que se basa en cuantas transformaciones hay que realizar en dos
cadenas para que sean iguales, dicho nimero determina la distancia entre ellas. El método de “Jaccard” estudia
el nimero de “tokens” que conforman cada cadena para realizar la comparacion. Por otro lado, “Jaccard y
Jaro-Winkler” arrojan como resultado un namero en el rango “[0,1]”, el cual determina la cercania entre la
cadenas comparadas. En el caso de “Levenshtein” se debi6 normalizar dicho namero. Teniendo esto en mente,
es necesario determinar cual de los métodos de comparacion de cadenas es el correcto para ser implementado

en el sistema.

Umbral de semejanza: De los 15 atributos presentes en el tipo de tematica que se busca, solo 4 son
considerados de mayor importancia (titulo, lenguaje, descripcion, y palabras clave), ya que es en estos
atributos en donde se encuentra verdaderamente definido el tema del RA. Para esos atributos, durante el
proceso de comparacion se determina la similitud entre las cadenas de caracteres que conforman esos atributos
en el RA con el tema buscado, generandose un namero en el rango “[0,1]”, donde O representa la inexistencia
de similitud entre las cadenas y 1 que las cadenas son exactamente iguales. Teniendo este valor como
referencia, es posible definir un umbral de semejanza entre los atributos comparados para determinar cuando
se consideran parecidos o no. Por ejemplo, si el promedio de la funcion para los cuatro atributos al compararse
el tema buscado con el RA arroja un valor mayor a 0.6 y el umbral de semejanza es 0.6, entonces podemos
concluir que hay similitud entre ellos, siendo este el indice de similitud del RA. Asi, el umbral de semejanza

debe ser analizado por lo sensible que es con la decision sobre si un RA es similar al tema buscado o no.

Namero de subtramas de la solucién final: Se definio anteriormente que para que un juego sea
considerado como solucion final sin necesidad de pasar por ACO, es necesario que su indice de similitud sea
mayor al umbral de semejanza (por ¢jemplo, 0.850). Teniendo esto en mente, al ser invocado el algoritmo
ACO es porque el indice de similitud de cualquier RA no cuenta con un indice de similitud 6ptimo. Por esa
razon, ACO construye una solucion final compuesta por un nimero de subtramas, de tal manera de fusionar
varios RAs que, en conjunto, generen un valor de similitud que cumpla con la tematica buscada en un
momento determinado (la complementacion de sus atributos da un indice de similitud superior al umbral de

semejanza). En ese sentido, la longitud maxima de subtramas permitida para los JSE debe ser estudiada.

A continuacion se especifican tres escenarios de prueba (casos de uso) del sistema, cada escenario esta
disenado para probar la sensibilidad del sistema a la hora de realizar cambios en los anteriores parametros,

evaluandose los resultados finales obtenidos con el algoritmo ACO, los cuales pueden ser:

Resultado 6ptimo: El juego generado por el algoritmo ACO cumple a cabalidad con la tematica actual

(el indice de similitud del JSE final es mayor al umbral de semejanza).

Resultado aceptable: El juego generado por el algoritmo ACO tiene algo de relacion con la tematica

actual (el indice de similitud del JSE final es cercano al umbral de semejanza).

Resultado erroneo: El juego generado por el algoritmo ACO no tiene ninguna relacion con la

tematica actual del curso (el indice de similitud del JSE es pequeho).

Ademas, para la evaluacion de los escenarios se consideraron tres cursos. A saber:

26

Curso 1: se parte de la hipotesis que en el SaCl es necesario impartir una clase sobre el lenguaje y la
comunicacion verbal, por lo que se define un tema de aprendizaje que cuenta con la siguiente estructura:
Materia: castellano, curso a aprender: literatura, tema: comunicacion verbal. A partir de esta informacion, se
genera una tabla 4.1 que contiene la informacion del curso, la cual sera utilizada como punto de comparacion

con los metadatos obtenidos de los RAs.

Tabla 4.1 Datos del tema deseado en el Curso 1

LOM Tema Deseado
Title el lenguaje

Language es

Description comunicacion verbal
Keyword espanol, lenguaje, verbal, comunicacion, habla
Coverage universal

Format html5, javascript
TypicalAgeRange 14

Difficulty medium

Duration (minutes) 120
InteractivityLevel medium
SemanticDensity high
IntendedEndUserRole tutor

Context independent
CognitiveProcess communicate

Cost no

Curso 2: se parte de la hipotesis que en el SaCl es necesario impartir una clase sobre la raiz cuadrada,
por lo que se define un tema de aprendizaje que cuenta con la siguiente estructura: Materia: matematicas,
curso a aprender: algebra, tema o trama: raiz cuadrada. A partir de esta informacion, se genera la tabla 4.2

que contiene la informacion del curso, la cual sera utilizada como punto de comparacion con los metadatos

obtenidos de los RA.

Tabla 4.2 Datos del tema deseado en el Curso 2

LOM Tema Deseado

Title la raiz cuadrada

Language es

Description raiz cuadrada

Keyword raiz cuadrada, algebra, matematica
Coverage universal

Format html5, flash

TypicalAgeRange 12

Difficulty easy

Duration (minutes) 120

27

InteractivityLevel medium
SemanticDensity low
IntendedEndUserRole learner
Context schoolmate
CognitiveProcess understand
Cost no

Curso 3: Se parte de la hipotesis que en el SaCl es necesario impartir una clase sobre fracciones, por lo
que se define un tema de aprendizaje que cuenta con la siguiente estructura: Materia: matematicas, curso a

aprender: fracciones, tema o trama: fracciones equivalentes (ver Tabla 4.3).

Tabla 4.3 Datos del tema deseado en el Curso 3

LOM Tema Deseado

Title fracciones combinadas

Language es

Description emparejar fracciones

Keyword fracciones, fracciones equivalentes, fraccion,
matematica, algebra

Coverage universal

Format html, jpeg

TypicalAgeRange 11

Difficulty easy

Duration (minutes) 30

InteractivityLevel high

SemanticDensity high

IntendedEndUserRole mixed

Context schoolmate

CognitiveProcess prove

Cost no

4.2, Escenario N° 1: Analisis de los Métodos de Comparaci()n de
Cadenas

El objetivo del primer escenario consiste en estudiar el funcionamiento de varios meétodos de
comparacion de cadenas. Para llevar a cabo este escenario se eligieron los métodos de comparacion de cadenas
indicados anteriormente: “Levenshtein”, “Jaro-Winkler” y “Jaccard”. Con el fin de decidir cual de ellos realiza

mejor la tarea de comparar atributos a la hora de procesar RA.

Para la prueba con cada uno de los metodos de comparacion de cadenas de caracteres, despues de 30
corridas del algoritmo, y para el resto de parametros de ACO con sus mejores valores, se generan los

siguientes resultados promedios (ver Tabla 4.4).

28

Tabla 4.4 Resultados de las pruebas del Escenario N° 1

optimos aceptables erroneos
Jaro-Winkler Curso 1 100% 0% 0%
Curso 2 43% 30% 27%
Curso 3 87% 7% 6%
Jaccard Curso 1 97% 0% 3%
Curso 2 23% 30% 47%
Curso 3 80% 7% 13%
Levenshtein Curso 1 80% 17% 3%
Curso 2 33% 37% 30%
Curso 3 83% 10% 7%

Luego de finalizadas las pruebas podemos notar que el método basado en edicion de distancias “Jaro-
Winkler” presenta durante los tres casos, mejores resultados en comparacion con los otros metodos. A
primera instancia podriamos decir que un método basado en edicion de distancias es el adecuado para ser
implementado en el proceso de comparacion. Por lo tanto se llego a la conclusion de que “Jaro-Winkler”
serfa una eleccion que generaria resultados mas precisos en pruebas posteriores. En general, el sistema
requiere de un método de comparacion de cadenas bastante preciso, debido a que el método forma parte del
proceso de comparacion de los atributos que tienen mayor peso sobre el indice de similitud de los RA

procesados (titulo, lenguaje, descripcion y palabras clave).

En general, lo que nos indican los diferentes metodos de comparacion es su eficiencia para comparar las
cadenas en los atributos de nuestros metadatos, siendo el mejor en nuestro contexto “Jaro-Winkler” ya que

puesto a prueba en competencia con los otros métodos generé la mayor cantidad de resultados optimos.

4.3. Escenario N° 2: Umbral de Semejanza

El objetivo del segundo escenario consiste en evaluar la sensibilidad del umbral de semejanza.

Para esta prueba se definen varios valores de umbral: 0.4, 0.65, 0.8, y 0.95. Luego de 30 corridas del

algoritmo para cada caso, se generan los siguientes resultados (ver Tabla 4.5).

Tabla 4.5 Resultados de las pruebas del Escenario N° 2

optimos aceptables erroneos
0.4 Curso 1 0% 0% 100%
Curso 2 0% 0% 100%
Curso 3 0% 0% 100%
0.65 Curso 1 77% 6% 17%
Curso 2 20% 33% 47%
Curso 3 50% 23% 27%

29

0.8 Curso 1 100% 0% 0%
Curso 2 40% 30% 30%
Curso 3 87% 10% 3%

0.95 Curso 1 93% 0% 7%
Curso 2 27% 20% 53%
Curso 3 77% 13% 10%

Al finalizar con las pruebas, se puede notar que a medida que se realiza un aumento en el umbral de
semejanza, se genera un aumento en los resultados optimos y una disminucion en los resultados erroneos.
Particularmente, para valores menores a 0.4, el algoritmo es incapaz de obtener resultados optimos o
aceptables. Los resultados tienen sentido, debido a que al aumentar el umbral, el algoritmo se vuelve mas
estricto con respecto a lo que es considerado similar entre dos cadenas de caracteres. De tal manera que las
tramas usadas para construir los Juegos Serios que se desvien aunque sea un poco del tema buscado, son
considerados erroneos. Asi, el algoritmo ACO los va descartando naturalmente. Esta afirmacion es cierta
hasta cierto punto, ya que valores muy estrictos de umbral (0.95) tienen un impacto negativo con respecto a
los resultados optimos generados, ya que no permiten explorar con tramas que no sean tan semejantes (0.8)
para construir Juegos Serios. Solo para el curso 2 se llego a obtener peores resultados (menos optimos y
aceptables Juegos Serios) para el umbral 0.8, debido a lo especifico del tema aunado al pequefio tamafio de la
muestra de RAs que sirven de base de datos. Tomando en consideracion lo anterior, se llego a la conclusion
de que para que el algoritmo genere JSEs cuya tematica se acerque bastante al tema buscado, es necesario

utilizar un umbral de semejanza cuyo valor esté cercano a 0.80.

4.4, Escenario N° 3 Numero de subtramas de la solucion final

Para el Gltimo escenario, es necesario evaluar el nimero maximo de subtramas permitidas para generar
un JSE con el algoritmo ACO. Es importante recordar que al finalizar el algoritmo, se realiza una fusion entre
las subtramas escogidas y una integracion de sus atributos. Si la puntuacion de dicha integracion iguala o supera
el indice de similitud predefinido, concluimos que el Juego Serio generado cumple a cabalidad con el tema
que se desea impartir. Para este escenario se toman los mejores valores de los otros parametros para realizar

la evaluacion.

Para la prueba con diferente nimero maximo de subtramas permitida (2, 3, 4 y 5). Despues de 30
corridas del algoritmo con cada nimero maximo de subtrama, y con el resto de parametros de ACO con sus

mejores valores, se generan los siguientes resultados promedios (ver Tabla 4.6).

30

Tabla 4.6 Resultados de las pruebas del Escenario N° 3

optimos aceptables erroneos

2 Curso 1 53% 40% 7%
Curso 3 60% 30% 10%

3 Curso 1 57% 43% 0%
Curso 3 27% 53% 20%

4 Curso 1 73% 10% 17%
Curso 3 47% 20% 33%

5 Curso 1 43% 0% 57%
Curso 3 17% 3% 80%

Primero que nada es importante sefalar que debido a la base de datos proporcionada, no se realizaron
experimentos relacionados con el curso 2. La razon de esto tiene que ver con lo especifico del topico y al

tamano de la muestra de RAs utilizada.

La correcta integracion de dos o mas subtramas se encuentra directamente relacionada con el tamafio de
la muestra, mientras mas grande la muestra de RAs procesada por el algoritmo, las posibilidades de generar
una fusion 6ptima de subtramas aumenta. Al analizar los datos de la tabla se puede notar que a medida que
aumenta el nimero maximo de subtramas, también aumenta la cantidad de resultados erréneos, esto se debe
a que en una muestra pequefia de RAs, mientras aumenta el nimero de subtramas, la cantidad de Juegos
Serios que cumplan con una tematica disminuye, de tal manera que el algoritmo se ve en la obligacion de
llenar esos espacios vacios con Juegos Serios que no cumplan con el tema buscado. Ahora bien, el mejor JSE
conseguido al aumentar el nimero maximo de subtramas (0.92) es mejor que con un niamero de subtramas
pequeno (0.89), lo que nos indica que a pesar de porcentualmente conseguir pocos buenos JSE, los que se
consiguen son mejores porque se tienen mas subtramas para construir JSE mas precisos. Otro aspecto
importante a resaltar es que al aumentar el nimero maximo de subtramas el tiempo de ejecucion del
algoritmo ACO aumenta, ya que el espacio de posibles soluciones que debe explorar para construir los

posibles JSEs es mas grande (mas combinaciones posibles de subtramas).

Los tres escenarios permitieron analizar los parametros adecuados a usar en el STE. La combinacion
“optima” de parametros depende del objetivo que se quiera lograr en el salon de clases en un momento
determinado. Si se quiere ser estricto en cuanto a la tematica a buscar, entonces se requieren un buen nimero
de tramas y umbrales altos, con un método de comparacion de cadenas exigente. Por el contrario, si se quiere
ser mas permisible en cuanto a que tan exigente se quiere ser con el Juego Serio y su relacion a la tematica,
pero mejorando los tiempos de blisqueda, entonces se puede usar metodos de comparacion de cadenas menos

exigentes, con umbrales de similitud bajos y numero de subtramas bajo.

31

Un ejemplo de resultado de JSE optimo dado por el algoritmo ACO es mostrado en la Figura 4.2. Ese
JSE generado cumple con el tema actual de la clase de fracciones, ya que la puntuacion de la fusion de

subtramas supera el umbral de semejanza predefinido (ver Figura 4.2).

(Matematica)_Domino_combinado.xml: ©.7591304347826087
(Matematica)_Dominc_combinado_(parte_2).xml: [@.7091304347826036|
(Matematica)_Fracciones.xml: [8.792463768115942|

(Matematica) Las_fracciones_en_la_vida_cotidiana.xml:
(Matematica)_La_mirada_matematica.xml: ©.48333333333333334
(Matematica)_La_raiz_cuadrada.xml: @.4666666666666667

(Matematica) Multiplos_y_ divisores._ Numeros_primos.xml: ©.48333333333333334

SOLUCION FINAL:

Juego: 18 '(Matematica)_Las_fracciones_en_la_vida_cotidiana.xml' Valor de feromona: 17.314076001986177
Juego: 17 '(Matematica)_Fracciones.xml' Valor de feromona: 16.730881130226315

Juego: 16 '(Matematica)_ Domino_combinado_(parte_2).xml' Valor de feromona: 16.61519637534427

INDICE DE SIMILITUD AL UNIR LAS 3 SUBTRAMAS:I9.8591304347826086J
Finished

Figura 4.2 Ejemplo de resultado optimo para el Escenario N° 3

En esa figura se puede ver que se propone un JSE compuesto por tres tramas (juego 18, 17 y 16), que al

combinar sus atributos da una semejanza de 0,85.

32

Capl'tulo 5

Comparacion con otros Trabajos

Durante el siguiente capitulo se llevara a cabo una comparacion de cualidades entre el proyecto

desarrollado y una serie de trabajos cuyo contenido, de alguna manera, tiene relacion con un motor de

videojuegos que permite la emergencia de Juegos Serios. Para la realizacion de dicha comparacion se toman

en cuenta los siguientes criterios:

¢Es un Juego Serio? Con esta pregunta se quiere determinar si la propuesta se enfoca
principalmente en el uso de Juegos Serios, juegos orientados principalmente a la ensehanza.
¢Tiene o confiere capacidades adaptativas al juego? Con esta pregunta se quiere determinar si se
proponen capacidades adaptativas al juego, con el objetivo de mejorar la experiencia del usuario.
¢Permite algln tipo de Emergencia? Con esta pregunta se quiere determinar si las propiedades
del juego se van desplegando de manera espontanea, autonoma y sin leyes explicitas,
adecuandose a los jugadores.

¢Forma parte de un Motor de]uegos? Con esta pregunta se quiere determinar si la propuesta

forma parte del nicleo general de un Motor de Juegos, siendo uno de sus componentes.

La siguiente tabla compara nuestra propuesta con otros trabajos, desde el punto de vista de esos criterios

anteriormente nombrados.

Tabla 5.1 Comparacion con otros Trabajos

Criterio [19] [25] [32] [33] [34] [35] [36] Presente
Trabajo

¢Esun X X X X
Juego

Serio?

;Tiene o X X X X X
confiere X
capacidades
adaptativas
al juego?

¢Permite X X
algt’ln tipo X
de

emergencia?

¢Forma X X
parte de un
Motor de
Juegos?

33

En [19] se propone un juego de estrategia que consiste en agentes que basan su comportamiento en el de
forrajeo y la forma defensiva de las colonias de abejas, para adaptarse a un entorno humano. De esta forma,
el juego consta de multiples agentes cooperativos autonomos. La capacidad de adaptacion fue medida a traves
de un experimento empirico sobre un entorno simulado, en donde se realizaron una serie de evaluaciones
sobre el comportamiento de los agentes, teniendo en cuenta las decisiones tomadas (correctas e incorrectas)
y el tiempo de decision, en contraste con un conjunto de parametros optimos ya establecidos. A su vez, la
calidad de los agentes fue medida a través de una encuesta realizada a un grupo de expertos en juegos de

estrategia 1uego de la interaccion con el sistema.

En [25] se utiliza ACO para explorar el entorno y comunicar informacion sobre los recursos, con el fin
de proporcionar capacidades adaptativas al juego. Se realizo un estudio empirico sobre un entorno simulado

para evaluar el sistema en diferentes niveles de dificultad.

En [32] se propone un proceso cuyo objetivo es garantizar la correcta implementacion de los aspectos
pedagogicos (actividades de aprendizaje y contenido, aprendizaje esperado, etc.) en la produccion de Juegos
Serios. Una vez aplicado el proceso de produccion, midieron la calidad del prototipo aplicando los Juegos
Serios en un salon de clases. Luego de un periodo académico, evaluaron la evolucion de los estudiantes que

interactuaron con los juegos, en comparacion con los que siguieron un proceso educativo tradicional.

En [33] se describen dos juegos que demuestran la viabilidad del uso de algoritmos heuristicos para
problemas de optirnizacién combinatoria: el primero es un juego de estrategia, que hace €merger recursos en
tiempo real usando ACO. El segundo es un juego de carreras, donde la inteligencia artificial adapta
caracteristicas numericas como la velocidad, la agilidad y el poder de salto, para mejorar el desempeno del

corredor durante la competencia con otros jugadores.

[34] propone una arquitectura para el desarrollo de videojuegos de tipo educativo, para alentar a los
usuarios inexpertos a interactuar con algoritmos de inteligencia artificial. El juego le permite al usuario
experimentar a traves de cambios en los parametros de los algoritmos de inteligencia artificial, entre los cuales

se encuentra ACO.

En [35] proponen el desarrollo de Juegos Serios usando un motor adaptable, el cual usa una tecnica de
aprendizaje automatico para el proceso de adaptacion del Juego Serio a diferentes jugadores. EI motor
adaptativo consta de reglas establecidas basadas en la descripcion de las competencias del jugador, su estilo de

aprendizaje, estado cognitivo, entre otras cosas.

En [36] se optimizan rutas con Beam-ACO y Ant-Q, para hacer emerger de forma dinamica una ruta
personalizada, basada en datos de juegos anteriores, que sirva como apoyo a los usuarios a la hora de cumplir

con los objetivos del juego.

La principal diferencia de nuestra propuesta y los trabajos anteriores es que nuestra propuesta forma
parte de un MJSE. Ademas, es el tnico que permite hacer emerger tramas/secuencias en un JSE, segn las
caracteristicas del contexto donde es usado. Para ello, usa un algoritmo ACO que le permite generar posibles
alternativas de JSEs, y seleccionar aquellas que cumplan mejor con los atributos que caracterizan al tema

deseado.

En general, los trabajos anteriores confieren capacidades adaptativas, pero no estan orientados a formar

parte de un MJSE. Por otro lado, algunos permiten emerger comportamientos en la dinamica del juego

34

derivado de su uso, realizando principalmente emergencias de estrategias y de propiedades, y no permiten la
emergencia de secuencias en los juegos guiada por el contexto, como en nuestro caso. Ahora bien, no hay
ninguno orientado a JSE, y de los pocos orientados a Juegos Serios, no tienen en su mayoria capacidades

adaptativas ni son pensados para formar parte de MJS.

35
Capl'tulo 6

Conclusiones y Trabajo Futuro

6.1. Conclusiones

El uso de JSEs que se adecuen a un contexto dado (por ejemplo, a un SaCl), ayudan al proceso que este
ocurriendo en un momento determinado en ese contexto (por ejemplo, al proceso educativo de SaCl),
haciendolo mas emocionante, entretenido y dinamico, motivando asi a los actores en ese ambiente. Para ello,
se requiere de un MJSE que permita las diferentes emergencias. Ningln trabajo previo ha desarrollado un

Submotor de Trama Emergente, y menos en el contexto de un SaCl.

El objetivo de nuestro trabajo consiste en implementar un subsistema que se encargue de procesar una
serie de Juegos Serios, para luego hacer emerger dinamicamente un JSE optimo para un tema y momento
determinado. Para ello se ha usado un algoritmo ACO, que permite la emergencia de tramas en un JSE a
partir del manejo ordenado y sistematico de un conjunto de subtramas recuperadas de repositorios de RA,
vinculadas a un contexto y dominio deseado. El algoritmo ACO, de manera autonoma, selecciona las mejores

subtramas que seran usadas en el JSE.

El disefo, desarrollo e implementacion del médulo de recuperacion de trazas, encargado del procesamiento
de los RA para definir queé tan parecido es el contenido de los Juegos Serios con respecto a la tematica que se
este buscando, y del médulo de emergencia de secuencias basado en ACO, encargado de construir un JSE que
cumpla con un objetivo especifico (tematica deseada); mostraron ser una solucion factible para la eleccion de

RA a partir de una tematica predefinida.

Especificamente, nuestra herramienta permite extraer la informacion contenida en los metadatos de un
RA, y a partir de dicha informacion, asignar una puntuacion segln su similitud con respecto a un topico
determinado. Al hacer uso de esta informacion, y con la ayuda de ACO, ocurre un proceso de emergencia de
JSEs que tienen relacion con la tematica actual de un SaCl. La fusion de subtramas hace posible generar Juegos

Serios que cumplen a cabalidad con el tema desarrollado en el salon de clases.

El desarrollo de los experimentos permitio determinar la sensibilidad del STE al método de comparacion
de cadenas, al nlimero de subtramas usadas y al umbral de semejanza. Dichos valores repercuten altamente
en la calidad de los JSE obtenidos. En ese sentido, la eleccion de los valores de dichos parametros depende
del nivel de exigencia que se quiera con respecto al JSE a usar en un salon de clases, en cuanto a su semejanza
0 no con la tematica tratada en el salon, y al tiempo que se le dara al algoritmo ACO para proveerlo. En
cuanto a los trabajos anteriores, no se consiguieron en la literatura propuestas que permitan la emergencia de
tramas en un JSE para adecuarlo a una tematica de un curso en un salon de clases, y que ademas, formen parte
de un MJSE.

36

6.2. Trabajo Futuro

Antes que nada, se debe probar el prototipo desarrollado de ACO en diferentes contextos, en particular
en un SaCl real, para evaluar su impacto sobre los actores en ese ambiente. Para ello, se deben usar métricas
que avalten el uso de los JSEs producidos en el proceso de ensefianza, y particularmente su impacto en dicho
proceso. Tambien, es necesario analizar la integracion del algoritmo con otros tipos de emergencias posibles

en un JSE (comportamiento, propiedades, entre otros).

Otro aspecto importante por realizar con nuestra herramienta es evaluar la sensibilidad e influencia de
los parametros que forman parte de las funciones basicas del macroalgoritmo de ACO. Dichos parametros
forman parte del proceso realizado por las hormigas artificiales, y tiene que ver con los procesos de
inicializacion del algoritmo, actualizacion de feromonas, funcion de transicion, etc. Para nuestras pruebas se
tomaron los valores de parametros de ACO aconsejados en [18], ya que nuestro interés fue analizar en detalle
los parametros que afectaban directamente la concepcion de JSE con el algoritmo ACO (umbral de semejanza,

meétodo de comparacion de cadenas y nimero maximo de tramas permitido para la construccion de JSEs).

37
Bibliograffa

[1] Revuelta, T. (2015). Desarrollo y aplicacion del algoritmo de optimizacion basado en colonia de
hormigas (aco) para la resolucion del problema del viajante asimétrico (atsp), Grado en ingenieria de

organizacion industrial, Universidad De Valladolid, Escuela de Ingenierias Industriales, Espana.

[2] Altamiranda,]J. (2012). Reconocimiento de Patrones Adaptativos en Proteinas Amiloideas Usando
Expresiones Regulares, Doctorado en ciencias aplicadas, Proyecto de grado doctoral, Universidad de los

Andes, Facultad De Ingenieria, Mérida, Venezuela.

[3] Altamiranda, J. (2010). Algoritmos de optimizacion basados en colonias de hormigas aplicados al
problema de asignacion cuadratica y otros problemas relacionados, Trabajo final para alcanzar el grado de
licenciado en ciencias de la computacion, Universidad Nacional de San Luis, Facultad de Ciencias Fisico

Matematicas y Naturales, San Luis, Argentina.

[4] Petridis, P., Duenwell, 1., Panzoli, D., Arnab, S., Aristidis, P., Hendrix, M. and Freitas, S. (2012).
Game Engines Selection Framework for High-Fidelity Serious Aplications, Journal of Interactive Worlds,
Vol. 2012, Article ID 418638.

[5] Fuentes, I. (2012). Psicologia y realidad virtual, Videojuegos terapéuticos, Revista Muy Interesante, vol.
12, pp. 102—-105, Mexico.

[6] Gracia, B., Sanagustin, G., and Romero, S. (2015). Analisis de motores graficos y su aplicacion en la
industria, Technical report, TecsMedia, Division de Tecnologias Multimedia, Instituto Tecnologico de
Aragon (ITAINNOVA), Espana.

[7] Agustin, H., and Garde, M. (2016). Desarrollo de un motor de eventos para videojuegos, Technical

report, Red de Interconexion de los Recursos Informaticos, Espana.

[8] Sweetser, P. (2006). An Emergent Approach to Game Design — Development and Play, A thesis
submitted for the degree of Doctor of Philosophy, School of Information Technology and Electrical
Engineering, The University of Queensland, Australia.

[9] Aguilar, J., Cardozo,]., Gonzalez, C. and Rengifo, B. (2013). Una aproximacion a los Juegos
Emergentes, Metropolis, Simulador de Ciudades Autogestionadas, 47va Conferencia Latinoamericana de

Informatica.

[10] Aguilar,]., Altamiranda, J., and Chavez, D. (2016). Extensiones a Metropolis para una Emergencia
Fuerte, Revista Venezolana de Computacion, vol. 3, no. 2, pp. 38-46.

[11] Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: Optimization by a colony of
cooperating agents, IEEE Transactions on Systems, Man and Cybernetics Part B, vol. 26, pp. 29-41.

[12] Aguilar, J. (2014) Introduccion a los sistemas emergentes, Technical report, Universidad de los Andes,

Mérida, Venezuela.

38

[13] Cruz-Lara, S., Fernandez, B., and Vaz de Carvalho, C. (2013). Enfoques innovadores en juegos serios,
IEEE VAEP RITA, vol. 1, pp. 19-21, Espana.

[14] Salvat, B. (2009). Certezas ¢ interrogantes acerca del uso de los videojuegos para el aprendizaje,

Communication, vol. 7, pp. 251-264, Espana.

[15] KissFlow: Rapid Application Development: Changing How Developers Work. (2018). [Website].
Recuperado de: https: / /kissflow.com/rad/rapid-application-development/

[16] LucidChart: 4 Phases of Rapid Application Development Methodology. (2018). [Website]. Recuperado
de: https://www.lucidchart.com/blog/rapid-application-development-methodology

[17] Bellotti, F., Berta, R. and De Gloria, A. (2010). Designing Effective Serious Games: Opportunities and
Challenges for Research, Special Issue: Creative Learning with Serious Games, Intl. Journal of Emerging
Technologies in Learning (IJET), Vol. 5, pp. 22-35.

[18] Chan, R., Zhang, H., Tao, X. (2017). Serious Game Design for Stroke Rehabilitation, Intl Journal of
Information Technology, Vol. 23.

[19] Daylamani-Zad, D., Graham, L., and Paraskevopoulos, I. (2018). “Chain of command in autonomous

cooperative agents for battles in real-time strategy games”, Journal of Computers in Education, Vol. 6, pp 1—

32.

[20] Millgvist, L., Brusk, J., and Bjérn Berg, M. (2018). “Ludonarrativ Dissonans Paverkan Pa Ett Spels

Trovardighet,” Examensarbete inom huvudomradet Informationsteknologi, Vartermin.

[21] Karlsson, P., Gunnarsson, G., and Kristensen, L. (2018). “Spelares Engagemang for Narrativet I

Plattformsspel,” Examensarbete inom huvudomradet Medier, estetik och berittande Vartermin.

[22] Vallejo, D., Martin, C. (2013). Desarrollo de Videojuegos: Arquitectura del Motor de Videojuegos (2°
Ed.). Espana: Universidad Castilla la Mancha.

[23] Aguilar,]., Altamiranda, J., Diaz, F., and Mosquera, D. (2016). “Motor de Juego Serios en
ARMAGAeco-c,” Revista UNET, Vol. 28, pp. 100-110.

[24] Aguilar, J., Altamiranda, J., and Diaz, F. (2018). “Design of a Serious Emerging Games Engine Based
on the optimization Algorithm of Ant Colony,” DYNA, Vol. 85, no 206, pp. 311-320.

[25] Chen, X., Ong, Y., Feng, L., Lim, M., Chen, C., and Ho, C. (2013). “Towards believable resource
gathering behaviours in real-time strategy games with a memetic ant colony system, Procedia Computer
Science,” vol. 24, pp. 143—151, 2013.

[26] Subbaraj, S.
ACO look-ahead secure routing against selfishness,” Proceedings EURASIP Journal on Wireless

and Savarimuthu, P. (2014). “EigenTrust-based non-cooperative game model assisting

)

Communications and Networking, pp. 1-20.

[27] IEEE LTSC LOM: Draft Standard for Learning Object Metadata. (2010). [Website]. Recuperado de:
https: //ieeexplore.ieee.org/document/5445243

[28] Dorigo, M., Stiitzle, T. (2004). Ant Colony Optimization. Cambridge, Massachusetts: The MIT Press.

https://kissflow.com/rad/rapid-application-development/
https://www.lucidchart.com/blog/rapid-application-development-methodology
https://ieeexplore.ieee.org/document/5445243

39

[29] Schulz, K., Mihov, S. (2002). "Fast String Correction with Levenshtein-Automata". International
Journal of Document Analysis and Recognition. 5 (1): 67-85.

[30] AppaloosaStore: String Similarity Algorithms Compared. (2018). [Website]. Recuperado de:

https: //medium.com/(@appaloosastore/string-similarity-algorithms-compared-3f7b4d1 2fOff

[31] Mayank, M.: String Similarity — the basic know your algorithm guide. (2019). [Website]. Recuperado
de: https://itnext.io/string-similarity-the-basic-know-your-algorithms-guide-3de3d 7346227

[32] Barajas, A., Alvarez, F., Mufioz, J., and Oviedo, A. (2016). “Process for modeling competencies for

developing serious games,” Revista Electronica de Investigacion Educativa, vol. 18, no. 3, pp. 146-160.

[33] Jamieson, P., Grace,]., Hall, J., and Wibowo, A. (2013). “Metaheuristic Entry Points for Harnessing
Human Computation in Mainstream Games,” Proceedings of International Conference on Online
Communities and Social Computing (OCSC 2013), vol. 8029, pp. 156—163.

[34] Martinez,]., Lopez, A., and Maldonado, M. (2015). “On the Use of Ant Colony Optimization for Video
Games,” Proceedings of Advances in Artificial Intelligence and Soft Computing. MICAI, vol. 9413, pp
238247.

[35] Rasim, T., Langi, A., Munir, S., and Rosmansyah, Y. (2016). “A survey on adaptive engine technology
for serious games, Proceedings of International Seminar on Mathematics,” Science, and Computer Science
Education (MSCEIS 2015) AIP Conf. Proc. 1708, vol. 1708, no. 1, pp. 50003-1-50003-9.

[36] Tregel, T., Miiller, P., Gobel, S., and Steinmetz, R. (2018). “Where's Pikachu: Route Optimization in
Location-Based Games,” Proceedings 10th International Conference on Virtual Worlds and Games for

Serious Applications (VSGames).

https://medium.com/@appaloosastore/string-similarity-algorithms-compared-3f7b4d12f0ff

40

Anexos

Anexo A. Repositorio del Proyecto.

En el siguiente enlace “https:// bitbucket.org/ andtreso/ aco-seg-java/src/ master” se encuentra alojado
el repositorio del proyecto: ACO Implementation for a Serious Emerging Games Engine en el sitio

web: bitbucket.org. Para proximas colaboraciones (ver Figura 0.1).

Andres Trejo =]
| =) m i Kol aco-seg-java Clone °
Q
<> Source Iy master v Filter files [$)
¢ Commits
u/
Iy Branches
Name Size Last commit Message
Pull requests
& S | 14 minutes age uploading project.
B Download
14 minutes ago uploading project..
B READMEmMd 4.53 K8 14 minutes ago uploading project..

README.md

Ant Colony Optimization Implementation for a serious emerging games
engine in Java

ving computational problems w
of real ants. The pheromone
icial Ants and local search algorithms have become a method of

et routing

® o

Figura 0.1 Repositorio del Proyecto

Anexo B.

Funciones del Submotor de Trama Emergente.

41

A continuacion se presenta la informacion de los metodos implementados en el Submotor de Trama

Emergente, donde se exponen:

® Descripcion: Informacion de que hace el metodo.

e Funcion: Se refiere al nombre asignado a la funcion para acceder al método.

® Prueba: Es el archivo en donde se encuentra un ejemplo del método.

e Ejemplo: Es una prueba corta de como puede ser utilizada la funcion.

® Parametros: Son todos los parametros que influyen en la funcion.

® Retorna: Son todos los parametros que retorna la funcion.

Descripcion Constructor de la clase Environment, accede a sus métodos internos.

Funcion Environment(Graph);

Prueba Environment.java

Ejemplo Environment e = new Environment(graph);

Parametros ® graph es una clase auxiliar que contiene toda la informacion del grafo a

procesar.

Retorna No retorna nada.

Descripcion Funcién que genera una matriz nxn de “vecinos cercanos”. Asocia
cada nodo del grafo a una lista de nodos ordenados por cercania de
acuerdo al peso de los arcos que los conectan.

Funcion void generateNearestNeighborList();

Prueba Environment.java

Ejemplo Environment e;
e.generateNearestNeighborList();

Parametros No tiene parametros.

Retorna No retorna nada. La matriz queda guardada en una variable del entorno.

Descripcion Crea una poblacion de k hormigas utilizadas para buscar soluciones
en el entorno.

Funcion void generateAntPopulation();

Prueba Environment.java

Ejemplo Environment e;
e.generateAntPopulation();

Parametros No tiene parametros.

Retorna No retorna nada. La lista de hormigas queda guardada en una variable del

entorno.

Descripcion Funcién encargada de crear e inicializar dos matrices:
® La matriz que contiene la informacion de feromonas de cada arco del
grafo.
® La matriz de probabilidades utilizada por las hormigas para realizar la
transicion de un nodo a otro.

Funcion void generateEnvironment();

Prueba Environment.java

Ejemplo Environment e;
e.generateEnvironment();

Parametros No tiene parametros.

Retorna No retorna nada.

Descripcion Coloca a cada hormiga a construir una soluci6n en el entorno.

Funcion void constructSolutions();

Prueba Environment.java

Ejemplo Environment e;
e.constructSolutions();

Parametros No tiene parametros.

Retorna No retorna nada.

Descripcion Actualiza el nivel de feromonas del grafo en dos pasos:

® Se evapora la cantidad de feromonas de los arcos y nodos del grafo de
acuerdo a un parametro predefinido.

¢ Cada hormiga del entorno deposita una cantidad de feromonas en los
arcos y nodos del grafo presentes en su recorrido actual.

Funcion void updatePheromone();

Prueba Environment.java

Ejemplo Environment e;
e.updatePheromone();

Parametros No tiene parametros.

Retorna No retorna nada.

Descripcion Una vez que la colonia concluye su trabajo, se hace un recorrido a
través de todos los nodos del grafo, seleccionandose los nodos con
mayor nivel de feromona. Luego se realiza una fusion del contenido
de dichos nodos para generar una solucion final.

Funcion void calculateStatistics(int, String[]);

Prueba Environment.java

Ejemplo Environment ¢;
e.calculateStatistics(traces, topic);

Parametros

® traces es el namero de subtramas requerido para generar la solucion

final.

42

® topic es un arreglo que contiene la informacion de 15 atributos que

representan la tematica que se busca.

Retorna No retorna nada, se muestran los resultados del algoritmo.
Descripcion Constructor de la clase Ant, accede a sus métodos internos.
Funcion Ant(int, Environment);
Prueba Ant.java
Ejemplo Ant a = new Ant(tourSize, Environment);
Parametros ® tourSize es la cantidad de nodos del grafo a explorar.
® Environment es el entorno en el cual la hormiga va a buscar soluciones.
Retorna No retorna nada.
Descripcion Resetea la lista de nodos visitados de una hormiga.
Funcion void clearVisited();
Prueba Ant.java
Ejemplo Ant a;
a.clearVisited();
Parametros No tiene parametros
Retorna No retorna nada
Descripcion Coloca a una hormiga en un nodo aleatorio del grafo y lo marca como
visitado.
Funcion void startAtRandomPosition(int);
Prueba Ant.java
Ejemplo Ant a;
a.startAtRandomPosition(phase);
Parametros ® phase es el entero que representa la primera posicion de la lista de nodos
visitados de la hormiga. Normalmente este namero siempre sera 0.
Retorna No retorna nada.
Descripcion Funcion de transicion utilizada por las hormigas para elegir que
nodo visitar que no haya previamente visitado.
Funcion void goToNNListAsDecisionRule(int);
Prueba Ant.java
Ejemplo Ant a;
a.goToNNListAsDecisionRule(phase);
Parametros

® phase es el entero que representa la posicion actual de la lista de nodos

visitados de la hormiga.

Retorna

No retorna nada.

43

Descripcion Finaliza el recorrido de la hormiga actualizando el valor de la
longitud y el promedio de los indices de similitud de los nodos
visitados en el recorrido.

Funcién void finishTour(int);

Prueba Ant.java

Ejemplo Ant a;
a.finishTour(phase);

Parametros ® phase es el entero que representa la posicion actual de la lista de nodos

visitados de la hormiga.

Retorna No retorna nada.

Descripcion Constructor de la clase Aco, accede a sus métodos internos.

Funcion Aco();

Prueba Aco.java

Ejemplo Aco a = new Aco();

Parametros No tiene parametros.

Retorna No retorna nada.

Descripcion Funcion que aplica el algoritmo colonia de hormigas a una serie de
recursos de aprendizaje.

Funcion void startAlgorithm(String, String[], int);

Prueba Aco.java

Ejemplo Aco a;
a.startAlgorithm(filesPath, topic, traces);

Parametros e filesPath esla direccion de la carpeta en donde se encuentran los recursos

de aprendizaje a procesar.

® topic es el topico que sera utilizado para la comparacion entre los
recursos de aprendizaje y el tema deseado.

® traces es el nimero de subtramas requerido para generar la solucion
final.

Retorna No retorna nada.

Descripcion Crea un grafo de recursos de aprendizaje para ser utilizado por el
ACO.

Funcion void parseFiles(String, String[]);

Prueba LomParser.java

Ejemplo LomParser.parseFiles(myPath, topic);

Parametros ® myPath es la direccion local de la carpeta donde se encuentran

contenidos los recursos de aprendizaje a procesar.
® topic es el topico que sera utilizado para la comparacion entre el recurso
de aprendizaje y el tema deseado.

Retorna No retorna nada. Crea un grafo.

44

Descripcion Realiza el parseo de un archivo xml.
Funcion String[] parseLOM(String);
Prueba LomParser.java
Ejemplo LomParser.parseLOM(file);
Parametros e file es el nombre del archivo .xml que contiene la informacion del
recurso de aprendizaje.
Retorna Retorna un arreglo con la informacion de 15 atributos que representan la
tematica del recurso de aprendizaje.
Descripcion Compara los atributos de un recurso de aprendizaje con un tépico
predefinido.
Funcion double compare(String[], String[]);
Prueba ScoreModule.java
Ejemplo ScoreModule.compare(topic, resource);
Parametros ® topic es el topico que sera utilizado para la comparacion entre el recurso
de aprendizaje y el tema deseado.
® resource es la informacion del recurso de aprendizaje.
Retorna Retorna un nimero que representa el indice de similitud entre el recurso de

aprendizaje y el topico deseado.

45

