PROYECTO DE GRADO

SISTEMA DE GESTION ADMINISTRATIVA PARA
MEJORAR LA EFICIENCIA EN EL REGISTRO Y
PRESTAMO DE PARTITURAS.

PARTE 1: BACK-END

CASO: FUNDACION PROMUSICA, DIRECCION DE CULTURA-ULA

Por

Br. Francisco Javier Pefia Ruiz

Tutor: Dr. Rafael Rivas Estrada

Abril de 2024

UNIVERSIDAD
DE LOS ANDES
MERIDA VENEZUELA

©2024 Universidad de Los Andes - Mérida, Venezuela

RESUMEN

En el contexto actual, la eficiencia en la gestién administrativa se vuelve fundamental
para optimizar procesos en diferentes areas. La Fundacion Promdsica, reconocida por su
labor en la promocidn y difusion de la masica clasica, enfrenta desafios en la administracion
manual de su amplia coleccion de partituras. La gestion manual ha resultado en pérdida de
partituras, retrasos en préstamos y dificultades en el seguimiento detallado de su uso. Ante
esta situacion, se plantea el desarrollo de un sistema que optimice la gestion y préstamo de
partituras, mediante una solucién tecnoldgica que permita un seguimiento detallado y
actualizado. El objetivo de este proyecto es desarrollar el backend de un sistema de gestion
administrativa para mejorar la eficiencia en el registro y préstamo de partituras en la
Fundacion Promusica, adscrita a la Direccion de Cultura de la Universidad de Los Andes. Se
busca analizar los procesos actuales, disefiar e implementar una base de datos eficiente y una
API Rest para la comunicacion entre la base de datos y la interfaz de usuario. Para lograr este
objetivo, se adopta la metodologia de desarrollo dirigido por pruebas (TDD), que permite una
implementacidn cuidadosa y una validacion continua del sistema. Se establecen pruebas para
garantizar la funcionalidad 6ptima del sistema, asegurando su eficiencia y fiabilidad. Se lleva
a cabo una investigacion para comprender las necesidades especificas de la Fundacion
Promusica, con el fin de disefiar e implementar una solucion que agilice los procesos de
registro y préstamo de partituras. La implementacion del sistema propuesto se considera una
solucion factible que contribuira significativamente a la preservacion y difusion del valioso
repertorio musical promovido por la Fundacion.

Palabras clave: Gestion administrativa, TDD, desarrollo de software, aplicacion

WEB, gestion de préstamos.

INDICE GENERAL

RESUMEN. ... e e et e e s te e e et e e s b e e ebe e e snbeeesnaaeesnaaeans i
CAPITULO 1: INTRODUCCION ..ottt 8
I g (= TorcTo [T (=SOSR 9
1.1.1. Desarrollo de un sistema de gestion de biblioteca en la Institucion Educativa
Teécnico Industrial Pedro A. ONROro de Baranoa.cccceovviriiieiene i 10

1.1.2. Sistema de gestion y digitalizacion bibliotecaria. Caso: carrera de odontologia
UP.EA.11

1.1.3. Disefio e Implementacion de una aplicacion para la gestion de partituras. 11
1.2. Planteamiento del problema...........cocooiiiiiiiii e 12
1.3, JUSTITICACION ...t ettt b bt 12
1.4, ODJELIVOS ...ttt 13

1.4.1. ODJELIVO GENEIALoeiiiiiiieiieeee et 13

1.4.2. Objetivos €SPECITICOSiviiiiiiiiiicie e 13
S AV 11 oo (o] (oo T VOSSP 14

1.5.1. AIGOMItMO TDDoociiiiiiece et 15

1.5.2. TDD como metodologia dgilcc.cooviiiiiiiiii e 18
1.6. AICANCES Y LIMITACIONES......c.ccviiiieiiicie ettt 18

1.8 1. ACANCES: ..veeeieieete ettt ettt ettt ettt b e sttt bbb n e ne et 18

1.6.2. LIMIEACIONES: . .euvitiiteitietieiiee ettt ettt sttt ettt bt sbeeneere e e e 19

CAPITULO 2: MARCO TEORICO ...ttt ssnens 20
2.1. Sistema de INFOrmMAaCIONcc.ooiiiiiiiie e 20
2.2. Tecnologia de 1a informacion (T1) ..o, 21
2.3. Sistema de gestion admiNiStratiVaccoveiiiiriiii e 21
2.4. Sistemas integrados de gestion bibliotecaria (SIGB)c.cccccoveviiie e, 22
2.5. BIDIIOtECA MUSICAL........ccieiiieircc et nne e 23
2.6. Plataforma digital...........ccooiiiiiiiiie s 24
2.7. Gestion de Procesos A NEJOCIOcc.eeviieeiieeie e eee et ste e sra e sre e eae e, 24
2.8. INGENIEria a8 FEOUISITOS.c.viiiiiieiie ittt bbbt 25

2.8.1. RequiSitos TUNCIONAIESooiiiiiiicice e 25

2.8.2. RequIiSItos NO fUNCIONAIESccviiieiieie et 26
2.9. ArqUITECTUIa de SOTEWAIE........cviiiieiecie ettt nne e 26

2.9.1. Arquitectura ClIeNte-SErVIAONcccueiieiieie et 27

2.9.2. MVC (Modelo-Vista-Controlador)..........coeieeiiiieniniiee e 28

2.00. BACKAEN....ccce oottt e e e e et e e e e aaaaaan 28

2.11. ;Qué es un Framework o marco de trabajo de backend?............cccccocevniviiiennnn, 29
2.11.1. Evaluacion de Frameworks para Desarrollo de Backend............ccccooeviciennnnn 30
2.12. BASES U8 TALOSoveeeieiieiiie ittt sttt ettt te et ne e reene e 32
2.12.1. Bases de datos relaCionales... ... 32
2.13. ORM .ottt R ettt e et st e et e ne et 33
2. 04, AP oottt bRttt Re bt e et et nene et 34
2040, APLRESL.....eeeeee e 34
2.15. Seguridad de 10S Aat0S...........coeiiriiiriiieiee et 35
2.15.1. WED TOKENS ...ttt sttt 35
2.15.1. COOKIESoviiiiietietiee ettt bbb e e 36
2.15.3. SANCIUIM ...ttt sttt e bt et e et e e s st e e sbe e s nbeesbeeentee e 36
2.16. Protocolos HTTP Y HTTPS ... 37
2.16.1. HTTP (Hypertext Transfer Protocol)c.ccccoveviiiiiieiece e 37
2.16.2. HTTPS (Hypertext Transfer Protocol SECUIe)ccovevevieieeie i, 38
2.17. Herramientas de escalabilidad — Contenedores y Kubernetes..............ccccccevvnen. 39
2.17.1. CONLENEUOIESeveevienieie sttt be st st nbesbeeneene e e e nens 39
2.17.2. KUDBINEIES ... i ettt iben et in ettt draate st st bt ke ementeneeshedeshnnabesreseesbesaeenneneans 40
2.18. Técnicas para digitalizar y almacenar doCUmMeNtoS.............ccccvveveiieiieiieerieseenen, 41
2.18.1. Digitalizacion de DOCUMENTOS.........covruiiririeieierie et 41
2.18.2. Almacenamiento en el Sistema de Archivosccooevvieiienie e, 41
2.18.3. Almacenamiento en Servicios de Almacenamiento en la Nube...........c..ccccue...... 42
2.18.4. Almacenamiento en Base de Datos usando el Tipo de Dato Binario................... 42
2.19. Herramientas teCNOIOGICAScoeiiuirieieieiieieesie e 43
N TR O o | PRTP 43
2.19.2. LATAVE ..ot ae e 43
2.19.3. EIOQUENT. ..ot bbbt 44
2,094 SQLc.oeeeeeeeeeeeeee ettt 44
2.19.5. POSIOIESQL. ...ttt 44
2.19.6. ViSUAl STUAIO COURcciuierieiiieiieie ettt se et re e sneenne e 45
N B o 11 0 - o PO RRPPTRRP 45
2.19.8. DOCKET ...ttt et 46
CAPITULO 3: ANALISIS Y DISENO DEL SISTEMA.......cooiinmiiiniineieeieiseieseensnens 47
3.1. Requerimientos del SISTEMAccooiiiiiieiiee e 47

G 70t 0 R X (0] (=R 48

3.1.2. ReqUISItOS FUNCIONAIESeciiiieiiecie et 49
3.1.3 Requisitos NO FUNCIONAIES...........cccueieeieiie e 50
3.1.4. HiStOrias & USUAIOeeuveiiieiiiiiisiisiesiie ettt st 50

3.2. DiSEN0 08 PrUEDAESccuiiiiiiiiiiee b 54
3.3. Arquitectura General del Sistema (Cliente - SErvidor)cccccevviieiievvccie e, 57
3.4. Patrén de Disefio de SOftware — MV C ..o 59
3.5. Modelado de Datos (Diagrama de Entidad-Relacion)c.c.ccocveveiveivcceieenenn, 61
CAPITULO 4: IMPLEMENTACION DEL SISTEMA ..o, 63
4.1 ENtOrn0 de DeSAITOI0......cuiiiiiieieie e 63
4.1.1 IDE Y CONLrol de VEISIONES.........ccoiiiiiiiiieieiesie sttt 63
4.1.2 Lenguaje de Programacion y FrameworK...........cocoereereneiinieneneese e 64
4.1.3. Gestor de Base de DatoS Y ORMcooiiiiiiiiiiieiisieieieee e 64
4.1.4. Configuracion del ENtorno 10Cal...........cccooviiiiiiiniinesee e 64

4.2. Desarrollo de la Logica del SISteMa.........ccceiveieiieiecie e 65
4.2.1. Implementacion de Migraciones Laravelccocoveeiennieiiniinienc e 65
4.2.2. CreaCion de MOUEIOScceiueieiiiieeeteiesie ettt 67
4.2.3. Creacion de Controlatdoresccoviviiiieie e 69

4.3. Configuracion de Rutas: Construyendo la APl del Sistema.........c.ccccoceveivieiennne. 71
CAPITULO 5: IMPLEMENTACION Y EJECUCION DE PRUEBAS...........ccccovcuneunn. 75
5.1. Pruebas de CaracCteriStiCas..........cvviiiviieeieieie et 75
5.2 Pruebas de 1a API CON POSTMAN ..ot 88
CAPITULO 6: ANALISIS Y RESULTADOSooovuiiiieirinineineieeessessesssssssessnsesesenes 90
6.1 Evaluacion de los Resultados de las Pruebas de Rendimiento...........ccccooeecvieiennne. 90
6.2 Impacto en la Eficiencia del Registro y Préstamo de Partiturasc...cccccceeennen. 93
6.3 Analisis de 1a Metodologia TDDcccooiiiiiiiiicceee e 93
6.4 Potenciales Areas de MEJOTaAccc..cuevevcueveieeeeieeeeeee e ses e ses s 94
6.5 Plan de Implementacion y Futuras DIreCCIONES...........ccovvereriieieiesesie s, 94
CONCLUSIONES Y RECOMENDACIONES........cooiiiiiiiieeseseeste e 95
REFERENCIAS ...ttt bttt sttt se bt ne s 98

Vi

INDICE DE TABLAS Y FIGURAS

Figura 1. Metodologia de desarrollo TDD (Herranz, 2023)cccoeveveereeieseeseesieseesieeseeenns 15
Figura 2. Ciclo TDD (FUENLES, 2021)ccvveieiiieiieeie ettt ee e e ens 17
Figura 3: Usuario AdmMINISTrador.ooveiiiiiiece et 48
Figura 4: Usuario Prestatario (AUteNtiCad0).ccecvvevvereiieiiese e 48
Tabla 1: Historias de usuario del SISTEMAccvvieriiiieie e 52
Figura 5: Historia de usuario HU 001: Registro de Partituras............cccooveveieeiecinsiie e 52
Figura 6: Historia de usuario HU 007: Registro de usuario prestatario............cc.ccvevrvrveinenne. 52
Figura 7: Historia de usuario HU 008: Registro de usuario administrador.ccccccevervenee. 53
Figura 8: Historia de usuario HU 009: Descargar partitura digital..............ccccooeniniiinnenn. 53
Figura 9: Historia de usuario HU 010: Préstamo de partitura fiSiCo..........ccovverereicicininnnnn 54
Figura 10. Arquitectura General (CHEente-Servidor) ... 58
Figura 11. Patron de DiSEf0 MV Ccooiiiiiiiieisee et 60
Figura 12. Diagrama Entidad-Relacion ... 62
Figura 13. Configuracion de [a conexion @ DB ..o e 65
Figura 14. Migracion create_music_sheets_table.php........cccooiiiiiiiii 67
Figura 15. Modelo MUSICSREEL. PP ..ot 69
Figura 16. Controlador MusicSheetController.php ..o 71
Figura 17. Lista de RUtAS de 1a APcvi e 74
Figura 18. a. Red Test — primer criterio de aceptaCion...........ccceevvevvevieveeie e 78
Figura 18. b. Green Test — primer criterio de aceptacioncccccevveveeiieiiesecre e 79
Figura 19. a. Red Test — segundo criterio de aceptacionccceevvevvevieieiiese e 81
Figura 19. b. Green Test — segundo criterio de aceptacion..........c.cccevveveevicieese e 81
Figura 20. a. Red Test — tercer criterio de aceptacionccceeeeieiieveece s 82
Figura 20. b. Green Test — tercer criterio de aceptacion............cccceveiveviiieiiece e 83
Figura 21. a. Red Test — cuarto criterio de aceptaCion..........c.ccceevveevieieeve e 84
Figura 21. b. Green Test — cuarto criterio de aceptaCionccccvevveveeveeiieiiece e 85
Figura 21. c. Green Test — todos los test de la funcion Store...........cccccveveevcieece s 87
Figura 21. d. Ultima prueba (Gren TESE).......ccovevcueveerreeeeeiseeseeeess s seseeses s 88
Figura 22. SOliCItUOES CON MAS BITOTES.oiveiiiiiieiieieie ettt 91
Figura 23. Top 5 de las solicitudes MAs [€NLAS...........ccevvereiiiiieere e 92
Figura 24. Tendencia del tiempo de respuesta durante la prueba.ccccccevveeiiiiiiinineee, 92

Vii

CAPITULO 1: INTRODUCCION

El desarrollo de sistemas eficientes de gestion administrativa ha sido fundamental
para optimizar diversos procesos en diferentes ambitos. En paralelo, las interfaces de
programacion de aplicaciones (APIs) han desempefiado un papel crucial al facilitar la
comunicacion fluida entre sistemas informaticos, marcando un hito en el desarrollo de los
sistemas administrativos. En esta linea, la Fundacién Promusica, reconocida por su labor en
la promocién y difusion de la masica clasica desde su establecimiento en 1998, se ha
enfrentado a desafios en la administracion manual de su amplia coleccion de partituras.

La gestion manual de estas valiosas piezas musicales ha generado problemas como la
pérdida de partituras, retrasos en los préstamos y dificultades en el seguimiento detallado de
su uso. Ante esta situacion, se ha identificado la necesidad apremiante de desarrollar un
sistema que optimice la gestion y préstamo de las partituras en esta entidad. Este proyecto se
ha planteado como una solucion factible, la cual agilice los procesos de registro y préstamo
de partituras, mediante el desarrollo e implementacion de un sistema de gestion
administrativa que permita al mismo tiempo un seguimiento detallado y actualizado de su
uso.

En tal sentido, se ha optado por la metodologia de desarrollo dirigido por pruebas
(TDD), la cual ha permitido una implementacion cuidadosa y una validacion continua del

sistema. A traves de la metodologia TDD, se han establecido pruebas para garantizar la

funcionalidad 6ptima del sistema, asegurando la eficiencia y la fiabilidad del proceso de
desarrollo.

Para lograr este objetivo, se ha llevado a cabo una investigacion para comprender las
necesidades y requerimientos especificos de la Fundacion Promusica. Asimismo, se ha
disefiado e implementado una base de datos eficiente y una API que facilita la comunicacion
entre la base de datos y la interfaz de usuario. En este contexto, se explorard como la
implementacion de un sistema de gestion administrativa eficiente puede contribuir de manera
significativa a la preservacion y difusion del valioso repertorio musical promovido por la

Fundacién Promusica.

1.1 Antecedentes

La Fundacion Promusica, establecida en 1998, adscrita a la direccion de cultura de la
Universidad de Los Andes, se ha destacado por su labor en la promocion y difusion de la
mausica clasica, particularmente en la formacion pedagdgica y la promocion de la muasica
coral en la region. A lo largo de los afios, ha contribuido significativamente a la difusion de la
musica venezolana, latinoamericana y universal, fomentando el desarrollo humano y artistico
de sus miembros, con especial énfasis en nifios y jévenes provenientes de diversos contextos
socioecondmicos. A pesar de sus esfuerzos sobresalientes, la organizacion ha enfrentado
desafios en la administracion de su extensa coleccion de partituras, lo que ha dado lugar a
problemas como la pérdida de partituras, retrasos en los préstamos y dificultades para
mantener un registro detallado del uso de las mismas.

En el contexto mas amplio de la gestién administrativa, la implementacion de
sistemas eficientes ha demostrado ser fundamental para optimizar los procesos en diversas

areas. Estos sistemas han desempefiado un papel crucial en la mejora de la eficienciay la

gestion efectiva de recursos y datos. La interconexion de componentes y el flujo dinamico de
informacidn son elementos esenciales para lograr esta eficacia. Las interfaces de
programacion de aplicaciones (APIs) han surgido como una herramienta esencial para
facilitar esta comunicacién fluida (Jin et al., 2018). A lo largo de la historia, las APIs han
marcado un hito en la evolucion de los sistemas administrativos, al permitir la integracién de
diferentes interfaces y la admision de diversos tipos de programacion (Mikula, 2023). Estas
interfaces han demostrado su eficacia al posibilitar una conexion efectiva entre sistemas
informaticos, convirtiéndose en una parte integral del desarrollo de software moderno.

Estos avances tecnoldgicos, especificamente en la gestion administrativa se han
evidenciado en diversos estudios previos que han abordado problemas similares, algunos

ejemplos de ello se describen a continuacion:

1.1.1. Desarrollo de un sistema de gestion de biblioteca en la Institucién

Educativa Técnico Industrial Pedro A. Onoro de Baranoa.

Este sistema fue disefiado en la plataforma Visual Studio 2017, Asp.Net y el motor de
base de datos MySQL. El propdsito del sistema era permitir al encargado de la biblioteca
Ilevar un seguimiento y control de toda la informacion almacenada en el sistema; asi como
conocer de manera rapida y segura los datos de los libros, estudiantes, usuarios, datos de
entrada y salida de los libros que se realizan diariamente, sin tener que recurrir a los archivos
manuales obsoletos que se utilizaban en aquel momento. La propuesta buscaba solucionar un
problema que se habia presentado por mucho tiempo en la institucion, ya que profesores y
estudiantes no sabian realmente qué libros, textos y otros recursos estaban disponibles en la

biblioteca escolar (Ruiz, 2020).

10

1.1.2. Sistema de gestion y digitalizacion bibliotecaria. Caso: carrera de

odontologia U.P.E.A.

La investigacion describe la propuesta de un sistema de gestion y digitalizacion
bibliotecaria para mejorar el servicio al personal y usuarios de la biblioteca de la carrera de
odontologia, que tenia un control semiautomatico y limitaciones en el acceso a la informacion
y préstamo de materiales bibliogréaficos. El sistema se desarroll6 utilizando la metodologia
UWE vy tecnologia Web, con PHP como lenguaje de programacién y MariaDB como gestor
de base de datos. Ademas, se realizé una evaluacién de la calidad de producto de software
con ISO/IEC 9126 y una estimacion de costo de software con el modelo COCOMO |1

(Gutiérrez ,2020).

1.1.3. Disefio e Implementacion de una aplicacion para la gestion de

partituras.

Esta investigacion describe un trabajo que se enfoco en el desarrollo e
implementacidn de una aplicacién web para la gestion de partituras, con el objetivo de
almacenar las partituras subidas por los usuarios y desarrollar una capa social y un motor de
busqueda. La aplicacion cuenta con una arquitectura en capas, con la capa del servidor
implementada a través del framework Django y la capa del cliente implementada a través de
la biblioteca React. El proyecto se desarrollo utilizando la metodologia agil Scrum (Pérez,
2022).

Estos antecedentes enfatizan la importancia de implementar sistemas de gestion
avanzados en diferentes contextos para optimizar los procesos y mejorar la eficiencia en

diversas areas de estudio y trabajo.

11

1.2. Planteamiento del problema

La Fundacion Promdsica, dedicada a la promocién y difusion de la musica clésica, se
ha enfrentado a desafios significativos en la gestion manual de su extensa coleccion de
partituras. Este proceso tradicional ha llevado a problemas tales como pérdida de partituras,
demoras en los préstamos y dificultades para mantener un registro detallado del uso de las
mismas. La ausencia de un sistema de gestién administrativa eficiente ha agravado estas
dificultades, resultando en una base de datos desactualizada que no permite un seguimiento
adecuado de la disponibilidad de las partituras y su historial de préstamos. En este contexto,
surge la necesidad de desarrollar un sistema que agilice el proceso de registro y préstamo de
partituras, al tiempo que facilite un seguimiento detallado y actualizado del uso de las mismas

en la Fundacion.

1.3. Justificacion

Considerando los desafios actuales en la gestion manual de la extensa coleccién de
partituras de la Fundacion Promdsica, es evidente la necesidad urgente de mejorar la
eficiencia en el registro y préstamo de estas valiosas piezas musicales. La implementacion de
un sistema de gestion administrativa eficiente se vuelve crucial para optimizar los procesos
de mantenimiento y préstamo de las partituras, evitando extravios, retrasos y deficiencias en
el registro del uso de las mismas.

Este proyecto se plantea como un producto factible y se justifica en su propdsito de
desarrollar una solucién tecnoldgica que permita una gestion mas efectiva y automatizada de
las partituras en la Fundacion Promusica. La implementacion de este sistema no solo

contribuird a agilizar los procesos internos, sino que también garantizara un acceso méas

12

rapido y seguro a las partituras, mejorando asi la experiencia de los usuarios y optimizando la

preservacion y difusion del valioso repertorio musical en la region.

1.4. Objetivos

1.4.1. Objetivo general

Desarrollar el back-end de un sistema de gestion administrativa para mejorar la
eficiencia en el registro y préstamo de partituras en la fundacién Promusica, adscrita a la

direccion de cultura de la Universidad de Los Andes.

1.4.2. Objetivos especificos

Para cumplir con el objetivo general, se plantean los siguientes objetivos especificos:

e Analizar los procesos actuales de registro y préstamo de partituras en la Fundacién
Promusica para identificar las necesidades y requerimientos del sistema de gestion
administrativa.

e Disefiar e implementar una base de datos que permita almacenar la informacion de los
usuarios, partituras, y préstamos de manera eficiente, organizada y segura.

e Desarrollar una API Rest que permita la comunicacion entre la base de datos y una
interfaz de usuario.

e Implementar el sistema de gestion administrativa en la fundacion Promusica 'y

capacitar al personal encargado en su uso.

13

1.5. Metodologia

Para el desarrollo del Producto Factible orientado a optimizar la gestion de las
partituras en la Fundacion Promusica, se ha adoptado la Metodologia de Desarrollo Dirigido
por Prueba (TDD, por sus siglas en inglés: Test Driven Development). Esta metodologia se
ha elegido por su enfoque proactivo y su capacidad para garantizar la calidad del sistema a lo
largo de todo el proceso de desarrollo.

Herranz (2023), describe el “Test Driven Development” (TDD) como una
metodologia de desarrollo de software que se basa en escribir primero las pruebas, después
escribir el cddigo fuente que pase la prueba satisfactoriamente y, por altimo, refactorizar el
cddigo escrito.

En este orden de ideas, el TDD se fundamenta en un enfoque iterativo que se inicia
con la creacién de pruebas automatizadas antes de implementar cualquier funcionalidad.
Estas pruebas se disefiaran para validar la funcionalidad y asegurar que el sistema cumpla con
los requisitos definidos previamente. Posteriormente, se desarrollaré la funcionalidad minima
necesaria para que la prueba pase satisfactoriamente. Este proceso, conocido como ciclo
TDD, se repetira de forma iterativa, integrando nuevas funcionalidades y ampliando las
pruebas existentes a lo largo de las distintas fases de desarrollo, este ciclo se puede observar
en lafigura 1.

Se prestara especial atencion a la escritura de pruebas claras y especificas que cubran
todos los casos posibles de uso y que aborden los potenciales problemas que podrian surgir
durante la implementacion. Las pruebas se automatizaran para garantizar una verificacion

continua y exhaustiva del sistema en cada etapa del desarrollo.

14

succeeds

succeed

Figura 1. Metodologia de desarrollo TDD (Herranz, 2023)

1.5.1. Algoritmo TDD

Segun BIé (2010), el algoritmo TDD sélo tiene tres pasos fundamentales:
m Escribir la especificacion del requisito (el ejemplo, el test).
m Implementar el cddigo segn dicho ejemplo.
m Refactorizar para eliminar duplicidad y hacer mejoras.

A continuacion, se presentan con mas detalle cada uno de estos pasos:

Paso 1 - Escribir la especificacion del requisito primero: Antes de implementar cualquier

cddigo, se redactaran pruebas claras y especificas que describen los requisitos del sistema.

15

Las pruebas se disefiaran para abordar casos de uso o historias de usuario y escenarios
especificos, lo que permitira clarificar el comportamiento esperado del sistema.

En otras palabras, el primer paso es “escribir una prueba que falle”. Esta prueba
debe especificar el comportamiento esperado del software. Para escribir una prueba, debemos
identificar el comportamiento que queremos probar. Una vez que hayamos identificado el
comportamiento, podemos escribir una prueba que verifique ese comportamiento. La prueba
debe ser lo méas simple posible. No se debe hacer nada mas que verificar el comportamiento

que queremos probar.

Paso 2 - Implementar el codigo que haga funcionar la especificacion: Se procedera a
desarrollar el cédigo minimo necesario para que las pruebas definidas anteriormente se
cumplan. Durante esta etapa, se evitara la implementacion de cualquier codigo adicional que
no sea estrictamente necesario para satisfacer la especificacion actual. Se prestara especial
atencion a la eficiencia y a la concentracion en la implementacion precisa de la funcionalidad
requerida.

Basicamente, el siguiente paso es “escribir el codigo necesario para que la prueba
pase”. Este codigo debe ser lo mas simple posible. Para escribir el codigo, se debe pensar en
cdémo implementar el comportamiento que queremos probar. Una vez que se tenga una idea
de cédmo implementar el comportamiento, se procede a escribir el cddigo necesario. No se

debe hacer nada méas que implementar el comportamiento que queremos probar.

Paso 3 - Refactorizacion: A continuacion, se llevaréa a cabo una revision exhaustiva del
cddigo para identificar y eliminar cualquier duplicidad. Ademas, se verificara que el cddigo
cumpla con los principios de disefio pertinentes. Se realizaran ajustes y optimizaciones

necesarios para mejorar la claridad y la mantenibilidad del codigo.

16

Dicho en otras palabras, el Gltimo paso es “refactorizar el codigo escrito”. La
refactorizacion se puede realizar de muchas maneras diferentes. Una forma de refactorizar el

cddigo es eliminar el cadigo duplicado o simplificar la estructura y lectura del mismo.

Otra forma de enumerar las tres fases del ciclo es:

m Rojo
= Verde

m Refactorizar

1

RED
Write a test

that fails

TDD

REFACTOR GREEN
Make the
code work

Eliminate
redundancy

Figura 2. Ciclo TDD (Fuentes, 2021)

Es una descripcion metafdrica (Figura 2), ya que los frameworks de tests suelen
colorear en rojo aquellas especificaciones que no se cumplen y en verde las que lo hacen. Asi,

cuando escribimos el test, el primer color es rojo porque todavia no existe codigo que

implemente el requisito. Una vez implementado, se pasa a verde (Ble, 2010).

17

1.5.2. TDD como metodologia agil

La integracion del Desarrollo Dirigido por Pruebas (TDD) como metodologia agil, se
traduce en un proceso estructurado que aborda la creacion de software de manera eficiente
(Herranz, 2023). Este enfoque se manifiesta en una serie de pasos coherentes, delineados de

la siguiente manera:

1. Elcliente escribe su historia de usuario.

2. En colaboracion con el cliente, se definen los criterios de aceptacion asociados con la
historia de usuario, seccionandolos en elementos mas simples para facilitar el proceso.

3. Se escoge el criterio de aceptacién mas simple y se traduce en una prueba.

4. Se comprueba que esta prueba falla.

5. Se escribe el cddigo que hace pasar la prueba.

6. Se ejecutan todas las pruebas automatizadas.

7. Se refactorizay se limpia el codigo.

8. Se lleva a cabo una revision exhaustiva a través de la ejecucion de todas las pruebas
automatizadas, garantizando que la funcionalidad del sistema se mantenga intacta y
sin errores.

9. Volver al punto 3 con los criterios de aceptacidn que faltan y se repite el ciclo unay

otra vez hasta completar la aplicacion.

1.6. Alcances y Limitaciones

1.6.1. Alcances:

e El estudio se centrara en el desarrollo de un sistema de gestion administrativa para la

fundacién Promdsica.

18

1.6.2.

El sistema permitira la optimizacién del proceso de registro y préstamo de partituras,
asi como el registro detallado y actualizado del uso de las mismas.

Se identificaran las necesidades y requerimientos de la fundacién Promusica para el
desarrollo del sistema.

Se disefiard y desarrollara una base de datos que permita el registro y préstamo de
partituras de manera eficiente y organizada.

Se desarrollard una API Rest, la cual podra ser consumida por una interfaz de usuario.
Se implementara el sistema de gestion administrativa en la fundacion Promusica y se

capacitara al personal encargado en su uso.

Limitaciones:

El estudio se enfoca en el desarrollo del sistema de gestién administrativa para la
fundacidn Promusica y no se consideraran otras organizaciones dedicadas a la
promocion y difusién de la musica.

El sistema a desarrollar estara enfocado en la gestion de partituras y no se incluiran
otros elementos de la organizacion, como la gestion de recursos humanos o la gestion
financiera.

El estudio no consideraré la infraestructura tecnoldgica disponible en la fundacion
Promusica y se asumira que se cuenta con los recursos necesarios para la

implementacién del sistema.

19

CAPITULO 2: MARCO TEORICO

En este capitulo, se sientan las bases tedricas para el desarrollo del proyecto,
presentando las herramientas de desarrollo que se utilizaran. Aqui se establece el fundamento
conceptual necesario para comprender y ejecutar de manera efectiva la investigacion y el

desarrollo propuestos.

2.1. Sistema de Informacion

O'Brien y Marakas (2006), en su libro Sistemas de informacion gerencial, definen un
sistema de informacién como un conjunto de componentes interrelacionados que recopilan,
procesan, almacenan y distribuyen informacién con el fin de apoyar la toma de decisiones, la
coordinacion y el control en una organizacién. En esta definicion, se destaca la importancia
de los componentes interrelacionados y la funcién del sistema de informacion para apoyar la
gestion de la organizacion.

La definicion de sistema de informacion de estos autores, es relevante en este
contexto, debido a que, un sistema de gestién administrativa para la gestion de partituras es,
en esencia, un sistema de informacion que recopila, procesa, almacena y distribuye

informacidn relevante para la toma de decisiones y el control dentro de la organizacion.

20

2.2. Tecnologia de la informacion (T1)

Langer (2018), define la tecnologia de la informacion como la combinacion de
hardware, software y servicios que se utilizan para gestionar y procesar la informacion dentro

de una organizacioén.

La definicion de Langer destaca la importancia de la tecnologia de la informacion en
la administracién y el procesamiento de la informacién dentro de una organizacion. La
tecnologia de la informacion es fundamental para la construccion y el funcionamiento de un
sistema porque ofrece las herramientas necesarias para la gestion de datos y el intercambio de
informacidn entre los numerosos componentes del sistema.

Los sistemas pueden procesar, almacenar y transportar informacién de manera
confiable y efectiva gracias al hardware, software y servicios de tecnologia de la informacion,
que respaldan la toma de decisiones corporativas y la formulacion de estrategias. La
tecnologia de la informacion es crucial para la seguridad del sistema porque ofrece
instrumentos para la proteccién de la informacion contra el acceso no autorizado y la

recuperacion de la informacidn en caso de falla del sistema.

2.3. Sistema de gestion administrativa

Un sistema de gestion administrativa se refiere al conjunto de herramientas
tecnoldgicas que utilizan las empresas para la automatizacion y mejora de sus procesos
administrativos, con el objetivo de incrementar su eficiencia y productividad. (Overview of
the Administrative Management Systems (AMS), 2016).

Debido a que permitiria la automatizacion y optimizacion de los procesos

administrativos asociados a la gestion de partituras de la fundacién Promusica, la creacion de

21

un sistema para aumentar la eficiencia en el registro y préstamo de partituras es crucial
porgue conduciria a un mayor nivel de productividad en la gestion de estos recursos.

Herramientas como bases de datos de clientes, sistemas de monitoreo de préstamos y
devoluciones, software de gestion de inventario y otros pueden ser parte de un sistema de
gestion administrativa. Al automatizar estas operaciones, seria posible acelerar la gestion de
recursos, disminuir la cantidad de tiempo requerido para los procesos de registro y préstamo,
y eliminar por completo los errores humanos.

Un sistema de gestion administrativa también permitiria mantener un registro preciso
y actualizado del inventario de partituras, lo que ayudaria en la toma de decisiones y la
planificacién a largo plazo. Ademas, podria ayudar a maximizar la capacidad de
almacenamiento de las partituras, asi como a mejorar la seguridad y la administracion del

acceso a las partituras.

2.4. Sistemas integrados de gestion bibliotecaria (SIGB)

La gestion eficiente de recursos y servicios es fundamental para el éxito de cualquier
organizacion, incluyendo las bibliotecas. Los sistemas de gestion de bibliotecas (SIGB) son
herramientas tecnologicas que permiten gestionar de manera efectiva los recursos y servicios
de una biblioteca.

Gavilan (2008), define los sistemas integrados de gestion bibliotecaria (SIGB) como
herramientas tecnologicas que permiten la gestion automatizada de los recursos y servicios de
una biblioteca, incluyendo la adquisicidn, catalogacion, circulacion, préstamo y control de
inventario de los materiales bibliograficos.

Este tipo de programas surgen como un intento de conseguir que las unidades de

informacidn se conviertan en centros mas eficaces, con capacidad de poder gestionar de

22

manera mas eficiente sus recursos y la posibilidad de comunicacion mas viable con los
usuarios.

Un SIGB, integra en un solo programa informatico un conjunto de aplicaciones
especificas que se denominan maddulos, pensados para la facilitacion de las tareas especificas
de este, las cuales estan directamente relacionadas unas con otras. Toda la informacion
reunida, se almacena en una misma base de datos que permite el mejor intercambio de la

informacién y el aprovechamiento de los recursos con el menor esfuerzo posible.

2.5. Biblioteca musical

Smiraglia (2001), propone la siguiente definicion para biblioteca musical: es una
biblioteca especializada en la adquisicion, procesamiento, almacenamiento y acceso de
materiales relacionados con la musica en cualquier formato.

La definicion implica que una biblioteca musical tiene un enfoque especifico en la
mausica y sus materiales relacionados, lo que incluye partituras en diferentes formatos (por
ejemplo, partituras impresas, partituras digitales, archivos de audio, etc.). Al tener una
comprension clara de las necesidades de una biblioteca musical, se puede disefiar un sistema
de gestion de partituras para la fundacién Promusica que incluya las caracteristicas y
funcionalidades especificas necesarias para satisfacer sus necesidades.

Un sistema de gestion de partituras debe ser capaz de adquirir, procesar, almacenar y
permitir el acceso a las partituras en diferentes formatos, ya sea en forma impresa o digital.
Debe contar con herramientas de catalogacion, metadatos y basqueda que permitan a los
usuarios buscar y encontrar las partituras de manera eficiente y precisa. También debe tener
herramientas de visualizacion y reproduccion de partituras digitales para permitir a los

usuarios ver y escuchar las partituras de manera clara y precisa.

23

2.6. Plataforma digital

Ross et al. (2019), definen la plataforma digital como un conjunto de tecnologias,
estandares y acuerdos comerciales que, cuando se combinan con el contenido digital,
proporcionan una experiencia integral y personalizada para los clientes, usuarios y
empleados. Estos autores, argumentan que una plataforma digital exitosa debe ofrecer una

solucién integral a las necesidades de los usuarios, que incluye la entrega de contenido y la

capacidad de interactuar y realizar transacciones en linea. También destaca la importancia de

la colaboracion entre las empresas y los proveedores de tecnologia para construir y mantener

una plataforma digital efectiva.

2.7. Gestion de procesos de negocio

La gestion de procesos de negocio (BPM, por las iniciales de la expresién en inglés
Business Process Management) constituye uno de los topicos méas pronunciados cuando se
abordan las Tecnologias de Informacién (T1) aplicadas al entorno empresarial. BPM se
considera un enfoque multidisciplinario ya que presenta conectores con elementos
empresariales y tecnologicos altamente relacionados entre si. Bajo el paradigma BPM estos
procesos se conciben en un ciclo donde son modelados electronicamente y pueden ser
analizados y mejorados como resultado de varias instancias de procesos ejecutados. Este
ciclo BPM se sustenta por los sistemas BPM (BPMS). Las BPMS ofrecen componentes de
software integrados en un entorno Unico que se pueden clasificar en: herramientas de
modelado, herramientas de simulacion, motores de ejecucion, integracion de aplicaciones,

portales web y monitorizacion (Cruz et al., 2020).

24

2.8. Ingenieria de requisitos

La ingenieria de requisitos es un enfoque sistematico a través del cual el ingeniero de
software recopila requisitos de diferentes fuentes y los implementa en los procesos de
desarrollo de software. Las actividades de ingenieria de requisitos cubren todo el ciclo de
vida del desarrollo de sistemas y software. El proceso de ingenieria de requisitos es un
proceso iterativo que también indica que la gestion de requisitos se entiende como un aspecto
del proceso de ingenieria de requisitos (An Effective Requirement Engineering Process

Model for Software Development and Requirements Management, 2010).

Es comdn clasificar los requisitos en funcionales y no funcionales.

2.8.1. Requisitos funcionales

Los requisitos funcionales son los que definen las funciones que el sistema sera capaz
de realizar, describen las transformaciones que el sistema realiza sobre las entradas para
producir salidas (Alarcén, 2006). Por consiguiente, estos requisitos establecen la base sobre
la cual se construira el sistema. Los requisitos funcionales especifican las funcionalidades,
tareas y procesos que el software debe cumplir, lo que significa que son fundamentales para
el disefio, implementacion, pruebas y validacion del software.

Por tanto, los requisitos funcionales son esenciales para garantizar que el software
cumpla con las necesidades y expectativas de los usuarios finales. Si los requisitos
funcionales no se definen adecuadamente, es probable que el software no cumpla con los
objetivos previstos, 1o que puede llevar a la insatisfaccion del usuario, a la necesidad de

realizar cambios costosos y a la posible pérdida de oportunidades de negocio. En

25

consecuencia, es fundamental que los requisitos funcionales sean claros, precisos y completos

para que el software pueda ser desarrollado de manera efectiva.

2.8.2. Requisitos no funcionales

Los requisitos no funcionales tienen que ver con caracteristicas que de una u otra
forma puedan limitar el sistema, por ejemplo, el rendimiento (en tiempo y espacio), interfaces
de usuario, fiabilidad (robustez del sistema, disponibilidad de equipo), mantenimiento,
seguridad, portabilidad, estdndares, etc. Son restricciones de los servicios o funciones
ofrecidos por el sistema (Alarcén, 2006).

Es por ello, que los requisitos no funcionales proporcionan limitaciones y
especificaciones importantes que se deben cumplir para garantizar que el sistema cumpla con
las expectativas de los usuarios. Si estos requisitos no se cumplen, el sistema puede no ser
efectivo, eficiente o seguro para su uso, por lo que es fundamental tenerlos en cuenta desde el

inicio del proyecto y considerarlos durante todo el ciclo de vida del software.

2.9. Arquitectura de software

La arquitectura de software es la estructura de un producto de software. Esto incluye
elementos, las propiedades visibles externamente de los elementos y las relaciones entre los
elementos (Bass et al., 2012).

En base a lo anterior, Lilienthal (2019) dice que esta definicion habla deliberadamente
de elementos y relaciones en términos muy generales. Estos dos materiales basicos se pueden
utilizar para describir una amplia variedad de vistas arquitectonicas. La vista estatica
(mddulo) contiene los siguientes elementos: clases, paquetes, espacios de nombres,
directorios y proyectos; en otras palabras, todos los contenedores que puede usar para

programar codigo en ese lenguaje de programacion en particular. En la vista de distribucion,

26

se pueden encontrar los siguientes elementos: archivos (JAR, WAR, ensamblados),
computadoras, procesos, protocolos y canales de comunicacion, etc. En la vista dinamica
(tiempo de ejecucion) estamos interesados en los objetos de tiempo de ejecucion y sus

interacciones.

2.9.1. Arquitectura cliente-servidor

La arquitectura cliente-servidor de una red informatica es aquella en la que muchos
clientes (procesadores remotos) solicitan y reciben servicios de un servidor centralizado
(computadora host). Las computadoras cliente proporcionan una interfaz para permitir que un
usuario de computadora solicite servicios del servidor y muestre los resultados que devuelve
el servidor. Los servidores esperan que lleguen las solicitudes de los clientes y luego las

responden (The Editors of Encyclopaedia Britannica, 2023).

2.9.1.1. Servidor

Un servidor es un sistema que contiene datos o proporciona recursos a los que deben
acceder otros sistemas de la red. Los tipos de servidor comunes son servidores de archivos
que almacenan archivos, servidores de nombres que almacenan nombres y direcciones,
servidores de aplicaciones que almacenan programas y aplicaciones y servidores de
impresion que planifican y dirigen los trabajos de impresion al destino (IBM Documentation,

2021).

2.9.1.2. Cliente

Un cliente es un sistema que solicita servicios o datos de un servidor. Un cliente
puede solicitar codigo de programa actualizado o el uso de aplicaciones de un servidor de

cddigo. Para obtener un nombre o una direccion, un cliente se pone en contacto con un

27

servidor de nombres. Un cliente también puede solicitar archivos y datos para la entrada de
datos, las consultas o la actualizacion de registros de un servidor de archivos (IBM

Documentation, 2021).

2.9.2. MVC (Modelo-Vista-Controlador)

Es un patrén en el disefio de software comdnmente utilizado para implementar
interfaces de usuario, datos y légica de control. Enfatiza una separacién entre la ldgica de
negocios y su visualizacion. Esta "separacion de preocupaciones” proporciona una mejor
division del trabajo y una mejora de mantenimiento. Algunos otros patrones de disefio se
basan en MVC, como MVVM (Modelo-Vista-modelo de vista), MVP (Modelo-Vista-
Presentador) y MVW (Modelo-Vista-Whatever) (MVC - Glosario de MDN Web Docs:

Definiciones de términos relacionados con la Web | MDN, 2022).

2.10. Back-end

El back-end, también conocido como el lado del servidor, es la parte del software que
se encarga de procesar y almacenar los datos y de gestionar la légica de negocio. Es la
columna vertebral de cualquier aplicacién web o movil, ya que es responsable de
proporcionar la funcionalidad y los servicios necesarios para que la aplicacién pueda
funcionar correctamente.

En relacion al desarrollo de software, el back-end es crucial para garantizar la
seguridad, escalabilidad y rendimiento de una aplicacién. Un back-end bien disefiado y
desarrollado puede mejorar significativamente la experiencia del usuario y la eficiencia de la

aplicacion. (Eseme, 2021)

28

2.11. ;Qué es un Framework o marco de trabajo de backend?

Un Framework o marco de trabajo de software es una base donde los desarrolladores
pueden crear aplicaciones de una manera mas rapida y estandarizada. El siguiente ejemplo,
disponible en Stack Overflow (s. f.), es bastante Gtil para comprender el concepto de marco

de trabajo.

“... Si te dijera que cortes un trozo de papel con unas dimensiones de 5 m por 5
m, seguramente lo harias. Pero supon que te pido que cortes 1000 hojas de
papel de las mismas dimensiones. En este caso, no haras la medicién 1000
veces; obviamente, harias un marco de trabajo de 5 m por 5 m, y luego con su
ayuda podrias cortar 1000 hojas de papel en menos tiempo. Entonces, lo que
hiciste fue crear un marco de trabajo que haria un tipo especifico de tarea. En
lugar de realizar el mismo tipo de tarea unay otra vez para el mismo tipo de
aplicaciones, creas un marco de trabajo que tiene todas esas facilidades juntas
en un paquete agradable, proporcionando de esta forma la abstraccion para tu

aplicacion y, lo que es mas importante, muchas aplicaciones”.

En este orden de ideas, un marco de trabajo de software se puede considerar como una
plantilla predefinida que permite a los desarrolladores construir aplicaciones de manera mas
rapida y eficiente. De manera similar, un marco de trabajo de backend proporciona un
conjunto de herramientas y funcionalidades integradas que simplifican el desarrollo de
aplicaciones, permitiendo a los desarrolladores enfocarse en la l0gica especifica de su
aplicacion en lugar de reinventar constantemente la rueda. Este enfoque estandarizado y
eficiente no solo acelera el proceso de desarrollo, sino que también fomenta una mayor

consistencia y confiabilidad en las aplicaciones resultantes (Clark, 2021).

29

2.11.1. Evaluacion de Frameworks para Desarrollo de Backend

Los marcos de trabajo de backend son esenciales para el desarrollo de aplicaciones
para innumerables compafiias en todo el mundo en la actualidad. Encontrar el marco de
trabajo de backend adecuado puede ser crucial para que los desarrolladores garanticen un
rendimiento y escalabilidad éptimos. Con tantas opciones disponibles hoy en dia, elegir las
mas relevantes puede ser complicado.

En la presente revision, se evalan algunos de los frameworks mas destacados, como
Django, Laravel, Ruby on Rails, Spring Boot y Express, junto con una breve consideracion
de otros frameworks relevantes como ASP.NET Core, Node.js, Gin, Kotlin, Flask, CakePHP

y Yii.

Django (Python): Conocido por su facilidad de uso y capacidad para crear
aplicaciones web complejas, Django se destaca por su soporte para la arquitectura Modelo-
Vista-Controlador (MVC), generacién de codigo, enrutamiento de URL, validacién de datos

y seguridad.

Laravel (PHP): Reconocido por su elegancia y simplicidad, Laravel presenta un
s6lido soporte para la arquitectura MVC, generacion de codigo, enrutamiento de URL,
validacién de datos y seguridad. Sus caracteristicas clave incluyen una autenticacion
simplificada, una API flexible, soporte para varios backends de caché, registros y pruebas

sencillas.

Ruby on Rails (Ruby): Destacado por su velocidad, escalabilidad y facilidad de
aprendizaje, Ruby on Rails ofrece soporte para MVC, generacion de cddigo, enrutamiento de
URL, validacion de datos y seguridad.

30

Spring Boot (Java): Reconocido por su simplicidad y eficiencia, Spring Boot brinda
soporte para MVC, generacién de codigo, enrutamiento de URL, validacion de datos y
seguridad. Su flexibilidad y soporte para una amplia gama de tecnologias lo convierten en

una opcion atractiva para el desarrollo de backend en Java.

Express (JavaScript): Reconocido por su flexibilidad y rendimiento, Express ofrece
soporte para MVC, generacién de codigo, enrutamiento de URL, validacion de datos y
seguridad. Su capacidad para trabajar con una amplia gama de tecnologias lo hace popular

entre los desarrolladores que buscan un rendimiento éptimo.

2.11.1.1. Framework Laravel

Laravel se destaca como un robusto marco de trabajo web PHP de cddigo abierto,
disefiado para el desarrollo de aplicaciones web basadas en Symfony que siguen la
arquitectura Modelo-Vista-Controlador (MVC). Su versatilidad y diversas funcionalidades
hacen de Laravel una opcion atractiva para proyectos de desarrollo de backend. Algunas de
las ventajas clave de Laravel incluye su sistema de autenticacion simplificado, API flexible y
versatil, soporte para varios backends de caché, registro y manejo de errores, funcionalidades
de pruebas sencillas y caracteristicas de seguridad avanzadas (Documentacion Laravel en
espafiol - El framework de PHP para artesanos de la WEB, s. f.).

El marco de trabajo Laravel también presenta una serie de caracteristicas notables,
incluyendo un potente motor de plantillas que permite una generacién de disefios eficiente, un
solido soporte para la arquitectura Modelo-Vista-Controlador (MVC) que facilita una
separacion efectiva de la I6gica de presentacion y de negocios, un Mapeo Objeto-Relacional

Elocuente (ORM) para la construccién de consultas de bases de datos utilizando la sintaxis de

31

PHP, y una solida seguridad que incluye modalidades de contrasefia con hash y sal, entre
otras caracteristicas.

Estas caracteristicas y ventajas demuestran la idoneidad de Laravel para el proyecto
en cuestion, ya que su flexibilidad, facilidad de uso y potentes funcionalidades se alinean
perfectamente con los objetivos del proyecto y la metodologia de desarrollo prevista. Con su
solido soporte para MVC, ORM eficiente y caracteristicas de seguridad avanzadas, Laravel es

una opcion destacada para garantizar un desarrollo de backend eficiente y seguro.

2.12. Bases de datos

Las bases de datos son simplemente una forma estructurada y sistemética de
almacenar, acceder, analizar, transformar, actualizar y mover informacion (a otras bases de
datos) (Dowsett, 2022).

Asi pues, la relevancia de las bases de datos en el desarrollo de sistemas informaticos
es fundamental, ya que la mayoria de los sistemas informaticos dependen de ellas para
almacenar y administrar grandes cantidades de informacién. Las bases de datos, permiten a
los desarrolladores de software disefiar sistemas mas robustos, escalables y eficientes, al
mismo tiempo que proporcionan una estructura organizada para acceder y administrar la
informacidn. Ademas, las bases de datos son esenciales para la toma de decisiones y el
analisis de datos en los sistemas informaticos, lo que los hace imprescindibles en el mundo de

la tecnologia de la informacion.

2.12.1. Bases de datos relacionales

Una base de datos relacional organiza los datos en filas y columnas, que en conjunto
forman una tabla. Los datos normalmente se estructuran en varias tablas, que se pueden unir a

través de una clave principal o una clave externa. Estos identificadores unicos demuestran las

32

diferentes relaciones que existen entre las tablas, y estas relaciones generalmente se ilustran a
través de diferentes tipos de modelos de datos. Los analistas utilizan consultas SQL para
combinar diferentes puntos de datos y resumir el rendimiento empresarial, 1o que permite a
las organizaciones obtener informacion, optimizar los flujos de trabajo e identificar nuevas

oportunidades (IBM, 2021).

2.13. ORM

El Mapeador Objeto-Relacional (ORM por sus siglas en inglés: Object-Relational
Mapping) constituye un componente crucial en el desarrollo de aplicaciones, al permitir a los
desarrolladores interactuar con bases de datos relacionales utilizando objetos de
programacion. Al esconder gran parte de la complejidad de las consultas SQL, los ORM
simplifican el proceso de desarrollo y ayudan a mejorar la eficiencia y la productividad de los
equipos de desarrollo. Al hacer que la interaccion con la base de datos sea mas intuitiva y
menos propensa a errores, los ORM fomentan una programacién mas estructurada y
organizada, lo que a su vez conduce a la creacion de aplicaciones mas estables y mantenibles
(Deloitte-Spain, 2023).

En este contexto, la eleccion de Eloquent como ORM preferido para el proyecto se
fundamenta en su solido soporte y su destacada capacidad para simplificar el proceso de
desarrollo en el entorno especifico de PHP, garantizando asi la eficacia y la eficiencia en la
implementacion de la solucion propuesta. Laravel, el framework en el que se basa el
proyecto, incluye Eloquent, el cual se encarga de crear para cada tabla en la base de datos su
correspondiente "Modelo", lo que permite realizar operaciones como recuperar, insertar,
actualizar y eliminar registros de manera intuitiva y eficiente. Gracias a esta integracion

estrecha y la funcionalidad avanzada proporcionada por Eloquent, el desarrollo de la

33

aplicacion se lleva a cabo de manera agil y efectiva, permitiendo enfocarse en la ldgica de la
aplicacion en lugar de las complejidades de la base de datos (Documentacién Laravel en

espafol, s. f.-b).

2.14. API

Segun Jin et al. (2018), una API (interfaz de programacion de aplicaciones) se define
como "una interfaz entre dos sistemas de software que les permite comunicarse entre si".
Ellos contintan explicando que las API permiten que diferentes sistemas de software
interactlen e intercambien informacion entre si, sin necesidad de que los sistemas
subyacentes comprendan los detalles de implementacion de los demas. Los autores enfatizan
la importancia de disefiar API teniendo en cuenta las necesidades de los desarrolladores y

brindan orientacion practica para crear APl que sean féciles de usar y comprender.

2.14.1. APl Rest

Jin et al. (2018), definen una APl RESTful (Representational State Transfer) como
una API gue se adhiere a un conjunto de restricciones arquitectonicas, incluido el uso de
métodos HTTP (como GET, POST, PUT y DELETE) para realizar operaciones en recursos y
usar URI (identificadores uniformes de recursos) para identificar recursos. Ademas, las API
RESTful permiten a los desarrolladores crear APIs escalables, flexibles y mantenibles, y se

utilizan ampliamente en el desarrollo web moderno.

34

2.15. Seguridad de los datos

La seguridad de los datos es un aspecto critico en el desarrollo de aplicaciones y
sistemas informaticos. Se refiere a la implementacién de practicas y medidas disefiadas para
garantizar la confidencialidad, integridad y disponibilidad de la informacién. En un mundo
cada vez maés digital y conectado, la seguridad de los datos se ha vuelto esencial para proteger
la privacidad de los usuarios y prevenir el acceso no autorizado a la informacion sensible.

Las aplicaciones web se han convertido en la columna vertebral del entorno digital.
Su preferencia por el protocolo seguro HTTPS subraya la importancia de la seguridad en la
transmision de datos. En este contexto, el desarrollo de aplicaciones web se apoya en
enfoques avanzados de intercambio de datos en linea, destacando REST (Representational
State Transfer) por su flexibilidad. Este método, constituye la base para la evolucion
constante de aplicaciones que buscan optimizar el rendimiento y la experiencia del usuario

(Cevallos, 2022).

2.15.1. Web Tokens

Los tokens web (Web Tokens) son una forma popular de garantizar la seguridad en
las comunicaciones entre diferentes partes de una aplicacion web. Estos son pequefios
paquetes de informacion que contienen datos especificos y se utilizan para la autenticacion y
autorizacion. En un contexto de desarrollo web, los tokens web son cominmente utilizados
para validar la identidad de un usuario después de que este ha iniciado sesion. Los dos tipos
principales de tokens web son JWT (JSON Web Tokens) y OAuth y otros mecanismos

similares (Auth, s. f.).

35

2.15.1. Cookies

Las cookies son esenciales en las solicitudes web para el intercambio de informacion
entre el servidor y el cliente, brindando la capacidad de almacenar datos de manera
persistente durante un periodo. Su ubicacion en la seccion de cookies o en las herramientas de
desarrollo de los navegadores permite su visualizacion. Ampliamente utilizado en las
politicas de cookies, Google (s. f.) destaca su empleo para diversas funciones como
preferencias de usuario, seguridad, autenticacion y personalizacion de anuncios segun las

preferencias configuradas.

2.15.3. Sanctum

Laravel Sanctum ofrece un sistema de autenticacion ligero disefiado para SPAS,
aplicaciones moviles y APIs sencillas basadas en tokens. La flexibilidad de Sanctum permite
a cada usuario generar multiples tokens API, cada uno con habilidades y ambitos especificos
que determinan las acciones permitidas (Documentacion Laravel en espafiol - EI framework

de PHP para artesanos de la WEB, s. f.).

Funcionamiento de Laravel Sanctum:

e Tokens de API: Sanctum facilita la emision de tokens de API sin la complejidad de
OAuth. Inspirado en aplicaciones como GitHub, permite a los usuarios generar y
gestionar tokens API desde la configuracion de cuenta. Estos tokens, con una larga
duracion, pueden ser revocados manualmente por el usuario. La autenticacion se
realiza a través de la cabecera Authorization con un token API valido almacenado en

una tabla de base de datos.

36

e Autenticacion de SPA: Sanctum aborda la autenticacion de aplicaciones de pagina
Unica (SPA) que se comunican con una API Laravel. Utiliza servicios de
autenticacion de sesion basados en cookies incorporados en Laravel, sin necesidad de
tokens. Aprovechando la guarda de autenticacion web de Laravel, ofrece beneficios
de proteccion CSRF, autenticacion de sesion y seguridad contra fuga de credenciales
por XSS.

e Uso de Cookies: Sanctum autentica mediante cookies solo cuando la peticion
proviene del frontend SPA. Al examinar una solicitud HTTP entrante, verifica la
presencia de una cookie de autenticacion. Si no esta presente, examina la cabecera

Authorization en busca de un token API valido.

2.16. Protocolos HTTP y HTTPS

Los protocolos HTTP (Hypertext Transfer Protocol) y HTTPS (Hypertext Transfer
Protocol Secure) son fundamentales para la comunicacion en la World Wide Web. Estos
protocolos definen cdmo los mensajes se formatean y transmiten, permitiendo la transferencia

de datos entre clientes y servidores de manera efectiva y segura.

2.16.1. HTTP (Hypertext Transfer Protocol)

El Protocolo de transferencia de hipertexto (HTTP: Hypertext Transfer Protocol) es el
protocolo base para la comunicacién en la web. Es un protocolo sin estado, lo que significa
que cada solicitud entre un cliente y un servidor se trata de manera independiente, sin que el

servidor recuerde el estado anterior. Las solicitudes HTTP pueden ser de diferentes tipos,

37

como GET para recuperar datos, POST para enviar datos al servidor, y otros métodos para

diferentes acciones (DevDacs, s. f.).

Caracteristicas Clave de HTTP:
e Sin Estado: Cada solicitud es independiente, sin conocimiento del estado anterior.
e Basado en Texto: Los mensajes HTTP son legibles para humanos y estan
compuestos principalmente de encabezados y cuerpo.
e Conexiones No Seguras: La informacion transmitida no esté cifrada, lo que puede

presentar riesgos de seguridad, especialmente para datos sensibles.

2.16.2. HTTPS (Hypertext Transfer Protocol Secure)

El Protocolo de transferencia de hipertexto seguro (HTTPS: Hypertext Transfer
Protocol Secure) es la version segura de HTTP y utiliza cifrado para proteger la integridad y
confidencialidad de los datos transmitidos. Se basa en el protocolo SSL/TLS para

proporcionar una capa adicional de seguridad (DevDocs, s. f.).

Caracteristicas Clave de HTTPS:
e Cifrado: Utiliza SSL/TLS para cifrar los datos, lo que hace que sea mas dificil para los
atacantes interceptar y comprender la informacion transmitida.
e Certificados SSL/TLS: Requiere un certificado SSL/TLS valido para establecer la
conexion segura.

e Puerto 443: HTTPS utiliza el puerto 443 en lugar del puerto 80 utilizado por HTTP.

Ventajas de HTTPS sobre HTTP:

o Seguridad de Datos: La informacidn sensible esta protegida mediante cifrado.

38

o Integridad de Datos: El cifrado garantiza que los datos no se alteren durante la
transmision.
o Autenticaciéon: Los certificados SSL/TLS permiten verificar la autenticidad del

servidor.

2.17. Herramientas de escalabilidad — Contenedores y Kubernetes

En el &mbito de desarrollo y despliegue de aplicaciones, la escalabilidad se ha
convertido en un aspecto critico. La capacidad de manejar el aumento de carga y asegurar un
rendimiento consistente lleva al uso extendido de herramientas como contenedores y

orquestadores como Kubernetes.

2.17.1. Contenedores

Los contenedores son entornos ligeros y portatiles que encapsulan una aplicacién y
todas sus dependencias, permitiendo su ejecucién de manera consistente en cualquier entorno
que admita contenedores. La tecnologia de contenedores, liderada por Docker, ha
transformado la forma en que las aplicaciones se desarrollan, empaquetan y despliegan (IBM.

s. f.-b).

Caracteristicas Clave de Contenedores:

e Portabilidad: Los contenedores incluyen todo lo necesario para ejecutar una
aplicacién, asegurando la consistencia entre entornos de desarrollo, prueba y
produccion.

e Aislamiento: Cada contenedor es independiente, evitando conflictos de dependencias

entre aplicaciones.

39

e Eficiencia: Los contenedores comparten el mismo ndcleo del sistema operativo,

reduciendo la sobrecarga en comparacion con las maquinas virtuales.

2.17.2. Kubernetes

Kubernetes, a menudo abreviado como K8s, es un sistema de orquestacion de
contenedores de cddigo abierto que automatiza la implementacion, escalabilidad y operacién
de aplicaciones en contenedores. Disefiado por Google, Kubernetes proporciona un entorno

robusto y escalable para gestionar aplicaciones contenerizadas en un cluster (iKenshu, 2019).

Caracteristicas Clave de Kubernetes:

e Orquestacion Automatizada: Kubernetes automatiza la implementacion,
actualizacion y escalabilidad de las aplicaciones.

e Escalabilidad Horizontal: Permite la escalabilidad dindmica agregando o eliminando
contenedores segun la carga de trabajo.

e Autoreparacion: Kubernetes detecta y reemplaza automéaticamente contenedores o
nodos defectuosos.

e Gestion de Recursos: Controla y asigna recursos, como CPU y memoria, para

garantizar un rendimiento optimo.

Las herramientas de escalabilidad, como los contenedores y Kubernetes, han
revolucionado la forma en que las aplicaciones se desarrollan, despliegan y escalan. Estas
tecnologias ofrecen soluciones eficientes y flexibles para abordar los desafios de
escalabilidad en entornos modernos, permitiendo a las empresas mejorar la eficiencia, la

consistencia y la confiabilidad de sus aplicaciones.

40

2.18. Técnicas para digitalizar y almacenar documentos

La digitalizacion de documentos es un proceso esencial en entornos modernos que
permite convertir documentos fisicos en formato digital para facilitar su almacenamiento,
gestidn y acceso. Este proceso es especialmente valioso para documentos como partituras
musicales, donde la preservacion y manipulacion digital son cruciales. A continuacion, se
describen varias técnicas y consideraciones relacionadas con la digitalizacion y

almacenamiento de documentos, especificamente partituras.

2.18.1. Digitalizacion de Documentos

La digitalizacion implica la conversion de documentos fisicos, como partituras en
papel, a formatos digitales. En el caso de partituras, se puede realizar utilizando una cdmara
fotografica para capturar imagenes de alta resolucién. Posteriormente, estas imagenes se
pueden convertir a formatos digitales comunes como JPEG, PNG o incluso documentos PDF.
Este proceso no solo preserva la esencia de la partitura fisica, sino que también facilita su

almacenamiento y distribucion electronica (Sydle, 2023).

2.18.2. Almacenamiento en el Sistema de Archivos

En esta técnica, las imagenes o documentos PDF generados se almacenan
directamente en carpetas del sistema de archivos. Después de la digitalizacion, los archivos se
guardan en ubicaciones especificas del sistema de archivos. La base de datos almacena
referencias (rutas o0 nombres de archivo) para acceder a ellos.

Ventajas:

e Simplicidad: Es un enfoque directo y facil de implementar.

41

e Accesibilidad: Los archivos son accesibles a través del sistema de archivos.

2.18.3. Almacenamiento en Servicios de Almacenamiento en la Nube

Los documentos digitalizados se pueden cargar en servicios de almacenamiento en la
nube (por ejemplo, Google Drive, Dropbox). La base de datos almacena enlaces o referencias
a los archivos almacenados en la nube.

Ventajas:
e Escalabilidad: Facilita la gestion de grandes voliumenes de documentos.

e Accesibilidad Remota: Permite acceder a los documentos desde cualquier ubicacion.

2.18.4. Almacenamiento en Base de Datos usando el Tipo de Dato Binario

Las imégenes o documentos PDF se almacenan directamente como tipos de datos
binarios en la base de datos. Los documentos digitalizados se guardan en columnas de tipo
binario (BLOB o bytea segun la base de datos).

Ventajas:
e Consistencia: La base de datos mantiene una relacion uno a uno entre la entrada y el
archivo.

e Simplicidad: Implementacion directa y facil gestion de los documentos.

Para el proyecto en cuestion, la técnica seleccionada para almacenar los documentos
digitalizados, como las partituras, es la descrita en el punto 2.18.4: "Almacenamiento en Base
de Datos usando el Tipo de Dato Binario™. En este enfoque, las imagenes y documentos PDF
digitalizados se guardan directamente como tipos de datos binarios en la base de datos. Esta

eleccion se alinea con los requisitos del proyecto, priorizando la simplicidad, la consistencia

42

y la gestion eficiente de documentos, asegurando un acceso rapido y seguro a las partituras

digitalizadas.

2.19. Herramientas tecnologicas

2.19.1. PHP

PHP es un lenguaje de secuencias de comandos de propoésito general de codigo
abierto ampliamente utilizado que es especialmente adecuado para el desarrollo web y se
puede incrustar en HTML (PHP: What is PHP? - Manual, s. f.). Se hara uso de la version

8.1.

2.19.2. Laravel

Laravel es un marco de trabajo o framework, basado en el lenguaje de programacion
PHP, gratuito y de codigo abierto que proporciona un conjunto de herramientas y recursos
para crear aplicaciones PHP modernas. Con un ecosistema completo que aprovecha sus
funciones integradas y una variedad de paquetes y extensiones compatibles. Laravel
proporciona poderosas herramientas de base de datos que incluyen un ORM (Object
Relational Mapper) llamado Eloguent y mecanismos integrados para crear migraciones de
bases de datos y seeders. Con la herramienta de linea de comandos Artisan, los
desarrolladores pueden iniciar nuevos modelos, controladores y otros componentes de la

aplicacion, lo que acelera el desarrollo general de la aplicacion (Heidi, 2021). (Version 10).

43

2.19.3. Eloquent

Eloquent, es un mapeador objeto-relacional (ORM) que hace que sea agradable
interactuar con la base de datos. Cuando se utiliza Eloquent, cada tabla de la base de datos
tiene su correspondiente "Modelo™ que se utiliza para interactuar con esa tabla. Ademas de
recuperar registros de la tabla de la base de datos, los modelos de Eloquent permiten insertar,

actualizar y eliminar registros de la tabla (Documentacion Laravel en espafiol, s. f.-b).

2.19.4. SQL

SQL, conocido como lenguaje de consulta estructurada, ha transformado la gestion de
bases de datos relacionales con su capacidad de interactuar con sistemas de gestion de bases
de datos de manera eficiente. Su sintaxis clara y coherente simplifica la realizacion de
consultas complejas y operaciones de administracion. Dividido en comandos de creacion y
manipulacion de datos, SQL permite la creacion de objetos esenciales en la estructura de la
base de datos y facilita la seleccion, insercion, actualizacion y eliminacion de registros.
Ampliamente utilizado en una variedad de aplicaciones, desde sistemas de inventario hasta
aplicaciones web dinamicas, SQL sirve como una herramienta vital para desarrolladores de
software y analistas de datos, brindando una interfaz efectiva para gestionar y analizar datos

criticos en diferentes entornos operativos (AWS, s. f.).

2.19.5. PostgreSQL

PostgreSQL es un sistema de base de datos altamente estable y de cddigo abierto que
brinda soporte a diferentes funciones de SQL, como claves externas, subconsultas,
disparadores y diferentes tipos y funciones definidos por el usuario. Aumenta ain mas el

lenguaje SQL y ofrece varias caracteristicas que escalan y reservan cargas de trabajo de datos

44

meticulosamente. Se utiliza principalmente para almacenar datos para muchas aplicaciones

moviles, web, geoespaciales y de analisis (Ravoof, 2023). (Version 14.9).

2.19.6. Visual Studio Code

Visual Studio Code es un entorno de desarrollo integrado (IDE) de cddigo abierto
desarrollado por Microsoft. Es conocido por su amplia gama de funciones y su interfaz de
usuario altamente personalizable que lo convierte en una herramienta popular entre los
desarrolladores de software. Disefiado para admitir multiples lenguajes de programacion y
plataformas, Visual Studio Code es compatible con sistemas operativos Windows, macOS y
Linux (Visual Studio Code - Code editing. Redefined, 2021).

Entre las caracteristicas clave de Visual Studio Code se encuentran su potente editor
de codigo con resaltado de sintaxis, finalizacién de cédigo y depuracién integrada. Ademas,
ofrece una amplia gama de extensiones y complementos que permiten a los usuarios
personalizar su experiencia de desarrollo segun sus necesidades especificas.

Visual Studio Code también es conocido por su amplio soporte para el control de
versiones a través de sistemas como Git, lo que facilita el trabajo colaborativo y el
seguimiento de cambios en el codigo. Asimismo, proporciona una integracion fluida con
servicios en la nube y herramientas de desarrollo web, lo que lo convierte en una opcion

versatil para una variedad de proyectos de desarrollo de software. (Version 1.84).

2.19.7. Postman

Postman es una plataforma de colaboracién para el desarrollo de APl que simplifica el
proceso de disefio, desarrollo, prueba y documentacion de API. Se ha convertido en una
herramienta esencial para los desarrolladores de software y equipos de desarrollo, ya que

permite una facil interaccion con APl y servicios web de una manera intuitiva y eficiente.

45

Con Postman, los desarrolladores pueden enviar solicitudes a una API, inspeccionar
las respuestas y realizar pruebas exhaustivas para garantizar la funcionalidad y el rendimiento
adecuados de la APl. Ademas de sus capacidades de prueba, Postman ofrece herramientas
para la creacién de documentacion detallada de API, lo que facilita la comprension y el uso
de las API por parte de otros miembros del equipo y de la comunidad en general (About

Postman, 2023).

2.19.8. Docker

Docker es una plataforma de codigo abierto que facilita la creacion, implementacion y
ejecucidn de aplicaciones en contenedores. Los contenedores son unidades ligeras y portatiles
que encapsulan una aplicacion y sus dependencias, permitiendo su ejecucion de manera
consistente en cualquier entorno compatible con Docker. Las caracteristicas clave de Docker
incluyen portabilidad, eficiencia y gestion de recursos. Permite a los desarrolladores empacar
una aplicacion y todas sus dependencias en un contenedor, lo que garantiza que se ejecute de
manera coherente en cualquier entorno (InnovaciénDigital, 2022). (Versién 24.0.7)

Para integrar Docker con Laravel, generalmente se define un archivo Dockerfile para
construir la imagen del contenedor de la aplicacion Laravel y un archivo docker-
compose.yml para configurar y ejecutar servicios adicionales. Laravel proporciona una
estructura modular gque se integra bien con el enfoque de contenedores de Docker

(Documentacion Laravel en espafiol, s. f.-b).

46

CAPITULO 3: ANALISIS Y DISENO DEL

SISTEMA

Este capitulo constituye una inmersién en la especificacion y disefio del backend del
sistema, concentrandose en los requerimientos (identificacion de funcionalidades del
software) y en la descripcion de las historias de usuario. En este contexto, nos abocaremos al
disefio de pruebas, estableciendo una base robusta para la validacion continua del sistema.

Con un énfasis exclusivo en la logica del servidor, exploramos estrategias detalladas
de prueba que garantizaran la fiabilidad del back-end. Ademas, se abordaran aspectos
cruciales como la arquitectura general del sistema (Cliente-Servidor), la eleccion del patron
de disefio (MVC) y el modelado de datos (Entidad-Relacién), configurando asi la

infraestructura esencial para la implementacion del sistema.

3.1. Requerimientos del Sistema

A continuacion, se delinean los requisitos esenciales que guiaran el desarrollo del
sistema. Es necesario definir los actores presentes en la aplicacion y requisitos del sistema,
los cuales abarcan tanto aspectos funcionales como no funcionales, estableciendo el marco

estructural y los estandares de calidad a alcanzar.

47

3.1.1. Actores

Un actor es una persona que interactta con el sistema para ejecutar y cumplir con los
requerimientos planteados. Se ha realizado una investigacion de los actores que forman parte
del desarrollo de la aplicacidn, los cuales cumplen tareas especificas en el sistema. Para el
desarrollo de la aplicacién distinguimos dos actores: administrador y usuario prestatario.

e Administrador: Posee acceso a todas las funcionalidades del sistema. Es el
encargado del registro y control de préstamos de partituras, asi como el
seguimiento y control de solicitudes de partituras. Puede registrar usuarios

administradores y prestatarios.

Reqistro de usuarios

» Registro de partituras

.
T

Administrador \ Registro y control de

prestamos de partituras

Figura 3: Usuario Administrador.

e Usuario prestatario (Autenticado): Posee permisos para solicitar préstamos

de partituras dentro del sistema. Si lo desea puede registrarse en el sistema.

Registrarse en el
sistema

Solicitar prestamo de’,
partituras "

Descargar partituras
digital

Usuario Autenticade

Figura 4: Usuario Prestatario (Autenticado).

48

3.1.2. Requisitos Funcionales

Un requisito funcional define las funcionalidades que debe realizar el sistema. A

continuacion, se presentan de manera general los principales requisitos de la aplicacion:

e Registro y autenticacion de usuarios: El usuario administrador puede registrar
usuarios administradores y usuarios prestatarios del sistema. Ademas, los usuarios
registrados en el sistema pueden realizar distintas acciones del sistema.

e Registro inicial del sistema: El sistema posee una carga inicial que permite
configurar y registrar la informacién de las partituras, por ejemplo, autor, género
musical, ubicaciones y archivadores.

e Registro de partituras: El usuario administrador puede realizar la carga de partituras
dentro del sistema, indicando datos propios de la misma, como autor, género, titulo y
ubicacion.

e Solicitud de préstamos de partituras: Los usuarios prestatarios pueden solicitar
préstamos de las partituras almacenadas en el sistema. Esta solicitud puede hacerse de
dos formas, un préstamo digital y un préstamo fisico.

e (Cargay descarga de partituras: Mediante el sistema se pueden cargar y descargar
las partituras, si la solicitud de préstamo es de forma digital.

e Busqueda, filtrado y ordenacion de partituras: Los usuarios pueden llevar a cabo
busquedas de partituras por el titulo, autor o género musical atendiendo a los criterios

definidos en la aplicacion.

49

3.1.3 Requisitos no funcionales

Los requisitos no funcionales imponen restricciones en el disefio o la implementacion

de la aplicacion. Se describen a continuacion los requisitos que definiran la manera de

desarrollar la aplicacion.

3.1.4.

Confidencialidad: La informacion manejada por el sistema esta protegida de acceso
no autorizado y divulgacion.

Disponibilidad: El sistema debe estar disponible en cualquier momento. Los usuarios
tienen acceso garantizado a la informacion.

Mantenimiento: El codigo fuente del sistema debe estar bien documentado y seguir
las mejores practicas de desarrollo para facilitar futuras mejoras y actualizaciones.
Portabilidad: El sistema debe poder ejecutarse en diferentes plataformas con
cambios minimos, por lo que es necesario que posea un disefio “Responsive” a fin de
garantizar la visualizacion en multiples equipos electronicos, computadoras,
dispositivos moviles.

Fiabilidad: El sistema debe ser confiable y cumplir con los requisitos planteados.
Usabilidad: El sistema posee una interfaz sencilla y atractiva que garantiza el buen

funcionamiento del sistema al usuario.

Historias de Usuario

La descripcion detallada de las historias de usuario complementa este enfoque,

proporcionando una comprension exhaustiva de las funcionalidades clave que se deben

implementar, junto con criterios de aceptacidn especificos que actdan como hitos claros para

la finalizacion exitosa de cada caracteristica. En la tabla 1 se exponen las historias de usuario

50

del sistema con una breve descripcién, seguidamente se mostrara la estructura de las historias

de usuarios mas relevantes del sistema.

Nombre de la historia de usuario

Descripcién

001

Registro de partitura

Como administrador del sistema quiero poder
registrar una nueva partitura en el sistema, para
tener un registro organizado de todas las
partituras disponibles en la fundacién.

002

Registro de autor

Como administrador del sistema quiero poder
registrar un nuevo autor de partitura para tener
un registro organizado de los autores de
partituras disponibles.

003

Registro de géneros musicales

Como administrador del sistema quiero poder
registrar un nuevo genero musical para tener
un registro organizado de los géneros
musicales disponibles.

004

Registro de ubicaciones

Como administrador del sistema quiero poder
registrar una nueva ubicacion para tener un
registro organizado de los archivadores y/o
gavetas.

005

Registro de archivadores

Como administrador del sistema quiero poder
registrar un nuevo archivador para tener un
registro organizado de los archivadores.

006

Registro de gavetas

Como administrador del sistema quiero poder
registrar una nueva gaveta para tener un
registro organizado de los archivadores.

007

Registro de usuario

Como administrador del sistema quiero poder
registrar usuarios para que puedan solicitar
préstamos de partituras digitales o fisicas.

Como usuario quiero poder registrarme en la
aplicacion y poder solicitar préstamos de
partituras digitales.

008

Registro de usuarios administrador

Como administrador del sistema quiero poder
registrar usuarios administradores

009

Descargar partitura digital

Como Prestatario quiero poder descargar una
partitura digital.

010

Préstamo de partitura fisico

Como administrador del sistema puedo
registrar un préstamo de partitura asociado a
un prestatario.

51

011

Como prestatario quiero registrarme en el

Registrarse como prestatario sistema para solicitar préstamos de partituras.

Tabla 1: Historias de usuario del sistema

A continuacion, se presentan las historias de usuario mas resaltantes del sistema.

Historia de usuario HU 001

Nombre de la historia de usuario: Registro de partitura

Usuario: Administrador del sistema

Descripcion: Como administrador del sistema quiero poder registrar
una nueva partitura en el sistema, para tener un registro organizado de
todas las partituras disponibles en la fundacidn.

Validacidn:

El usuario debe tener acceso al formulario de partitura.

El usuario debe poder ingresar los siguientes campos: |

Titulo de la partitura(Campo de texto. Obligatorio)

Autor de la partitura (Campo de seleccién. Obligatorio)

Género musical al que pertenece(Campo de seleccién. Opcional)
Ubicacién fisica del documento(Opcional)

Stock disponible (Campo de tipo numérico. Es opcional, pero se
establecera en 0 si no se proporciona)

Figura 5: Historia de usuario HU 001: Registro de Partituras

Historia de usuario HU 007

Nombre de la historia de usuario: Registro de usuarios prestatario

Usuario: Administrador del sistema o usuario

Descripcion: Como administrador del sistema quiero poder registrar
usuarios para que puedan solicitar prestamos de partituras digitales o
fisicas.

Como usuario quiero poder registrarme en la aplicacién y poder
solicitar prestamos de partituras digitales.

Validacién:

El usuario debe tener acceso al formulario de registro de prestador.
El usuario debe poder ingresar los siguientes campos:
Nombre(Campo de texto. Obligatorio)

Teléfono (Campo numeérico. Obligatorio)

Correo electronico (Campo de texto. Obligatorio)

Figura 6: Historia de usuario HU 007: Registro de usuario prestatario.

52

Historia de usuario HU 008

Nombre de la historia de usuario: Registro de usuario ladministrador

Usuario: Administrador del sistema

Descripcion: Como administrador del sistema quiero poder registrar
usuarios administradores.

Validacion:

El usuario debe tener acceso al formulario de registro de administrador.
El usuario debe poder ingresar los siguientes campos:

Nombre(Campo de texto. Obligatorio)

usuario (Campo de texto. Obligatorio)

Contrasefia (Campo de texto. Obligatorio)

Figura 7: Historia de usuario HU 008: Registro de usuario administrador.

Historia de usuario HU 009

Nombre de la historia de usuario: Descargar partitura digital

Usuario: Prestatario

Descripcion: Como Prestatario quiero poder descargar una partitura
digital.

Validacion:

Se debe tener un usuario registrado en el sistema.

El usuario debe tener acceso al formulario de solicitud de préstamos.
El usuario debe poder ingresar los siguientes campos:
Partitura(Campo de seleccion. Obligatorio)

Fecha del préstamo (Campo de tipo fecha. Obligatorio)

Fecha de entrega (Campo de tipo fecha. Obligatorio)

Cantidad (Campo de tipo numeérico)

Figura 8: Historia de usuario HU 009: Descargar partitura digital.

53

Historia de usuario HU 010

Nombre de la historia de usuario: Préstamo de partitura fisico

Usuario: Administrador del sistema

Descripcion: Como administrador del sistema puedo registrar urj
préstamo de partitura asociado a un prestatario.

Validacion:

El usuario prestatario debe tener un usuario dentro del sistema.

El usuario debe tener acceso al formulario de solicitud de préstamos.
El usuario administrador puede aprobar préstamos de partituras.

El usuario debe poder ingresar los siguientes campos:
Partitura(Campo de seleccion. Obligatorio)

Fecha del préstamo (Campo de tipo fecha. Obligatorio)

Fecha de entrega (Campo de tipo fecha. Obligatorio)

Cantidad (Campo de tipo numérico)

Figura 9: Historia de usuario HU 010: Préstamo de partitura fisico.

3.2. Disefo de Pruebas

Este es el paso crucial para asegurar la robustez y confiabilidad del sistema. Siguiendo

la metodologia TDD, a partir de cada aspecto funcional del sistema identificado en la seccion

anterior, se traducira en una prueba unitaria.

1. Test para registrar un usuario prestatario

Nombre: Registrar un usuario prestatario en el sistema.

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios
para ser almacenados en la base de datos.

Los campos requeridos no deben llegar nulos.

El nombre de usuario no debe estar repetido.

Validar que el sistema permita registrar una contrasefia valida.
Validar que s6lo permita registros con correos electrénicos validos.
Validar que permita ingresar datos numéricos en el campo Teléfono.
Validar envio de correo de confirmacion.

Validar que no permita registros con un correo electrénico duplicado.

54

2. Test para registrar un usuario administrador
Nombre: Registrar un usuario administrador en el sistema.

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios
para ser almacenados en la base de datos.

e Los campos requeridos no deben llegar nulos.
e El nombre de usuario no debe estar repetido.

e Validar que el sistema permita registrar una contrasefia valida.

3. Test para el Login de usuario

Nombre: Iniciar sesion en el sistema.
Descripcion: Validar que se pueda ingresar con las credenciales registradas en el sistema.

e Validar acceso con credenciales correctas.
e Validar mensaje de error con credenciales incorrectas.

e Validar cierre de sesion.

4. Test para registrar partituras
Nombre: Registrar partituras en el sistema

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios
para ser almacenados en la base de datos.

e Los campos requeridos no deben llegar nulos.

e Un titulo perteneciente a un autor no debe estar repetido.

e Sino se ingresa la cantidad de partituras, el sistema la establece en 0.

e En el sistema tienen que existir registros almacenados de género musical y autor de la

partitura.

5. Test para registrar autor

Nombre: Registrar autor en el sistema

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios
para ser almacenados en la base de datos.

e Los campos requeridos no deben llegar nulos.

55

e EI campo nombre no debe estar repetido.

6. Test para registrar géneros musicales

Nombre: Registrar género musical en el sistema

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios
para ser almacenados en la base de datos.

e Los campos requeridos no deben llegar nulos.

e El campo nombre no debe estar repetido.

7. Test para registrar ubicaciones

Nombre: Registrar ubicaciones en el sistema

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios
para ser almacenados en la base de datos.

e Los campos requeridos no deben llegar nulos.

e En el sistema tienen que existir registros almacenados de gaveta y archivador.

8. Test para registrar gavetas

Nombre: Registrar gavetas en el sistema

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios
para ser almacenados en la base de datos.

e Los campos requeridos no deben llegar nulos

e El campo nombre no debe estar repetido.

9. Test para descargar partituras en digital

Nombre: Descargar partituras en digital

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios
para ser almacenados en la base de datos.

e Validar que la fecha de préstamo de la partitura sea menor a la fecha de entrega.

56

e Validar que la partitura solicitada esté registrada en el sistema.
e Validar que la cantidad a solicitar sea mayor a 0.

e Validar que el sistema habilite la descarga de la partitura solicitada.

10. Test para solicitar préstamos de partituras en fisico
Nombre: Solicitar préstamo de partitura en fisico

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios
para ser almacenados en la base de datos.

e Validar que la fecha de préstamo de la partitura sea menor a la fecha de entrega.
e Validar que la partitura solicitada esté registrada en el sistema.
e Validar que la cantidad a solicitar esté disponible en el inventario de partituras.

e Validar que se puedan aprobar los préstamos de partituras.

11. Test para que el usuario prestatario pueda visualizar el historial de partituras
Nombre: Visualizar historial de partituras.

Descripcion: Validar que un usuario pueda registrarse en el sistema y visualizar el historial o
listado de partituras.

e Validar que el usuario pueda ingresar en el sistema.
e Validar que el usuario pueda visualizar el listado de partituras.

e Validar que el usuario pueda filtrar la informacion de las partituras.

3.3. Arquitectura General del Sistema (Cliente - Servidor)

La vision general del sistema, se configura bajo una arquitectura cliente-servidor. En
esta estructura, el servidor se posiciona como el nucleo central, manejando la l6gica de
negocio y operaciones robustas, mientras que el cliente interactia de manera eficiente para

obtener y presentar la informacion. Esta disposicidon permite una gestion efectiva de

57

solicitudes y respuestas, asegurando un rendimiento optimizado en cada interaccion del
usuario.
A continuacion, se describen las partes fundamentales de la arquitectura general de la

aplicacion, representada en el siguiente diagrama (Figura 10):

Cliente Servidor

FRONTEND BACKEND DB

_.-_Q)__-._ Vue - API p Laravel *%-

PostgresSQL

Diagrama de la Arquitectura general del sistema
(Cliente-Servidor)

Figura 10. Arquitectura General (Cliente-Servidor)

Cliente: El usuario interactla a través del frontend.

Frontend: La interfaz de usuario se construye con Vue.js, facilitando la creacion de
experiencias interactivas y atractivas.

Servidor: Compuesto por el backend y la base de datos, el servidor gestiona la l6gica de la
aplicacion y el almacenamiento de datos.

Backend (Laravel): Desarrollado con Laravel, un framework PHP que utiliza la estructura
MVC para organizar y gestionar la lo6gica de la aplicacion.

Base de Datos (PostgresSQL.): PostgresSQL es la eleccion para almacenar y gestionar los

datos, facilitando la interaccion mediante un Mapeador Objeto-Relacional (ORM).

Flujo de Datos:
o El cliente realiza acciones en la interfaz.

e Se generan solicitudes al backend mediante una APl RESTful.

58

e El backend procesa las solicitudes, realiza operaciones en la base de datos y devuelve

los resultados al frontend.

3.4. Patréon de Disefno de software - MVC

El patron de disefio Modelo-Vista-Controlador (MVC) se refleja en la légica de la

aplicacion, orientado al disefio del back-end, de la siguiente manera (Figura 11):

1. Solicitud HTTP: EIl proceso comienza con una solicitud HTTP que proviene de un
cliente, representada por el nodo VIEW en el diagrama. Esta solicitud se dirige al
nodo ROUTE a traves de la funcionalidad de enrutamiento.

2. Sedirecciona la peticién al controlador: La funcion principal del enrutador
representado por el nodo ROUTE, es dirigir la solicitud HTTP entrante al controlador
correspondiente dado por el nodo CONTROLLER. El enrutador determina qué
controlador debe manejar la solicitud, mediante una funcion especifica.

3. Ldgica de negocio: El controlador representado por el nodo CONTROLLER, es
responsable de la I6gica de negocio de la aplicacién. Recibe la solicitud del enrutador
y realiza las operaciones necesarias para procesarla. El controlador puede interactuar
con el modelo (nodo MODEL) para realizar operaciones en la base de datos (nodo
DB) y obtener la informacién necesaria.

4. Se busca la data: EI modelo representado por el nodo MODEL, se encarga de
interactuar con la base de datos (DB). Realiza consultas y operaciones en la base de
datos para obtener o actualizar la informacion solicitada por el controlador. La base de

datos contiene la informacion persistente de la aplicacion.

59

5. Se muestran los datos: Una vez que el controlador ha procesado la solicitud y
obtenido la informacidn necesaria del modelo, se pasa esa informacion a la vista
representada por el nodo VIEW. La vista se encarga de presentar la informacion al

usuario final de la manera mas adecuada.

5. Se muestran los datos

2. Se direcciona la peticion al controlador
l. Solicimd HTTP_| 1 VIEW

| ! Solicitud HTTP
Rol.;rl“]:: ‘_-_-_-_-_-_- R{'h’puﬂ'h’lil /—'

4. Se busca la data

LUna Fungidn

3. Logica {le negocio

Consulfas

CONTROLLER

Operaciones

™ MODEL

Figura 11. Patron de Disefio MVC

Flujo General:
e Lasolicitud HTTP inicia el proceso y se dirige al controlador por medio de una ruta.
e El controlador realiza la l6gica de negocio y puede interactuar con el modelo para
obtener o actualizar datos.

e Lainformacion se pasa a la vista, que se encarga de presentarla al usuario.

Este disefio modular facilita el mantenimiento, la escalabilidad y la comprension del

cddigo, ya que cada componente tiene una responsabilidad clara y separada.

60

3.5. Modelado de Datos (Diagrama de Entidad-Relacion)

A continuacion, se presenta una breve descripcion del modelado de datos que respalda
el sistema. La eleccion de PostgresSQL como sistema de gestion de bases de datos y Laravel

como framework ofrece robustez y eficiencia en la manipulacion de datos.

El modelado sigue las mejores practicas, garantizando una estructura légica y
coherente. EI Diagrama de Entidad-Relacion (Figura 12) ilustra claramente las entidades,
atributos y relaciones, proporcionando una guia visual del esquema de la base de datos. Este
enfoque facilita la gestion de datos complejos y su manipulacion dentro de la aplicacion.

En tal sentido, en el diagrama entidad-relacion que modela la base de datos, se
resaltan las tablas fundamentales que capturan las relaciones clave en el sistema. La entidad
principal, Partitura, actiia como eje central y se conecta de manera significativa con otras
entidades cruciales, como Autor, Género, y Ubicacion. Estas entidades adicionales permiten
clasificar y organizar las partituras segun sus autores, géneros musicales, y ubicaciones
fisicas.

Para respaldar la gestién eficiente de partituras digitalizadas, se encuentra la tabla
“files”, la cual almacena representaciones digitales vinculadas directamente a las partituras.
Ademas, la gestidn de préstamos, una funcionalidad vital del sistema, se representa a través
de las entidades Préstamo y Usuario Prestatario. Estas entidades capturan la informacion
esencial sobre los préstamos realizados, como fechas y estados del préstamo, junto con la
identificacion de los usuarios que han solicitado las partituras.

Este esquema nos da un vistazo completo de cOmo estas piezas estan conectadas,
dando una perspectiva mas profunda sobre la estructura y las relaciones fundamentales en el

sistema de gestion de partituras.

61

music_sheet_loan

Pk ->id
intfFk -> music_sheet_id
inffFk -=loan_id

S

music_sheets

intlPk. ->id

string -> title

int -> quantity
int -> available
int|Fk -> author_id
int|Fk -> gender_id
int|Fk -> location_id
int|Fk - file_id

e

loans
int|Pk =id
int|Fk > user_id -
string -> status
date ->loan_date
date > delivery_date
int -> guantity
stringlArray -> status
authors
user
intPk > id - -
string -> first_name intfPk ->id
string -> last_name sting ->name
string -> email
string ->rol
genders
Pk ->id cabinets
string -> name
intPk >id
string - name
locations
profile
intlPk ~ ->id drawers ; i
int|Fk -> cabinet_id :EIIIEE : fser »
int|Fk -> drawer_id) -

l Jifssall Pk~ ->id string -> first_name
string -=name string -> last_name
int -= cabinets_guantity sting -> phone

string -> address
files /—‘ int|Fk -= picture_file_id
intPk ~ ->id :
string -»file_name
string -=file_format
bytea -= binary_file

Figura 12. Diagrama Entidad-Relacion

62

CAPITULO 4: IMPLEMENTACION DEL

SISTEMA

En este capitulo, se especifica como se estructurd el entorno de desarrollo, asi como
las herramientas y tecnologias utilizadas. De igual manera, se aborda la fase de
implementacién del sistema, donde se transforman los disefios y planes previos en codigo
funcional. Se detallan los aspectos clave del entorno de desarrollo y se explora el desarrollo
de la I6gica del sistema, incluyendo la implementacion de migraciones, la creacion de
modelos y controladores, y la configuracidn de las rutas para construir la API del sistema.
Este capitulo es crucial para convertir la vision conceptual en una aplicacion practica y

funcional.

4.1 Entorno de Desarrollo

En la fase de implementacion del sistema, se utilizé un entorno de desarrollo
cuidadosamente configurado para asegurar la eficiencia y la calidad del cédigo. A

continuacion, se detallan las herramientas y tecnologias empleadas:

4.1.1 IDE y Control de Versiones

El codigo fuente fue desarrollado en Visual Studio Code, un entorno de desarrollo

integrado (IDE) conocido por su ligereza y potencia.

63

La gestion de versiones se llevo a cabo utilizando Git, permitiendo un seguimiento

detallado de los cambios a lo largo del desarrollo.

4.1.2 Lenguaje de Programacion y Framework

La implementacion se realizo en PHP 8.0, aprovechando las caracteristicas mas
recientes del lenguaje. Para la estructuracién y desarrollo eficiente de la aplicacion, se utilizé

Laravel, un framework PHP moderno y robusto que facilita la creacién de aplicaciones web.

4.1.3. Gestor de Base de Datos y ORM

La persistencia de datos se gestiondé mediante el sistema de gestion de bases de datos
relacional Postgres. Laravel utiliza Eloquent, un poderoso ORM, para interactuar con la base
de datos. Eloquent simplifica las operaciones de la base de datos al mapear objetos de la
aplicacién directamente a registros de la base de datos, proporcionando una capa de

abstraccién que facilita el manejo de datos de manera elegante y eficiente.

4.1.4. Configuracion del Entorno local

Se establecio un servidor local mediante ‘php artisan serve’ de Laravel para
ejecutar pruebas unitarias de manera eficiente y automatizadas, con el comando ‘php
artisan test’. Utilizando localhost, se garantiza un entorno uniforme y controlado para las

pruebas.

64

4.2. Desarrollo de la Logica del Sistema

En esta seccidn, abordamos la generacion de migraciones para la base de datos,
creacion de modelos ORM y desarrollo de controladores para gestionar las operaciones
asociadas a las entidades principales del sistema. Estos pasos son cruciales para establecer la

infraestructura necesaria antes de proceder con la implementacion de las pruebas.

4.2.1. Implementacion de Migraciones Laravel

Este apartado describe detalladamente el proceso de migracion, tomando como

ejemplo la tabla ‘music_sheets’, una de las entidades fundamentales de la aplicacion.

e Antes de iniciar la migracion, se asegura de haber configurado correctamente la
conexion a la base de datos en el archivo .env dentro de la carpeta del proyecto. Esto
se logra definiendo los detalles de la base de datos, como el nombre de la base de

datos, el usuario y la contrasefia (Figura 13).

27T B
Al

=5432

=nombre

=nombre

Figura 13. Configuracion de la conexién a DB

e Iniciamos con la generacion de la migracion ejecutando el siguiente comando Artisan:
‘php artisan make:migration create_music_sheets_table’. Este comando

crea un nuevo archivo de migracion en el directorio database/migrations. Luego,

65

editamos este archivo (create_music_sheets_tab'le. php) para definir la

estructura de la tabla.

e Cddigo de Migracion: A continuacion, se presenta el codigo de la migracion que
define la estructura de la tabla ‘mus-ic_sheets’ (Figura 14). Este codigo incluye
campos como titulo, cantidad de partituras, identificadores de autor, género, ubicacion

y archivo de partitura.

e Finalmente, ejecutamos la migracion para aplicar los cambios en la base de datos, con

el siguiente comando desde la terminal: ‘php artisan migrate’.

Es importante destacar que las tablas referenciadas por las llaves foraneas (autor,
género, ubicacion, archivo de partitura) se crearon previamente para mantener la coherencia

de la base de datos.

66

Figura 14. Migracion create_music_sheets_table.php

4.2.2. Creacion de Modelos

En Laravel, los modelos sirven como una interfaz orientada a objetos para interaccion
entre la aplicacion y la base de datos, simplificando las operaciones CRUD. A modo de
ilustracion se mostrara el proceso de creacion del modelo para la entidad de "Partituras

Musicales” (music_sheets).

67

e Creacion del Modelo ‘MusicSheet’. Laravel facilita la creacién de modelos

mediante el uso de Artisan. Ejecutando el siguiente comando en la terminal: ‘pAp

artisan make:model MusicSheet’.

e Este comando generara un archivo ‘MusicSheet.php’ en el directorio

app/Models, dentro de la carpeta del proyecto. En este archivo, se pueden especificar
tanto los campos de la tabla en base de datos, que podran ser accedidos por el modelo;
asi como las relaciones con otras entidades. A continuacion, se muestra un ejemplo

béasico del contenido de este modelo (Figura 15).

Este modelo sigue las convenciones de nombres de Laravel. La tabla asociada se

asume como pluralizada y en mindsculas (mus-ic_sheets), y el modelo en singular y en
CamelCase (MusicSheet). Mantener estas convenciones facilitara la coherencia y

mantenimiento en el desarrollo de la aplicacion.

68

Figura 15. Modelo MusicSheet.php

4.2.3. Creacion de Controladores

Con la infraestructura configurada y los modelos listos para interactuar con la base de
datos, ahora procedemos con el desarrollo de los controladores, en este apartado sélo se
mostrara la declaracion de las funciones que intervienen en la logica de negocio, la cual se
especificard con mayor detalle en el siguiente capitulo. En tal sentido, abordaremos la

creacion de controladores, que actuaran como intermediarios entre las solicitudes del usuario

69

y las operaciones en la base de datos, haciendo uso de los modelos, seguiremos ilustrando

este proceso con la entidad ‘Partituras musicales’.

e Generacion del Controlador: Utilizando Artisan, el comando ‘php artisan
make: controller MusicSheetController’ se ejecutd para generar el archivo

‘MusicSheetController.php’. Este archivo se encuentra en el directorio

app/Http/Controllers, dentro de la carpeta del proyecto.

e Estructura del Controlador: El archivo ‘MusicSheetController.php’ incluye

métodos especificos para realizar diversas operaciones, (Figura 16):

index () : Muestra todas las partituras musicales.

show($1id) : Muestra una partitura musical especifica segln su identificador.
store(Request $request) : Almacena una nueva partitura musical en la base
de datos.

update(Request S$request, $id): Actualiza la informacién de una
partitura existente.

destroy ($id) : Elimina una partitura musical.

Con la creacion del controlador, se sientan las bases para la implementacién de las pruebas
disefiadas en el capitulo anterior. Estas pruebas verificaran la interaccion correcta entre los
controladores y los modelos con la base de datos, asegurando respuestas adecuadas a las

solicitudes HTTP.

70

Controller

show($id

update (Request Srequest, $id

Figura 16. Controlador MusicSheetController.php

4.3. Configuracion de Rutas: Construyendo la API del Sistema

Las rutas son la columna vertebral de cualquier API, definiendo como los usuarios
interacttan con el sistema. Seguidamente, se detalla la creacion y configuracion de las rutas
en Laravel, estableciendo endpoints que seran accesibles para el cliente. Estos endpoints,
conectados a traves de las rutas, representan la interfaz de programacion de aplicaciones
(API) del sistema. Cada ruta dirigira las solicitudes del usuario a los controladores

correspondientes, llevando a cabo acciones especificas y formando asi la base para la

71

funcionalidad completa de la aplicacion. Este paso es crucial para la construccién de un

sistema coherente y facilmente accesible.

A continuacion, se especifican algunas rutas:

Middleware de Autenticacién Sanctum:

e ‘Route::middleware(['auth:sanctum'])->group(function ()
{...}’: Este bloque asegura que las rutas dentro de él requieran autenticacién
utilizando el middleware Sanctum, que proporciona un sistema de autenticacion de

API simple y eficiente.

Rutas de Gestion de Usuarios:

e ‘Route::get('/user', function (Request $request) {...}’:
Esta ruta permite obtener la informacion del usuario autenticado. La funcion anénima

devuelve los detalles del usuario actual.

Rutas de Gestion de Partituras Musicales (/music-sheets):

e ‘Route::get('/music-sheets',
[MusicSheetController::class, 'index'])->name('music-
sheets.index') ’: Devuelve la lista de partituras musicales. Utiliza el método
index del controlador MusicSheetController.

e ‘Route::post('/music-sheets',

[MusicSheetController::class, 'store'])->name('music-

72

sheets.store') ’: Almacena una nueva partitura musical en la base de datos.
Utiliza el método store del controlador.

e ‘Route::put('/music-sheets/{music_sheet}',
[MusicSheetController::class, 'update'])->name('music-
sheets.update') ’: Actualiza una partitura musical existente. Utiliza el método
update del controlador.

e ‘Route::get('/music-sheets/{music_sheet}',
[MusicSheetController::class, 'update'])->name('music-
sheets.show') ’: Devuelve una partitura musical en especifico dado su ID.
Utiliza el método show del controlador MusicSheetController.

e ‘Route::delete('/music-sheets/{music_sheet}',
[MusicSheetController::class, 'destroy'])->name('music-
sheets.destroy') ’: Elimina una partitura musical por su ID. Utiliza el método

destroy del controlador.

Ejecutando en la terminal el comando de Artisan ‘php artisan route:1ist’, se
listaran todas las rutas de la aplicacion, como se puede observar en la imagen siguiente

(Figura 17):

73

ET|HEAD
GET|HEAD

POST
GET|HEAD
PUT|PATCH

DELETE

GET |HEAD
GET |HEAD
PUT} H
DELETE
DELETE
GET|HEAD

Figura 17. Lista de Rutas de la API

74

CAPITULO 5: IMPLEMENTACION Y

EJECUCION DE PRUEBAS

En este capitulo, abordamos la fase de pruebas para validar la solidez y confiabilidad
del sistema. Siguiendo la metodologia de Desarrollo Dirigido por Pruebas (TDD), llevaremos
a cabo la implementacién y ejecucion de las pruebas disefiadas en el capitulo 3. Desde las
pruebas de caracteristicas, hasta un analisis de rendimiento. En paralelo a este proceso, se
desarrollara la I6gica de negocio incrustada en los controladores declarados en el capitulo
anterior, actuando como el puente esencial entre la conceptualizacion del sistema'y su

materializacion préctica.

5.1. Pruebas de Caracteristicas

Aqui se explora la implementacion de pruebas de caracteristicas (Feature Testing)
para evaluar el comportamiento de extremo a extremo del sistema. Se describen los casos de
prueba y se siguen las historias de usuario definidas en el Capitulo 3, para verificar la
integracion adecuada de los componentes y la satisfaccion de los requisitos del usuario.
Entonces, entramos en el ciclo TDD, donde se escoge un criterio de aceptacion muy simple y
se traduce a una prueba.

A continuacion, se muestra el proceso de implementacion de las pruebas, junto con el
desarrollo de la l6gica de negocio. Se tomara como ejemplo el registro de partituras para
simplificar este procedimiento.

75

Laravel nos brinda un comando artisan para crear pruebas, por lo que ejecutando en la
terminal ‘php artisan make:test NombrePruebaTest’, en este caso nombramos la clase
de la prueba como ‘MusicSheetTest’, el comando completo quedaria: ‘php artisan
make:test MusicSheetTest’, generando el archivo MusicSheetTest.php ubicado
en la carpeta tests/Feature, donde se incluiran todos los criterios de aceptacion en forma

de test para la funcionalidad a desarrollar. En principio el cddigo generado se ve como sigue:

DatabaseTransactions;

—>get ('/");

sertStatus (200) ;

Recordando el disefio del Test 4:
Test para registrar partituras
Nombre: Registrar partituras en el sistema

Descripcion: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

e Los campos requeridos no deben llegar nulos.

76

e Un titulo perteneciente a un autor no debe estar repetido.
e En el sistema tienen que existir registros almacenados de género musical y autor de la

partitura.

Primer criterio de aceptacion: Los campos requeridos no deben llegar nulos.

e Los campos Titulo (‘tilte?), id del autor (' authorId'), id del género musical
('genderId'), los datos de la ubicacion fisica de la partitura como el id del estante
('cabinetId') yeliddel lagaveta ('drawerId'), asi como la cantidad
("quantity"') de partituras a registrar, son requeridos, por lo que se escribe una

prueba con estas caracteristica con el nombre de

‘required_fields_cannot_be_null’ y adafiaade a la clase

‘MusicSheetTest’:

required fields cannot be null ()

getAuthenticated () ;

ssertAuthenticated () ;

77

se->assertStatus (422);

alidationErrors ([

'authorId', 'genderId',6 'cabi

'drawerId', 'quantity'

Este test utiliza el método postJson para simular una solicitud de registro de
partitura con campos nulos usando la ruta ' /api/music-sheets' la cual hace un llamado al
método store en el controlador ‘MusicSheetController’ vy verificaque la

respuesta tenga un estado HTTP 422 (falla de validacidn) y que los errores de validacion

especificos se encuentren en la respuesta JSON.

e Si intentamos probar este test, corriendo el comando de artisan ‘php artisan test’
desde la terminal, podemos verificar que la prueba falla, debido a que no se han

definido las reglas de validacion en el controlador ‘MusicSheetController’

(Figura 18. a).

FAIL| Tests'Feature\MusicSheetTest

Figura 18. a. Red Test — primer criterio de aceptacion

e Definimos las reglas de validacion que deberan estar contenidas en el controlador

‘MusicSheetController’, esdecir, escribimos un poco de codigo para hacer

(ue esta prueba pase:

78

'authorId'

'genderId’

'drawerId’'

e Corremos de nuevo el test para comprobar que realmente funcionan las reglas de

validacion afadidas al controlar y hacer que la prueba pase (Figura 18. b):

Tests\Feature'MusicSheetTest

Figura 18. b. Green Test — primer criterio de aceptacion

e En este caso no es necesario refactorizar el codigo en el controlador, puesto que todo

se ve bien hasta este punto.

Segundo criterio de aceptacion: Un titulo perteneciente a un autor no debe estar repetido.

e Aqui debemos validar que no se permita registrar de manera repetida el titulo de una
partitura perteneciente a un autor, es decir, que el par titulo-autor deben ser Gnicos.

Traducimos este criterio de aceptacion a una prueba.

79

for same author cannot be repeated()

->getAuthenticated() ;

Authenticated() ;

Id' => S$Sauthor->id,

Este test simula el intento de registrar una nueva partitura con un titulo que ya existe
para el mismo autor. La prueba verifica que la aplicacién responde con un codigo de estado
422 (falla de validacion) y que el error de validacion especifico para el campo 'title' esta

presente en la respuesta JSON.

80

Como es de suponer, al intentar ejecutar este test, fallara, debido a que no se ha

creado una regla de validacion que tome en cuenta este criterio (Figura 19. a):

FAIL Tests\Feature\MusicSheetTest

Figura 19. a. Red Test — segundo criterio de aceptacion

De la misma manera que en el criterio anterior, se debe escribir el codigo necesario
para hacer que la prueba pase, en este caso, se agrega la regla de validacion
correspondiente ' ’title” =>

Rule::unique('music_sheets', 'title')->where('author_id',

$this->authorId).

‘ad',’ | Rale: :unique ('misic sheets”,

El siguiente paso es verificar que efectivamente la prueba pasa, al agregar el codigo

minimo necesario (Figura 19. b)

stshFeature'MusicSheetTest

Figura 19. b. Green Test — segundo criterio de aceptacion

El paso de refactorizacion del codigo se ha cumplido en este caso, debido a que se ha

modificado el método Rules del controlador *MusicSheetController’.

81

Tercer criterio de aceptacion: En el sistema tienen que existir registros almacenados de

género musical y autor de la partitura.

e Para probar que en el sistema existan registros almacenados de género musical y autor
de la partitura antes de intentar registrar una nueva partitura, se crea la prueba
correspondiente agregandola a la clase ‘MusicSheetTest’ con el nombre

‘system_must_have_records_of_music_gender_and_author’.

system must have r

(
1

son ('/api/music-sheets', [

FAIL | Tests'\Feature'MusicShe

Figura 20. a. Red Test — tercer criterio de aceptacion

e El siguiente paso es agregar a la funcion store del controlador el cddigo necesario

para hacer esta prueba pase:

82

st $request)

Intentamos buscar en base de datos el ID del género musical y del autor y retornamos
un estatus 200 si todo salio bien, de lo contrario se espera un estatus 500, que sera un error de

servidor si no hay exito en la busqueda.

e ejecutamos nuevamente el test para verificar que esta prueba funciona (Figura 20. b)

Figura 20. b. Green Test — tercer criterio de aceptacion

En ultima instancia, se implementd una prueba general que verifica que se puede registrar

una partitura musical con éxito.

Cuarto criterio de aceptacion: Almacenar una nueva partitura con éxito.

e En este test se verifica que el usuario se ha autenticado, se envia una solicitud POST a
laruta 'api/music-sheets' con datos simulados para almacenar una nueva
partitura. Se asegura que la respuesta HTTP tenga un cddigo de estado 200, indicando

un procesamiento exitoso de la solicitud y por Gltimo se verifica que la respuesta

83

JSON tenga la estructura esperada, que debe incluir las claves 'item' y

'message’.

test_store new music_sheet ()

Authenticated() ;

()7

se->assertStatus (

tJsonStructure (['item', 'message

Figura 21. a. Red Test — cuarto criterio de aceptacion

Agregamos al controlador ‘MusicSheetController’, especificamente en la
funcion store, la logicay el codigo necesario para hacer que esta prueba pase, es

decir, refactorizar la funcion ya existente, quedando de la siguiente manera.

84

thorId Author::fi Srec >authorId) ;

uthorId) ;

tdon gid 5 Sdocatio

Verificamos que este cddigo funciona, ejecutando de nuevo el test para hacer que pase

(Figura 21. b):

Figura 21. b. Green Test — cuarto criterio de aceptacion

85

El siguiente paso implica la refactorizacion del cddigo, especialmente para mejorar la
seguridad durante el almacenamiento en la base de datos del registro de partituras
musicales. Dado que este proceso implica varios modelos, optamos por encapsular
toda la l6gica en una transaccion de base de datos. Esta eleccion nos proporciona la
garantia de un almacenamiento coherente, ya que enfrentamos multiples consultas a

base de datos de forma secuencial.

DB: :transaction (() (Srequest) {

= Author: ;find (Sre st->authorId)y

ro musi

Aushoretf ind($requeste=>authorld)s;

lusicSheet () ;

Ahora ejecutamos todos los test implementados y verificamos que todo sigue

funcionando después del cambio en el codigo (Figura 21. c):

86

Figura 21. c. Green Test — todos los test de la funcion store

Continuando en este ciclo de desarrollo, podemos refactorizar el codigo para incluir
un bloque try-catch. Esto es necesario para gestionar eficazmente excepciones durante
la ejecucion, mejorando la robustez y la capacidad de respuesta del sistema frente a

posibles errores imprevistos.

store (Request $request)

>validation (

" ="DPB: :transaction (fun

SmusicSheet =

Smusic

Asi podemos ejecutar los test nuevamente para verificar que todo sigue en su lugar.

87

Tests\Feature\MusicSheetTest

Figura 21. d. Ultima prueba (Green Test)

5.2 Pruebas de la APl con Postman

La validacion y prueba del API son elementos cruciales en el desarrollo de cualquier
aplicacion. Para asegurar que nuestro sistema de gestion de partituras cumple con los
requisitos y ofrece una interfaz robusta, se empleé Postman, una herramienta versatil para el
desarrollo de APIs. A continuacion, se describe como se utilizd Postman para probar el API

del sistema;

4.2.1 Configuracion del Entorno
Antes de realizar las pruebas, se configur6 un entorno en Postman para reflejar las
diferentes variables y configuraciones que el API utiliza. Esto incluyd la URL base del API,

claves de autenticacion y cualquier otro parametro necesario para las solicitudes.

4.2.2 Creacion de Solicitudes

Postman permite crear y enviar solicitudes HTTP de manera sencilla. Se crearon
diversas solicitudes para cada uno de los endpoints del API del sistema de gestion de
partituras. Estas solicitudes incluyen operaciones como iniciar sesion, gestionar partituras y

ejecutar acciones especificas del sistema, entre otras.

88

4.2.3 Gestion de Autenticacion
Dado que nuestro sistema incorpora autenticacion, se emplearon las funciones de
Postman para gestionar diferentes métodos de autenticacion, incluyendo el uso de tokens API

para asegurar solicitudes protegidas.

4.2.4 Pruebas de Rendimiento
Postman permite realizar pruebas de rendimiento, evaluando cémo el APl maneja
cargas de trabajo diversas. Se llevaron a cabo pruebas para determinar la eficiencia y la

escalabilidad del sistema bajo diferentes condiciones de carga.

4.2.5 Colecciones de Postman

Todas las solicitudes y escenarios de prueba se organizaron en colecciones de
Postman. Estas colecciones proporcionan una estructura organizada para ejecutar pruebas
individuales o suites completas, facilitando la repeticion de pruebas durante el desarrollo y

después de implementaciones importantes.

4.2.6 Documentacion del API
Postman también facilita la generacion de documentacién del API. Se aprovecho esta
funcionalidad para crear documentacion clara y accesible que detalla cada endpoint, sus

parametros y las respuestas esperadas (Promusica-ULA AP, s. f.).

El uso integral de Postman no solo asegur6 la funcionalidad correcta de nuestra API,

sino que también simplifico la colaboracion entre desarrolladores y garantizo la consistencia

en las pruebas a lo largo del desarrollo.

89

CAPITULO 6: ANALISISY RESULTADOS

En este capitulo, se presenta un andlisis exhaustivo de los resultados obtenidos
durante el desarrollo del sistema, asi como una evaluacion de la metodologia de Desarrollo

Dirigido por Pruebas (TDD) aplicada en el proceso.

6.1 Evaluacion de los Resultados de las Pruebas de Rendimiento

Durante la fase de pruebas, se realizaron pruebas exhaustivas de rendimiento de la
API utilizando la herramienta Postman. Los resultados obtenidos proporcionaron una vision
general del rendimiento del sistema bajo carga. Se observé un rendimiento satisfactorio, con
una tasa de rendimiento promedio de 21.04 solicitudes por segundo y un tiempo de respuesta
promedio de 408 milisegundos. Ademas, la tasa de error fue del 1.86%, lo que indica una
buena estabilidad del sistema bajo carga. Se identificaron algunas rutas con tiempos de
respuesta mas lentos, lo que sugiere areas potenciales de optimizacion para mejorar el
rendimiento general del sistema (20User-1Min-Rampa-Promusica-ULA-Performance-
Report-10000-1, 2023).

A continuacion, se detallan los resultados de un ejemplo de prueba aplicada:

Performance test:
e Usuarios Virtuales: Se simularon 20 usuarios virtuales.
e Duracion: La prueba tuvo una duracién de 1 minuto.

e Perfil de Carga: Se implemento6 una carga en rampa durante 1 minuto.

90

e Total de solicitudes enviadas: Durante la prueba, se enviaron un total de 1397
solicitudes a la aplicacion.

e Rendimiento (Throughput): La tasa de rendimiento fue de 21.04 solicitudes por
segundo.

e Tiempo de Respuesta Promedio: El tiempo promedio de respuesta del sistema a una
solicitud fue de 408 milisegundos.

e Tasade Error: La tasa de error fue del 1,86%, lo que indica que aproximadamente el
1,86% de las solicitudes generaron algun tipo de error, siendo el mas comun el error

422 (Figura 22).

op 5 requests with the most errors, along with the mast frequently occurring errors for each request

Total Oth
Request otal BT errar Error 2 =
count efrors
genders.update 25 422 4]
ff{{serveriifapifgenders/{{gender_ic Unprocessable
Cantent (25)
GET music-sheet-file.download 1 404 Mot Found 4]

m

THilearyar I e lyaat-f s fel v e el f I x (1)
serveriiapi/sheet-file/download/{{file_id}}

Figura 22. Solicitudes con mas errores.

Estos resultados proporcionan una vision general del rendimiento del sistema bajo
carga simulada. Si bien los datos son considerados aceptables, existen areas de mejora
identificadas durante el analisis. Por ejemplo, se detectaron cinco rutas con respuestas mas

lentas (Figura 23), lo que sugiere la necesidad de optimizacion en esas areas especificas.

91

Top 5 slowest requests based on their average respor

Request

POST music-sheets.store

http:ff{{server}}/apifmusic-sheats

DELETE music-sheets.destroy

http:/f{{server}}/apifmusic-sheets/{{music_sheet_id}}

DELETE genders.destroy

http:ff{{server}}/apifgenders/{{gender_id}}

authors.update

http:f[{{server}}/apifauthors/{{author_id}}

DELETE authors.destroy

http:/f{{server}}/apifauthars/{{author_id}}

Figura 23. Top 5 de las solicitudes mas lentas.

(

152 Uimes.

Resp. time (Avg
ms)

431

429

427

426

426

80th
(ms)

703

705

736

707

705

85th
(ms)

745

740

756

782

746

89th
(ms)

863

803

869

B36

&30

Min (ms)

60

56

56

32

63

Max
(ms)

863

803

869

836

Ademas, al analizar los percentiles 90, 95 y 99, se observa que la mayoria de las

solicitudes (hasta el 99%) se completan en 863 milisegundos o menos (Figura 24). Estas

métricas estadisticas indican el tiempo necesario para que una cierta fraccion de las

solicitudes se complete, lo que permite identificar areas que pueden ser optimizadas para

mejorar el rendimiento general de la aplicacion.

Response time trends during the test duration

Figura 24. Tendencia del tiempo de respuesta durante la prueba.

92

En consideracion de estos resultados, se plantean posibles mejoras y optimizaciones
en el codigo y la configuracion del sistema. Para una aplicacion web que se estima tenga una
carga constante de consultas, estas respuestas estan dentro de los parametros que se
consideraron, si bien se pueden hacer optimizaciones de codigo y da una vision inicial para
un despliegue en pruebas, como por ejemplo usar una base de datos como REDIS para el
manejo de sesiones y caché, como servidor web usar NGINX que puede manejar el doble de

conexiones que APACHE y es mas flexible al momento de configurar.

6.2 Impacto en la Eficiencia del Registro y Préstamo de Partituras

El sistema propuesto tiene el potencial de mejorar significativamente la eficiencia en
los procesos de registro y préstamo de partituras en la Fundacion Promusica. Mediante la
automatizacion de tareas y la optimizacion de los flujos de trabajo, se espera reducir los
tiempos de respuesta y minimizar los errores humanos. Esto llevara a una gestién mas

eficiente de las partituras y una mejor experiencia para los usuarios finales.

6.3 Analisis de la Metodologia TDD

La aplicacion de la metodologia TDD durante el desarrollo del sistema demostro ser
efectiva para garantizar la calidad y confiabilidad del codigo. La escritura de pruebas antes de
la implementacion del codigo permitio detectar y corregir errores tempranamente, lo que
contribuyd a un desarrollo mas agil y robusto. Sin embargo, se encontraron algunos desafios,
como la curva de aprendizaje inicial y la necesidad de mantener un conjunto completo de

pruebas a lo largo del ciclo de desarrollo.

93

6.4 Potenciales Areas de Mejora

A pesar de los resultados satisfactorios, se identificaron algunas areas en las que el
sistema podria ser mejorado antes de su implementacion. Esto incluye la optimizacion de las
rutas con tiempos de respuesta mas lentos, la mejora de la escalabilidad y la incorporacion de
funcionalidades adicionales segun las necesidades especificas de la Fundacion Promusica. Se
recomienda realizar una evaluacién continua del sistema y realizar ajustes segun sea

necesario para garantizar su eficacia a largo plazo.

6.5 Plan de Implementacion y Futuras Direcciones

Se propone un plan detallado para la implementacion del sistema en la Fundacion
Promdasica, que incluye la asignacion de recursos, la capacitacion del personal y el
cronograma de implementacién. Ademas, se discuten posibles mejoras futuras, como la
integracion de tecnologias adicionales para mejorar el rendimiento y la funcionalidad del

sistema a medida que evolucionan las necesidades de la organizacion.
El anélisis y los resultados presentados en este capitulo respaldan la viabilidad y

efectividad del sistema propuesto, asi como proporcionan recomendaciones practicas para su

implementacion exitosa y su mejora continua en el futuro.

94

CONCLUSIONES Y RECOMENDACIONES

La implementacion de un sistema de gestion administrativa basado en la metodologia
de desarrollo dirigido por pruebas (TDD) ha demostrado ser una estrategia efectiva para
garantizar la calidad y un mejor servicio a nuestra comunidad musical. La adopcion de este
enfoque ha permitido una implementacién cuidadosa y una validacién continua del sistema,
asegurando su eficiencia y confiabilidad. Este proyecto ha logrado abordar de manera
efectiva los desafios existentes en la gestion manual de la extensa coleccion de partituras de
la Fundacion Promdasica.

El enfoque especifico del estudio en el desarrollo de un sistema de gestion
administrativa para la Fundacion Promusica ha permitido una atencion dedicada a las
necesidades particulares de esta organizacion. Al limitar el alcance a una Unica entidad, se ha
facilitado la identificacion precisa de requerimientos y la personalizacion del sistema segin
las especificaciones de la fundacién. La delimitacion del sistema a la gestidn de partituras ha
permitido una mayor focalizacion en las funcionalidades relevantes. Al no incluir elementos
adicionales de gestion como recursos humanos o finanzas, se ha logrado una mayor claridad
y eficiencia en el disefio y desarrollo del sistema, asegurando que cumpla con los objetivos
establecidos de manera especifica. Si bien el estudio no considera la infraestructura
tecnoldgica disponible en la Fundacion Promusica, se asume que se cuenta con los recursos
necesarios para la implementacion del sistema. Esta delimitacion resalta la importancia de
tener en cuenta las capacidades y limitaciones tecnoldgicas de la organizacion al planificar e
implementar soluciones tecnolégicas, y destaca la necesidad de asegurar que se disponga de
los recursos adecuados para el éxito del proyecto.

La configuracion cuidadosa del entorno de desarrollo, empleando herramientas como

Visual Studio Code y Git para la gestion del codigo fuente, ha desempefiado un papel

95

fundamental en la mejora notable de la eficiencia y calidad del proceso de desarrollo. Estas
herramientas no solo proporcionan un entorno de trabajo robusto y colaborativo, sino que
también simplifican tanto la creacion como el mantenimiento del sistema. Ademas, la
eleccion del lenguaje de programacion PHP 8.0 y el framework Laravel ha resultado ser una
decision acertada para el desarrollo del sistema, permitiendo una implementacion agil y
eficaz de las funcionalidades requeridas. Especificamente, Laravel ha demostrado brindar una
estructura sélida y un conjunto de herramientas poderosas que han facilitado enormemente la
creacion de la API del sistema y la gestion de la base de datos.

La eleccion de Postgres como sistema de gestion de base de datos, junto con el uso
del ORM Eloquent de Laravel, ha simplificado notablemente la interaccion con la base de
datos y ha proporcionado una capa de abstraccion que facilita el manejo de datos de manera
elegante y eficiente.

Asimismo, la configuracién del entorno local utilizando 'php artisan serve' de Laravel ha
permitido la ejecucion de pruebas unitarias de manera eficiente y automatizada, garantizando
un entorno uniforme y controlado para las pruebas.

El desarrollo de la l6gica del sistema, que incluye la generacion de migraciones, la
creacion de modelos y controladores, asi como la configuracion de las rutas para construir la
API del sistema, ha establecido las bases para la funcionalidad completa de la aplicacion.
Estos pasos son cruciales para establecer la infraestructura necesaria y asegurar el correcto
funcionamiento del sistema en su totalidad.

La ejecucion de las pruebas realizadas mediante la herramienta Postman ha revelado
resultados prometedores en cuanto al rendimiento, eficiencia y fiabilidad del sistema
propuesto para la gestion administrativa en la Fundacion Promdsica. Aungue se identificaron
areas de mejora, tales como la optimizacion de ciertas rutas y la incorporacion de tecnologias

adicionales; las pruebas de rendimiento, la metodologia TDD vy el plan detallado de

96

implementacion respaldan la viabilidad y efectividad del proyecto. Se recomienda una
evaluacion continua y ajustes segun sea necesario para garantizar el éxito a largo plazo del
sistema en su objetivo de mejorar la gestion de partituras y la experiencia de los usuarios

finales en la Fundacion Promusica.

97

REFERENCIAS

About Postman. (2023). Postman API Platform. https://www.postman.com/company/about-

postman/

Alarcon, V. F. (2006). Desarrollo de sistemas de informacion: una metodologia basada en el
modelado. Ediciones UPC eBooks.

https://dialnet.unirioja.es/servlet/libro?codigo=298995

An Effective Requirement Engineering Process Model for Software Development and
Requirements Management. (2010b, octubre 1). IEEE Conference Publication | IEEE
Xplore. https://ieeexplore.ieee.org/document/5656776/

Auth. (s. f.). JSON Web Tokens. AuthO Docs. https://authO.com/docs/secure/tokens/json-web-

tokens

AWS. (s. f.). ¢Qué es SQL? - Explicacién de Lenguaje de consulta estructurado (SQL).
Amazon Web Services, Inc. https://aws.amazon.com/es/what-
is/sql/#:~:text=es%20importante%20SQL %3F-
,E1%20lenguaje%20de%20consulta%?20estructurada%20(SQL)%20es%20un%20leng
uaje%20de,los%20diferentes%20lenguajes%20de%20programaci%C3%B3n

Bass, L., Clements, P., y Kazman, R. (2012). Software Architecture in Practice. Addison-
Wesley.

Blé Jurado, C. (2010). Disefio Agil con TDD. Creative Commons.
https://www.academia.edu/38401326/Diseno_Agil_Con_TDD

Britannica, T. Editors of Encyclopaedia (2021). client-server architecture. Encyclopedia

Britannica. https://www.britannica.com/technology/client-server-architecture

98

https://www.postman.com/company/about-postman/
https://www.postman.com/company/about-postman/
https://dialnet.unirioja.es/servlet/libro?codigo=298995
https://ieeexplore.ieee.org/document/5656776/
https://auth0.com/docs/secure/tokens/json-web-tokens
https://auth0.com/docs/secure/tokens/json-web-tokens
https://aws.amazon.com/es/what-is/sql/#:~:text=es%20importante%20SQL%3F-
https://aws.amazon.com/es/what-is/sql/#:~:text=es%20importante%20SQL%3F-
https://aws.amazon.com/es/what-is/sql/#:~:text=es%20importante%20SQL%3F-
https://aws.amazon.com/es/what-is/sql/#:~:text=es%20importante%20SQL%3F-
https://www.academia.edu/38401326/Diseno_Agil_Con_TDD
https://www.britannica.com/technology/client-server-architecture

Cevallos Mufioz, F. D. (2022). Propuesta de buenas practicas de seguridad para creacion,
transportey almacenamiento de JSON web token. [Tesis de pregrado, Pontificia
Universidad Catolica del Ecuador Sede Ambato].
https://repositorio.pucesa.edu.ec/bitstream/123456789/3505/1/77667.pdf

Clark, J. (2021, 13 septiembre). Los 10 mejores marcos de trabajo de Backend. Back4App
Blog. https://blog.back4app.com/es/los-10-mejores-marcos-de-trabajo-de-backend/

Cruz, Y. E., Zamora, C., Paz, C., y Jorge, R. E. (2020). Adopcion de tecnologias de gestion de
procesos de negocio: una revision sistematica. Ingeniare. Revista chilena de
ingenieria, 28(1), 41-55. https://doi.org/10.4067/s0718-33052020000100041

DevDacs. (s. f.). HTTP documentation. https://devdocs.io/http/

Deloitte Spain (2023). ¢Qué es un ORM?

https://www2.deloitte.com/es/es/pages/technology/articles/que-es-orm.html

Documentacion Laravel en espafiol. (s. f.-b). EI framework de PHP para artesanos de la WEB.

https://documentacionlaravel.com/docs/9.x/eloquent

Dowsett, C. (2022). What Is a Database? Built In. https://builtin.com/data-science/database
Eseme, S. (2021). Introduction to Backend Development - Backend Developers - Medium.
Medium. https://medium.com/backenders-club/introduction-to-backend-

development-3f3464afd815

Fuentes, J. P. (2021, 13 mayo). TDD: Desarrollo guiado por pruebas — Trifulcas.
https://trifulcas.com/tdd-desarrollo-guiado-por-pruebas/

99

https://repositorio.pucesa.edu.ec/bitstream/123456789/3505/1/77667.pdf
https://blog.back4app.com/es/los-10-mejores-marcos-de-trabajo-de-backend/
https://doi.org/10.4067/s0718-33052020000100041
https://devdocs.io/http/
https://www2.deloitte.com/es/es/pages/technology/articles/que-es-orm.html
https://documentacionlaravel.com/docs/9.x/eloquent
https://builtin.com/data-science/database
https://medium.com/backenders-club/introduction-to-backend-development-3f3464afd815
https://medium.com/backenders-club/introduction-to-backend-development-3f3464afd815
https://trifulcas.com/tdd-desarrollo-guiado-por-pruebas/

Gavilan, C. M (2008). SIGB. Catalogos y gestion de Autoridades. Disefio y prestaciones de
OPAC:s. http://eprints.rclis.org/13188/1/sigb.pdf

Google. (s. f.). Cémo utiliza Google las cookies. Privacy & Terms — Google.

https://policies.google.com/technologies/cookies?hl=es

Gutierrez A, E. R. (2020). Sistema de gestion y digitalizacion bibliotecaria.
http://repositorio.upea.bo/handle/123456789/96

Heidi, E. (2021, 3 febrero). What is Laravel? DigitalOcean Community.
https://www.digitalocean.com/community/tutorials/what-is-laravel

Herranz, J. 1. (2023, 13 abril). TDD como metodologia de disefio de software. Paradigma
Digital. https://www.paradigmadigital.com/dev/tdd-como-metodologia-de-diseno-de-
software/

IBM. (s. f.-b). ¢ Qué son los contenedores? https://www.ibm.com/es-es/topics/containers

IBM. (2021). What is a relational database? https://www.ibm.com/topics/relational-databases

IBM Documentation. (2021). https://www.ibm.com/docs/es/aix/7.1?topic=systems-client-

server

iKenshu. (2019, 26 abril). ;Qué es Kubernetes? Platzi. https://platzi.com/blog/que-es-
kubernetes/?utm_source=google&utm_medium=cpc&utm_campaign=20290685455
&utm_adgroup=&utm_content=&gclid=CjwKCAiAxreqBhAXEiwAfGfndDcbEg-
y65QfwsUQIKRHjhLHPjdQbhhS7wXP7ioeW91wAB6HrjBEWPhoCmIgQAvVD_BwE
&gclsrc=aw.ds

100

http://eprints.rclis.org/13188/1/sigb.pdf
https://policies.google.com/technologies/cookies?hl=es
http://repositorio.upea.bo/handle/123456789/96
https://www.digitalocean.com/community/tutorials/what-is-laravel
https://www.paradigmadigital.com/dev/tdd-como-metodologia-de-diseno-de-software/
https://www.paradigmadigital.com/dev/tdd-como-metodologia-de-diseno-de-software/
https://www.ibm.com/es-es/topics/containers
https://www.ibm.com/topics/relational-databases

InnovacionDigital, R. (2022, 25 agosto). Docker: qué es y como funciona. Innovacion Digital
360. https://www.innovaciondigital360.com/big-data/docker-que-es-y-como-
funciona/?gclid=CjwKCAIiAxreqBhAXEIwWAFfGIndH5YYRYDCDbLG2TjCFHkewprjtr
d1MrindkhfCLBYBXi9l2HI6Y ftHxoCWxsQAvD_BwE

Jin, B., Sahni, S., y Shevat, A. (2018). Designing Web APIs: Building APIs That Developers

Love. “O’Reilly Media, Inc.”.
https://www.academia.edu/43452338/Designing_Web_APIs_BUILDING_APIS_TH
AT DE VELOPERS LOVE

Langer, A. M. (2018). Information technology and organizational learning: Managing
behavioral change in the digital age. (3.a ed.). CRC Press Taylor & Francis Group.
https://www.yourhomeworksolutions.com/wp-
content/uploads/edd/2020/09/arthur_m._langer___information_technology and_orga
nizational _learning__managing_behavioral_change_in_the_digital_age crc_press_ 2
017__ 1 -1.pdf

Lilienthal, C. (2019). Sustainable Software Architecture: Analyze and Reduce Technical Debt.
dpunkt.verlag.

Mikula, K. (2023, 30 agosto). The History and Evolution of APIs | Traefik Labs. Traefik Labs:
Say Goodbye to Connectivity Chaos. https://traefik.io/blog/the-history-and-

evolution-of-apis/

MVC - Glosario de MDN Web Docs: Definiciones de términos relacionados con la Web |

MDN. (2022). https://developer.mozilla.org/es/docs/Glossary/MVC

O'Brien, J. A. y Marakas, M. H. (2006). SISTEMAS DE INFORMACION GERENCIAL.
https://www.academia.edu/91551151/SISTEMAS_DE_INFORMACION_GERENCI
AL_OB rein_y Marakas_McGraw_Hill

101

https://www.innovaciondigital360.com/big-data/docker-que-es-y-como-funciona/?gclid=CjwKCAiAxreqBhAxEiwAfGfndH5YyRYDCbLG2TjCFHkewprjtrd1Mrin4khfCL6yBXi9l2Hl6YftHxoCWxsQAvD_BwE
https://www.innovaciondigital360.com/big-data/docker-que-es-y-como-funciona/?gclid=CjwKCAiAxreqBhAxEiwAfGfndH5YyRYDCbLG2TjCFHkewprjtrd1Mrin4khfCL6yBXi9l2Hl6YftHxoCWxsQAvD_BwE
https://www.innovaciondigital360.com/big-data/docker-que-es-y-como-funciona/?gclid=CjwKCAiAxreqBhAxEiwAfGfndH5YyRYDCbLG2TjCFHkewprjtrd1Mrin4khfCL6yBXi9l2Hl6YftHxoCWxsQAvD_BwE
https://www.academia.edu/43452338/Designing_Web_APIs_BUILDING_APIS_THAT_DEVELOPERS_LOVE
https://www.academia.edu/43452338/Designing_Web_APIs_BUILDING_APIS_THAT_DEVELOPERS_LOVE
https://www.yourhomeworksolutions.com/wp-content/uploads/edd/2020/09/arthur_m._langer___information_technology_and_organizational_learning__managing_behavioral_change_in_the_digital_age_crc_press__2017___1_-1.pdf
https://www.yourhomeworksolutions.com/wp-content/uploads/edd/2020/09/arthur_m._langer___information_technology_and_organizational_learning__managing_behavioral_change_in_the_digital_age_crc_press__2017___1_-1.pdf
https://www.yourhomeworksolutions.com/wp-content/uploads/edd/2020/09/arthur_m._langer___information_technology_and_organizational_learning__managing_behavioral_change_in_the_digital_age_crc_press__2017___1_-1.pdf
https://www.yourhomeworksolutions.com/wp-content/uploads/edd/2020/09/arthur_m._langer___information_technology_and_organizational_learning__managing_behavioral_change_in_the_digital_age_crc_press__2017___1_-1.pdf
https://traefik.io/blog/the-history-and-evolution-of-apis/
https://traefik.io/blog/the-history-and-evolution-of-apis/
https://developer.mozilla.org/es/docs/Glossary/MVC
https://www.academia.edu/91551151/SISTEMAS_DE_INFORMACION_GERENCIAL_OBrein_y_Marakas_McGraw_Hill
https://www.academia.edu/91551151/SISTEMAS_DE_INFORMACION_GERENCIAL_OBrein_y_Marakas_McGraw_Hill

Overview of the Administrative Management Systems (AMS). (2016, 3 mayo). Financial
Services. https://finance.utoronto.ca/policies/gtfm/financial-information-system-

fis/overview-of-the- administrative-manaement-systems-ams/

Pérez, L. (2022). Disefio e Implementacion de una aplicacion para la gestion de partituras.
https://ruc.udc.es/dspace/handle/2183/32088

PHP: What is PHP? - Manual. (s. f.-b). https://www.php.net/manual/en/intro-whatis.php

Promusica-ULA API. (s. f). Promusica-ULA.
https://documenter.getpostman.com/view/20766493/2s9Y kgDkKZ

Ravoof, S. (2023, 17 febrero). What Is PostgreSQL? Kinsta®.

https://kinsta.com/knowledgebase/what- is-postgresql/

Ross, J. W., Beath, C. M., y Mocker, M. (2019). Designed for Digital: How to Architect Your

Business for Sustained Success. The MIT Press.

Ruiz P., F. R. (2021, 31 enero). Desarrollo de un sistema de gestion de biblioteca en la
Institucion ~ Educativa Técnico Industrial Pedro A. Ofioro de Baranoa. 10596/39010.
https://repository.unad.edu.co/handle/10596/39010?locale-attribute=en

Smiraglia, R. P. (2001). The nature of "a work™: Implications for the organization of
knowledge. Lanham, Md: Scarecrow Press.

Stack Overflow. (s. f.). What IS a software framework?

https://stackoverflow.com/questions/2964140/what-is-a-software-framework

Sydle. (2023). (Qué es la digitalizacion de documentos y como hacerla? Blog SYDLE.
https://www.sydle.com/es/blog/digitalizacion-de-documentos-
61b8e03c876cf6271dfbe88a#:~:text=La%20digitalizaci%C3%B3n%20de%2010s%20

documentos,una%?20realidad%20en%?20varias%20empresas

102

https://finance.utoronto.ca/policies/gtfm/financial-information-system-fis/overview-of-the-administrative-manaement-systems-ams/
https://finance.utoronto.ca/policies/gtfm/financial-information-system-fis/overview-of-the-administrative-manaement-systems-ams/
https://ruc.udc.es/dspace/handle/2183/32088
https://documenter.getpostman.com/view/20766493/2s9YkgDkKZ
https://kinsta.com/knowledgebase/what-is-postgresql/
https://repository.unad.edu.co/handle/10596/39010?locale-attribute=en
https://stackoverflow.com/questions/2964140/what-is-a-software-framework
https://www.sydle.com/es/blog/digitalizacion-de-documentos-61b8e03c876cf6271dfbe88a#:~:text=La%20digitalizaci%C3%B3n%20de%20los%20
https://www.sydle.com/es/blog/digitalizacion-de-documentos-61b8e03c876cf6271dfbe88a#:~:text=La%20digitalizaci%C3%B3n%20de%20los%20
https://www.sydle.com/es/blog/digitalizacion-de-documentos-61b8e03c876cf6271dfbe88a#:~:text=La%20digitalizaci%C3%B3n%20de%20los%20

The Editors of Encyclopaedia Britannica. (2023). Client-Server Architecture | Definition,
Characteristics, & Advantages. Encyclopedia Britannica.

https://www.britannica.com/technology/client-server-architecture

Visual Studio Code - Code editing. Redefined. (2021, 3 noviembre).

https://code.visualstudio.com/

20User-1Min-Rampa-Promusica-ULA-Performance-Report-10000-1. (2023, 6 de diciembre).
Google Docs.
https://drive.google.com/file/d/120XqBgWfsdBBDWK72WAY6vVOWMgGY96U7/vie

w?usp=sharing

103

https://www.britannica.com/technology/client-server-architecture
https://drive.google.com/file/d/12oXqBgWfsdBBDWK72WAY6v9WMgGY96U7/view?usp=sharing
https://drive.google.com/file/d/12oXqBgWfsdBBDWK72WAY6v9WMgGY96U7/view?usp=sharing

