

PROYECTO DE GRADO

SISTEMA DE GESTIÓN ADMINISTRATIVA PARA

MEJORAR LA EFICIENCIA EN EL REGISTRO Y

PRÉSTAMO DE PARTITURAS.

PARTE 1: BACK-END

CASO: FUNDACIÓN PROMÚSICA, DIRECCIÓN DE CULTURA-ULA

Por

Br. Francisco Javier Peña Ruiz

Tutor: Dr. Rafael Rivas Estrada

Abril de 2024

©2024 Universidad de Los Andes - Mérida, Venezuela

C.C. Reconocimiento

www.bdigital.ula.ve

iii

RESUMEN

En el contexto actual, la eficiencia en la gestión administrativa se vuelve fundamental

para optimizar procesos en diferentes áreas. La Fundación Promúsica, reconocida por su

labor en la promoción y difusión de la música clásica, enfrenta desafíos en la administración

manual de su amplia colección de partituras. La gestión manual ha resultado en pérdida de

partituras, retrasos en préstamos y dificultades en el seguimiento detallado de su uso. Ante

esta situación, se plantea el desarrollo de un sistema que optimice la gestión y préstamo de

partituras, mediante una solución tecnológica que permita un seguimiento detallado y

actualizado. El objetivo de este proyecto es desarrollar el backend de un sistema de gestión

administrativa para mejorar la eficiencia en el registro y préstamo de partituras en la

Fundación Promúsica, adscrita a la Dirección de Cultura de la Universidad de Los Andes. Se

busca analizar los procesos actuales, diseñar e implementar una base de datos eficiente y una

API Rest para la comunicación entre la base de datos y la interfaz de usuario. Para lograr este

objetivo, se adopta la metodología de desarrollo dirigido por pruebas (TDD), que permite una

implementación cuidadosa y una validación continua del sistema. Se establecen pruebas para

garantizar la funcionalidad óptima del sistema, asegurando su eficiencia y fiabilidad. Se lleva

a cabo una investigación para comprender las necesidades específicas de la Fundación

Promúsica, con el fin de diseñar e implementar una solución que agilice los procesos de

registro y préstamo de partituras. La implementación del sistema propuesto se considera una

solución factible que contribuirá significativamente a la preservación y difusión del valioso

repertorio musical promovido por la Fundación.

Palabras clave: Gestión administrativa, TDD, desarrollo de software, aplicación

WEB, gestión de préstamos.

C.C. Reconocimiento

www.bdigital.ula.ve

iv

ÍNDICE GENERAL

RESUMEN...iii

CAPÍTULO 1: INTRODUCCIÓN ... 8

1.1 Antecedentes ... 9

1.1.1. Desarrollo de un sistema de gestión de biblioteca en la Institución Educativa

Técnico Industrial Pedro A. Oñoro de Baranoa. .. 10

1.1.2. Sistema de gestión y digitalización bibliotecaria. Caso: carrera de odontología

U.P.E.A. 11

1.1.3. Diseño e Implementación de una aplicación para la gestión de partituras. 11

1.2. Planteamiento del problema ... 12

1.3. Justificación ... 12

1.4. Objetivos .. 13

1.4.1. Objetivo general ... 13

1.4.2. Objetivos específicos .. 13

1.5. Metodología.. 14

1.5.1. Algoritmo TDD .. 15

1.5.2. TDD como metodología ágil .. 18

1.6. Alcances y Limitaciones .. 18

1.6.1. Alcances: .. 18

1.6.2. Limitaciones: .. 19

CAPÍTULO 2: MARCO TEÓRICO .. 20

2.1. Sistema de Información .. 20

2.2. Tecnología de la información (TI) ... 21

2.3. Sistema de gestión administrativa ... 21

2.4. Sistemas integrados de gestión bibliotecaria (SIGB) ... 22

2.5. Biblioteca musical .. 23

2.6. Plataforma digital .. 24

2.7. Gestión de procesos de negocio .. 24

2.8. Ingeniería de requisitos ... 25

2.8.1. Requisitos funcionales .. 25

2.8.2. Requisitos no funcionales ... 26

2.9. Arquitectura de software .. 26

2.9.1. Arquitectura cliente-servidor .. 27

2.9.2. MVC (Modelo-Vista-Controlador)... 28

C.C. Reconocimiento

www.bdigital.ula.ve

v

2.10. Back-end ... 28

2.11. ¿Qué es un Framework o marco de trabajo de backend? 29

2.11.1. Evaluación de Frameworks para Desarrollo de Backend 30

2.12. Bases de datos .. 32

2.12.1. Bases de datos relacionales ... 32

2.13. ORM ... 33

2.14. API .. 34

2.14.1. API Rest .. 34

2.15. Seguridad de los datos... 35

2.15.1. Web Tokens .. 35

2.15.1. Cookies ... 36

2.15.3. Sanctum .. 36

2.16. Protocolos HTTP y HTTPS .. 37

2.16.1. HTTP (Hypertext Transfer Protocol) ... 37

2.16.2. HTTPS (Hypertext Transfer Protocol Secure) ... 38

2.17. Herramientas de escalabilidad – Contenedores y Kubernetes.............................. 39

2.17.1. Contenedores .. 39

2.17.2. Kubernetes .. 40

2.18. Técnicas para digitalizar y almacenar documentos ... 41

2.18.1. Digitalización de Documentos.. 41

2.18.2. Almacenamiento en el Sistema de Archivos .. 41

2.18.3. Almacenamiento en Servicios de Almacenamiento en la Nube 42

2.18.4. Almacenamiento en Base de Datos usando el Tipo de Dato Binario 42

2.19. Herramientas tecnológicas ... 43

2.19.1. PHP ... 43

2.19.2. Laravel ... 43

2.19.3. Eloquent .. 44

2.19.4. SQL ... 44

2.19.5. PostgreSQL ... 44

2.19.6. Visual Studio Code ... 45

2.19.7. Postman .. 45

2.19.8. Docker .. 46

CAPÍTULO 3: ANÁLISIS Y DISEÑO DEL SISTEMA .. 47

3.1. Requerimientos del Sistema ... 47

C.C. Reconocimiento

www.bdigital.ula.ve

vi

3.1.1. Actores .. 48

3.1.2. Requisitos Funcionales ... 49

3.1.3 Requisitos no funcionales .. 50

3.1.4. Historias de Usuario ... 50

3.2. Diseño de Pruebas ... 54

3.3. Arquitectura General del Sistema (Cliente - Servidor) ... 57

3.4. Patrón de Diseño de software – MVC ... 59

3.5. Modelado de Datos (Diagrama de Entidad-Relación) ... 61

CAPÍTULO 4: IMPLEMENTACIÓN DEL SISTEMA .. 63

4.1 Entorno de Desarrollo .. 63

4.1.1 IDE y Control de Versiones... 63

4.1.2 Lenguaje de Programación y Framework .. 64

4.1.3. Gestor de Base de Datos y ORM .. 64

4.1.4. Configuración del Entorno local... 64

4.2. Desarrollo de la Lógica del Sistema ... 65

4.2.1. Implementación de Migraciones Laravel ... 65

4.2.2. Creación de Modelos .. 67

4.2.3. Creación de Controladores ... 69

4.3. Configuración de Rutas: Construyendo la API del Sistema 71

CAPÍTULO 5: IMPLEMENTACIÓN Y EJECUCIÓN DE PRUEBAS 75

5.1. Pruebas de Características ... 75

5.2 Pruebas de la API con Postman .. 88

CAPÍTULO 6: ANÁLISIS Y RESULTADOS .. 90

6.1 Evaluación de los Resultados de las Pruebas de Rendimiento 90

6.2 Impacto en la Eficiencia del Registro y Préstamo de Partituras 93

6.3 Análisis de la Metodología TDD ... 93

6.4 Potenciales Áreas de Mejora ... 94

6.5 Plan de Implementación y Futuras Direcciones .. 94

CONCLUSIONES Y RECOMENDACIONES ... 95

REFERENCIAS ... 98

C.C. Reconocimiento

www.bdigital.ula.ve

vii

ÍNDICE DE TABLAS Y FIGURAS

Figura 1. Metodología de desarrollo TDD (Herranz, 2023) .. 15

Figura 2. Ciclo TDD (Fuentes, 2021) .. 17

Figura 3: Usuario Administrador. .. 48

Figura 4: Usuario Prestatario (Autenticado). ... 48

Tabla 1: Historias de usuario del sistema .. 52

Figura 5: Historia de usuario HU 001: Registro de Partituras ... 52

Figura 6: Historia de usuario HU 007: Registro de usuario prestatario. 52

Figura 7: Historia de usuario HU 008: Registro de usuario administrador. 53

Figura 8: Historia de usuario HU 009: Descargar partitura digital. ... 53

Figura 9: Historia de usuario HU 010: Préstamo de partitura físico. 54

Figura 10. Arquitectura General (Cliente-Servidor) .. 58

Figura 11. Patrón de Diseño MVC .. 60

Figura 12. Diagrama Entidad-Relación ... 62

Figura 13. Configuración de la conexión a DB ... 65

Figura 14. Migración create_music_sheets_table.php ... 67

Figura 15. Modelo MusicSheet.php ... 69

Figura 16. Controlador MusicSheetController.php ... 71

Figura 17. Lista de Rutas de la API ... 74

Figura 18. a. Red Test – primer criterio de aceptación .. 78

Figura 18. b. Green Test – primer criterio de aceptación .. 79

Figura 19. a. Red Test – segundo criterio de aceptación ... 81

Figura 19. b. Green Test – segundo criterio de aceptación .. 81

Figura 20. a. Red Test – tercer criterio de aceptación ... 82

Figura 20. b. Green Test – tercer criterio de aceptación .. 83

Figura 21. a. Red Test – cuarto criterio de aceptación... 84

Figura 21. b. Green Test – cuarto criterio de aceptación ... 85

Figura 21. c. Green Test – todos los test de la función store ... 87

Figura 21. d. Última prueba (Green Test) .. 88

Figura 22. Solicitudes con más errores. ... 91

Figura 23. Top 5 de las solicitudes más lentas... 92

Figura 24. Tendencia del tiempo de respuesta durante la prueba. ... 92

C.C. Reconocimiento

www.bdigital.ula.ve

8

CAPÍTULO 1: INTRODUCCIÓN

El desarrollo de sistemas eficientes de gestión administrativa ha sido fundamental

para optimizar diversos procesos en diferentes ámbitos. En paralelo, las interfaces de

programación de aplicaciones (APIs) han desempeñado un papel crucial al facilitar la

comunicación fluida entre sistemas informáticos, marcando un hito en el desarrollo de los

sistemas administrativos. En esta línea, la Fundación Promúsica, reconocida por su labor en

la promoción y difusión de la música clásica desde su establecimiento en 1998, se ha

enfrentado a desafíos en la administración manual de su amplia colección de partituras.

La gestión manual de estas valiosas piezas musicales ha generado problemas como la

pérdida de partituras, retrasos en los préstamos y dificultades en el seguimiento detallado de

su uso. Ante esta situación, se ha identificado la necesidad apremiante de desarrollar un

sistema que optimice la gestión y préstamo de las partituras en esta entidad. Este proyecto se

ha planteado como una solución factible, la cual agilice los procesos de registro y préstamo

de partituras, mediante el desarrollo e implementación de un sistema de gestión

administrativa que permita al mismo tiempo un seguimiento detallado y actualizado de su

uso.

En tal sentido, se ha optado por la metodología de desarrollo dirigido por pruebas

(TDD), la cual ha permitido una implementación cuidadosa y una validación continua del

sistema. A través de la metodología TDD, se han establecido pruebas para garantizar la

C.C. Reconocimiento

www.bdigital.ula.ve

9

funcionalidad óptima del sistema, asegurando la eficiencia y la fiabilidad del proceso de

desarrollo.

Para lograr este objetivo, se ha llevado a cabo una investigación para comprender las

necesidades y requerimientos específicos de la Fundación Promúsica. Asimismo, se ha

diseñado e implementado una base de datos eficiente y una API que facilita la comunicación

entre la base de datos y la interfaz de usuario. En este contexto, se explorará cómo la

implementación de un sistema de gestión administrativa eficiente puede contribuir de manera

significativa a la preservación y difusión del valioso repertorio musical promovido por la

Fundación Promúsica.

1.1 Antecedentes

La Fundación Promúsica, establecida en 1998, adscrita a la dirección de cultura de la

Universidad de Los Andes, se ha destacado por su labor en la promoción y difusión de la

música clásica, particularmente en la formación pedagógica y la promoción de la música

coral en la región. A lo largo de los años, ha contribuido significativamente a la difusión de la

música venezolana, latinoamericana y universal, fomentando el desarrollo humano y artístico

de sus miembros, con especial énfasis en niños y jóvenes provenientes de diversos contextos

socioeconómicos. A pesar de sus esfuerzos sobresalientes, la organización ha enfrentado

desafíos en la administración de su extensa colección de partituras, lo que ha dado lugar a

problemas como la pérdida de partituras, retrasos en los préstamos y dificultades para

mantener un registro detallado del uso de las mismas.

En el contexto más amplio de la gestión administrativa, la implementación de

sistemas eficientes ha demostrado ser fundamental para optimizar los procesos en diversas

áreas. Estos sistemas han desempeñado un papel crucial en la mejora de la eficiencia y la

C.C. Reconocimiento

www.bdigital.ula.ve

10

gestión efectiva de recursos y datos. La interconexión de componentes y el flujo dinámico de

información son elementos esenciales para lograr esta eficacia. Las interfaces de

programación de aplicaciones (APIs) han surgido como una herramienta esencial para

facilitar esta comunicación fluida (Jin et al., 2018). A lo largo de la historia, las APIs han

marcado un hito en la evolución de los sistemas administrativos, al permitir la integración de

diferentes interfaces y la admisión de diversos tipos de programación (Mikula, 2023). Estas

interfaces han demostrado su eficacia al posibilitar una conexión efectiva entre sistemas

informáticos, convirtiéndose en una parte integral del desarrollo de software moderno.

Estos avances tecnológicos, específicamente en la gestión administrativa se han

evidenciado en diversos estudios previos que han abordado problemas similares, algunos

ejemplos de ello se describen a continuación:

1.1.1. Desarrollo de un sistema de gestión de biblioteca en la Institución

Educativa Técnico Industrial Pedro A. Oñoro de Baranoa.

Este sistema fue diseñado en la plataforma Visual Studio 2017, Asp.Net y el motor de

base de datos MySQL. El propósito del sistema era permitir al encargado de la biblioteca

llevar un seguimiento y control de toda la información almacenada en el sistema; así como

conocer de manera rápida y segura los datos de los libros, estudiantes, usuarios, datos de

entrada y salida de los libros que se realizan diariamente, sin tener que recurrir a los archivos

manuales obsoletos que se utilizaban en aquel momento. La propuesta buscaba solucionar un

problema que se había presentado por mucho tiempo en la institución, ya que profesores y

estudiantes no sabían realmente qué libros, textos y otros recursos estaban disponibles en la

biblioteca escolar (Ruiz, 2020).

C.C. Reconocimiento

www.bdigital.ula.ve

11

1.1.2. Sistema de gestión y digitalización bibliotecaria. Caso: carrera de

odontología U.P.E.A.

La investigación describe la propuesta de un sistema de gestión y digitalización

bibliotecaria para mejorar el servicio al personal y usuarios de la biblioteca de la carrera de

odontología, que tenía un control semiautomático y limitaciones en el acceso a la información

y préstamo de materiales bibliográficos. El sistema se desarrolló utilizando la metodología

UWE y tecnología Web, con PHP como lenguaje de programación y MariaDB como gestor

de base de datos. Además, se realizó una evaluación de la calidad de producto de software

con ISO/IEC 9126 y una estimación de costo de software con el modelo COCOMO II

(Gutiérrez ,2020).

1.1.3. Diseño e Implementación de una aplicación para la gestión de

partituras.

Esta investigación describe un trabajo que se enfocó en el desarrollo e

implementación de una aplicación web para la gestión de partituras, con el objetivo de

almacenar las partituras subidas por los usuarios y desarrollar una capa social y un motor de

búsqueda. La aplicación cuenta con una arquitectura en capas, con la capa del servidor

implementada a través del framework Django y la capa del cliente implementada a través de

la biblioteca React. El proyecto se desarrolló utilizando la metodología ágil Scrum (Pérez,

2022).

Estos antecedentes enfatizan la importancia de implementar sistemas de gestión

avanzados en diferentes contextos para optimizar los procesos y mejorar la eficiencia en

diversas áreas de estudio y trabajo.

C.C. Reconocimiento

www.bdigital.ula.ve

12

1.2. Planteamiento del problema

La Fundación Promúsica, dedicada a la promoción y difusión de la música clásica, se

ha enfrentado a desafíos significativos en la gestión manual de su extensa colección de

partituras. Este proceso tradicional ha llevado a problemas tales como pérdida de partituras,

demoras en los préstamos y dificultades para mantener un registro detallado del uso de las

mismas. La ausencia de un sistema de gestión administrativa eficiente ha agravado estas

dificultades, resultando en una base de datos desactualizada que no permite un seguimiento

adecuado de la disponibilidad de las partituras y su historial de préstamos. En este contexto,

surge la necesidad de desarrollar un sistema que agilice el proceso de registro y préstamo de

partituras, al tiempo que facilite un seguimiento detallado y actualizado del uso de las mismas

en la Fundación.

1.3. Justificación

Considerando los desafíos actuales en la gestión manual de la extensa colección de

partituras de la Fundación Promúsica, es evidente la necesidad urgente de mejorar la

eficiencia en el registro y préstamo de estas valiosas piezas musicales. La implementación de

un sistema de gestión administrativa eficiente se vuelve crucial para optimizar los procesos

de mantenimiento y préstamo de las partituras, evitando extravíos, retrasos y deficiencias en

el registro del uso de las mismas.

Este proyecto se plantea como un producto factible y se justifica en su propósito de

desarrollar una solución tecnológica que permita una gestión más efectiva y automatizada de

las partituras en la Fundación Promúsica. La implementación de este sistema no solo

contribuirá a agilizar los procesos internos, sino que también garantizará un acceso más

C.C. Reconocimiento

www.bdigital.ula.ve

13

rápido y seguro a las partituras, mejorando así la experiencia de los usuarios y optimizando la

preservación y difusión del valioso repertorio musical en la región.

1.4. Objetivos

1.4.1. Objetivo general

Desarrollar el back-end de un sistema de gestión administrativa para mejorar la

eficiencia en el registro y préstamo de partituras en la fundación Promúsica, adscrita a la

dirección de cultura de la Universidad de Los Andes.

1.4.2. Objetivos específicos

Para cumplir con el objetivo general, se plantean los siguientes objetivos específicos:

● Analizar los procesos actuales de registro y préstamo de partituras en la Fundación

Promúsica para identificar las necesidades y requerimientos del sistema de gestión

administrativa.

● Diseñar e implementar una base de datos que permita almacenar la información de los

usuarios, partituras, y préstamos de manera eficiente, organizada y segura.

● Desarrollar una API Rest que permita la comunicación entre la base de datos y una

interfaz de usuario.

● Implementar el sistema de gestión administrativa en la fundación Promúsica y

capacitar al personal encargado en su uso.

C.C. Reconocimiento

www.bdigital.ula.ve

14

1.5. Metodología

Para el desarrollo del Producto Factible orientado a optimizar la gestión de las

partituras en la Fundación Promúsica, se ha adoptado la Metodología de Desarrollo Dirigido

por Prueba (TDD, por sus siglas en inglés: Test Driven Development). Esta metodología se

ha elegido por su enfoque proactivo y su capacidad para garantizar la calidad del sistema a lo

largo de todo el proceso de desarrollo.

Herranz (2023), describe el “Test Driven Development” (TDD) como una

metodología de desarrollo de software que se basa en escribir primero las pruebas, después

escribir el código fuente que pase la prueba satisfactoriamente y, por último, refactorizar el

código escrito.

En este orden de ideas, el TDD se fundamenta en un enfoque iterativo que se inicia

con la creación de pruebas automatizadas antes de implementar cualquier funcionalidad.

Estas pruebas se diseñarán para validar la funcionalidad y asegurar que el sistema cumpla con

los requisitos definidos previamente. Posteriormente, se desarrollará la funcionalidad mínima

necesaria para que la prueba pase satisfactoriamente. Este proceso, conocido como ciclo

TDD, se repetirá de forma iterativa, integrando nuevas funcionalidades y ampliando las

pruebas existentes a lo largo de las distintas fases de desarrollo, este ciclo se puede observar

en la figura 1.

Se prestará especial atención a la escritura de pruebas claras y específicas que cubran

todos los casos posibles de uso y que aborden los potenciales problemas que podrían surgir

durante la implementación. Las pruebas se automatizarán para garantizar una verificación

continua y exhaustiva del sistema en cada etapa del desarrollo.

C.C. Reconocimiento

www.bdigital.ula.ve

15

Figura 1. Metodología de desarrollo TDD (Herranz, 2023)

1.5.1. Algoritmo TDD

Según Blé (2010), el algoritmo TDD sólo tiene tres pasos fundamentales:

■ Escribir la especificación del requisito (el ejemplo, el test).

■ Implementar el código según dicho ejemplo.

■ Refactorizar para eliminar duplicidad y hacer mejoras.

A continuación, se presentan con más detalle cada uno de estos pasos:

Paso 1 - Escribir la especificación del requisito primero: Antes de implementar cualquier

código, se redactarán pruebas claras y específicas que describen los requisitos del sistema.

C.C. Reconocimiento

www.bdigital.ula.ve

16

Las pruebas se diseñarán para abordar casos de uso o historias de usuario y escenarios

específicos, lo que permitirá clarificar el comportamiento esperado del sistema.

En otras palabras, el primer paso es “escribir una prueba que falle”. Esta prueba

debe especificar el comportamiento esperado del software. Para escribir una prueba, debemos

identificar el comportamiento que queremos probar. Una vez que hayamos identificado el

comportamiento, podemos escribir una prueba que verifique ese comportamiento. La prueba

debe ser lo más simple posible. No se debe hacer nada más que verificar el comportamiento

que queremos probar.

Paso 2 - Implementar el código que haga funcionar la especificación: Se procederá a

desarrollar el código mínimo necesario para que las pruebas definidas anteriormente se

cumplan. Durante esta etapa, se evitará la implementación de cualquier código adicional que

no sea estrictamente necesario para satisfacer la especificación actual. Se prestará especial

atención a la eficiencia y a la concentración en la implementación precisa de la funcionalidad

requerida.

Básicamente, el siguiente paso es “escribir el código necesario para que la prueba

pase”. Este código debe ser lo más simple posible. Para escribir el código, se debe pensar en

cómo implementar el comportamiento que queremos probar. Una vez que se tenga una idea

de cómo implementar el comportamiento, se procede a escribir el código necesario. No se

debe hacer nada más que implementar el comportamiento que queremos probar.

Paso 3 - Refactorización: A continuación, se llevará a cabo una revisión exhaustiva del

código para identificar y eliminar cualquier duplicidad. Además, se verificará que el código

cumpla con los principios de diseño pertinentes. Se realizarán ajustes y optimizaciones

necesarios para mejorar la claridad y la mantenibilidad del código.

C.C. Reconocimiento

www.bdigital.ula.ve

17

Dicho en otras palabras, el último paso es “refactorizar el código escrito”. La

refactorización se puede realizar de muchas maneras diferentes. Una forma de refactorizar el

código es eliminar el código duplicado o simplificar la estructura y lectura del mismo.

Otra forma de enumerar las tres fases del ciclo es:

■ Rojo

■ Verde

■ Refactorizar

Figura 2. Ciclo TDD (Fuentes, 2021)

Es una descripción metafórica (Figura 2), ya que los frameworks de tests suelen

colorear en rojo aquellas especificaciones que no se cumplen y en verde las que lo hacen. Así,

cuando escribimos el test, el primer color es rojo porque todavía no existe código que

implemente el requisito. Una vez implementado, se pasa a verde (Blé, 2010).

C.C. Reconocimiento

www.bdigital.ula.ve

18

1.5.2. TDD como metodología ágil

La integración del Desarrollo Dirigido por Pruebas (TDD) como metodología ágil, se

traduce en un proceso estructurado que aborda la creación de software de manera eficiente

(Herranz, 2023). Este enfoque se manifiesta en una serie de pasos coherentes, delineados de

la siguiente manera:

1. El cliente escribe su historia de usuario.

2. En colaboración con el cliente, se definen los criterios de aceptación asociados con la

historia de usuario, seccionándolos en elementos más simples para facilitar el proceso.

3. Se escoge el criterio de aceptación más simple y se traduce en una prueba.

4. Se comprueba que esta prueba falla.

5. Se escribe el código que hace pasar la prueba.

6. Se ejecutan todas las pruebas automatizadas.

7. Se refactoriza y se limpia el código.

8. Se lleva a cabo una revisión exhaustiva a través de la ejecución de todas las pruebas

automatizadas, garantizando que la funcionalidad del sistema se mantenga intacta y

sin errores.

9. Volver al punto 3 con los criterios de aceptación que faltan y se repite el ciclo una y

otra vez hasta completar la aplicación.

1.6. Alcances y Limitaciones

1.6.1. Alcances:

● El estudio se centrará en el desarrollo de un sistema de gestión administrativa para la

fundación Promúsica.

C.C. Reconocimiento

www.bdigital.ula.ve

19

● El sistema permitirá la optimización del proceso de registro y préstamo de partituras,

así como el registro detallado y actualizado del uso de las mismas.

● Se identificarán las necesidades y requerimientos de la fundación Promúsica para el

desarrollo del sistema.

● Se diseñará y desarrollará una base de datos que permita el registro y préstamo de

partituras de manera eficiente y organizada.

● Se desarrollará una API Rest, la cual podrá ser consumida por una interfaz de usuario.

● Se implementará el sistema de gestión administrativa en la fundación Promúsica y se

capacitará al personal encargado en su uso.

1.6.2. Limitaciones:

● El estudio se enfoca en el desarrollo del sistema de gestión administrativa para la

fundación Promúsica y no se considerarán otras organizaciones dedicadas a la

promoción y difusión de la música.

● El sistema a desarrollar estará enfocado en la gestión de partituras y no se incluirán

otros elementos de la organización, como la gestión de recursos humanos o la gestión

financiera.

● El estudio no considerará la infraestructura tecnológica disponible en la fundación

Promúsica y se asumirá que se cuenta con los recursos necesarios para la

implementación del sistema.

C.C. Reconocimiento

www.bdigital.ula.ve

20

CAPÍTULO 2: MARCO TEÓRICO

En este capítulo, se sientan las bases teóricas para el desarrollo del proyecto,

presentando las herramientas de desarrollo que se utilizarán. Aquí se establece el fundamento

conceptual necesario para comprender y ejecutar de manera efectiva la investigación y el

desarrollo propuestos.

2.1. Sistema de Información

O'Brien y Marakas (2006), en su libro Sistemas de información gerencial, definen un

sistema de información como un conjunto de componentes interrelacionados que recopilan,

procesan, almacenan y distribuyen información con el fin de apoyar la toma de decisiones, la

coordinación y el control en una organización. En esta definición, se destaca la importancia

de los componentes interrelacionados y la función del sistema de información para apoyar la

gestión de la organización.

La definición de sistema de información de estos autores, es relevante en este

contexto, debido a que, un sistema de gestión administrativa para la gestión de partituras es,

en esencia, un sistema de información que recopila, procesa, almacena y distribuye

información relevante para la toma de decisiones y el control dentro de la organización.

C.C. Reconocimiento

www.bdigital.ula.ve

21

2.2. Tecnología de la información (TI)

Langer (2018), define la tecnología de la información como la combinación de

hardware, software y servicios que se utilizan para gestionar y procesar la información dentro

de una organización.

La definición de Langer destaca la importancia de la tecnología de la información en

la administración y el procesamiento de la información dentro de una organización. La

tecnología de la información es fundamental para la construcción y el funcionamiento de un

sistema porque ofrece las herramientas necesarias para la gestión de datos y el intercambio de

información entre los numerosos componentes del sistema.

Los sistemas pueden procesar, almacenar y transportar información de manera

confiable y efectiva gracias al hardware, software y servicios de tecnología de la información,

que respaldan la toma de decisiones corporativas y la formulación de estrategias. La

tecnología de la información es crucial para la seguridad del sistema porque ofrece

instrumentos para la protección de la información contra el acceso no autorizado y la

recuperación de la información en caso de falla del sistema.

2.3. Sistema de gestión administrativa

Un sistema de gestión administrativa se refiere al conjunto de herramientas

tecnológicas que utilizan las empresas para la automatización y mejora de sus procesos

administrativos, con el objetivo de incrementar su eficiencia y productividad. (Overview of

the Administrative Management Systems (AMS), 2016).

Debido a que permitiría la automatización y optimización de los procesos

administrativos asociados a la gestión de partituras de la fundación Promúsica, la creación de

C.C. Reconocimiento

www.bdigital.ula.ve

22

un sistema para aumentar la eficiencia en el registro y préstamo de partituras es crucial

porque conduciría a un mayor nivel de productividad en la gestión de estos recursos.

Herramientas como bases de datos de clientes, sistemas de monitoreo de préstamos y

devoluciones, software de gestión de inventario y otros pueden ser parte de un sistema de

gestión administrativa. Al automatizar estas operaciones, sería posible acelerar la gestión de

recursos, disminuir la cantidad de tiempo requerido para los procesos de registro y préstamo,

y eliminar por completo los errores humanos.

Un sistema de gestión administrativa también permitiría mantener un registro preciso

y actualizado del inventario de partituras, lo que ayudaría en la toma de decisiones y la

planificación a largo plazo. Además, podría ayudar a maximizar la capacidad de

almacenamiento de las partituras, así como a mejorar la seguridad y la administración del

acceso a las partituras.

2.4. Sistemas integrados de gestión bibliotecaria (SIGB)

La gestión eficiente de recursos y servicios es fundamental para el éxito de cualquier

organización, incluyendo las bibliotecas. Los sistemas de gestión de bibliotecas (SIGB) son

herramientas tecnológicas que permiten gestionar de manera efectiva los recursos y servicios

de una biblioteca.

Gavilán (2008), define los sistemas integrados de gestión bibliotecaria (SIGB) como

herramientas tecnológicas que permiten la gestión automatizada de los recursos y servicios de

una biblioteca, incluyendo la adquisición, catalogación, circulación, préstamo y control de

inventario de los materiales bibliográficos.

Este tipo de programas surgen como un intento de conseguir que las unidades de

información se conviertan en centros más eficaces, con capacidad de poder gestionar de

C.C. Reconocimiento

www.bdigital.ula.ve

23

manera más eficiente sus recursos y la posibilidad de comunicación más viable con los

usuarios.

Un SIGB, integra en un solo programa informático un conjunto de aplicaciones

específicas que se denominan módulos, pensados para la facilitación de las tareas específicas

de este, las cuales están directamente relacionadas unas con otras. Toda la información

reunida, se almacena en una misma base de datos que permite el mejor intercambio de la

información y el aprovechamiento de los recursos con el menor esfuerzo posible.

2.5. Biblioteca musical

Smiraglia (2001), propone la siguiente definición para biblioteca musical: es una

biblioteca especializada en la adquisición, procesamiento, almacenamiento y acceso de

materiales relacionados con la música en cualquier formato.

La definición implica que una biblioteca musical tiene un enfoque específico en la

música y sus materiales relacionados, lo que incluye partituras en diferentes formatos (por

ejemplo, partituras impresas, partituras digitales, archivos de audio, etc.). Al tener una

comprensión clara de las necesidades de una biblioteca musical, se puede diseñar un sistema

de gestión de partituras para la fundación Promúsica que incluya las características y

funcionalidades específicas necesarias para satisfacer sus necesidades.

Un sistema de gestión de partituras debe ser capaz de adquirir, procesar, almacenar y

permitir el acceso a las partituras en diferentes formatos, ya sea en forma impresa o digital.

Debe contar con herramientas de catalogación, metadatos y búsqueda que permitan a los

usuarios buscar y encontrar las partituras de manera eficiente y precisa. También debe tener

herramientas de visualización y reproducción de partituras digitales para permitir a los

usuarios ver y escuchar las partituras de manera clara y precisa.

C.C. Reconocimiento

www.bdigital.ula.ve

24

2.6. Plataforma digital

Ross et al. (2019), definen la plataforma digital como un conjunto de tecnologías,

estándares y acuerdos comerciales que, cuando se combinan con el contenido digital,

proporcionan una experiencia integral y personalizada para los clientes, usuarios y

empleados. Estos autores, argumentan que una plataforma digital exitosa debe ofrecer una

solución integral a las necesidades de los usuarios, que incluye la entrega de contenido y la

capacidad de interactuar y realizar transacciones en línea. También destaca la importancia de

la colaboración entre las empresas y los proveedores de tecnología para construir y mantener

una plataforma digital efectiva.

2.7. Gestión de procesos de negocio

La gestión de procesos de negocio (BPM, por las iniciales de la expresión en inglés

Business Process Management) constituye uno de los tópicos más pronunciados cuando se

abordan las Tecnologías de Información (TI) aplicadas al entorno empresarial. BPM se

considera un enfoque multidisciplinario ya que presenta conectores con elementos

empresariales y tecnológicos altamente relacionados entre sí. Bajo el paradigma BPM estos

procesos se conciben en un ciclo donde son modelados electrónicamente y pueden ser

analizados y mejorados como resultado de varias instancias de procesos ejecutados. Este

ciclo BPM se sustenta por los sistemas BPM (BPMS). Las BPMS ofrecen componentes de

software integrados en un entorno único que se pueden clasificar en: herramientas de

modelado, herramientas de simulación, motores de ejecución, integración de aplicaciones,

portales web y monitorización (Cruz et al., 2020).

C.C. Reconocimiento

www.bdigital.ula.ve

25

2.8. Ingeniería de requisitos

La ingeniería de requisitos es un enfoque sistemático a través del cual el ingeniero de

software recopila requisitos de diferentes fuentes y los implementa en los procesos de

desarrollo de software. Las actividades de ingeniería de requisitos cubren todo el ciclo de

vida del desarrollo de sistemas y software. El proceso de ingeniería de requisitos es un

proceso iterativo que también indica que la gestión de requisitos se entiende como un aspecto

del proceso de ingeniería de requisitos (An Effective Requirement Engineering Process

Model for Software Development and Requirements Management, 2010).

Es común clasificar los requisitos en funcionales y no funcionales.

2.8.1. Requisitos funcionales

Los requisitos funcionales son los que definen las funciones que el sistema será capaz

de realizar, describen las transformaciones que el sistema realiza sobre las entradas para

producir salidas (Alarcón, 2006). Por consiguiente, estos requisitos establecen la base sobre

la cual se construirá el sistema. Los requisitos funcionales especifican las funcionalidades,

tareas y procesos que el software debe cumplir, lo que significa que son fundamentales para

el diseño, implementación, pruebas y validación del software.

Por tanto, los requisitos funcionales son esenciales para garantizar que el software

cumpla con las necesidades y expectativas de los usuarios finales. Si los requisitos

funcionales no se definen adecuadamente, es probable que el software no cumpla con los

objetivos previstos, lo que puede llevar a la insatisfacción del usuario, a la necesidad de

realizar cambios costosos y a la posible pérdida de oportunidades de negocio. En

C.C. Reconocimiento

www.bdigital.ula.ve

26

consecuencia, es fundamental que los requisitos funcionales sean claros, precisos y completos

para que el software pueda ser desarrollado de manera efectiva.

2.8.2. Requisitos no funcionales

Los requisitos no funcionales tienen que ver con características que de una u otra

forma puedan limitar el sistema, por ejemplo, el rendimiento (en tiempo y espacio), interfaces

de usuario, fiabilidad (robustez del sistema, disponibilidad de equipo), mantenimiento,

seguridad, portabilidad, estándares, etc. Son restricciones de los servicios o funciones

ofrecidos por el sistema (Alarcón, 2006).

Es por ello, que los requisitos no funcionales proporcionan limitaciones y

especificaciones importantes que se deben cumplir para garantizar que el sistema cumpla con

las expectativas de los usuarios. Si estos requisitos no se cumplen, el sistema puede no ser

efectivo, eficiente o seguro para su uso, por lo que es fundamental tenerlos en cuenta desde el

inicio del proyecto y considerarlos durante todo el ciclo de vida del software.

2.9. Arquitectura de software

La arquitectura de software es la estructura de un producto de software. Esto incluye

elementos, las propiedades visibles externamente de los elementos y las relaciones entre los

elementos (Bass et al., 2012).

En base a lo anterior, Lilienthal (2019) dice que esta definición habla deliberadamente

de elementos y relaciones en términos muy generales. Estos dos materiales básicos se pueden

utilizar para describir una amplia variedad de vistas arquitectónicas. La vista estática

(módulo) contiene los siguientes elementos: clases, paquetes, espacios de nombres,

directorios y proyectos; en otras palabras, todos los contenedores que puede usar para

programar código en ese lenguaje de programación en particular. En la vista de distribución,

C.C. Reconocimiento

www.bdigital.ula.ve

27

se pueden encontrar los siguientes elementos: archivos (JAR, WAR, ensamblados),

computadoras, procesos, protocolos y canales de comunicación, etc. En la vista dinámica

(tiempo de ejecución) estamos interesados en los objetos de tiempo de ejecución y sus

interacciones.

2.9.1. Arquitectura cliente-servidor

La arquitectura cliente-servidor de una red informática es aquella en la que muchos

clientes (procesadores remotos) solicitan y reciben servicios de un servidor centralizado

(computadora host). Las computadoras cliente proporcionan una interfaz para permitir que un

usuario de computadora solicite servicios del servidor y muestre los resultados que devuelve

el servidor. Los servidores esperan que lleguen las solicitudes de los clientes y luego las

responden (The Editors of Encyclopaedia Britannica, 2023).

2.9.1.1. Servidor

Un servidor es un sistema que contiene datos o proporciona recursos a los que deben

acceder otros sistemas de la red. Los tipos de servidor comunes son servidores de archivos

que almacenan archivos, servidores de nombres que almacenan nombres y direcciones,

servidores de aplicaciones que almacenan programas y aplicaciones y servidores de

impresión que planifican y dirigen los trabajos de impresión al destino (IBM Documentation,

2021).

2.9.1.2. Cliente

Un cliente es un sistema que solicita servicios o datos de un servidor. Un cliente

puede solicitar código de programa actualizado o el uso de aplicaciones de un servidor de

código. Para obtener un nombre o una dirección, un cliente se pone en contacto con un

C.C. Reconocimiento

www.bdigital.ula.ve

28

servidor de nombres. Un cliente también puede solicitar archivos y datos para la entrada de

datos, las consultas o la actualización de registros de un servidor de archivos (IBM

Documentation, 2021).

2.9.2. MVC (Modelo-Vista-Controlador)

Es un patrón en el diseño de software comúnmente utilizado para implementar

interfaces de usuario, datos y lógica de control. Enfatiza una separación entre la lógica de

negocios y su visualización. Esta "separación de preocupaciones" proporciona una mejor

división del trabajo y una mejora de mantenimiento. Algunos otros patrones de diseño se

basan en MVC, como MVVM (Modelo-Vista-modelo de vista), MVP (Modelo-Vista-

Presentador) y MVW (Modelo-Vista-Whatever) (MVC - Glosario de MDN Web Docs:

Definiciones de términos relacionados con la Web | MDN, 2022).

2.10. Back-end

El back-end, también conocido como el lado del servidor, es la parte del software que

se encarga de procesar y almacenar los datos y de gestionar la lógica de negocio. Es la

columna vertebral de cualquier aplicación web o móvil, ya que es responsable de

proporcionar la funcionalidad y los servicios necesarios para que la aplicación pueda

funcionar correctamente.

En relación al desarrollo de software, el back-end es crucial para garantizar la

seguridad, escalabilidad y rendimiento de una aplicación. Un back-end bien diseñado y

desarrollado puede mejorar significativamente la experiencia del usuario y la eficiencia de la

aplicación. (Eseme, 2021)

C.C. Reconocimiento

www.bdigital.ula.ve

29

2.11. ¿Qué es un Framework o marco de trabajo de backend?

Un Framework o marco de trabajo de software es una base donde los desarrolladores

pueden crear aplicaciones de una manera más rápida y estandarizada. El siguiente ejemplo,

disponible en Stack Overflow (s. f.), es bastante útil para comprender el concepto de marco

de trabajo.

“... Si te dijera que cortes un trozo de papel con unas dimensiones de 5 m por 5

m, seguramente lo harías. Pero supón que te pido que cortes 1000 hojas de

papel de las mismas dimensiones. En este caso, no harás la medición 1000

veces; obviamente, harías un marco de trabajo de 5 m por 5 m, y luego con su

ayuda podrías cortar 1000 hojas de papel en menos tiempo. Entonces, lo que

hiciste fue crear un marco de trabajo que haría un tipo específico de tarea. En

lugar de realizar el mismo tipo de tarea una y otra vez para el mismo tipo de

aplicaciones, creas un marco de trabajo que tiene todas esas facilidades juntas

en un paquete agradable, proporcionando de esta forma la abstracción para tu

aplicación y, lo que es más importante, muchas aplicaciones”.

En este orden de ideas, un marco de trabajo de software se puede considerar como una

plantilla predefinida que permite a los desarrolladores construir aplicaciones de manera más

rápida y eficiente. De manera similar, un marco de trabajo de backend proporciona un

conjunto de herramientas y funcionalidades integradas que simplifican el desarrollo de

aplicaciones, permitiendo a los desarrolladores enfocarse en la lógica específica de su

aplicación en lugar de reinventar constantemente la rueda. Este enfoque estandarizado y

eficiente no sólo acelera el proceso de desarrollo, sino que también fomenta una mayor

consistencia y confiabilidad en las aplicaciones resultantes (Clark, 2021).

C.C. Reconocimiento

www.bdigital.ula.ve

30

2.11.1. Evaluación de Frameworks para Desarrollo de Backend

Los marcos de trabajo de backend son esenciales para el desarrollo de aplicaciones

para innumerables compañías en todo el mundo en la actualidad. Encontrar el marco de

trabajo de backend adecuado puede ser crucial para que los desarrolladores garanticen un

rendimiento y escalabilidad óptimos. Con tantas opciones disponibles hoy en día, elegir las

más relevantes puede ser complicado.

 En la presente revisión, se evalúan algunos de los frameworks más destacados, como

Django, Laravel, Ruby on Rails, Spring Boot y Express, junto con una breve consideración

de otros frameworks relevantes como ASP.NET Core, Node.js, Gin, Kotlin, Flask, CakePHP

y Yii.

Django (Python): Conocido por su facilidad de uso y capacidad para crear

aplicaciones web complejas, Django se destaca por su soporte para la arquitectura Modelo-

Vista-Controlador (MVC), generación de código, enrutamiento de URL, validación de datos

y seguridad.

Laravel (PHP): Reconocido por su elegancia y simplicidad, Laravel presenta un

sólido soporte para la arquitectura MVC, generación de código, enrutamiento de URL,

validación de datos y seguridad. Sus características clave incluyen una autenticación

simplificada, una API flexible, soporte para varios backends de caché, registros y pruebas

sencillas.

Ruby on Rails (Ruby): Destacado por su velocidad, escalabilidad y facilidad de

aprendizaje, Ruby on Rails ofrece soporte para MVC, generación de código, enrutamiento de

URL, validación de datos y seguridad.

C.C. Reconocimiento

www.bdigital.ula.ve

31

Spring Boot (Java): Reconocido por su simplicidad y eficiencia, Spring Boot brinda

soporte para MVC, generación de código, enrutamiento de URL, validación de datos y

seguridad. Su flexibilidad y soporte para una amplia gama de tecnologías lo convierten en

una opción atractiva para el desarrollo de backend en Java.

Express (JavaScript): Reconocido por su flexibilidad y rendimiento, Express ofrece

soporte para MVC, generación de código, enrutamiento de URL, validación de datos y

seguridad. Su capacidad para trabajar con una amplia gama de tecnologías lo hace popular

entre los desarrolladores que buscan un rendimiento óptimo.

2.11.1.1. Framework Laravel

Laravel se destaca como un robusto marco de trabajo web PHP de código abierto,

diseñado para el desarrollo de aplicaciones web basadas en Symfony que siguen la

arquitectura Modelo-Vista-Controlador (MVC). Su versatilidad y diversas funcionalidades

hacen de Laravel una opción atractiva para proyectos de desarrollo de backend. Algunas de

las ventajas clave de Laravel incluye su sistema de autenticación simplificado, API flexible y

versátil, soporte para varios backends de caché, registro y manejo de errores, funcionalidades

de pruebas sencillas y características de seguridad avanzadas (Documentación Laravel en

español - El framework de PHP para artesanos de la WEB, s. f.).

El marco de trabajo Laravel también presenta una serie de características notables,

incluyendo un potente motor de plantillas que permite una generación de diseños eficiente, un

sólido soporte para la arquitectura Modelo-Vista-Controlador (MVC) que facilita una

separación efectiva de la lógica de presentación y de negocios, un Mapeo Objeto-Relacional

Elocuente (ORM) para la construcción de consultas de bases de datos utilizando la sintaxis de

C.C. Reconocimiento

www.bdigital.ula.ve

32

PHP, y una sólida seguridad que incluye modalidades de contraseña con hash y sal, entre

otras características.

Estas características y ventajas demuestran la idoneidad de Laravel para el proyecto

en cuestión, ya que su flexibilidad, facilidad de uso y potentes funcionalidades se alinean

perfectamente con los objetivos del proyecto y la metodología de desarrollo prevista. Con su

sólido soporte para MVC, ORM eficiente y características de seguridad avanzadas, Laravel es

una opción destacada para garantizar un desarrollo de backend eficiente y seguro.

2.12. Bases de datos

Las bases de datos son simplemente una forma estructurada y sistemática de

almacenar, acceder, analizar, transformar, actualizar y mover información (a otras bases de

datos) (Dowsett, 2022).

Así pues, la relevancia de las bases de datos en el desarrollo de sistemas informáticos

es fundamental, ya que la mayoría de los sistemas informáticos dependen de ellas para

almacenar y administrar grandes cantidades de información. Las bases de datos, permiten a

los desarrolladores de software diseñar sistemas más robustos, escalables y eficientes, al

mismo tiempo que proporcionan una estructura organizada para acceder y administrar la

información. Además, las bases de datos son esenciales para la toma de decisiones y el

análisis de datos en los sistemas informáticos, lo que los hace imprescindibles en el mundo de

la tecnología de la información.

2.12.1. Bases de datos relacionales

Una base de datos relacional organiza los datos en filas y columnas, que en conjunto

forman una tabla. Los datos normalmente se estructuran en varias tablas, que se pueden unir a

través de una clave principal o una clave externa. Estos identificadores únicos demuestran las

C.C. Reconocimiento

www.bdigital.ula.ve

33

diferentes relaciones que existen entre las tablas, y estas relaciones generalmente se ilustran a

través de diferentes tipos de modelos de datos. Los analistas utilizan consultas SQL para

combinar diferentes puntos de datos y resumir el rendimiento empresarial, lo que permite a

las organizaciones obtener información, optimizar los flujos de trabajo e identificar nuevas

oportunidades (IBM, 2021).

2.13. ORM

El Mapeador Objeto-Relacional (ORM por sus siglas en inglés: Object-Relational

Mapping) constituye un componente crucial en el desarrollo de aplicaciones, al permitir a los

desarrolladores interactuar con bases de datos relacionales utilizando objetos de

programación. Al esconder gran parte de la complejidad de las consultas SQL, los ORM

simplifican el proceso de desarrollo y ayudan a mejorar la eficiencia y la productividad de los

equipos de desarrollo. Al hacer que la interacción con la base de datos sea más intuitiva y

menos propensa a errores, los ORM fomentan una programación más estructurada y

organizada, lo que a su vez conduce a la creación de aplicaciones más estables y mantenibles

(Deloitte-Spain, 2023).

En este contexto, la elección de Eloquent como ORM preferido para el proyecto se

fundamenta en su sólido soporte y su destacada capacidad para simplificar el proceso de

desarrollo en el entorno específico de PHP, garantizando así la eficacia y la eficiencia en la

implementación de la solución propuesta. Laravel, el framework en el que se basa el

proyecto, incluye Eloquent, el cual se encarga de crear para cada tabla en la base de datos su

correspondiente "Modelo", lo que permite realizar operaciones como recuperar, insertar,

actualizar y eliminar registros de manera intuitiva y eficiente. Gracias a esta integración

estrecha y la funcionalidad avanzada proporcionada por Eloquent, el desarrollo de la

C.C. Reconocimiento

www.bdigital.ula.ve

34

aplicación se lleva a cabo de manera ágil y efectiva, permitiendo enfocarse en la lógica de la

aplicación en lugar de las complejidades de la base de datos (Documentación Laravel en

español, s. f.-b).

2.14. API

Según Jin et al. (2018), una API (interfaz de programación de aplicaciones) se define

como "una interfaz entre dos sistemas de software que les permite comunicarse entre sí".

Ellos continúan explicando que las API permiten que diferentes sistemas de software

interactúen e intercambien información entre sí, sin necesidad de que los sistemas

subyacentes comprendan los detalles de implementación de los demás. Los autores enfatizan

la importancia de diseñar API teniendo en cuenta las necesidades de los desarrolladores y

brindan orientación práctica para crear API que sean fáciles de usar y comprender.

2.14.1. API Rest

Jin et al. (2018), definen una API RESTful (Representational State Transfer) como

una API que se adhiere a un conjunto de restricciones arquitectónicas, incluido el uso de

métodos HTTP (como GET, POST, PUT y DELETE) para realizar operaciones en recursos y

usar URI (identificadores uniformes de recursos) para identificar recursos. Además, las API

RESTful permiten a los desarrolladores crear APIs escalables, flexibles y mantenibles, y se

utilizan ampliamente en el desarrollo web moderno.

C.C. Reconocimiento

www.bdigital.ula.ve

35

2.15. Seguridad de los datos

La seguridad de los datos es un aspecto crítico en el desarrollo de aplicaciones y

sistemas informáticos. Se refiere a la implementación de prácticas y medidas diseñadas para

garantizar la confidencialidad, integridad y disponibilidad de la información. En un mundo

cada vez más digital y conectado, la seguridad de los datos se ha vuelto esencial para proteger

la privacidad de los usuarios y prevenir el acceso no autorizado a la información sensible.

Las aplicaciones web se han convertido en la columna vertebral del entorno digital.

Su preferencia por el protocolo seguro HTTPS subraya la importancia de la seguridad en la

transmisión de datos. En este contexto, el desarrollo de aplicaciones web se apoya en

enfoques avanzados de intercambio de datos en línea, destacando REST (Representational

State Transfer) por su flexibilidad. Este método, constituye la base para la evolución

constante de aplicaciones que buscan optimizar el rendimiento y la experiencia del usuario

(Cevallos, 2022).

2.15.1. Web Tokens

Los tokens web (Web Tokens) son una forma popular de garantizar la seguridad en

las comunicaciones entre diferentes partes de una aplicación web. Estos son pequeños

paquetes de información que contienen datos específicos y se utilizan para la autenticación y

autorización. En un contexto de desarrollo web, los tokens web son comúnmente utilizados

para validar la identidad de un usuario después de que este ha iniciado sesión. Los dos tipos

principales de tokens web son JWT (JSON Web Tokens) y OAuth y otros mecanismos

similares (Auth, s. f.).

C.C. Reconocimiento

www.bdigital.ula.ve

36

2.15.1. Cookies

Las cookies son esenciales en las solicitudes web para el intercambio de información

entre el servidor y el cliente, brindando la capacidad de almacenar datos de manera

persistente durante un período. Su ubicación en la sección de cookies o en las herramientas de

desarrollo de los navegadores permite su visualización. Ampliamente utilizado en las

políticas de cookies, Google (s. f.) destaca su empleo para diversas funciones como

preferencias de usuario, seguridad, autenticación y personalización de anuncios según las

preferencias configuradas.

2.15.3. Sanctum

Laravel Sanctum ofrece un sistema de autenticación ligero diseñado para SPAs,

aplicaciones móviles y APIs sencillas basadas en tokens. La flexibilidad de Sanctum permite

a cada usuario generar múltiples tokens API, cada uno con habilidades y ámbitos específicos

que determinan las acciones permitidas (Documentación Laravel en español - El framework

de PHP para artesanos de la WEB, s. f.).

Funcionamiento de Laravel Sanctum:

● Tokens de API: Sanctum facilita la emisión de tokens de API sin la complejidad de

OAuth. Inspirado en aplicaciones como GitHub, permite a los usuarios generar y

gestionar tokens API desde la configuración de cuenta. Estos tokens, con una larga

duración, pueden ser revocados manualmente por el usuario. La autenticación se

realiza a través de la cabecera Authorization con un token API válido almacenado en

una tabla de base de datos.

C.C. Reconocimiento

www.bdigital.ula.ve

37

● Autenticación de SPA: Sanctum aborda la autenticación de aplicaciones de página

única (SPA) que se comunican con una API Laravel. Utiliza servicios de

autenticación de sesión basados en cookies incorporados en Laravel, sin necesidad de

tokens. Aprovechando la guarda de autenticación web de Laravel, ofrece beneficios

de protección CSRF, autenticación de sesión y seguridad contra fuga de credenciales

por XSS.

● Uso de Cookies: Sanctum autentica mediante cookies sólo cuando la petición

proviene del frontend SPA. Al examinar una solicitud HTTP entrante, verifica la

presencia de una cookie de autenticación. Si no está presente, examina la cabecera

Authorization en busca de un token API válido.

2.16. Protocolos HTTP y HTTPS

Los protocolos HTTP (Hypertext Transfer Protocol) y HTTPS (Hypertext Transfer

Protocol Secure) son fundamentales para la comunicación en la World Wide Web. Estos

protocolos definen cómo los mensajes se formatean y transmiten, permitiendo la transferencia

de datos entre clientes y servidores de manera efectiva y segura.

2.16.1. HTTP (Hypertext Transfer Protocol)

El Protocolo de transferencia de hipertexto (HTTP: Hypertext Transfer Protocol) es el

protocolo base para la comunicación en la web. Es un protocolo sin estado, lo que significa

que cada solicitud entre un cliente y un servidor se trata de manera independiente, sin que el

servidor recuerde el estado anterior. Las solicitudes HTTP pueden ser de diferentes tipos,

C.C. Reconocimiento

www.bdigital.ula.ve

38

como GET para recuperar datos, POST para enviar datos al servidor, y otros métodos para

diferentes acciones (DevDocs, s. f.).

Características Clave de HTTP:

● Sin Estado: Cada solicitud es independiente, sin conocimiento del estado anterior.

● Basado en Texto: Los mensajes HTTP son legibles para humanos y están

compuestos principalmente de encabezados y cuerpo.

● Conexiones No Seguras: La información transmitida no está cifrada, lo que puede

presentar riesgos de seguridad, especialmente para datos sensibles.

2.16.2. HTTPS (Hypertext Transfer Protocol Secure)

El Protocolo de transferencia de hipertexto seguro (HTTPS: Hypertext Transfer

Protocol Secure) es la versión segura de HTTP y utiliza cifrado para proteger la integridad y

confidencialidad de los datos transmitidos. Se basa en el protocolo SSL/TLS para

proporcionar una capa adicional de seguridad (DevDocs, s. f.).

Características Clave de HTTPS:

● Cifrado: Utiliza SSL/TLS para cifrar los datos, lo que hace que sea más difícil para los

atacantes interceptar y comprender la información transmitida.

● Certificados SSL/TLS: Requiere un certificado SSL/TLS válido para establecer la

conexión segura.

● Puerto 443: HTTPS utiliza el puerto 443 en lugar del puerto 80 utilizado por HTTP.

Ventajas de HTTPS sobre HTTP:

○ Seguridad de Datos: La información sensible está protegida mediante cifrado.

C.C. Reconocimiento

www.bdigital.ula.ve

39

○ Integridad de Datos: El cifrado garantiza que los datos no se alteren durante la

transmisión.

○ Autenticación: Los certificados SSL/TLS permiten verificar la autenticidad del

servidor.

2.17. Herramientas de escalabilidad – Contenedores y Kubernetes

En el ámbito de desarrollo y despliegue de aplicaciones, la escalabilidad se ha

convertido en un aspecto crítico. La capacidad de manejar el aumento de carga y asegurar un

rendimiento consistente lleva al uso extendido de herramientas como contenedores y

orquestadores como Kubernetes.

2.17.1. Contenedores

Los contenedores son entornos ligeros y portátiles que encapsulan una aplicación y

todas sus dependencias, permitiendo su ejecución de manera consistente en cualquier entorno

que admita contenedores. La tecnología de contenedores, liderada por Docker, ha

transformado la forma en que las aplicaciones se desarrollan, empaquetan y despliegan (IBM.

s. f.-b).

Características Clave de Contenedores:

● Portabilidad: Los contenedores incluyen todo lo necesario para ejecutar una

aplicación, asegurando la consistencia entre entornos de desarrollo, prueba y

producción.

● Aislamiento: Cada contenedor es independiente, evitando conflictos de dependencias

entre aplicaciones.

C.C. Reconocimiento

www.bdigital.ula.ve

40

● Eficiencia: Los contenedores comparten el mismo núcleo del sistema operativo,

reduciendo la sobrecarga en comparación con las máquinas virtuales.

2.17.2. Kubernetes

Kubernetes, a menudo abreviado como K8s, es un sistema de orquestación de

contenedores de código abierto que automatiza la implementación, escalabilidad y operación

de aplicaciones en contenedores. Diseñado por Google, Kubernetes proporciona un entorno

robusto y escalable para gestionar aplicaciones contenerizadas en un clúster (iKenshu, 2019).

Características Clave de Kubernetes:

● Orquestación Automatizada: Kubernetes automatiza la implementación,

actualización y escalabilidad de las aplicaciones.

● Escalabilidad Horizontal: Permite la escalabilidad dinámica agregando o eliminando

contenedores según la carga de trabajo.

● Autoreparación: Kubernetes detecta y reemplaza automáticamente contenedores o

nodos defectuosos.

● Gestión de Recursos: Controla y asigna recursos, como CPU y memoria, para

garantizar un rendimiento óptimo.

Las herramientas de escalabilidad, como los contenedores y Kubernetes, han

revolucionado la forma en que las aplicaciones se desarrollan, despliegan y escalan. Estas

tecnologías ofrecen soluciones eficientes y flexibles para abordar los desafíos de

escalabilidad en entornos modernos, permitiendo a las empresas mejorar la eficiencia, la

consistencia y la confiabilidad de sus aplicaciones.

C.C. Reconocimiento

www.bdigital.ula.ve

41

2.18. Técnicas para digitalizar y almacenar documentos

La digitalización de documentos es un proceso esencial en entornos modernos que

permite convertir documentos físicos en formato digital para facilitar su almacenamiento,

gestión y acceso. Este proceso es especialmente valioso para documentos como partituras

musicales, donde la preservación y manipulación digital son cruciales. A continuación, se

describen varias técnicas y consideraciones relacionadas con la digitalización y

almacenamiento de documentos, específicamente partituras.

2.18.1. Digitalización de Documentos

La digitalización implica la conversión de documentos físicos, como partituras en

papel, a formatos digitales. En el caso de partituras, se puede realizar utilizando una cámara

fotográfica para capturar imágenes de alta resolución. Posteriormente, estas imágenes se

pueden convertir a formatos digitales comunes como JPEG, PNG o incluso documentos PDF.

Este proceso no solo preserva la esencia de la partitura física, sino que también facilita su

almacenamiento y distribución electrónica (Sydle, 2023).

2.18.2. Almacenamiento en el Sistema de Archivos

En esta técnica, las imágenes o documentos PDF generados se almacenan

directamente en carpetas del sistema de archivos. Después de la digitalización, los archivos se

guardan en ubicaciones específicas del sistema de archivos. La base de datos almacena

referencias (rutas o nombres de archivo) para acceder a ellos.

Ventajas:

● Simplicidad: Es un enfoque directo y fácil de implementar.

C.C. Reconocimiento

www.bdigital.ula.ve

42

● Accesibilidad: Los archivos son accesibles a través del sistema de archivos.

2.18.3. Almacenamiento en Servicios de Almacenamiento en la Nube

Los documentos digitalizados se pueden cargar en servicios de almacenamiento en la

nube (por ejemplo, Google Drive, Dropbox). La base de datos almacena enlaces o referencias

a los archivos almacenados en la nube.

Ventajas:

● Escalabilidad: Facilita la gestión de grandes volúmenes de documentos.

● Accesibilidad Remota: Permite acceder a los documentos desde cualquier ubicación.

2.18.4. Almacenamiento en Base de Datos usando el Tipo de Dato Binario

Las imágenes o documentos PDF se almacenan directamente como tipos de datos

binarios en la base de datos. Los documentos digitalizados se guardan en columnas de tipo

binario (BLOB o bytea según la base de datos).

Ventajas:

● Consistencia: La base de datos mantiene una relación uno a uno entre la entrada y el

archivo.

● Simplicidad: Implementación directa y fácil gestión de los documentos.

Para el proyecto en cuestión, la técnica seleccionada para almacenar los documentos

digitalizados, como las partituras, es la descrita en el punto 2.18.4: "Almacenamiento en Base

de Datos usando el Tipo de Dato Binario". En este enfoque, las imágenes y documentos PDF

digitalizados se guardan directamente como tipos de datos binarios en la base de datos. Esta

elección se alinea con los requisitos del proyecto, priorizando la simplicidad, la consistencia

C.C. Reconocimiento

www.bdigital.ula.ve

43

y la gestión eficiente de documentos, asegurando un acceso rápido y seguro a las partituras

digitalizadas.

2.19. Herramientas tecnológicas

2.19.1. PHP

PHP es un lenguaje de secuencias de comandos de propósito general de código

abierto ampliamente utilizado que es especialmente adecuado para el desarrollo web y se

puede incrustar en HTML (PHP: What is PHP? - Manual, s. f.). Se hará uso de la versión

8.1.

2.19.2. Laravel

Laravel es un marco de trabajo o framework, basado en el lenguaje de programación

PHP, gratuito y de código abierto que proporciona un conjunto de herramientas y recursos

para crear aplicaciones PHP modernas. Con un ecosistema completo que aprovecha sus

funciones integradas y una variedad de paquetes y extensiones compatibles. Laravel

proporciona poderosas herramientas de base de datos que incluyen un ORM (Object

Relational Mapper) llamado Eloquent y mecanismos integrados para crear migraciones de

bases de datos y seeders. Con la herramienta de línea de comandos Artisan, los

desarrolladores pueden iniciar nuevos modelos, controladores y otros componentes de la

aplicación, lo que acelera el desarrollo general de la aplicación (Heidi, 2021). (Versión 10).

C.C. Reconocimiento

www.bdigital.ula.ve

44

2.19.3. Eloquent

 Eloquent, es un mapeador objeto-relacional (ORM) que hace que sea agradable

interactuar con la base de datos. Cuando se utiliza Eloquent, cada tabla de la base de datos

tiene su correspondiente "Modelo" que se utiliza para interactuar con esa tabla. Además de

recuperar registros de la tabla de la base de datos, los modelos de Eloquent permiten insertar,

actualizar y eliminar registros de la tabla (Documentación Laravel en español, s. f.-b).

2.19.4. SQL

SQL, conocido como lenguaje de consulta estructurada, ha transformado la gestión de

bases de datos relacionales con su capacidad de interactuar con sistemas de gestión de bases

de datos de manera eficiente. Su sintaxis clara y coherente simplifica la realización de

consultas complejas y operaciones de administración. Dividido en comandos de creación y

manipulación de datos, SQL permite la creación de objetos esenciales en la estructura de la

base de datos y facilita la selección, inserción, actualización y eliminación de registros.

Ampliamente utilizado en una variedad de aplicaciones, desde sistemas de inventario hasta

aplicaciones web dinámicas, SQL sirve como una herramienta vital para desarrolladores de

software y analistas de datos, brindando una interfaz efectiva para gestionar y analizar datos

críticos en diferentes entornos operativos (AWS, s. f.).

2.19.5. PostgreSQL

PostgreSQL es un sistema de base de datos altamente estable y de código abierto que

brinda soporte a diferentes funciones de SQL, como claves externas, subconsultas,

disparadores y diferentes tipos y funciones definidos por el usuario. Aumenta aún más el

lenguaje SQL y ofrece varias características que escalan y reservan cargas de trabajo de datos

C.C. Reconocimiento

www.bdigital.ula.ve

45

meticulosamente. Se utiliza principalmente para almacenar datos para muchas aplicaciones

móviles, web, geoespaciales y de análisis (Ravoof, 2023). (Versión 14.9).

2.19.6. Visual Studio Code

Visual Studio Code es un entorno de desarrollo integrado (IDE) de código abierto

desarrollado por Microsoft. Es conocido por su amplia gama de funciones y su interfaz de

usuario altamente personalizable que lo convierte en una herramienta popular entre los

desarrolladores de software. Diseñado para admitir múltiples lenguajes de programación y

plataformas, Visual Studio Code es compatible con sistemas operativos Windows, macOS y

Linux (Visual Studio Code - Code editing. Redefined, 2021).

Entre las características clave de Visual Studio Code se encuentran su potente editor

de código con resaltado de sintaxis, finalización de código y depuración integrada. Además,

ofrece una amplia gama de extensiones y complementos que permiten a los usuarios

personalizar su experiencia de desarrollo según sus necesidades específicas.

Visual Studio Code también es conocido por su amplio soporte para el control de

versiones a través de sistemas como Git, lo que facilita el trabajo colaborativo y el

seguimiento de cambios en el código. Asimismo, proporciona una integración fluida con

servicios en la nube y herramientas de desarrollo web, lo que lo convierte en una opción

versátil para una variedad de proyectos de desarrollo de software. (Versión 1.84).

2.19.7. Postman

Postman es una plataforma de colaboración para el desarrollo de API que simplifica el

proceso de diseño, desarrollo, prueba y documentación de API. Se ha convertido en una

herramienta esencial para los desarrolladores de software y equipos de desarrollo, ya que

permite una fácil interacción con API y servicios web de una manera intuitiva y eficiente.

C.C. Reconocimiento

www.bdigital.ula.ve

46

Con Postman, los desarrolladores pueden enviar solicitudes a una API, inspeccionar

las respuestas y realizar pruebas exhaustivas para garantizar la funcionalidad y el rendimiento

adecuados de la API. Además de sus capacidades de prueba, Postman ofrece herramientas

para la creación de documentación detallada de API, lo que facilita la comprensión y el uso

de las API por parte de otros miembros del equipo y de la comunidad en general (About

Postman, 2023).

2.19.8. Docker

Docker es una plataforma de código abierto que facilita la creación, implementación y

ejecución de aplicaciones en contenedores. Los contenedores son unidades ligeras y portátiles

que encapsulan una aplicación y sus dependencias, permitiendo su ejecución de manera

consistente en cualquier entorno compatible con Docker. Las características clave de Docker

incluyen portabilidad, eficiencia y gestión de recursos. Permite a los desarrolladores empacar

una aplicación y todas sus dependencias en un contenedor, lo que garantiza que se ejecute de

manera coherente en cualquier entorno (InnovaciónDigital, 2022). (Versión 24.0.7)

Para integrar Docker con Laravel, generalmente se define un archivo Dockerfile para

construir la imagen del contenedor de la aplicación Laravel y un archivo docker-

compose.yml para configurar y ejecutar servicios adicionales. Laravel proporciona una

estructura modular que se integra bien con el enfoque de contenedores de Docker

(Documentación Laravel en español, s. f.-b).

C.C. Reconocimiento

www.bdigital.ula.ve

47

CAPÍTULO 3: ANÁLISIS Y DISEÑO DEL

SISTEMA

Este capítulo constituye una inmersión en la especificación y diseño del backend del

sistema, concentrándose en los requerimientos (identificación de funcionalidades del

software) y en la descripción de las historias de usuario. En este contexto, nos abocaremos al

diseño de pruebas, estableciendo una base robusta para la validación continua del sistema.

Con un énfasis exclusivo en la lógica del servidor, exploramos estrategias detalladas

de prueba que garantizarán la fiabilidad del back-end. Además, se abordarán aspectos

cruciales como la arquitectura general del sistema (Cliente-Servidor), la elección del patrón

de diseño (MVC) y el modelado de datos (Entidad-Relación), configurando así la

infraestructura esencial para la implementación del sistema.

3.1. Requerimientos del Sistema

A continuación, se delinean los requisitos esenciales que guiarán el desarrollo del

sistema. Es necesario definir los actores presentes en la aplicación y requisitos del sistema,

los cuales abarcan tanto aspectos funcionales como no funcionales, estableciendo el marco

estructural y los estándares de calidad a alcanzar.

C.C. Reconocimiento

www.bdigital.ula.ve

48

3.1.1. Actores

Un actor es una persona que interactúa con el sistema para ejecutar y cumplir con los

requerimientos planteados. Se ha realizado una investigación de los actores que forman parte

del desarrollo de la aplicación, los cuales cumplen tareas específicas en el sistema. Para el

desarrollo de la aplicación distinguimos dos actores: administrador y usuario prestatario.

● Administrador: Posee acceso a todas las funcionalidades del sistema. Es el

encargado del registro y control de préstamos de partituras, así como el

seguimiento y control de solicitudes de partituras. Puede registrar usuarios

administradores y prestatarios.

Figura 3: Usuario Administrador.

● Usuario prestatario (Autenticado): Posee permisos para solicitar préstamos

de partituras dentro del sistema. Si lo desea puede registrarse en el sistema.

Figura 4: Usuario Prestatario (Autenticado).

C.C. Reconocimiento

www.bdigital.ula.ve

49

3.1.2. Requisitos Funcionales

Un requisito funcional define las funcionalidades que debe realizar el sistema. A

continuación, se presentan de manera general los principales requisitos de la aplicación:

● Registro y autenticación de usuarios: El usuario administrador puede registrar

usuarios administradores y usuarios prestatarios del sistema. Además, los usuarios

registrados en el sistema pueden realizar distintas acciones del sistema.

● Registro inicial del sistema: El sistema posee una carga inicial que permite

configurar y registrar la información de las partituras, por ejemplo, autor, género

musical, ubicaciones y archivadores.

● Registro de partituras: El usuario administrador puede realizar la carga de partituras

dentro del sistema, indicando datos propios de la misma, como autor, género, título y

ubicación.

● Solicitud de préstamos de partituras: Los usuarios prestatarios pueden solicitar

préstamos de las partituras almacenadas en el sistema. Esta solicitud puede hacerse de

dos formas, un préstamo digital y un préstamo físico.

● Carga y descarga de partituras: Mediante el sistema se pueden cargar y descargar

las partituras, si la solicitud de préstamo es de forma digital.

● Búsqueda, filtrado y ordenación de partituras: Los usuarios pueden llevar a cabo

búsquedas de partituras por el título, autor o género musical atendiendo a los criterios

definidos en la aplicación.

C.C. Reconocimiento

www.bdigital.ula.ve

50

3.1.3 Requisitos no funcionales

Los requisitos no funcionales imponen restricciones en el diseño o la implementación

de la aplicación. Se describen a continuación los requisitos que definirán la manera de

desarrollar la aplicación.

● Confidencialidad: La información manejada por el sistema está protegida de acceso

no autorizado y divulgación.

● Disponibilidad: El sistema debe estar disponible en cualquier momento. Los usuarios

tienen acceso garantizado a la información.

● Mantenimiento: El código fuente del sistema debe estar bien documentado y seguir

las mejores prácticas de desarrollo para facilitar futuras mejoras y actualizaciones.

● Portabilidad: El sistema debe poder ejecutarse en diferentes plataformas con

cambios mínimos, por lo que es necesario que posea un diseño “Responsive” a fin de

garantizar la visualización en múltiples equipos electrónicos, computadoras,

dispositivos móviles.

● Fiabilidad: El sistema debe ser confiable y cumplir con los requisitos planteados.

● Usabilidad: El sistema posee una interfaz sencilla y atractiva que garantiza el buen

funcionamiento del sistema al usuario.

3.1.4. Historias de Usuario

La descripción detallada de las historias de usuario complementa este enfoque,

proporcionando una comprensión exhaustiva de las funcionalidades clave que se deben

implementar, junto con criterios de aceptación específicos que actúan como hitos claros para

la finalización exitosa de cada característica. En la tabla 1 se exponen las historias de usuario

C.C. Reconocimiento

www.bdigital.ula.ve

51

del sistema con una breve descripción, seguidamente se mostrará la estructura de las historias

de usuarios más relevantes del sistema.

ID Nombre de la historia de usuario Descripción

001

Registro de partitura

Como administrador del sistema quiero poder

registrar una nueva partitura en el sistema, para

tener un registro organizado de todas las

partituras disponibles en la fundación.

002

Registro de autor

Como administrador del sistema quiero poder

registrar un nuevo autor de partitura para tener

un registro organizado de los autores de

partituras disponibles.

003

Registro de géneros musicales

Como administrador del sistema quiero poder

registrar un nuevo género musical para tener

un registro organizado de los géneros

musicales disponibles.

004

Registro de ubicaciones

Como administrador del sistema quiero poder

registrar una nueva ubicación para tener un

registro organizado de los archivadores y/o

gavetas.

005

Registro de archivadores

Como administrador del sistema quiero poder

registrar un nuevo archivador para tener un

registro organizado de los archivadores.

006

Registro de gavetas

Como administrador del sistema quiero poder

registrar una nueva gaveta para tener un

registro organizado de los archivadores.

007

Registro de usuario

Como administrador del sistema quiero poder

registrar usuarios para que puedan solicitar

préstamos de partituras digitales o físicas.

Como usuario quiero poder registrarme en la

aplicación y poder solicitar préstamos de

partituras digitales.

008

Registro de usuarios administrador

Como administrador del sistema quiero poder

registrar usuarios administradores

009

Descargar partitura digital

Como Prestatario quiero poder descargar una

partitura digital.

010

Préstamo de partitura físico

Como administrador del sistema puedo

registrar un préstamo de partitura asociado a

un prestatario.

C.C. Reconocimiento

www.bdigital.ula.ve

52

011

Registrarse como prestatario

Como prestatario quiero registrarme en el

sistema para solicitar préstamos de partituras.

Tabla 1: Historias de usuario del sistema

A continuación, se presentan las historias de usuario más resaltantes del sistema.

Figura 5: Historia de usuario HU 001: Registro de Partituras

Figura 6: Historia de usuario HU 007: Registro de usuario prestatario.

C.C. Reconocimiento

www.bdigital.ula.ve

53

Figura 7: Historia de usuario HU 008: Registro de usuario administrador.

Figura 8: Historia de usuario HU 009: Descargar partitura digital.

C.C. Reconocimiento

www.bdigital.ula.ve

54

Figura 9: Historia de usuario HU 010: Préstamo de partitura físico.

3.2. Diseño de Pruebas

Este es el paso crucial para asegurar la robustez y confiabilidad del sistema. Siguiendo

la metodología TDD, a partir de cada aspecto funcional del sistema identificado en la sección

anterior, se traducirá en una prueba unitaria.

1. Test para registrar un usuario prestatario

Nombre: Registrar un usuario prestatario en el sistema.

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Los campos requeridos no deben llegar nulos.

● El nombre de usuario no debe estar repetido.

● Validar que el sistema permita registrar una contraseña válida.

● Validar que sólo permita registros con correos electrónicos válidos.

● Validar que permita ingresar datos numéricos en el campo Teléfono.

● Validar envío de correo de confirmación.

● Validar que no permita registros con un correo electrónico duplicado.

C.C. Reconocimiento

www.bdigital.ula.ve

55

2. Test para registrar un usuario administrador

Nombre: Registrar un usuario administrador en el sistema.

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Los campos requeridos no deben llegar nulos.

● El nombre de usuario no debe estar repetido.

● Validar que el sistema permita registrar una contraseña válida.

3. Test para el Login de usuario

Nombre: Iniciar sesión en el sistema.

Descripción: Validar que se pueda ingresar con las credenciales registradas en el sistema.

● Validar acceso con credenciales correctas.

● Validar mensaje de error con credenciales incorrectas.

● Validar cierre de sesión.

4. Test para registrar partituras

Nombre: Registrar partituras en el sistema

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Los campos requeridos no deben llegar nulos.

● Un título perteneciente a un autor no debe estar repetido.

● Si no se ingresa la cantidad de partituras, el sistema la establece en 0.

● En el sistema tienen que existir registros almacenados de género musical y autor de la

partitura.

5. Test para registrar autor

Nombre: Registrar autor en el sistema

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Los campos requeridos no deben llegar nulos.

C.C. Reconocimiento

www.bdigital.ula.ve

56

● El campo nombre no debe estar repetido.

6. Test para registrar géneros musicales

Nombre: Registrar género musical en el sistema

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Los campos requeridos no deben llegar nulos.

● El campo nombre no debe estar repetido.

7. Test para registrar ubicaciones

Nombre: Registrar ubicaciones en el sistema

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Los campos requeridos no deben llegar nulos.

● En el sistema tienen que existir registros almacenados de gaveta y archivador.

8. Test para registrar gavetas

Nombre: Registrar gavetas en el sistema

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Los campos requeridos no deben llegar nulos

● El campo nombre no debe estar repetido.

9. Test para descargar partituras en digital

Nombre: Descargar partituras en digital

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Validar que la fecha de préstamo de la partitura sea menor a la fecha de entrega.

C.C. Reconocimiento

www.bdigital.ula.ve

57

● Validar que la partitura solicitada esté registrada en el sistema.

● Validar que la cantidad a solicitar sea mayor a 0.

● Validar que el sistema habilite la descarga de la partitura solicitada.

10. Test para solicitar préstamos de partituras en físico

Nombre: Solicitar préstamo de partitura en físico

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Validar que la fecha de préstamo de la partitura sea menor a la fecha de entrega.

● Validar que la partitura solicitada esté registrada en el sistema.

● Validar que la cantidad a solicitar esté disponible en el inventario de partituras.

● Validar que se puedan aprobar los préstamos de partituras.

11. Test para que el usuario prestatario pueda visualizar el historial de partituras

Nombre: Visualizar historial de partituras.

Descripción: Validar que un usuario pueda registrarse en el sistema y visualizar el historial o

listado de partituras.

● Validar que el usuario pueda ingresar en el sistema.

● Validar que el usuario pueda visualizar el listado de partituras.

● Validar que el usuario pueda filtrar la información de las partituras.

3.3. Arquitectura General del Sistema (Cliente - Servidor)

La visión general del sistema, se configura bajo una arquitectura cliente-servidor. En

esta estructura, el servidor se posiciona como el núcleo central, manejando la lógica de

negocio y operaciones robustas, mientras que el cliente interactúa de manera eficiente para

obtener y presentar la información. Esta disposición permite una gestión efectiva de

C.C. Reconocimiento

www.bdigital.ula.ve

58

solicitudes y respuestas, asegurando un rendimiento optimizado en cada interacción del

usuario.

A continuación, se describen las partes fundamentales de la arquitectura general de la

aplicación, representada en el siguiente diagrama (Figura 10):

Figura 10. Arquitectura General (Cliente-Servidor)

Cliente: El usuario interactúa a través del frontend.

Frontend: La interfaz de usuario se construye con Vue.js, facilitando la creación de

experiencias interactivas y atractivas.

Servidor: Compuesto por el backend y la base de datos, el servidor gestiona la lógica de la

aplicación y el almacenamiento de datos.

Backend (Laravel): Desarrollado con Laravel, un framework PHP que utiliza la estructura

MVC para organizar y gestionar la lógica de la aplicación.

Base de Datos (PostgresSQL): PostgresSQL es la elección para almacenar y gestionar los

datos, facilitando la interacción mediante un Mapeador Objeto-Relacional (ORM).

Flujo de Datos:

● El cliente realiza acciones en la interfaz.

● Se generan solicitudes al backend mediante una API RESTful.

C.C. Reconocimiento

www.bdigital.ula.ve

59

● El backend procesa las solicitudes, realiza operaciones en la base de datos y devuelve

los resultados al frontend.

3.4. Patrón de Diseño de software – MVC

El patrón de diseño Modelo-Vista-Controlador (MVC) se refleja en la lógica de la

aplicación, orientado al diseño del back-end, de la siguiente manera (Figura 11):

1. Solicitud HTTP: El proceso comienza con una solicitud HTTP que proviene de un

cliente, representada por el nodo VIEW en el diagrama. Esta solicitud se dirige al

nodo ROUTE a través de la funcionalidad de enrutamiento.

2. Se direcciona la petición al controlador: La función principal del enrutador

representado por el nodo ROUTE, es dirigir la solicitud HTTP entrante al controlador

correspondiente dado por el nodo CONTROLLER. El enrutador determina qué

controlador debe manejar la solicitud, mediante una función específica.

3. Lógica de negocio: El controlador representado por el nodo CONTROLLER, es

responsable de la lógica de negocio de la aplicación. Recibe la solicitud del enrutador

y realiza las operaciones necesarias para procesarla. El controlador puede interactuar

con el modelo (nodo MODEL) para realizar operaciones en la base de datos (nodo

DB) y obtener la información necesaria.

4. Se busca la data: El modelo representado por el nodo MODEL, se encarga de

interactuar con la base de datos (DB). Realiza consultas y operaciones en la base de

datos para obtener o actualizar la información solicitada por el controlador. La base de

datos contiene la información persistente de la aplicación.

C.C. Reconocimiento

www.bdigital.ula.ve

60

5. Se muestran los datos: Una vez que el controlador ha procesado la solicitud y

obtenido la información necesaria del modelo, se pasa esa información a la vista

representada por el nodo VIEW. La vista se encarga de presentar la información al

usuario final de la manera más adecuada.

Figura 11. Patrón de Diseño MVC

Flujo General:

● La solicitud HTTP inicia el proceso y se dirige al controlador por medio de una ruta.

● El controlador realiza la lógica de negocio y puede interactuar con el modelo para

obtener o actualizar datos.

● La información se pasa a la vista, que se encarga de presentarla al usuario.

Este diseño modular facilita el mantenimiento, la escalabilidad y la comprensión del

código, ya que cada componente tiene una responsabilidad clara y separada.

C.C. Reconocimiento

www.bdigital.ula.ve

61

3.5. Modelado de Datos (Diagrama de Entidad-Relación)

A continuación, se presenta una breve descripción del modelado de datos que respalda

el sistema. La elección de PostgresSQL como sistema de gestión de bases de datos y Laravel

como framework ofrece robustez y eficiencia en la manipulación de datos.

El modelado sigue las mejores prácticas, garantizando una estructura lógica y

coherente. El Diagrama de Entidad-Relación (Figura 12) ilustra claramente las entidades,

atributos y relaciones, proporcionando una guía visual del esquema de la base de datos. Este

enfoque facilita la gestión de datos complejos y su manipulación dentro de la aplicación.

En tal sentido, en el diagrama entidad-relación que modela la base de datos, se

resaltan las tablas fundamentales que capturan las relaciones clave en el sistema. La entidad

principal, Partitura, actúa como eje central y se conecta de manera significativa con otras

entidades cruciales, como Autor, Género, y Ubicación. Estas entidades adicionales permiten

clasificar y organizar las partituras según sus autores, géneros musicales, y ubicaciones

físicas.

Para respaldar la gestión eficiente de partituras digitalizadas, se encuentra la tabla

“files”, la cual almacena representaciones digitales vinculadas directamente a las partituras.

Además, la gestión de préstamos, una funcionalidad vital del sistema, se representa a través

de las entidades Préstamo y Usuario Prestatario. Estas entidades capturan la información

esencial sobre los préstamos realizados, como fechas y estados del préstamo, junto con la

identificación de los usuarios que han solicitado las partituras.

Este esquema nos da un vistazo completo de cómo estas piezas están conectadas,

dando una perspectiva más profunda sobre la estructura y las relaciones fundamentales en el

sistema de gestión de partituras.

C.C. Reconocimiento

www.bdigital.ula.ve

62

Figura 12. Diagrama Entidad-Relación

C.C. Reconocimiento

www.bdigital.ula.ve

63

CAPÍTULO 4: IMPLEMENTACIÓN DEL

SISTEMA

En este capítulo, se especifica cómo se estructuró el entorno de desarrollo, así como

las herramientas y tecnologías utilizadas. De igual manera, se aborda la fase de

implementación del sistema, donde se transforman los diseños y planes previos en código

funcional. Se detallan los aspectos clave del entorno de desarrollo y se explora el desarrollo

de la lógica del sistema, incluyendo la implementación de migraciones, la creación de

modelos y controladores, y la configuración de las rutas para construir la API del sistema.

Este capítulo es crucial para convertir la visión conceptual en una aplicación práctica y

funcional.

4.1 Entorno de Desarrollo

En la fase de implementación del sistema, se utilizó un entorno de desarrollo

cuidadosamente configurado para asegurar la eficiencia y la calidad del código. A

continuación, se detallan las herramientas y tecnologías empleadas:

4.1.1 IDE y Control de Versiones

El código fuente fue desarrollado en Visual Studio Code, un entorno de desarrollo

integrado (IDE) conocido por su ligereza y potencia.

C.C. Reconocimiento

www.bdigital.ula.ve

64

La gestión de versiones se llevó a cabo utilizando Git, permitiendo un seguimiento

detallado de los cambios a lo largo del desarrollo.

4.1.2 Lenguaje de Programación y Framework

La implementación se realizó en PHP 8.0, aprovechando las características más

recientes del lenguaje. Para la estructuración y desarrollo eficiente de la aplicación, se utilizó

Laravel, un framework PHP moderno y robusto que facilita la creación de aplicaciones web.

4.1.3. Gestor de Base de Datos y ORM

La persistencia de datos se gestionó mediante el sistema de gestión de bases de datos

relacional Postgres. Laravel utiliza Eloquent, un poderoso ORM, para interactuar con la base

de datos. Eloquent simplifica las operaciones de la base de datos al mapear objetos de la

aplicación directamente a registros de la base de datos, proporcionando una capa de

abstracción que facilita el manejo de datos de manera elegante y eficiente.

4.1.4. Configuración del Entorno local

Se estableció un servidor local mediante ‘php artisan serve’ de Laravel para

ejecutar pruebas unitarias de manera eficiente y automatizadas, con el comando ‘php

artisan test’. Utilizando localhost, se garantiza un entorno uniforme y controlado para las

pruebas.

C.C. Reconocimiento

www.bdigital.ula.ve

65

4.2. Desarrollo de la Lógica del Sistema

En esta sección, abordamos la generación de migraciones para la base de datos,

creación de modelos ORM y desarrollo de controladores para gestionar las operaciones

asociadas a las entidades principales del sistema. Estos pasos son cruciales para establecer la

infraestructura necesaria antes de proceder con la implementación de las pruebas.

4.2.1. Implementación de Migraciones Laravel

Este apartado describe detalladamente el proceso de migración, tomando como

ejemplo la tabla ‘music_sheets’, una de las entidades fundamentales de la aplicación.

● Antes de iniciar la migración, se asegura de haber configurado correctamente la

conexión a la base de datos en el archivo .env dentro de la carpeta del proyecto. Esto

se logra definiendo los detalles de la base de datos, como el nombre de la base de

datos, el usuario y la contraseña (Figura 13).

Figura 13. Configuración de la conexión a DB

● Iniciamos con la generación de la migración ejecutando el siguiente comando Artisan:

‘php artisan make:migration create_music_sheets_table’. Este comando

crea un nuevo archivo de migración en el directorio database/migrations. Luego,

C.C. Reconocimiento

www.bdigital.ula.ve

66

editamos este archivo (create_music_sheets_table.php) para definir la

estructura de la tabla.

● Código de Migración: A continuación, se presenta el código de la migración que

define la estructura de la tabla ‘music_sheets’ (Figura 14). Este código incluye

campos como título, cantidad de partituras, identificadores de autor, género, ubicación

y archivo de partitura.

● Finalmente, ejecutamos la migración para aplicar los cambios en la base de datos, con

el siguiente comando desde la terminal: ‘php artisan migrate’.

Es importante destacar que las tablas referenciadas por las llaves foráneas (autor,

género, ubicación, archivo de partitura) se crearon previamente para mantener la coherencia

de la base de datos.

C.C. Reconocimiento

www.bdigital.ula.ve

67

Figura 14. Migración create_music_sheets_table.php

4.2.2. Creación de Modelos

En Laravel, los modelos sirven como una interfaz orientada a objetos para interacción

entre la aplicación y la base de datos, simplificando las operaciones CRUD. A modo de

ilustración se mostrará el proceso de creación del modelo para la entidad de "Partituras

Musicales" (music_sheets).

C.C. Reconocimiento

www.bdigital.ula.ve

68

● Creación del Modelo ‘MusicSheet’. Laravel facilita la creación de modelos

mediante el uso de Artisan. Ejecutando el siguiente comando en la terminal: ‘php

artisan make:model MusicSheet’.

● Este comando generará un archivo ‘MusicSheet.php’ en el directorio

app/Models, dentro de la carpeta del proyecto. En este archivo, se pueden especificar

tanto los campos de la tabla en base de datos, que podrán ser accedidos por el modelo;

así como las relaciones con otras entidades. A continuación, se muestra un ejemplo

básico del contenido de este modelo (Figura 15).

Este modelo sigue las convenciones de nombres de Laravel. La tabla asociada se

asume como pluralizada y en minúsculas (music_sheets), y el modelo en singular y en

CamelCase (MusicSheet). Mantener estas convenciones facilitará la coherencia y

mantenimiento en el desarrollo de la aplicación.

C.C. Reconocimiento

www.bdigital.ula.ve

69

Figura 15. Modelo MusicSheet.php

4.2.3. Creación de Controladores

Con la infraestructura configurada y los modelos listos para interactuar con la base de

datos, ahora procedemos con el desarrollo de los controladores, en este apartado sólo se

mostrará la declaración de las funciones que intervienen en la lógica de negocio, la cual se

especificará con mayor detalle en el siguiente capítulo. En tal sentido, abordaremos la

creación de controladores, que actuarán como intermediarios entre las solicitudes del usuario

C.C. Reconocimiento

www.bdigital.ula.ve

70

y las operaciones en la base de datos, haciendo uso de los modelos, seguiremos ilustrando

este proceso con la entidad ‘Partituras musicales’.

● Generación del Controlador: Utilizando Artisan, el comando ‘php artisan

make:controller MusicSheetController’ se ejecutó para generar el archivo

‘MusicSheetController.php’. Este archivo se encuentra en el directorio

app/Http/Controllers, dentro de la carpeta del proyecto.

● Estructura del Controlador: El archivo ‘MusicSheetController.php’ incluye

métodos específicos para realizar diversas operaciones, (Figura 16):

index(): Muestra todas las partituras musicales.

show($id): Muestra una partitura musical específica según su identificador.

store(Request $request): Almacena una nueva partitura musical en la base

de datos.

update(Request $request, $id): Actualiza la información de una

partitura existente.

destroy($id): Elimina una partitura musical.

Con la creación del controlador, se sientan las bases para la implementación de las pruebas

diseñadas en el capítulo anterior. Estas pruebas verificarán la interacción correcta entre los

controladores y los modelos con la base de datos, asegurando respuestas adecuadas a las

solicitudes HTTP.

C.C. Reconocimiento

www.bdigital.ula.ve

71

Figura 16. Controlador MusicSheetController.php

4.3. Configuración de Rutas: Construyendo la API del Sistema

Las rutas son la columna vertebral de cualquier API, definiendo cómo los usuarios

interactúan con el sistema. Seguidamente, se detalla la creación y configuración de las rutas

en Laravel, estableciendo endpoints que serán accesibles para el cliente. Estos endpoints,

conectados a través de las rutas, representan la interfaz de programación de aplicaciones

(API) del sistema. Cada ruta dirigirá las solicitudes del usuario a los controladores

correspondientes, llevando a cabo acciones específicas y formando así la base para la

C.C. Reconocimiento

www.bdigital.ula.ve

72

funcionalidad completa de la aplicación. Este paso es crucial para la construcción de un

sistema coherente y fácilmente accesible.

A continuación, se especifican algunas rutas:

Middleware de Autenticación Sanctum:

● ‘Route::middleware(['auth:sanctum'])->group(function ()

{...}’: Este bloque asegura que las rutas dentro de él requieran autenticación

utilizando el middleware Sanctum, que proporciona un sistema de autenticación de

API simple y eficiente.

Rutas de Gestión de Usuarios:

● ‘Route::get('/user', function (Request $request) {...}’:

Esta ruta permite obtener la información del usuario autenticado. La función anónima

devuelve los detalles del usuario actual.

Rutas de Gestión de Partituras Musicales (/music-sheets):

● ‘Route::get('/music-sheets',

[MusicSheetController::class, 'index'])->name('music-

sheets.index')’: Devuelve la lista de partituras musicales. Utiliza el método

index del controlador MusicSheetController.

● ‘Route::post('/music-sheets',

[MusicSheetController::class, 'store'])->name('music-

C.C. Reconocimiento

www.bdigital.ula.ve

73

sheets.store')’: Almacena una nueva partitura musical en la base de datos.

Utiliza el método store del controlador.

● ‘Route::put('/music-sheets/{music_sheet}',

[MusicSheetController::class, 'update'])->name('music-

sheets.update')’: Actualiza una partitura musical existente. Utiliza el método

update del controlador.

● ‘Route::get('/music-sheets/{music_sheet}',

[MusicSheetController::class, 'update'])->name('music-

sheets.show')’: Devuelve una partitura musical en específico dado su ID.

Utiliza el método show del controlador MusicSheetController.

● ‘Route::delete('/music-sheets/{music_sheet}',

[MusicSheetController::class, 'destroy'])->name('music-

sheets.destroy')’: Elimina una partitura musical por su ID. Utiliza el método

destroy del controlador.

 Ejecutando en la terminal el comando de Artisan ‘php artisan route:list’, se

listarán todas las rutas de la aplicación, como se puede observar en la imagen siguiente

(Figura 17):

C.C. Reconocimiento

www.bdigital.ula.ve

74

…

Figura 17. Lista de Rutas de la API

C.C. Reconocimiento

www.bdigital.ula.ve

75

CAPÍTULO 5: IMPLEMENTACIÓN Y

EJECUCIÓN DE PRUEBAS

En este capítulo, abordamos la fase de pruebas para validar la solidez y confiabilidad

del sistema. Siguiendo la metodología de Desarrollo Dirigido por Pruebas (TDD), llevaremos

a cabo la implementación y ejecución de las pruebas diseñadas en el capítulo 3. Desde las

pruebas de características, hasta un análisis de rendimiento. En paralelo a este proceso, se

desarrollará la lógica de negocio incrustada en los controladores declarados en el capítulo

anterior, actuando como el puente esencial entre la conceptualización del sistema y su

materialización práctica.

5.1. Pruebas de Características

Aquí se explora la implementación de pruebas de características (Feature Testing)

para evaluar el comportamiento de extremo a extremo del sistema. Se describen los casos de

prueba y se siguen las historias de usuario definidas en el Capítulo 3, para verificar la

integración adecuada de los componentes y la satisfacción de los requisitos del usuario.

Entonces, entramos en el ciclo TDD, donde se escoge un criterio de aceptación muy simple y

se traduce a una prueba.

A continuación, se muestra el proceso de implementación de las pruebas, junto con el

desarrollo de la lógica de negocio. Se tomará como ejemplo el registro de partituras para

simplificar este procedimiento.

C.C. Reconocimiento

www.bdigital.ula.ve

76

Laravel nos brinda un comando artisan para crear pruebas, por lo que ejecutando en la

terminal ‘php artisan make:test NombrePruebaTest’, en este caso nombramos la clase

de la prueba como ‘MusicSheetTest’, el comando completo quedaría: ‘php artisan

make:test MusicSheetTest’, generando el archivo MusicSheetTest.php ubicado

en la carpeta tests/Feature, donde se incluirán todos los criterios de aceptación en forma

de test para la funcionalidad a desarrollar. En principio el código generado se ve como sigue:

class MusicSheetTest extends TestCase

{

 use DatabaseTransactions;

 /**

 * A basic feature test example.

 * @return void

 */

 public function test_example()

 {

 $response = $this->get('/');

 $response->assertStatus(200);

 }

}

Recordando el diseño del Test 4:

Test para registrar partituras

Nombre: Registrar partituras en el sistema

Descripción: Validar que los datos de entrada cumplan con los requerimientos necesarios

para ser almacenados en la base de datos.

● Los campos requeridos no deben llegar nulos.

C.C. Reconocimiento

www.bdigital.ula.ve

77

● Un título perteneciente a un autor no debe estar repetido.

● En el sistema tienen que existir registros almacenados de género musical y autor de la

partitura.

Primer criterio de aceptación: Los campos requeridos no deben llegar nulos.

● Los campos Título (‘tilte’), id del autor ('authorId'), id del género musical

('genderId'), los datos de la ubicación física de la partitura como el id del estante

('cabinetId') y el id del la gaveta ('drawerId'), así como la cantidad

('quantity') de partituras a registrar, son requeridos, por lo que se escribe una

prueba con estas característica con el nombre de

‘required_fields_cannot_be_null’ y adañaade a la clase

‘MusicSheetTest’:

/** @test

 * Los campos requeridos no pueden ser nulos

 */

 public function required_fields_cannot_be_null()

 {

 $responseUser = $this->getAuthenticated();

 $this->assertAuthenticated();

 //Dat

 $response = $this->postJson('/api/music-sheets', [

 'title' => null,

 'authorId' => null,

 'genderId' => null,

 'cabinetId' => null,

 'drawerId' => null,

 'quantity' => null,

]);

C.C. Reconocimiento

www.bdigital.ula.ve

78

 // Assert

 // El código 422 es para validaciones fallidas

 $response->assertStatus(422);

 $response->assertJsonValidationErrors([

 'title', 'authorId', 'genderId', 'cabinetId',

 'drawerId', 'quantity'

]);

 }

Este test utiliza el método postJson para simular una solicitud de registro de

partitura con campos nulos usando la ruta '/api/music-sheets' la cual hace un llamado al

método store en el controlador ‘MusicSheetController’ y verifica que la

respuesta tenga un estado HTTP 422 (falla de validación) y que los errores de validación

específicos se encuentren en la respuesta JSON.

● Si intentamos probar este test, corriendo el comando de artisan ‘php artisan test’

desde la terminal, podemos verificar que la prueba falla, debido a que no se han

definido las reglas de validación en el controlador ‘MusicSheetController’

(Figura 18. a).

Figura 18. a. Red Test – primer criterio de aceptación

● Definimos las reglas de validación que deberán estar contenidas en el controlador

‘MusicSheetController’, es decir, escribimos un poco de código para hacer

que esta prueba pase:

C.C. Reconocimiento

www.bdigital.ula.ve

79

 // Get the validation rules that apply to the request.

 // @return array

 public function rules()

 {

 return [

 'title' => ['required'],

 'authorId' => ['required'],

 'genderId' => ['required'],

 'drawerId' => ['required'],

 'cabinetId' => ['required'],

 'quantity' => ['required'],

];

 }

● Corremos de nuevo el test para comprobar que realmente funcionan las reglas de

validación añadidas al controlar y hacer que la prueba pase (Figura 18. b):

Figura 18. b. Green Test – primer criterio de aceptación

● En este caso no es necesario refactorizar el código en el controlador, puesto que todo

se ve bien hasta este punto.

Segundo criterio de aceptación: Un título perteneciente a un autor no debe estar repetido.

● Aquí debemos validar que no se permita registrar de manera repetida el título de una

partitura perteneciente a un autor, es decir, que el par título-autor deben ser únicos.

Traducimos este criterio de aceptación a una prueba.

C.C. Reconocimiento

www.bdigital.ula.ve

80

 // Un título perteneciente a un autor no debe estar repetido

 public function title_for_same_author_cannot_be_repeated()

 {

 $responseUser = $this->getAuthenticated();

 $this->assertAuthenticated();

 /**

 * Preparación: Crear un autor y una partitura con un título

 */

 $author = Author::find(1);

 MusicSheet::create([

 'title' => 'Partitura Existente',

 'author_id' => $author->id,

]);

 /** Act: Intentar crear una nueva partitura

 * con el mismo título y autor*/

 $response = $this->postJson('/api/music-sheets', [

 'title' => 'Partitura Existente',

 'authorId' => $author->id,

 'genderId' => 1,

 'cabinetId' => 1,

 'drawerId' => 1,

 'quantity' => 10,

]);

 /** Assert: Verificar que la respuesta indique

 * una falla de validación */

 $response->assertStatus(422);

 /**Verificar que el error de validación

 * específico está presente en la respuesta JSON */

 $response->assertJsonValidationErrors(['title']);

 }

Este test simula el intento de registrar una nueva partitura con un título que ya existe

para el mismo autor. La prueba verifica que la aplicación responde con un código de estado

422 (falla de validación) y que el error de validación específico para el campo 'title' está

presente en la respuesta JSON.

C.C. Reconocimiento

www.bdigital.ula.ve

81

● Como es de suponer, al intentar ejecutar este test, fallará, debido a que no se ha

creado una regla de validación que tome en cuenta este criterio (Figura 19. a):

Figura 19. a. Red Test – segundo criterio de aceptación

● De la misma manera que en el criterio anterior, se debe escribir el código necesario

para hacer que la prueba pase, en este caso, se agrega la regla de validación

correspondiente '”title” =>

Rule::unique('music_sheets', 'title')->where('author_id',

$this->authorId).

public function rules()

 {

 return [

 'title' => ['required', Rule::unique('music_sheets',

'title')->where('author_id', $this->authorId)],

 'authorId' => ['required'],

 'genderId' => ['required'],

 'drawerId' => ['required'],

 'cabinetId' => ['required'],

 'quantity' => ['required'],

];

 }

● El siguiente paso es verificar que efectivamente la prueba pasa, al agregar el código

mínimo necesario (Figura 19. b)

Figura 19. b. Green Test – segundo criterio de aceptación

● El paso de refactorización del código se ha cumplido en este caso, debido a que se ha

modificado el método Rules del controlador ‘MusicSheetController’.

C.C. Reconocimiento

www.bdigital.ula.ve

82

Tercer criterio de aceptación: En el sistema tienen que existir registros almacenados de

género musical y autor de la partitura.

● Para probar que en el sistema existan registros almacenados de género musical y autor

de la partitura antes de intentar registrar una nueva partitura, se crea la prueba

correspondiente agregándola a la clase ‘MusicSheetTest’ con el nombre

‘system_must_have_records_of_music_gender_and_author’.

 /** En el sistema tienen que existir registros almacenados

 * de género musical y autor de la partitura. */

 public function

system_must_have_records_of_music_gender_and_author()

 {

 $responseUser = $this->getAuthenticated();

 $this->assertAuthenticated();

 // Act: Intentar crear una nueva partitura sin género musical y

autor existentes

 $response = $this->postJson('/api/music-sheets', [

 'title' => 'Nueva Partitura',

 // Supongamos que el ID dado para para género y autor

 //no existe en la base de datos

 'authorId' => 500,

 'genderId' => 200,

 // Otros campos necesarios para pasar la validación

 'cabinetId' => 1,

 'drawerId' => 1,

 'quantity' => 10,

]);

 // Assert: Verificar que la respuesta indique una falla del servidor

 $response->assertStatus(500);

 }

● Ejecutamos este test, y verificamos que la prueba falla (Figura 20. a)

Figura 20. a. Red Test – tercer criterio de aceptación

● El siguiente paso es agregar a la función store del controlador el código necesario

para hacer esta prueba pase:

C.C. Reconocimiento

www.bdigital.ula.ve

83

 public function store(Request $request)

 {

 $this->validate(

 $request,

 $this->Rules(),

 $this->Messages()

);

 //se busca en base de datos los registros

 // de género musical y autor

 $authorId = Author::find($request->authorId);

 $genderId = Gender::find($request->genderId);

 return response()->json(['message' => 'success'], 200);

 }

Intentamos buscar en base de datos el ID del género musical y del autor y retornamos

un estatus 200 sí todo salió bien, de lo contrario se espera un estatus 500, que será un error de

servidor sí no hay éxito en la búsqueda.

● ejecutamos nuevamente el test para verificar que esta prueba funciona (Figura 20. b)

Figura 20. b. Green Test – tercer criterio de aceptación

En última instancia, se implementó una prueba general que verifica que se puede registrar

una partitura musical con éxito.

Cuarto criterio de aceptación: Almacenar una nueva partitura con éxito.

● En este test se verifica que el usuario se ha autenticado, se envía una solicitud POST a

la ruta 'api/music-sheets' con datos simulados para almacenar una nueva

partitura. Se asegura que la respuesta HTTP tenga un código de estado 200, indicando

un procesamiento exitoso de la solicitud y por último se verifica que la respuesta

C.C. Reconocimiento

www.bdigital.ula.ve

84

JSON tenga la estructura esperada, que debe incluir las claves 'item' y

'message'.

 /** @test

 * Almacenar una nueva partitura.

 */

 public function test_store_new_music_sheet()

 {

 // Autenticación del usuario logueado

 $responseUser = $this->getAuthenticated();

 $this->assertAuthenticated();

 // Intento de almacenar una nueva partitura

 $response = $this->post('api/music-sheets', [

 'title' => 'Test Title',

 'authorId' => 1,

 'genderId' => 1,

 'quantity' => 10,

 'cabinetId' => 1,

 'drawerId' => 1,

]);

 // Verificación del estado de la respuesta HTTP

 $response->assertStatus(200);

 // Verificación de la estructura de la respuesta JSON

 $response->assertJsonStructure(['item', 'message']);

 }

● Ejecutamos la prueba para verificar que falla (Figura 21. a)

Figura 21. a. Red Test – cuarto criterio de aceptación

● Agregamos al controlador ‘MusicSheetController’, específicamente en la

función store, la lógica y el código necesario para hacer que esta prueba pase, es

decir, refactorizar la función ya existente, quedando de la siguiente manera.

C.C. Reconocimiento

www.bdigital.ula.ve

85

 public function store(Request $request)

 {

 $this->validation(

 $request,

 $this->Rules(),

 $this->Messages()

);

 // Se busca el autor

 $authorId = Author::find($request->authorId);

 // Se busca el género musical

 $genderId = Author::find($request->authorId);

 // Se crea una nueva instancia de partitura musical

 $musicSheet = new MusicSheet();

 // Se crea una nueva instancia de ubicación

 $location = new Locations();

 // Se almacenan los datos de la partitura

 $musicSheet->title = $request->title;

 $musicSheet->author_id = $authorId->id;

 $musicSheet->gender_id = $genderId->id;

 $musicSheet->quantity = $request->quantity;

 $musicSheet->available = $request->quantity;

 // Se almacenan los datos de la ubicación de la partitura

 $location->cabinet_id = $request->cabinetId;

 $location->drawer_id = $request->drawerId;

 $location->save();

 // Se almacena el ID de la ubicación

 $musicSheet->location_id = $location->id;

 // Se guarda la partitura

 $musicSheet->save();

 return response()->json([

 'item' => $musicSheet,

 'message' => 'success']

 , 200);

 }

● Verificamos que este código funciona, ejecutando de nuevo el test para hacer que pase

(Figura 21. b):

Figura 21. b. Green Test – cuarto criterio de aceptación

C.C. Reconocimiento

www.bdigital.ula.ve

86

● El siguiente paso implica la refactorización del código, especialmente para mejorar la

seguridad durante el almacenamiento en la base de datos del registro de partituras

musicales. Dado que este proceso implica varios modelos, optamos por encapsular

toda la lógica en una transacción de base de datos. Esta elección nos proporciona la

garantía de un almacenamiento coherente, ya que enfrentamos múltiples consultas a

base de datos de forma secuencial.

 public function store(Request $request)

 {

 // Se validan los datos

 $this->validation(

 $request,

 $this->Rules(),

 $this->Messages()

);

 $musicSheet = DB::transaction(function () use ($request) {

 // Se busca el autor

 $authorId = Author::find($request->authorId);

 // Se busca el género musical

 $genderId = Author::find($request->authorId);

 // Se crea una nueva instancia de partitura musical

 $musicSheet = new MusicSheet();

 // Se crea una nueva instancia de ubicación

 $location = new Locations();

 // Se almacenan los datos de la partitura

 // ... Resto de la lógica ….

 $musicSheet->save();

 return $musicSheet;

 });

 return response()->json([

 'item' => $musicSheet,

 'message' => 'success']

 , 200);

 }

● Ahora ejecutamos todos los test implementados y verificamos que todo sigue

funcionando después del cambio en el código (Figura 21. c):

C.C. Reconocimiento

www.bdigital.ula.ve

87

Figura 21. c. Green Test – todos los test de la función store

● Continuando en este ciclo de desarrollo, podemos refactorizar el código para incluir

un bloque try-catch. Esto es necesario para gestionar eficazmente excepciones durante

la ejecución, mejorando la robustez y la capacidad de respuesta del sistema frente a

posibles errores imprevistos.

public function store(Request $request)

 {

 // Se validan los datos

 $this->validation(

 $request,

 $this->Rules(),

 $this->Messages()

);

 try {

 $musicSheet = DB::transaction(function () use ($request) {

 // Se crea una nueva instancia de partitura musical

 $musicSheet = new MusicSheet();

 // Se almacenan los datos de la partitura

 // ... Resto de la lógica ….

 $musicSheet->save();

 return $musicSheet;

 });

 return response()->json([

 'item' => $musicSheet,

 'message' => 'success']

 , 200);

 } catch (\Throwable $th) {

 return response()->json([

 'error' => $th->getMessage()]

 , 500);

 }

 }

● Así podemos ejecutar los test nuevamente para verificar que todo sigue en su lugar.

C.C. Reconocimiento

www.bdigital.ula.ve

88

Figura 21. d. Última prueba (Green Test)

5.2 Pruebas de la API con Postman

La validación y prueba del API son elementos cruciales en el desarrollo de cualquier

aplicación. Para asegurar que nuestro sistema de gestión de partituras cumple con los

requisitos y ofrece una interfaz robusta, se empleó Postman, una herramienta versátil para el

desarrollo de APIs. A continuación, se describe cómo se utilizó Postman para probar el API

del sistema:

4.2.1 Configuración del Entorno

Antes de realizar las pruebas, se configuró un entorno en Postman para reflejar las

diferentes variables y configuraciones que el API utiliza. Esto incluyó la URL base del API,

claves de autenticación y cualquier otro parámetro necesario para las solicitudes.

4.2.2 Creación de Solicitudes

Postman permite crear y enviar solicitudes HTTP de manera sencilla. Se crearon

diversas solicitudes para cada uno de los endpoints del API del sistema de gestión de

partituras. Estas solicitudes incluyen operaciones como iniciar sesión, gestionar partituras y

ejecutar acciones específicas del sistema, entre otras.

C.C. Reconocimiento

www.bdigital.ula.ve

89

4.2.3 Gestión de Autenticación

Dado que nuestro sistema incorpora autenticación, se emplearon las funciones de

Postman para gestionar diferentes métodos de autenticación, incluyendo el uso de tokens API

para asegurar solicitudes protegidas.

4.2.4 Pruebas de Rendimiento

Postman permite realizar pruebas de rendimiento, evaluando cómo el API maneja

cargas de trabajo diversas. Se llevaron a cabo pruebas para determinar la eficiencia y la

escalabilidad del sistema bajo diferentes condiciones de carga.

4.2.5 Colecciones de Postman

Todas las solicitudes y escenarios de prueba se organizaron en colecciones de

Postman. Estas colecciones proporcionan una estructura organizada para ejecutar pruebas

individuales o suites completas, facilitando la repetición de pruebas durante el desarrollo y

después de implementaciones importantes.

4.2.6 Documentación del API

Postman también facilita la generación de documentación del API. Se aprovechó esta

funcionalidad para crear documentación clara y accesible que detalla cada endpoint, sus

parámetros y las respuestas esperadas (Promusica-ULA API, s. f.).

El uso integral de Postman no solo aseguró la funcionalidad correcta de nuestra API,

sino que también simplificó la colaboración entre desarrolladores y garantizó la consistencia

en las pruebas a lo largo del desarrollo.

C.C. Reconocimiento

www.bdigital.ula.ve

90

CAPÍTULO 6: ANÁLISIS Y RESULTADOS

En este capítulo, se presenta un análisis exhaustivo de los resultados obtenidos

durante el desarrollo del sistema, así como una evaluación de la metodología de Desarrollo

Dirigido por Pruebas (TDD) aplicada en el proceso.

6.1 Evaluación de los Resultados de las Pruebas de Rendimiento

Durante la fase de pruebas, se realizaron pruebas exhaustivas de rendimiento de la

API utilizando la herramienta Postman. Los resultados obtenidos proporcionaron una visión

general del rendimiento del sistema bajo carga. Se observó un rendimiento satisfactorio, con

una tasa de rendimiento promedio de 21.04 solicitudes por segundo y un tiempo de respuesta

promedio de 408 milisegundos. Además, la tasa de error fue del 1.86%, lo que indica una

buena estabilidad del sistema bajo carga. Se identificaron algunas rutas con tiempos de

respuesta más lentos, lo que sugiere áreas potenciales de optimización para mejorar el

rendimiento general del sistema (20User-1Min-Rampa-Promusica-ULA-Performance-

Report-10000-1, 2023).

A continuación, se detallan los resultados de un ejemplo de prueba aplicada:

Performance test:

● Usuarios Virtuales: Se simularon 20 usuarios virtuales.

● Duración: La prueba tuvo una duración de 1 minuto.

● Perfil de Carga: Se implementó una carga en rampa durante 1 minuto.

C.C. Reconocimiento

www.bdigital.ula.ve

91

● Total de solicitudes enviadas: Durante la prueba, se enviaron un total de 1397

solicitudes a la aplicación.

● Rendimiento (Throughput): La tasa de rendimiento fue de 21.04 solicitudes por

segundo.

● Tiempo de Respuesta Promedio: El tiempo promedio de respuesta del sistema a una

solicitud fue de 408 milisegundos.

● Tasa de Error: La tasa de error fue del 1,86%, lo que indica que aproximadamente el

1,86% de las solicitudes generaron algún tipo de error, siendo el más común el error

422 (Figura 22).

Figura 22. Solicitudes con más errores.

Estos resultados proporcionan una visión general del rendimiento del sistema bajo

carga simulada. Si bien los datos son considerados aceptables, existen áreas de mejora

identificadas durante el análisis. Por ejemplo, se detectaron cinco rutas con respuestas más

lentas (Figura 23), lo que sugiere la necesidad de optimización en esas áreas específicas.

C.C. Reconocimiento

www.bdigital.ula.ve

92

Figura 23. Top 5 de las solicitudes más lentas.

Además, al analizar los percentiles 90, 95 y 99, se observa que la mayoría de las

solicitudes (hasta el 99%) se completan en 863 milisegundos o menos (Figura 24). Estas

métricas estadísticas indican el tiempo necesario para que una cierta fracción de las

solicitudes se complete, lo que permite identificar áreas que pueden ser optimizadas para

mejorar el rendimiento general de la aplicación.

Figura 24. Tendencia del tiempo de respuesta durante la prueba.

C.C. Reconocimiento

www.bdigital.ula.ve

93

En consideración de estos resultados, se plantean posibles mejoras y optimizaciones

en el código y la configuración del sistema. Para una aplicación web que se estima tenga una

carga constante de consultas, estas respuestas están dentro de los parámetros que se

consideraron, si bien se pueden hacer optimizaciones de código y da una visión inicial para

un despliegue en pruebas, como por ejemplo usar una base de datos como REDIS para el

manejo de sesiones y caché, como servidor web usar NGINX que puede manejar el doble de

conexiones que APACHE y es más flexible al momento de configurar.

6.2 Impacto en la Eficiencia del Registro y Préstamo de Partituras

El sistema propuesto tiene el potencial de mejorar significativamente la eficiencia en

los procesos de registro y préstamo de partituras en la Fundación Promúsica. Mediante la

automatización de tareas y la optimización de los flujos de trabajo, se espera reducir los

tiempos de respuesta y minimizar los errores humanos. Esto llevará a una gestión más

eficiente de las partituras y una mejor experiencia para los usuarios finales.

6.3 Análisis de la Metodología TDD

La aplicación de la metodología TDD durante el desarrollo del sistema demostró ser

efectiva para garantizar la calidad y confiabilidad del código. La escritura de pruebas antes de

la implementación del código permitió detectar y corregir errores tempranamente, lo que

contribuyó a un desarrollo más ágil y robusto. Sin embargo, se encontraron algunos desafíos,

como la curva de aprendizaje inicial y la necesidad de mantener un conjunto completo de

pruebas a lo largo del ciclo de desarrollo.

C.C. Reconocimiento

www.bdigital.ula.ve

94

6.4 Potenciales Áreas de Mejora

A pesar de los resultados satisfactorios, se identificaron algunas áreas en las que el

sistema podría ser mejorado antes de su implementación. Esto incluye la optimización de las

rutas con tiempos de respuesta más lentos, la mejora de la escalabilidad y la incorporación de

funcionalidades adicionales según las necesidades específicas de la Fundación Promúsica. Se

recomienda realizar una evaluación continua del sistema y realizar ajustes según sea

necesario para garantizar su eficacia a largo plazo.

6.5 Plan de Implementación y Futuras Direcciones

Se propone un plan detallado para la implementación del sistema en la Fundación

Promúsica, que incluye la asignación de recursos, la capacitación del personal y el

cronograma de implementación. Además, se discuten posibles mejoras futuras, como la

integración de tecnologías adicionales para mejorar el rendimiento y la funcionalidad del

sistema a medida que evolucionan las necesidades de la organización.

El análisis y los resultados presentados en este capítulo respaldan la viabilidad y

efectividad del sistema propuesto, así como proporcionan recomendaciones prácticas para su

implementación exitosa y su mejora continua en el futuro.

C.C. Reconocimiento

www.bdigital.ula.ve

95

CONCLUSIONES Y RECOMENDACIONES

La implementación de un sistema de gestión administrativa basado en la metodología

de desarrollo dirigido por pruebas (TDD) ha demostrado ser una estrategia efectiva para

garantizar la calidad y un mejor servicio a nuestra comunidad musical. La adopción de este

enfoque ha permitido una implementación cuidadosa y una validación continua del sistema,

asegurando su eficiencia y confiabilidad. Este proyecto ha logrado abordar de manera

efectiva los desafíos existentes en la gestión manual de la extensa colección de partituras de

la Fundación Promúsica.

El enfoque específico del estudio en el desarrollo de un sistema de gestión

administrativa para la Fundación Promúsica ha permitido una atención dedicada a las

necesidades particulares de esta organización. Al limitar el alcance a una única entidad, se ha

facilitado la identificación precisa de requerimientos y la personalización del sistema según

las especificaciones de la fundación. La delimitación del sistema a la gestión de partituras ha

permitido una mayor focalización en las funcionalidades relevantes. Al no incluir elementos

adicionales de gestión como recursos humanos o finanzas, se ha logrado una mayor claridad

y eficiencia en el diseño y desarrollo del sistema, asegurando que cumpla con los objetivos

establecidos de manera específica. Si bien el estudio no considera la infraestructura

tecnológica disponible en la Fundación Promúsica, se asume que se cuenta con los recursos

necesarios para la implementación del sistema. Esta delimitación resalta la importancia de

tener en cuenta las capacidades y limitaciones tecnológicas de la organización al planificar e

implementar soluciones tecnológicas, y destaca la necesidad de asegurar que se disponga de

los recursos adecuados para el éxito del proyecto.

La configuración cuidadosa del entorno de desarrollo, empleando herramientas como

Visual Studio Code y Git para la gestión del código fuente, ha desempeñado un papel

C.C. Reconocimiento

www.bdigital.ula.ve

96

fundamental en la mejora notable de la eficiencia y calidad del proceso de desarrollo. Estas

herramientas no solo proporcionan un entorno de trabajo robusto y colaborativo, sino que

también simplifican tanto la creación como el mantenimiento del sistema. Además, la

elección del lenguaje de programación PHP 8.0 y el framework Laravel ha resultado ser una

decisión acertada para el desarrollo del sistema, permitiendo una implementación ágil y

eficaz de las funcionalidades requeridas. Específicamente, Laravel ha demostrado brindar una

estructura sólida y un conjunto de herramientas poderosas que han facilitado enormemente la

creación de la API del sistema y la gestión de la base de datos.

La elección de Postgres como sistema de gestión de base de datos, junto con el uso

del ORM Eloquent de Laravel, ha simplificado notablemente la interacción con la base de

datos y ha proporcionado una capa de abstracción que facilita el manejo de datos de manera

elegante y eficiente.

Asimismo, la configuración del entorno local utilizando 'php artisan serve' de Laravel ha

permitido la ejecución de pruebas unitarias de manera eficiente y automatizada, garantizando

un entorno uniforme y controlado para las pruebas.

El desarrollo de la lógica del sistema, que incluye la generación de migraciones, la

creación de modelos y controladores, así como la configuración de las rutas para construir la

API del sistema, ha establecido las bases para la funcionalidad completa de la aplicación.

Estos pasos son cruciales para establecer la infraestructura necesaria y asegurar el correcto

funcionamiento del sistema en su totalidad.

La ejecución de las pruebas realizadas mediante la herramienta Postman ha revelado

resultados prometedores en cuanto al rendimiento, eficiencia y fiabilidad del sistema

propuesto para la gestión administrativa en la Fundación Promúsica. Aunque se identificaron

áreas de mejora, tales como la optimización de ciertas rutas y la incorporación de tecnologías

adicionales; las pruebas de rendimiento, la metodología TDD y el plan detallado de

C.C. Reconocimiento

www.bdigital.ula.ve

97

implementación respaldan la viabilidad y efectividad del proyecto. Se recomienda una

evaluación continua y ajustes según sea necesario para garantizar el éxito a largo plazo del

sistema en su objetivo de mejorar la gestión de partituras y la experiencia de los usuarios

finales en la Fundación Promúsica.

C.C. Reconocimiento

www.bdigital.ula.ve

98

REFERENCIAS

About Postman. (2023). Postman API Platform. https://www.postman.com/company/about-

 postman/

Alarcón, V. F. (2006). Desarrollo de sistemas de información: una metodología basada en el

modelado. Ediciones UPC eBooks.

https://dialnet.unirioja.es/servlet/libro?codigo=298995

An Effective Requirement Engineering Process Model for Software Development and

 Requirements Management. (2010b, octubre 1). IEEE Conference Publication | IEEE

 Xplore. https://ieeexplore.ieee.org/document/5656776/

Auth. (s. f.). JSON Web Tokens. Auth0 Docs. https://auth0.com/docs/secure/tokens/json-web-

 tokens

AWS. (s. f.). ¿Qué es SQL? - Explicación de Lenguaje de consulta estructurado (SQL).

 Amazon Web Services, Inc. https://aws.amazon.com/es/what-

 is/sql/#:~:text=es%20importante%20SQL%3F-

 ,El%20lenguaje%20de%20consulta%20estructurada%20(SQL)%20es%20un%20leng

 uaje%20de,los%20diferentes%20lenguajes%20de%20programaci%C3%B3n

Bass, L., Clements, P., y Kazman, R. (2012). Software Architecture in Practice. Addison-

 Wesley.

Blé Jurado, C. (2010). Diseño Ágil con TDD. Creative Commons.

 https://www.academia.edu/38401326/Diseno_Agil_Con_TDD

Britannica, T. Editors of Encyclopaedia (2021). client-server architecture. Encyclopedia

 Britannica. https://www.britannica.com/technology/client-server-architecture

C.C. Reconocimiento

www.bdigital.ula.ve

https://www.postman.com/company/about-postman/
https://www.postman.com/company/about-postman/
https://dialnet.unirioja.es/servlet/libro?codigo=298995
https://ieeexplore.ieee.org/document/5656776/
https://auth0.com/docs/secure/tokens/json-web-tokens
https://auth0.com/docs/secure/tokens/json-web-tokens
https://aws.amazon.com/es/what-is/sql/#:~:text=es%20importante%20SQL%3F-
https://aws.amazon.com/es/what-is/sql/#:~:text=es%20importante%20SQL%3F-
https://aws.amazon.com/es/what-is/sql/#:~:text=es%20importante%20SQL%3F-
https://aws.amazon.com/es/what-is/sql/#:~:text=es%20importante%20SQL%3F-
https://www.academia.edu/38401326/Diseno_Agil_Con_TDD
https://www.britannica.com/technology/client-server-architecture

99

Cevallos Muñoz, F. D. (2022). Propuesta de buenas prácticas de seguridad para creación,

 transporte y almacenamiento de JSON web token. [Tesis de pregrado, Pontificia

 Universidad Católica del Ecuador Sede Ambato].

 https://repositorio.pucesa.edu.ec/bitstream/123456789/3505/1/77667.pdf

Clark, J. (2021, 13 septiembre). Los 10 mejores marcos de trabajo de Backend. Back4App

 Blog. https://blog.back4app.com/es/los-10-mejores-marcos-de-trabajo-de-backend/

Cruz, Y. E., Zamora, C., Paz, C., y Jorge, R. E. (2020). Adopción de tecnologías de gestión de

 procesos de negocio: una revisión sistemática. Ingeniare. Revista chilena de

 ingeniería, 28(1), 41-55. https://doi.org/10.4067/s0718-33052020000100041

DevDocs. (s. f.). HTTP documentation. https://devdocs.io/http/

Deloitte Spain (2023). ¿Qué es un ORM?

 https://www2.deloitte.com/es/es/pages/technology/articles/que-es-orm.html

Documentación Laravel en español. (s. f.-b). El framework de PHP para artesanos de la WEB.

 https://documentacionlaravel.com/docs/9.x/eloquent

Dowsett, C. (2022). What Is a Database? Built In. https://builtin.com/data-science/database

Eseme, S. (2021). Introduction to Backend Development - Backend Developers - Medium.

 Medium. https://medium.com/backenders-club/introduction-to-backend-

 development-3f3464afd815

Fuentes, J. P. (2021, 13 mayo). TDD: Desarrollo guiado por pruebas – Trifulcas.

 https://trifulcas.com/tdd-desarrollo-guiado-por-pruebas/

C.C. Reconocimiento

www.bdigital.ula.ve

https://repositorio.pucesa.edu.ec/bitstream/123456789/3505/1/77667.pdf
https://blog.back4app.com/es/los-10-mejores-marcos-de-trabajo-de-backend/
https://doi.org/10.4067/s0718-33052020000100041
https://devdocs.io/http/
https://www2.deloitte.com/es/es/pages/technology/articles/que-es-orm.html
https://documentacionlaravel.com/docs/9.x/eloquent
https://builtin.com/data-science/database
https://medium.com/backenders-club/introduction-to-backend-development-3f3464afd815
https://medium.com/backenders-club/introduction-to-backend-development-3f3464afd815
https://trifulcas.com/tdd-desarrollo-guiado-por-pruebas/

100

Gavilán, C. M (2008). SIGB. Catálogos y gestión de Autoridades. Diseño y prestaciones de

 OPACs. http://eprints.rclis.org/13188/1/sigb.pdf

Google. (s. f.). Cómo utiliza Google las cookies. Privacy & Terms – Google.

 https://policies.google.com/technologies/cookies?hl=es

Gutiérrez A., E. R. (2020). Sistema de gestión y digitalización bibliotecaria.

 http://repositorio.upea.bo/handle/123456789/96

Heidi, E. (2021, 3 febrero). What is Laravel? DigitalOcean Community.

 https://www.digitalocean.com/community/tutorials/what-is-laravel

Herranz, J. I. (2023, 13 abril). TDD como metodología de diseño de software. Paradigma

 Digital. https://www.paradigmadigital.com/dev/tdd-como-metodologia-de-diseno-de-

 software/

IBM. (s. f.-b). ¿Qué son los contenedores? https://www.ibm.com/es-es/topics/containers

IBM. (2021). What is a relational database? https://www.ibm.com/topics/relational-databases

IBM Documentation. (2021). https://www.ibm.com/docs/es/aix/7.1?topic=systems-client-

 server

iKenshu. (2019, 26 abril). ¿Qué es Kubernetes? Platzi. https://platzi.com/blog/que-es-

 kubernetes/?utm_source=google&utm_medium=cpc&utm_campaign=20290685455

 &utm_adgroup=&utm_content=&gclid=CjwKCAiAxreqBhAxEiwAfGfndDcbEg-

 y65QfwsUQ9KRHjhLHPjdQbhhS7wXP7ioeW91wA6HrjBEWPhoCmlgQAvD_BwE

 &gclsrc=aw.ds

C.C. Reconocimiento

www.bdigital.ula.ve

http://eprints.rclis.org/13188/1/sigb.pdf
https://policies.google.com/technologies/cookies?hl=es
http://repositorio.upea.bo/handle/123456789/96
https://www.digitalocean.com/community/tutorials/what-is-laravel
https://www.paradigmadigital.com/dev/tdd-como-metodologia-de-diseno-de-software/
https://www.paradigmadigital.com/dev/tdd-como-metodologia-de-diseno-de-software/
https://www.ibm.com/es-es/topics/containers
https://www.ibm.com/topics/relational-databases

101

InnovaciónDigital, R. (2022, 25 agosto). Docker: qué es y cómo funciona. Innovación Digital

 360. https://www.innovaciondigital360.com/big-data/docker-que-es-y-como-

 funciona/?gclid=CjwKCAiAxreqBhAxEiwAfGfndH5YyRYDCbLG2TjCFHkewprjtr

 d1Mrin4khfCL6yBXi9l2Hl6YftHxoCWxsQAvD_BwE

Jin, B., Sahni, S., y Shevat, A. (2018). Designing Web APIs: Building APIs That Developers

 Love. “O’Reilly Media, Inc.”.

 https://www.academia.edu/43452338/Designing_Web_APIs_BUILDING_APIS_TH

 AT_DE VELOPERS_LOVE

Langer, A. M. (2018). Information technology and organizational learning: Managing

 behavioral change in the digital age. (3.a ed.). CRC Press Taylor & Francis Group.

 https://www.yourhomeworksolutions.com/wp-

 content/uploads/edd/2020/09/arthur_m._langer___information_technology_and_orga

 nizational_learning__managing_behavioral_change_in_the_digital_age_crc_press__2

 017___1_-1.pdf

Lilienthal, C. (2019). Sustainable Software Architecture: Analyze and Reduce Technical Debt.

 dpunkt.verlag.

Mikula, K. (2023, 30 agosto). The History and Evolution of APIs | Traefik Labs. Traefik Labs:

 Say Goodbye to Connectivity Chaos. https://traefik.io/blog/the-history-and-

 evolution-of-apis/

MVC - Glosario de MDN Web Docs: Definiciones de términos relacionados con la Web |

 MDN. (2022). https://developer.mozilla.org/es/docs/Glossary/MVC

O'Brien, J. A. y Marakas, M. H. (2006). SISTEMAS DE INFORMACIÓN GERENCIAL.

 https://www.academia.edu/91551151/SISTEMAS_DE_INFORMACION_GERENCI

 AL_OB rein_y_Marakas_McGraw_Hill

C.C. Reconocimiento

www.bdigital.ula.ve

https://www.innovaciondigital360.com/big-data/docker-que-es-y-como-funciona/?gclid=CjwKCAiAxreqBhAxEiwAfGfndH5YyRYDCbLG2TjCFHkewprjtrd1Mrin4khfCL6yBXi9l2Hl6YftHxoCWxsQAvD_BwE
https://www.innovaciondigital360.com/big-data/docker-que-es-y-como-funciona/?gclid=CjwKCAiAxreqBhAxEiwAfGfndH5YyRYDCbLG2TjCFHkewprjtrd1Mrin4khfCL6yBXi9l2Hl6YftHxoCWxsQAvD_BwE
https://www.innovaciondigital360.com/big-data/docker-que-es-y-como-funciona/?gclid=CjwKCAiAxreqBhAxEiwAfGfndH5YyRYDCbLG2TjCFHkewprjtrd1Mrin4khfCL6yBXi9l2Hl6YftHxoCWxsQAvD_BwE
https://www.academia.edu/43452338/Designing_Web_APIs_BUILDING_APIS_THAT_DEVELOPERS_LOVE
https://www.academia.edu/43452338/Designing_Web_APIs_BUILDING_APIS_THAT_DEVELOPERS_LOVE
https://www.yourhomeworksolutions.com/wp-content/uploads/edd/2020/09/arthur_m._langer___information_technology_and_organizational_learning__managing_behavioral_change_in_the_digital_age_crc_press__2017___1_-1.pdf
https://www.yourhomeworksolutions.com/wp-content/uploads/edd/2020/09/arthur_m._langer___information_technology_and_organizational_learning__managing_behavioral_change_in_the_digital_age_crc_press__2017___1_-1.pdf
https://www.yourhomeworksolutions.com/wp-content/uploads/edd/2020/09/arthur_m._langer___information_technology_and_organizational_learning__managing_behavioral_change_in_the_digital_age_crc_press__2017___1_-1.pdf
https://www.yourhomeworksolutions.com/wp-content/uploads/edd/2020/09/arthur_m._langer___information_technology_and_organizational_learning__managing_behavioral_change_in_the_digital_age_crc_press__2017___1_-1.pdf
https://traefik.io/blog/the-history-and-evolution-of-apis/
https://traefik.io/blog/the-history-and-evolution-of-apis/
https://developer.mozilla.org/es/docs/Glossary/MVC
https://www.academia.edu/91551151/SISTEMAS_DE_INFORMACION_GERENCIAL_OBrein_y_Marakas_McGraw_Hill
https://www.academia.edu/91551151/SISTEMAS_DE_INFORMACION_GERENCIAL_OBrein_y_Marakas_McGraw_Hill

102

Overview of the Administrative Management Systems (AMS). (2016, 3 mayo). Financial

 Services. https://finance.utoronto.ca/policies/gtfm/financial-information-system-

 fis/overview-of-the- administrative-manaement-systems-ams/

Pérez, L. (2022). Diseño e Implementación de una aplicación para la gestión de partituras.

 https://ruc.udc.es/dspace/handle/2183/32088

PHP: What is PHP? - Manual. (s. f.-b). https://www.php.net/manual/en/intro-whatis.php

Promusica-ULA API. (s. f.). Promusica-ULA.

 https://documenter.getpostman.com/view/20766493/2s9YkgDkKZ

Ravoof, S. (2023, 17 febrero). What Is PostgreSQL? Kinsta®.

 https://kinsta.com/knowledgebase/what- is-postgresql/

Ross, J. W., Beath, C. M., y Mocker, M. (2019). Designed for Digital: How to Architect Your

 Business for Sustained Success. The MIT Press.

Ruiz P., F. R. (2021, 31 enero). Desarrollo de un sistema de gestión de biblioteca en la

 Institución Educativa Técnico Industrial Pedro A. Oñoro de Baranoa. 10596/39010.

 https://repository.unad.edu.co/handle/10596/39010?locale-attribute=en

Smiraglia, R. P. (2001). The nature of "a work": Implications for the organization of

 knowledge. Lanham, Md: Scarecrow Press.

Stack Overflow. (s. f.). What is a software framework?

 https://stackoverflow.com/questions/2964140/what-is-a-software-framework

Sydle. (2023). ¿Qué es la digitalización de documentos y cómo hacerla? Blog SYDLE.

 https://www.sydle.com/es/blog/digitalizacion-de-documentos-

 61b8e03c876cf6271dfbe88a#:~:text=La%20digitalizaci%C3%B3n%20de%20los%20

 documentos,una%20realidad%20en%20varias%20empresas

C.C. Reconocimiento

www.bdigital.ula.ve

https://finance.utoronto.ca/policies/gtfm/financial-information-system-fis/overview-of-the-administrative-manaement-systems-ams/
https://finance.utoronto.ca/policies/gtfm/financial-information-system-fis/overview-of-the-administrative-manaement-systems-ams/
https://ruc.udc.es/dspace/handle/2183/32088
https://documenter.getpostman.com/view/20766493/2s9YkgDkKZ
https://kinsta.com/knowledgebase/what-is-postgresql/
https://repository.unad.edu.co/handle/10596/39010?locale-attribute=en
https://stackoverflow.com/questions/2964140/what-is-a-software-framework
https://www.sydle.com/es/blog/digitalizacion-de-documentos-61b8e03c876cf6271dfbe88a#:~:text=La%20digitalizaci%C3%B3n%20de%20los%20
https://www.sydle.com/es/blog/digitalizacion-de-documentos-61b8e03c876cf6271dfbe88a#:~:text=La%20digitalizaci%C3%B3n%20de%20los%20
https://www.sydle.com/es/blog/digitalizacion-de-documentos-61b8e03c876cf6271dfbe88a#:~:text=La%20digitalizaci%C3%B3n%20de%20los%20

103

The Editors of Encyclopaedia Britannica. (2023). Client-Server Architecture | Definition,

 Characteristics, & Advantages. Encyclopedia Britannica.

 https://www.britannica.com/technology/client-server-architecture

Visual Studio Code - Code editing. Redefined. (2021, 3 noviembre).

 https://code.visualstudio.com/

20User-1Min-Rampa-Promusica-ULA-Performance-Report-10000-1. (2023, 6 de diciembre).

 Google Docs.

 https://drive.google.com/file/d/12oXqBgWfsdBBDWK72WAY6v9WMgGY96U7/vie

 w?usp=sharing

C.C. Reconocimiento

www.bdigital.ula.ve

https://www.britannica.com/technology/client-server-architecture
https://drive.google.com/file/d/12oXqBgWfsdBBDWK72WAY6v9WMgGY96U7/view?usp=sharing
https://drive.google.com/file/d/12oXqBgWfsdBBDWK72WAY6v9WMgGY96U7/view?usp=sharing

