UNIVERSIDAD
DE LOS ANDES

PROYECTO DE GRADO

Presentado ante la ilustre UNIVERSIDAD DE LOS ANDES como requisito final para

obtener el Titulo de INGENIERO DE SISTEMAS

SISTEMA DE COMPRESION AUTOMATICA Y ADAPTATIVA
PARA LA TRANSMISION EFICIENTE DE DATOS Y USO

ADECUADO DE LOS RECURSOS COMPUTACIONALES

Por

Br. Jhonathan Daniel Abreu Luque

Tutor: José Luis Paredes Quintero, PhD.

Octubre, 2018

(©2018 Universidad de Los Andes Mérida, Venezuela

Sistema de Compresion Automatica y Adaptativa para la
Transmisién Eficiente de Datos y Uso Adecuado de los

Recursos Computacionales

Br. Jhonathan Daniel Abreu Luque

Proyecto de Grado — Sistemas Computacionales, 63 paginas

Resumen: La compresiéon de datos es una estrategia muy ultil para reducir la
cantidad de datos que representan la informacién siendo transmitida para asi mejorar el
rendimiento de la comunicacién. Desafortunadamente, ningin algoritmo es conveniente
en todas las situaciones y pueden incluso degradar el desemepeno de la transmision,
dependiendo de muchos factores del entorno y de los datos. Debido a esto, se
propone un mecanismo de compresién automatica y adaptativa que seleccione y
utilice el mejor algoritmo de compresion en cada oportunidad, o decida no comprimir
cuando sea conveniente. Para la evaluacién de este mecanismo, se desarrollé un
sistema cliente-servidor de transmision de datos que lo implementa. Los resultados
muestran que el mecanismo propuesto logra lidiar con situaciones en la que algunos
compresores se hacen subdptimos o mas costos que no comprimir y, pese a que toma
decisiones equivocadas en algunas situaciones, entender el por qué permite encontrar las
limitaciones y nuevos retos a los que se deben enfrentar los mecanismos de compresion

adaptativa.

Palabras clave: Compresiéon de datos, optimizaciéon del uso de los recursos
computacionales, transmision de informacion, compresion automatica, compresion
adaptativa.

Este trabajo fue procesado en KTEX.

Indice

Indice de Tablas
Indice de Figuras
Indice de Algoritmos
Agradecimientos

1 Introduccién

1.1 Antecedentes
1.2 Planteamiento del problema
1.3 Justificaciono
1.4 Objetivos o

1.4.1 Objetivo General

1.4.2 Objetivos Especificos
1.5 Metodologia
1.6 Estructura del documentoo oo

2 Marco tedrico

2.1 Compresion de datos
2.1.1 Tipos de compresién
2.1.2 Medidas de rendimiento

2.2 Recursos computacionales L.
221 Tiempode CPU.
222 Anchodebanda L.

v

vii

viii

xi

S Oy Ot Ot Ot e W N -

oo

2.2.3 Memoria 15

2.3 Arboles de decision 15
2.3.1 Descripcién 16
2.3.2 Ventajas y desventajas L. 16
2.4 Desarrollo de software iterativo e incremental 18
2.4.1 El proceso de desarrollo de software 18
Desarrollo del sistema de transmisién de datos 20
3.1 Requerimientos del sistema 20
3.1.1 Requerimientos funcionales 21
3.1.2 Requerimientos no funcionales 21
3.2 Mobdulo de compresion de datoso 22
3.2.1 Compresion adaptativa 22
3.2.2 Compresion estaticao 24
3.3 Capa de transmision de datos L. 24
3.3.1 Protocolo de transmisién 24
3.3.2 Cliente e 25
3.3.3 Servidor 25
Mecanismo de compresion automatica y adaptativa 28
4.1 Compresion adaptativa 28
4.1.1 Aspectos de adaptacién 29
4.1.2 Abstraccion de los sistemas de compresién adaptativa 30
4.2 Algoritmos de compresion 31
421 SNAPPY -« « o e e e e 31
422 zZlib . ..o 32
4.2.3 bzip2 . . . 32
4.2.4 Estudio comparativo 32
4.3 Monitores 33
4.3.1 Carga del CPU en el transmisor 34
4.3.2 Estadodelared. 34

4.3.3 Tipodedatos 36

4.4 Modelo adaptativo

4.4.1 Funcién objetivoo

4.4.2 Cuantizacién del espacio de oportunidades

4.4.3 Proceso de toma de decisiones

4.4.4 Algoritmo de compresion automatica y adaptativa

5 Evaluacion del mecanismo de compresion
5.1 Prueba de adaptabilidad L.

5.1.1 Diseno del experimento

5.1.2 Resultados

5.2 Pruebas de rendimiento

5.2.1 Descripciéon del entornoo

5.2.2 Datosdeprueba

5.2.3 Diseno del experimento L.

5.2.4 Resultados

6 Conclusiones

6.1 Recomendaciones

Bibliografia

45
45
45
46
47
47
48
48
49

57
99

60

Indice de Tablas

3.1 Mensajes utilizados en el protocolo de transmision de archivos. 25
4.1 Niveles de cuantizacion del espacio de oportunidades. 41
4.2 Porcentaje de clasificacién correcta de los clasificadores estudiados. . . 42

Vil

5.5

5.6

Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo latex.o
Porcentaje de mejora de cada método relativo a no comprimir para datos

tipo multimedia.o

Indice de Figuras

2.1

2.2

3.1

3.2
3.3

4.1

4.2

4.3
4.4

5.1

5.2

5.3

5.4

Ejemplo hipotético de cémo un un arbol de decisién podria predecir
interacciones entre genes (adaptado de Kingsford y Salzberg (2008)). . 17

Fases detalladas y flujo de trabajo del modelo incremental. 19

Diseno del moédulo de compresion del sistema siguiendo el patrén de

disenio por estrategias.o 23
Diagrama de actividades para el programa cliente. 26
Diagrama de actividades para el programa servidor. 27

Estudio comparativo de las capacidades de los métodos de compresion
seleccionados. 33

Pruebas de validacion del método de estimacién del ancho de banda

disponible. 36
Relacién entre el porcentaje de compresién (PC) y el valor del bytecounting. 39
Matrices de confusion de los clasificadores estudiados. 43
Pruebas de adaptabilidad del mecanismo de compresién propuesto ante

cambios en el ancho de banda.o 47
Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo cero. . . . L L 50
Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo aleatorio. 52
Porcentaje de mejora de cada método relativo a no comprimir para datos

tipo codigo. 53

viil

Indice de Algoritmos

4.1 Estimacién del ancho de banda disponible . .
4.2 Calculo del bytecounting

4.3 Algoritmo de compresion adaptativa propuesto

Capitulo 1
Introduccion

“Nos encontramos en medio de la evolucion a los procesadores multintcleo, lo
cual ocasiona que la capacidad computacional crezca mas rapido que la capacidad
de comunicacién disponible” (Jagemar et al., 2016). Esto, aunado a la vigencia de la
Ley de Moore, trae como consecuencia un aumento en la demanda de mecanismos de
comunicacion de alto rendimiento.

En aplicaciones modernas, el volumen de informacion generada y potencialmente
transportada es substancial, pudiendo estresar incluso a infraestructuras de
comunicacién de muy alto desempenio (Wiseman et al., 2004). La informacién se
genera en grandes volumenes y a tazas muy elevadas, pudiendo provenir de sensores,
satélites de observacion, fuentes de informacion especializada o de grandes aplicaciones
de negocios. La compresiéon juega, asi, un papel importante en la reduccion de volumen
de informacién que debe ser transmitida o almacenada.

Existen diversos métodos y algoritmos de compresion, cada uno con sus ventajas y
limitaciones. A modo de ilustracién, segin Jagemar et al. (2016), el algoritmo Snappy
(Google, 2018b) ofrece compresién muy répida y es apropiado para texto, mientras
que el QLZ (QuickLZ, 2018) ofrece compresién muy répida y es adecuado sélo para
mensajes pequenos. En consecuencia, dependiendo del tipo de datos a comprimir y de
los recursos disponibles, un algoritmo en especifico puede ser el mas apropiado de entre
un conjunto dado de algoritmos de compresion.

Factores adicionales, de gran importancia, que se deben tomar en cuenta en el

1.1 ANTECEDENTES 2

desarrollo de un sistema de compresién, ademés de los tipos de datos o contenidos a
ser transmitidos, son la carga del CPU y la congestion de la red: un servicio puede
compartir recursos con muchos otros y se debe garantizar que estos nunca lleguen
a un estado de inaniciéon al utilizar toda la capacidad de cémputo en el proceso
de compresién. Ademads, se debe considerar un equilibrio entre el ancho de banda

disponible y la cantidad de informacion que se transmite.

1.1 Antecedentes

En las ultimas décadas, la compresién de datos y, més especificamente, el problema
de la compresion automatica o adaptativa, han sido investigados desde muchos angulos
y con diversos enfoques. Krintz y Sucu (2006) implementaron un sistema llamado
Adaptive Compression Environment (ACE), para el cual se generan, de forma offline,
lineas de regresion que relacionan cada par de algoritmos de compresion disponibles,
las cuales son utilizadas por el sistema para predecir el desempeno de cada algoritmo a
partir del rendimiento del ultimo algoritmo utilizado y asi seleccionar el mas adecuado
en un instante determinado para transmitir el proximo archivo o paquete.

Peterson y Reiher (2016), en su investigacion, refutan a Krintz y Sucu (2006)
observando que no se debe generalizar y suponer relaciones lineales entre los distintos
algoritmos de compresion. Presentan, entonces, Datacomp, un sistema cuyo proceso de
toma de decisiones se basa en la afirmacion de que un método de compresion tendra
siempre el mismo desempeno dado un conjunto de condiciones del entorno. De forma
también offline, cuantizan el dominio de las condiciones de los recursos (CPU, ancho
de banda, entre otros) y la compresibilidad de los datos para obtener un modelo que
utiliza el sistema para determinar el algoritmo mas apto en un instante dado, a partir
de informacién de desempeno calculada, en linea, para cada método y para cada clase
del modelo.

Las investigaciones previamente mencionadas tienen en comun la utilizacién, en
mayor o menor medida, de informaciéon generada previo a la inicializaciéon del sistema.
Jagemar et al. (2016), por otro lado, realizan la seleccién automatica completamente

en linea, dividiendo el flujo de mensajes en rondas de tamano fijo, cada una con una

1.2 PLANTEAMIENTO DEL PROBLEMA 3

etapa inicial en la que se calcula una distribucién de probabilidad a partir de los datos
de rendimiento de la ronda anterior, asignando la mayor probabilidad de ser utilizado
al algoritmo que dio mejores resultados en la ronda previa.

Existen algoritmos que permiten regular el esfuerzo aplicado a la compresion, siendo
esto util en casos en los que se requiera ajustarse a limites de uso del CPU. En este
sentido, Zohar y Cassuto (2014) desarrollaron un sistema aplicado al servidor Web
Apache (Apache Software Fundation, 2018) que, a partir de mediciones instanténeas
de la carga del CPU, ajusta el nivel de compresién del algoritmo g¢zip (Gailly y Adler,
2018a), protegiendo asi al host de sobrecargas causadas por peticiones en horas pico
o ataques del tipo de Denegacién de Servicios (DoS) y de comprimir cuando no es
necesario.

Es notorio también que, como ya fue mencionado, la compresién no siempre es
adecuada y las investigaciones previamente mencionadas manejan este escenario de
diferentes maneras, ya sea implementando mecanismos de control de tipo PID para
ajustar el tiempo disponible para comprimir (Jagemar et al., 2016), con una clase
particular en el modelo cuantizado para informacién no compresible (Peterson y Reiher,
2016), comparando predicciones de tiempo de transmisién del archivo comprimido o
sin comprimir (Krintz y Sucu, 2006) o ajustando el nivel de compresién a 0 para evitar

la compresién (Zohar y Cassuto, 2014).

1.2 Planteamiento del problema

La computacién enfrenta actualmente un gran reto con respecto a la creciente
brecha existente entre el poder de computo y la capacidad de comunicacién y de
acceso a memoria, especialmente con la popularizacién de la computacién paralela
y distribuida, los clusters y la computacién en malla. La creciente demanda de este y
otros tipo de sistemas distribuidos (sistemas Web, P2P, multimedia, etc.) y el volumen
de informacion que en estos se transmite, requieren que se desarrollen sistemas de
comunicacién mas eficientes.

La comunicacién, como lo afirman Peterson y Reiher (2016), es una funcién del

tamano de la informacion, el cual puede ser reducido utilizando compresién. Sin

1.3 JUSTIFICACION 4

embargo, la compresion puede, en ciertos casos, ser innecesaria e incluso degradar
el desempeno de la comunicacion al incrementar el tiempo efectivo de transmision o
incluso aumentar el tamano de los datos. Dicho esto, son numerosos los aspectos
que se deben tomar en cuenta al considerar la compresiéon como estrategia para
mejorar el proceso de comunicacion, entre ellos el formato de la informacién o la
compresibilidad de la misma y los recursos disponibles (CPU, ancho de banda, etc.).
Numerosas investigaciones han tratado este problema por muchos anos y desde distintos
dngulos, aportando, sin embargo, soluciones parciales al mismo (Zohar y Cassuto,
2015), incluyendo en su mayoria soluciones atadas a ciertos sistemas especificos. En ese
orden de ideas, es necesario continuar ampliando el espectro de soluciones y mecanismos
de simple integracién en cuanto al uso de la compresion para mejorar la efectividad de

la comunicacién en sistemas que asi lo requieran.

1.3 Justificacion

Los desafios a los que actualmente hace frente la computacién en cuanto al acelerado
incremento del poder de computo disponible, en contraste con las capacidades de
comunicacion existentes, aunado al creciente volumen de informacién siendo generada
y transmitida, requieren de métodos innovadores que mejoren y optimicen la utilizacion
deolvio el internet! los recursos de comunicacion disponibles. Debido a la cantidad de
variables involucradas en la comunicacion y transmisiéon de datos, de las cuales depende
su desempeno, no existe atin una solucion global al problema de la selecciéon automética
del algoritmo mas apto en la utilizacion de la compresién como medio para la mejora de
la transmision. Es por esto que se requiere que se contintden las investigaciones en este
campo, de modo que se aporten cada vez mas soluciones que conlleven a la optimizacién
de la utilizacién de los recursos en cuanto a la comunicacion y transmision de datos se

refiere y, ademas, se identifiquen las limitaciones y nuevos retos que estas implican.

1.4 OBJETIVOS 5

1.4 Objetivos

1.4.1 Objetivo General

Desarrollar un sistema de compresién y transmision de datos que seleccione, de
forma automatica y cuando sea conveniente, el algoritmo de compresion mas apto de
entre un conjunto de algoritmos disponibles y se adapte a las condiciones instantaneas

de los recursos computacionales y de comunicacién disponibles.

1.4.2 Objetivos Especificos

e Seleccionar los tipos caracteristicos de datos a comprimir y generar la base de

datos de prueba.
e Seleccionar los algoritmos de compresion a utilizar.

e Analizar la informacion de rendimiento de cada algoritmo para cada tipo de datos

de la base de datos de prueba.

e Seleccionar los recursos computacionales a tomar en cuenta: carga del CPU,
ancho de banda disponible, congestionamiento de la red, uso de memoria, entre

otros.

e Disenar la estrategia de seleccién automatica del algoritmo més apto y adaptacion

a las condiciones de los recursos.

e Implementar el sistema de transmisién y compresion de datos automadtico y

adaptativo.

e Evaluar el rendimiento del sistema implementado mediante las métricas mas

apropiadas encontradas en la literatura.

1.5 METODOLOGIA 6

1.5 Metodologia

El sistema propuesto fue desarrollado siguiendo el modelo iterativo e incremental
en todo el ciclo de vida del desarrollo. No obstante, el nicleo del sistema es la
estrategia de compresion automatica y adaptativa, por lo cual se siguieron los siguientes
pasos o actividades como enfoque metodolégico para el cumplimiento de los objetivos

planteados:

e Se llevé a cabo una revisién bibliografica exhaustiva sobre los conceptos

relacionados a la compresién de datos en general y compresion adaptativa.

e Se disend una arquitectura preliminar del sistema de transmisién de datos a
partir de un conjunto base de requerimientos, especificando los protocolos y

funcionalidades principales requeridas para el sistema.

e Se procedio con el desarrollo del sistema de transmision, como ya fue mencionado,

siguiendo el modelo de desarrollo iterativo e incremental.

e El mecanismo de compresién automatica y adaptativa fue disenado e

implementado, integrandolo al sistema de transmisién de datos desarrollado.

e Finalmente, se llevo acabo la evaluaciéon del sistema de compresion automatica y
adaptativa, tomando en cuenta diferentes escenarios y pruebas comparativas que
permitieron evaluar el desempeno de la estrategia de compresion disenada y el

sistema que la implementa.

1.6 Estructura del documento

El resto del presente documento se organiza como sigue.

El capitulo 2 presenta las bases tedricas del presente trabajo. Se resenan los
conceptos basicos de la compresién de datos y sus medidas de rendimiento. Ademas,
se presenta un resumen de los recursos computacionales de los que se disponen y sus

potenciales métodos de medicién o estimaciéon. Adicionalmente, se describen los arboles

1.6 ESTRUCTURA DEL DOCUMENTO 7

de decision como algoritmos de clasificacién rapida y eficiente y sus aplicaciones, para
finalizar con conceptos del modelo de desarrollo iterativo e incremental.

El capitulo 3 presenta el ciclo de vida del desarrollo del sistema de transmisién de
datos, con las funcionalidades requeridas para proveer compresion de datos estatica y
adaptativa.

En el capitulo 4 se presenta el diseno del mecanismo automético y adaptativo
de compresion de datos para la transmision eficiente de informacién junto con su
integracion en el sistema de transmisién de datos.

En el capitulo 5, se describen las pruebas de evaluacién a las que fue sometido el
mecanismo de compresion automatica y se discuten los resultados obtenidos.

Finalmente, en el capitulo 6 se presentan las conclusiones del trabajo realizado, asi

como también las recomendaciones finales y potencial trabajo futuro.

Capitulo 2

Marco teorico

2.1 Compresion de datos

La compresion es el proceso de reducir el tamano de un archivo de datos, lo cual
se logra al reducir el volumen de datos o la cantidad de bits que lo representan. En
otras palabras, el resultado de la compresién es una representacion compacta de la
informacion, ocupando menos espacio a cambio de tiempo y capacidad de cémputo.

Pu (2004) define a la compresién de datos como la ciencia y arte de representar la
informacion de forma compacta, cuyo enfoque se basa en dos pasos: el modelado —
que consiste en la construccién de sistemas de conocimiento para la compresién — y
la codificacion — que es el diseno del codigo que representa la informacién de forma
compacta. Lo anterior tiene sentido, pues la compresién es una especializacién de la

codificacion, con la diferencia que en la primera, el resultado es de menor tamano.

2.1.1 Tipos de compresion

Segun los aspectos de la informaciéon tomados en cuenta por los distintos algoritmos
de compresién, se deriva una clasificacion que depende de si el algoritmo permite

regenerar o no la informacién intacta después de la descompresion.

2.1 COMPRESION DE DATOS 9

Compresion sin pérdidas

Los métodos de compresion sin pérdidas son aquellos que permiten que cada
bit que representa la informacién pueda ser recuperado, en el mismo orden, en el
proceso de descompresion. Esto significa, en otras palabras, que las senales original y
descomprimida, son numéricamente idénticas. Esta categoria aplica principalmente a
aquellos algoritmos que se fundamentan en la Teoria de la Informacién y que aprovechan
la redundancia estadistica natural de la mayor parte de la informacion del mundo real
(Mahmud, 2012).

En este tipo de técnicas de compresion, la capacidad y la tasa de compresion son
funciones de la utilizacion de los recursos de computaciéon. Estos métodos, por lo
general, se basan en modelos de probabilidad o en la frecuencia de aparicion de los
bytes y cadenas de estos — como la codificaciéon de Huffman (Huffman, 1952) — o
en diccionarios, manteniendo tablas de cddigos simples que reemplazan cadenas de

simbolos — como la familia de algoritmos Lempel-Ziv (Ziv y Lempel, 1977).

Compresion con pérdidas

La compresion con pérdidas es posible solo en casos en los que existe cierta tolerancia
a las pérdidas y la realizan aquellos métodos que no permiten reconstruir la informacién
exactamente. Esto ocurre debido a que estos métodos de compresion reducen el tamano
de los archivos al eliminar de forma permanente informacién redundante o irrelevante
para reducir la cantidad de bits que los representan (Mahmud, 2012).

Este tipo de compresién aplica principalmente a imagenes (JPEG, por ejemplo),
audio y video (MPEG-2, por ejemplo), en los que, por lo general, la informacién se
reconstruye con pérdidas que son perceptibles pero tolerables — como lo es en el
caso de las videoconferencias, lo cual se refleja en la calidad del audio y video —
en cuyo caso podria decirse que la compresion es subjetivamente con pérdidas. Si el
algoritmo de compresién elimina informacién redundante y /o irrelevante, haciendo que
las pérdidas sean practicamente imperceptibles, se esta frente a un caso de compresiéon
subjetivamente sin pérdidas — como en el caso del JPG, donde la pérdida es perceptible

solo al acercar (zoom), por lo que la falta de informacién es invisible a simple vista.

2.1 COMPRESION DE DATOS 10

En esta clase, los niveles de compresion neta que se alcanzan pueden ser de hasta 80%

con degradacion de la senal, imagen o video practicamente imperceptible.

2.1.2 Medidas de rendimiento

Esencialmente, son dos las métricas que se utilizan para medir el desempeno de un
algoritmo de compresion: el porcentaje de compresion o compression ratio y la tasa
de compresion o compression rate. Estas métricas refieren a las capacidades de un

compresor, tanto en eficacia como en eficiencia.

Porcentaje de compresiéon

El porcentaje de compresién o compression ratio (PC) es una medida de
cuantificacion de la reduccién del tamano de un archivo o senal por parte de un
algoritmo de compresién. Formalmente, se define como la razén o proporcién entre
el tamano del archivo original y el tamano del archivo comprimido (Ecuacién 2.1) y

depende de las propiedades de los datos y del algoritmo.

T
PC =22 2.1
C T (2.1)
donde:

T, = Tamano original

T. = Tamano comprimido

Del mismo modo, puede utilizarse el concepto de ahorro de espacio o space
savings (AE), que representa la reduccién del tamano relativo al tamano del archivo
descomprimido — es decir, la proporcién o porcentaje de reduccion de espacio — y se

define como en la ecuacion 2.2.

1 T,
AE=1-po=1-7 (2.2)

Dicho esto, una compresion que lleva un archivo de 20MB a una representacion

compacta de 5SMB, tiene un PC de 4 (20/5 = 4) y un AE de 0,75 (1 - 5/20 = 0,75),

2.1 COMPRESION DE DATOS 11

lo que significa que se comprime el archivo a un cuarto de su tamano original y que se
ahorra un 75% del espacio requerido para almacenarlo, respectivamente. Lo ideal es,
entonces, disenar compresores con alta capacidad de compresion, pues de esta manera
se consiguen representaciones mas compactas de los archivos — permitiendo asi su
transmision en forma mas rapida o ahorros en recursos de almacenamiento — no sin
tomar en cuenta que altas capacidades de compresién requieren tiempo y esfuerzo de

computacién.

Tasa de compresion

La tasa o velocidad de compresién (compression rate o compression speed), TC,
depende de los recursos computacionales (y su estado) y se define como la tasa
o velocidad a la cual un algoritmo reduce la cantidad de bits que representan un
determinado archivo. Se mide en unidades de informaciéon por unidad de tiempo
y, considerando recursos computacionales y condiciones constantes, puede depender
unicamente del formato de los datos y del algoritmo mismo. La Ecuacion 2.3 define

formalmente la forma de calcular la velocidad de compresion.

T,
TC =22
te

donde:
t. = Tiempo de compresién

Asi mismo, este concepto aplica a la velocidad de descompresion o decompression

speed (TD), para medir el rendimiento del proceso de descompresién (Ecuacién 2.4).

T,
TD = o (2.4)
la
donde:
ty = Tiempo de descompresion

Los algoritmos de compresion, por lo general, intercambian capacidad de

compresiéon por velocidad (y viceversa), dependiendo de los fines para los que son

2.2 RECURSOS COMPUTACIONALES 12

disenados. Por ejemplo, segin Jigemar et al. (2016), los algoritmos LZFX (Collette,
2018) y LZO (Oberhumer, 2018) ofrecen compresién rapida pero con bajo PC, mientras
que el algoritmo LZMA (Pavlov, 2018) ofrece compresién lenta con alto PC, existiendo
también puntos intermedios, como en el caso de LZW (Welch, 1984) y BZIP2 (Seward,

2018). Este fendémeno es ilustrado en el Capitulo 4.

2.2 Recursos computacionales

Todo componente, sea fisico o virtual, con capacidades limitadas en un sistema
computacional, se considera un recurso. Un dispositivo conectado a un sistema
computacional y cualquier componente dentro del mismo se considera un recurso.
Los recursos virtuales incluyen los descriptores de archivos, sockets de red, areas de
memoria, entre otros.

Algunos recursos pueden ser regulados por el kernel, ocasionando que el usuario se
vea limitado o ralentizado proporcionalmente a dicha regulaciéon. Especificamente —
y tomando en cuenta aquellos que pueden afectar el rendimiento de la compresion de
datos — los recursos de importancia para la presente investigacién son el tiempo de

CPU, el ancho de banda y la memoria.

2.2.1 Tiempo de CPU

El tiempo total que una unidad central de procesamiento (CPU) es utilizado para
procesar instrucciones de un programa de computadora, en lugar de, por ejemplo,
esperar por operaciones de entrada/salida (E/S), es denominado tiempo de CPU y
es asignado y medido en unidades discretas denominadas clocks o ticks del reloj
del sistema, que corresponde, usualmente, a 1/100 segundos en la mayoria de las

arquitecturas (Kerrisk, 2018).

Clasificacién del tiempo de CPU

El tiempo de CPU es generalmente clasificado dependiendo de su estado o las tareas

que este estuvo ejecutando en el dltimo intervalo de tiempo. En las paginas del manual

2.2 RECURSOS COMPUTACIONALES 13

de Linux (Kerrisk, 2018), especificamente en la seccién proc, se describe la siguiente

clasificacion del tiempo del CPU para los valores reportados por el sistema operativo:

e Tiempo de usuario (fepu_usuario): corresponde al tiempo que el CPU estuvo

ocupado ejecutando instrucciones de procesos en modo usuario.

e Tiempo del sistema (%.pu_sistema): corresponde al tiempo que el CPU fue
utilizado ejecutando instrucciones en modo kernel, es decir, instrucciones del
nucleo del sistema operativo o en nombre del usuario, como en el caso de las

llamadas al sistema.

e Tiempo ocioso o idle (tepy_iae): tiempo que el CPU estuvo desocupado y mide

la capacidad no utilizada del CPU.

e Tiempo de espera de entrada/salida (f. s): tiempo que el CPU estuvo
desocupado en espera por operaciones de entrada salida (E/S o I/0, por sus

siglas en inglés).

Adicionalmente, el tiempo total del CPU (t.,u_totar), elapsed time o wall time, es
el tiempo total transcurrido desde el inicio del sistema hasta el instante de su consulta,
mientras que el tiempo total de uso del CPU (%,py_totai_uso) €5 €l tiempo durante el

cual el CPU fue efectivamente utilizado.

Carga del CPU

El principal uso del tiempo del CPU es la medicion de la carga del CPU, que se
define como el porcentaje del tiempo del CPU que fue efectivamente utilizado en un
intervalo de tiempo — lo cual también puede interpretarse como una medida de qué
tan cargado se encuentra el CPU — y puede ser calculado con la Ecuacién 2.5 (Zohar

y Cassuto, 2014).

Zfc u_total_uso tc u_tota _tc U1 e_tc u_es
Uso del CPU = -utotaluso _ “epuctotal Zepuid! P (2.5)

cpu_total tcpu,total

2.2 RECURSOS COMPUTACIONALES 14

El tiempo total del CPU se calcula de manera intuitiva como la suma de cada tiempo

individual segun la clasificacion presentada anteriormente de la siguiente manera:

tcpu,total = tcpu,usuario + tcpu,sistema + tcpu,idle + tcpu,es

De este modo, la Ecuacién 2.5 para el cédlculo del uso o carga del CPU puede

escribirse como en la Ecuacién 2.6.

Uso del CPU = (tcpu,usuario + tcpu,sistema + tcpu,idle + tcpu,es) - tcpu,idle - tcpu,es
tcpu,usuario + tcpu,sistema + tcpu,idle + tcpu,es
tcpu,usuario + tcpu,sistema (2 6)

tcpu,usuario + tcpu,sistema + tcpu,idle + tcpu,es

2.2.2 Ancho de banda

En este caso aplicado a la red, el ancho de banda es la tasa de transmisién de datos
o la cantidad de bits que pueden ser transmitidos por unidad de tiempo. Se mide en
bits por segundo (bit/s) y depende en gran medida del ruido del canal de comunicacién.
Pueden extraerse dos conceptos distintos en el caso de los sistemas de comunicacién,
siendo estos la capacidad de ancho de banda y el consumo de ancho de banda

(Forouzan, 2006).

Capacidad de ancho de banda

La capacidad de ancho de banda o ancho de banda disponible, representa la
capacidad neta del canal de comunicacién o su tasa maxima de transmision y tiene

un limite tedrico definido por el teorema de Shannon-Hartley (Shannon, 1949).

Consumo de ancho de banda

La tasa promedio efectiva de transmision exitosa a través de un canal de

comunicaciéon se denomina consumo de ancho de banda. Esto difiere del concepto

2.3 ARBOLES DE DECISION 15

de capacidad de ancho de banda debido a que, en aplicaciones reales, los protocolos,
el cifrado y otros factores, agregan un overhead considerable que no permite alcanzar

efectivamente el ancho de banda disponible desde el punto de vista del usuario.

2.2.3 Memoria

Especificamente la memoria de acceso aleatorio (RAM), es un recurso que permite
almacenar los datos y cédigo ejecutable actualmente en uso. Este tipo de memoria es
volatil, normalmente costosa y es utilizada como medio de almacenamiento y espacio
de trabajo para el sistema operativo y otras aplicaciones. Una de las principales
restricciones de este tipo de memoria es la diferencia de velocidades con el CPU, pues
se encuentra fuera del chip y las capacidades de comunicacién y ancho de banda entre

estos recursos es relativamente limitado.

2.3 Arboles de decisién

El proceso de toma de decisiones para seleccionar el mejor algoritmo de compresion
en un instante determinado, dado un conjunto de variables que definen el estado del
entorno y las propiedades de los datos, puede verse desde la perspectiva del aprendizaje
automatizado, especificamente como un problema de clasificacion, donde los atributos
corresponden a las caracteristicas actuales del entorno, a saber, carga del CPU, estado
de la red, tipos de datos, entre otros.

El problema de clasificar o etiquetar observaciones o individuos de cierto fenémeno o
poblacién en un conjunto finito de clases, es uno de los campos de accion del aprendizaje
automatizado o machine learning y de la ciencia de datos en general y se encuentra
presente en muchos ambitos del mundo real. Los arboles de decision son una de las
herramientas mas bésicas del aprendizaje automatizado para la tarea de clasificaciéon
y pertenecen al subconjunto de algoritmos de aprendizaje supervisado, los cuales
utilizan datos de entrada o entrenamiento, cuyas clases son conocidas, para aprender
— ya sea segun patrones encontrados en los datos, reglas o funciones matematicas —

cémo clasificar individuos no presentes en el conjunto de datos de entrenamiento.

2.3 ARBOLES DE DECISION 16

2.3.1 Descripcién

Los arboles de decisiéon clasifican individuos u observaciones planteando una serie
de preguntas acerca de las caracteristicas de dichos individuos. Estas preguntas se
plantean de forma jerarquica en forma de arbol, donde cada nodo interno almacena
una pregunta y tiene tantos hijos como posibles respuestas tenga la pregunta. Los
nodos hojas — aquellos que no tienen ningtin hijo — no almacenan preguntas sino
clases. La clasificacién en un arbol de decision se lleva a cabo encontrando el tnico
camino que lleva, para una observacién dada, desde la raiz hacia una hoja, la cual
contiene la clase a la que pertenece dicha observacién, de acuerdo a las respuestas
asociadas a las caracteristicas de la misma. En algunas variaciones, los nodos hoja no
almacenan una clase especifica sino un arreglo de probabilidades o una distribucién que
estima la probabilidad de que un individuo que haya alcanzado dicha hoja pertenezca
a una clase particular (Kingsford y Salzberg, 2008).

Las preguntas almacenadas en cada nodo pueden tener numerosas respuestas y
pueden ser tan complicadas como sea necesario, mientras puedan ser computadas de
forma eficiente. Sin embargo, en su forma maés sencilla, las preguntas son binarias (si
0 no) y se codifican en un arbol binario.

Por ejemplo, dado un conjunto de observaciones conocidas sobre diferentes pares de
genes (Figura 2.1(a)) con caracteristicas que definen si este par de genes interactia. Un
arbol de decisién puede construirse para clasificar pares de genes que no se encuentren
presentes en el conjunto de datos (Figura 2.1(b)). En este ejemplo, las preguntas
en cada nodo son binarias y los nodos hoja contienen la probabilidad de interaccién
entre el par de genes que se clasifica (representado por los graficos de tortas), de modo
que se predice que un par de genes interactia si su clasificaciéon lleva a un nodo hoja

predominantemente verde.

2.3.2 Ventajas y desventajas

Algunas de las ventajas y desventajas principales de los arboles de decisién, segin
Kingsford y Salzberg (2008) y la documentacién de la biblioteca de aprendizaje

automatico de Python, scikit-learn (Pedregosa et al., 2011), se presentan a

2.3 ARBOLES DE DECISION 17

:Expresion de
correlacién > 0.97

No Si

e ~
ie i i . : ;Comparten loca- ¢Comparten
sy Coptadnde Copouin e D
.) No ; No Si
Si 077 Si No 1kb Si
Si o9 Si Si 10 kb / \ 4 h
No 01 No No 1Mb ¢Distancia
. genética < 5 kb?
) No Si
(a) Datos de entrenamiento. (b) Arbol de decisién resultante.

Figura 2.1: Ejemplo hipotético de como un un arbol de decisiéon podria predecir
interacciones entre genes (adaptado de Kingsford y Salzberg (2008)).

continuacion.

Ventajas

e Son mas sencillos de entender e interpretar que otros algoritmos de clasificacion,

pues pueden ser visualizados graficamente.

e FEl costo de utilizarlos, una vez construidos, es logaritmico con respecto al niimero

de observaciones utilizadas para entrenarlos.

e Requieren poca preparacién de datos, pues manejan naturalmente tanto datos

numeéricos como categdricos, asi como también clasificacién multiclase.
e Su modelo es caja blanca, pues cualquier situacion u observacion es facilmente

explicable mediante logica booleana.

Desventajas

e Pueden ser inestables, debido a que pequenos cambios en los datos de entrada

puede resultar en la generacién de un arbol completamente diferente.

e Se pueden generar arboles sesgados si una clase predomina en el conjunto de

datos de entrenamiento.

2.4 DESARROLLO DE SOFTWARE ITERATIVO E INCREMENTAL 18

e Se pueden generar drboles demasiado complejos (sobreentrenamiento) cuando no

es posible generalizar muy bien los datos.

2.4 Desarrollo de software iterativo e incremental

El modelo iterativo, como una implementacién del ciclo de vida del desarrollo
de software, se enfoca en una implementacion inicial y simplificada — generada
basdndose en un conjunto de requerimientos iniciales razonablemente bien definidos
— que progresivamente crece en complejidad, con un conjunto de caracteristicas
y funcionalidades cada vez mas amplio, hasta que el sistema final esté completo.
Es comun que los términos iterativo e incremental se utilicen liberalmente y de
forma intercambiable. El término incremental, entonces, describe las alteraciones
incrementales que se llevan a cabo durante el diseno e implementaciéon de cada nueva
iteracion.

Cada iteracién corresponde a una secuencia de actividades (ciclo de vida) que
generan un incremento entregable del producto. El primer incremento es denominado
producto nicleo y aborda los requerimientos basicos, dejando otras funcionalidades
complementarias para posteriores incrementos. El usuario final o cliente usa y evalia
cada incremento y, con su retroalimentacién, se genera el plan para el siguiente
incremento. Este proceso se lleva a cabo al finalizar cada incremento y hasta que

se obtenga el producto final (Pressman, 2015).

2.4.1 El proceso de desarrollo de software

El proceso que se sigue en el desarrollo de software bajo el modelo iterativo e
incremental sigue un proceso ciclico que, después de una fase inicial de planeacién,
repite una serie de fases una y otra vez, generando un incremento al final de cada ciclo
o iteracion que mejora el software o le anade nuevas funcionalidades. El proceso se

ilustra en la Figura 2.2 y se describe en detalle a continuacion.

Planeacién y Requerimientos: La fase inicial, incluso antes de comenzar las

iteraciones, pasa por la elaboracion de un plan inicial para generar un conjunto

2.4 DESARROLLO DE SOFTWARE ITERATIVO E INCREMENTAL 19

Inicializacién
P Requerimientos ﬂ

Analisis y Disefio
Implementacion ﬁ

' | l Despliegue
Pruebas

Figura 2.2: Fases detalladas y flujo de trabajo del modelo incremental.

Plan inicial

de requerimientos base y preparar el proceso para las fases venideras del ciclo.

Analisis y Diseno: Una vez se tiene un plan y un conjunto de requerimientos,
se realiza un procedimiento de andlisis para determinar la légica de negocios
requerida. En esta fase de disenan los modelos de bases de datos y se establecen
los aspectos técnicos — como los lenguajes, capas, servicios, protocolos, etc. —

requeridos para cumplir las necesidades de la fase de andlisis.

Implementacion: En esta fase, se codifican e implementan todos los requerimientos

obtenidos en las fases anteriores.

Pruebas: Se llevan a cabo una serie de procedimiento de prueba para identificar

cualquier potencial problema o bug en la implementacion o diseno.

Evaluacién: Finalmente, el producto de todas las etapas anteriores es evaluado para
determinar el estado del proyecto e identificar las necesidades y posibles cambios

que deban ser llevados a cabo.

Ya finalizadas todas las etapas de una iteracién, es cuando la esencia de este
modelo se pone en practica: la retroalimentacién obtenida de la etapa de evaluacién
permite generar un nuevo plan de trabajo y un nuevo conjunto de requerimientos, lo
cual da inicio a una nueva iteraciéon que va a dar como resultado un incremento del
software en desarrollo. Este ciclo se repite hasta alcanzar un nivel de refinamiento
predeterminado o aceptable y se obtenga un producto final (lo que corresponde en el

recuadro “Despliegue” en la Figura 2.2).

Capitulo 3

Desarrollo del sistema de

transmision de datos

Un mecanismo de compresion adaptativa debe abstraerse dentro de un sistema o
aplicacion que lo implemente para acelerar el proceso de transmision de datos. En
el presente capitulo se describe el proceso de desarrollo del sistema de transmision
de datos que, posteriormente, podra habilitar compresion automatica y adaptativa
con la finalidad de aprovechar de forma eficiente los recursos computacionales y de

comunicacion subyacentes y mejorar el desempeno de la comunicacion.

3.1 Requerimientos del sistema

El proceso de desarrollo, bajo el modelo iterativo e incremental, comienza con una
serie de requerimientos base bien definidos para la obtencién del producto nicleo. En
este proyecto, el proceso de recaudacién de requerimientos, planeacién y evaluacion de
las iteraciones semanales se dio en reuniones con el tutor, quien fungia, al igual que
el autor, como usuario y miembro del equipo de desarrollo. No obstante, el disenio e
implementacion fue llevado a cabo en su totalidad por el autor. Los requerimientos,
listados a continuacién, evolucionaron de una iteracién a otra, como es de esperarse

con este tipo de metodologias de desarrollo.

3.1 REQUERIMIENTOS DEL SISTEMA 21

3.1.1 Requerimientos funcionales

Los siguientes son los requisitos funcionales del sistema en desarrollo, es decir,

aquellos que definen la funcionalidad del sistema y sus componentes:

e Fl sistema debe funcionar como una herramienta de transmision de datos cliente-
servidor (como scp o rsync'): del lado del servidor, un servicio o demonio espera

por solicitudes de transmisiones que se generan del lado del cliente.

e Kl sistema debe poder transmitir tanto archivos individuales como directorios

completos.

e Debe permitirse escoger, en tiempo de ejecucion, entre diversas estrategias de
compresion disponibles, ya sean estaticas o adaptativas, seglin opciones emitidas

por el usuario, incluyendo la opcién de no compresién.

e Se debe habilitar la compresién y transmision simultaneas: los archivos se
deben leer en trozos o chunks que, una vez comprimidos, se envian mientras
los siguientes trozos se comprimen. De este modo, se evita que la interfaz de
red esté ociosa mientras se lleva a cabo la compresion, con lo cual se espera una

mejora del desempeno general.

e Como una prueba de concepto, el mecanismo “automatico y adaptativo”, en una
primera iteracion, comprimira cada trozo en modalidad round-robin — esto es,
de forma secuencial y ordenada, comenzando con el primer compresor de la lista
(circular) hasta llegar al dltimo, para comenzar de nuevo con el primero de la

lista.

3.1.2 Requerimientos no funcionales

A continuacion, se listan los requerimientos no funcionales del sistema, que

describen sus restricciones y criterios para juzgar su operabilidad:

lscp es un programa que implementa el protocolo SCP (Secure Copy Protocol), basado en el
protocolo SSH (Secure Shell), para transferir archivos entre dos — posiblemente remotos — terminales
0 hosts. rsync es una herramienta que permite la transferencia de archivos incremental y sincronizacién
de directorios entre dos hosts, permitiendo compresion y encriptacion.

3.2 MODULO DE COMPRESION DE DATOS 22

e Debe ser implementado en el lenguaje C++, utilizando el framework Google Test

(Google, 2018a) para la implementacién de las pruebas unitarias.
e Debe funcionar y ser probado en sistemas operativos Linux.

e No debe agregar ningtn tipo de overhead adicional al proceso de transmisién de

datos.

3.2 Modbdulo de compresion de datos

Con respecto a la compresion de datos, el requisito més importante plantea que
el sistema debe poder cambiar, en tiempo de ejecucién, el mecanismo de compresién,
segin el estado actual del mismo (carga del CPU, ancho de banda disponible, etc.).
Ademas, debe permitir que el usuario escoja manualmente el método de compresion a
utilizar. El principal objetivo de esto es permitir compresion estdtica (con un algoritmo
particular) para efectos de realizacién de pruebas. En este caso, el patrén de disenio
por estrategias provee una solucion 1til para este problema.

Seguin Pressman (2015), un patrén de diseno es una abstraccién que proporciona
una receta para un problema de diseno en un contexto particular. Especificamente, el
patron de diseno por estrategias provee una solucién que encapsula un conjunto
de algoritmos y los hace intercambiables en tiempo de ejecucién en un contexto dado.
La utilidad es clara en el contexto del presente trabajo, pues se tiene un conjunto de
algoritmos de compresién, estaticos y adaptativos, que deben ser intercambiables de
acuerdo a las decisiones tomadas por el mecanismo adaptativo o a las opciones emitidas

por el usuario.

3.2.1 Compresion adaptativa

El diseno del médulo de compresion, como diagrama de clases UML, se muestra en la
Figura 3.1, donde es notable que el servidor inicamente interactiia con la clase abstracta
AdaptiveCompressionStrategy, la cual debe ser implementada por las clases que
modelan diferentes mecanismos de compresion automatica y adaptativa. De esta

manera, el servidor unicamente configura el objeto adaptiveCompressionStrategy

3.2 MODULO DE COMPRESION DE DATOS 23

para utilizar el indicado por el usuario, con la légica de cada uno abstraida en el método
compress(). Hasta el momento de la finalizacién del desarrollo del sistema, solo
el mecanismo “automatico y adaptativo” RoundRobinCompressor estaba disponible,
como una prueba de concepto, el cual comprime cada trozo de datos con uno de los
algoritmos disponibles, de manera equitativa y secuencial. El mecanismo de compresion
adaptativa propuesto en este proyecto se agregd, como una implementacién de la clase

abstracta AdaptiveCompressionStrategy, una vez que su disenio fue completado.

Metwork

adaptiveCompressionStrategy->=compress{...) ﬁ

| < <strafagy> =
[

j Compression

compressionStrategy-=compress(...). Ij

< <str:ategy> =

—————————— 1
1
|
|

Figura 3.1: Diseno del médulo de compresion del sistema siguiendo el patréon de
disenio por estrategias.

También se remarca que el diseno por estrategias fue utilizado de forma “anidada”,
pues la logica de un algoritmo de compresién particular se abstrae en el método
compress() de la clase abstracta CompressionStrategy, cuyo comportamiento
(comprimir con uno de los compresores en particular) puede ser seleccionado, en tiempo
de ejecucion, por las clases que implementan los mecanismos de compresién adaptativa.
Notese que, para no modificar el comportamiento del servidor, el no comprimir o

“copia” también es considerado un algoritmo o estrategia de compresién (clase Copy).

3.3 CAPA DE TRANSMISION DE DATOS 24

3.2.2 Compresion estatica

Para efectos de la evaluacion del mecanismo de compresion adaptativa propuesto,
surgié un nuevo requerimiento: un mecanismo “adaptativo” que comprima, de forma
estatica, con el algoritmo especificado por el usuario. Para este fin, se agregd la clase
SingleCompressor (Figura 3.1), que no paga ningin costo de adaptacién y comprime
cada trozo con un mismo compresor. Aunque no es un mecanismo adaptativo, se
implementa bajo esta estrategia para no proveer una interfaz distinta al servidor para

que solicite compresiéon estatica de los datos.

3.3 Capa de transmisiéon de datos

La capa superior del sistema es una aplicacién cliente-servidor, en la cual, un
demonio del lado del servidor se encuentra bloqueado hasta que recibe una peticién
de transmision de un cliente. La peticion requiere la ruta del archivo o directorio que
se solicita, asi como también un parametro opcional que indica el tipo de compresor
a utilizar; de no recibirse este ultimo parametro, el sistema utiliza el mecanismo de
compresion adaptativa propuesto en este trabajo.

Para soportar compresion y transmision simultaneas, el servidor utiliza dos hilos
para comprimir y transmitir, comunicados a través de una cola en la cual el hilo
compresor almacena los trozos de datos a ser consumidos y enviados por el hilo
transmisor. El mismo concepto aplica al cliente, en el que la recepcion y la

descompresion son simultaneas.

3.3.1 Protocolo de transmision

El proceso de transmision utiliza los mensajes de la Tabla 3.1 y se da de la siguiente

manera:

1. El cliente solicita la transmision de un archivo o directorio mediante una
instancia del mensaje FileRequestMessage. El cliente puede especificar el modo,

compresor y nivel de compresién a utilizar.

3.3 CAPA DE TRANSMISION DE DATOS 25

Tabla 3.1: Mensajes utilizados en el protocolo de transmisién de archivos.

Mensaje Campo Opcional Tamano méaximo (bytes)
path No
FileRequest mode ot 3 + tamano(path)
d compressor Si p
compressionLevel Si
filename No
. fileSize No N
FileHeader chunkSize No 17 + tamano(filename)
lastFile Si
ChunkHeader compressor No 2
lastChunk Si

2. Elservidor recibe la solicitud y, para cada archivo (uno solo si no es un directorio),
envia un mensaje de tipo FileInitialMessage con el tamano del archivo y de

cada trozo. El ultimo archivo es marcado como lastFile.

2.1. Para cada trozo o chunk de un archivo, envia antes una cabecera
(ChunkHeader). Del mismo modo, el tultimo trozo de cada archivo es

marcado como lastChunk.

3.3.2 Cliente

El diagrama de actividades UML mostrado en la Figura 3.2, presenta el diseno
del programa cliente para el sistema de transmision de datos desarrollado. Se
representan graficamente, en cada seccion del diagrama, la transmisién y descompresion

simultaneas.

3.3.3 Servidor

Del mismo modo que para el cliente, el diagrama de actividades de la Figura 3.3
muestra el diseno del programa servidor, en el cual se remarca tanto el proceso de
compresion y transmision simultdneas, como la posibilidad de transmitir una serie de

archivos (un directorio) con una misma peticién.

3.3 CAPA DE TRANSMISION DE DATOS 26

Notese, ademas, la accién “Comprimir trozo”, la cual abstrae cualquier tipo
de decisiones que se tomen en el proceso de compresion. Cabe resaltar también
que el diagrama no muestra el proceso inherente de configuraciéon del objeto

adaptiveCompressionStrategy.

Cliente Hilo de descomprasion

&<

[No es el ditima trozo]

[Ultimo troza]

[Mo es el ditimo archiva]

[Ultimo archivo]

Figura 3.2: Diagrama de actividades para el programa cliente.

3.3 CAPA DE TRANSMISION DE DATOS

27

Servidor

Hilo de procesamiento de Eicién {compresion)

Hilo de transmisicn

[Se solicitd un directorio] [Se solicitd un archiva]

=g

[listaDeArchivos wacia]

[listaDeArchivos no vacia]

[Quedan datos en archivo]

[No quedan datos en archivo]
|

[Mensaje de FINALIZACION]

[Mensaje normal]

Figura 3.3: Diagrama de actividades para el programa servidor.

Capitulo 4

Mecanismo de compresion

automatica y adaptativa

En la busqueda de la optimizaciéon de la transmision de datos, se debe minimizar
o maximizar una funcion objetivo o una medida de rendimiento, tomando en cuenta
los factores que afectan el proceso de cémputo y comunicacién. El objetivo de una
estrategia de compresion automatica y adaptativa es, entonces, minimizar o maximizar
una funcién objetivo para asi mejorar el rendimiento de la transmision de informacién.

En este capitulo se presenta el mecanismo propuesto y la funciéon objetivo a
optimizar, asi como también los procedimientos para la medicion o estimacion de
los aspectos del entorno que afectan el proceso de compresién y transmision para su

posterior utilizacién en el proceso de toma de decisiones.

4.1 Compresién adaptativa

La compresion, al ser el proceso de disminuir el nimero de bits que representan
cierta informacion, es una de las estrategias estudiadas como mecanismo para mejorar
el rendimiento de la transmisién de datos, permitiendo disminuir la cantidad de datos
siendo transmitidos y, por consiguiente, aumentando el ancho de banda percibido. Sin
embargo, el uso de la compresion sin ninguna consideracién puede ser perjudicial para

las aplicaciones de que sirven de ella.

4.1 COMPRESION ADAPTATIVA 29

Muchos sistemas y aplicaciones no utilizan la compresion por el inherente riesgo de
degradar el desempeno o la utilizan Unicamente cuando se tiene completa certeza de
que el computo adicional de la compresion mejorara el desempeno de la comunicacién
o al menos no lo degradara. Otros sistemas se basan en configuracion manual
para lidiar con el dinamismo de las condiciones de transmisién (normalmente con
intervencién humana), como es el caso del servidor Web Apache (Apache Software
Fundation, 2018); no obstante, es imposible para un humano establecer la configuracién
6ptima lo suficientemente frecuente. Adicionalmente, los algoritmos de compresion se
desempenan de forma distinta dependiendo tanto del estado los recursos subyacentes
como de la estructura de los datos siendo comprimidos. A esto se anaden numerosos
factores que aumentan el riesgo de utilizar la compresién (o no) sin ningun tipo de

consideracion.

4.1.1 Aspectos de adaptacion

El proceso de adaptacién (utilizar el mejor compresor para cierto tipo de datos,
ajustar el nivel de compresién o incluso deshabilitar la compresién) debe tomar en

cuenta diversos aspectos, entre los cuales se mencionan los siguientes:

e El tiempo de CPU disponible en el sistema en un momento determinado,
debido a que la compresion requiere poder computacional. El rendimiento
de un algoritmo de compresion puede verse degradado cuando el tiempo de
CPU disponible es muy limitado (CPU cargado), pudiendo disminuir la tasa
de transmision si la tasa de compresion es menor que la primera. La carga del
CPU varia con el tiempo y con la cantidad de procesos en ejecucién, por lo cual

es un aspecto de adaptacion significativo que se debe tomar en cuenta.

e El estado actual de la red o el ancho de banda disponible. El dinamismo de
este aspecto se encuentra en que, por lo general, la red se comparte con otros
usuarios, por lo cual su capacidad varia con el tiempo. En este caso, si la red es
muy rapida, podria no haber tiempo suficiente para comprimir; por el otro lado,
si la red es muy lenta, podria aprovecharse los recursos de cémputo para reducir

la cantidad de datos que se deben transmitir.

4.1 COMPRESION ADAPTATIVA 30

e El tipo de datos que se transmiten, pues la capacidad de compresién de un
algoritmo en particular depende de los datos que procesa. Por ejemplo, el texto
(ASCII) es méas compresible — y se comprime mds rapido — que los datos
binarios, principalmente debido a la cantidad maxima de bytes utilizados en

su estructura.

e Los algoritmos de compresion disponibles, los cuales poseen caracteristicas
que los diferencian y que determinan su desempenio. Algunos compresores
sacrifican velocidad para generar salidas muy compactas, mientras que otros
estdn optimizados para comprimir muy rapidamente a costa de tener razones
de compresion pobres. Esto hace que ningtin compresor sea éptimo en todas las

condiciones posibles.

4.1.2 Abstraccién de los sistemas de compresion adaptativa

Generalmente, los sistemas de compresion adaptativa buscan optimizar el
rendimiento de la transmision de datos seleccionando, de forma dinamica, el algoritmo
de compresion disponible que mejor se desempene en cada conjunto de condiciones, lo
cual es una tarea altamente retadora debido a los aspectos expuestos en la Seccion 4.1.1.
Esta similitud entre los sistemas de compresion adaptativa es abstraida por Peterson
y Reiher (2016) en cuatro componentes principales: métodos, monitores, modelos y

mecanismos.

Métodos

Un método se define como un algoritmo de compresion particular del cual se sirve
un sistema de compresién adaptativa. Existen diversos algoritmos de compresion y
muchos de estos — como el caso de gzip (Gailly y Adler, 2018a) — proveen multiples

métodos o niveles que modulan el poder computacional aplicado a la compresion.

Monitores

Los monitores son los médulos encargados de medir, estimar o predecir informaciéon

necesaria para el proceso de toma de decisiones, como lo son las propiedades de los

4.2 ALGORITMOS DE COMPRESION 31

datos y de los recursos subyacentes.

Modelos

Podria decirse que los modelos son el nucleo de los sistemas de compresion
adaptativa, pues son los encargados de tomar decisiones a partir de los valores generados

u obtenidos por los monitores.

Mecanismos

Los mecanismos conglomeran los componentes antes mencionados y definen la capa
de abstraccion en la que actia el sistema de compresion, ya sea como una biblioteca

de usuario, proxys remotos, kernel, etc.

4.2 Algoritmos de compresion

Como se menciona en la Seccion 4.1.2; los algoritmos de compresién conforman el
primer componente de un sistema de compresion adaptativa. El objetivo es seleccionar
algoritmos con caracteristicas bien diferenciadas que lo conviertan en el potencial
mejor método en ciertas oportunidades. En las siguientes subsecciones, se describen
los algoritmos de compresiéon sin pérdidas utilizados por el mecanismo de compresién

adaptativa que se propone en el presente trabajo.

4.2.1 Snappy

Snappy (Google, 2018b) es una biblioteca de compresion sin pérdidas de cédigo
abierto desarrollada por Google que apunta a obtener compresion decente a muy altas
velocidades. No existe una descripcion formal del algoritmo, pero segin las notas
distribuidas junto con el c6digo fuente, se basa en el algoritmo LZ77 (Ziv y Lempel,
1977) y, al ser comparado con zlib en su nivel mas alto, Snappy es una orden de
magnitud maés rédpido, generando, sin embargo, salidas con tamanos que van de 20% a

100% més grandes que los de zlib.

4.2 ALGORITMOS DE COMPRESION 32

4.2.2 zlib

zlib (Gailly y Adler, 2018b) es una biblioteca de compresion sin pérdidas de c6digo
abierto que implementa el algoritmo gzip (Gailly y Adler, 2018a), el cual se basa en
el algoritmo DEFLATE, que a su vez es una variaciéon de LZ77 y de la codificacién de
Huffman (Huffman, 1952). Es ampliamente utilizado — por ejemplo, en el kernel de
Linux, el servidor Apache, Git, entre otros — y provee 9 niveles de compresion que
permiten ajustar el poder de computo requerido y, por consiguiente, la velocidad de
compresion, a expensas de capacidad de compresion. Este algoritmo es considerado
bien balanceado (Peterson y Reiher, 2016), pues encuentra un equilibro entre su

porcentaje de compresion y la tasa a la que procesa los datos.

4.2.3 bzip2

bzip2 (Seward, 2018) es una biblioteca y un programa de compresién sin pérdidas de
codigo abierto que utiliza la transformacién de Burrows-Wheeler (Burrows y Wheeler,
1994) y codificacién de Huffman. Al igual que zlib, bzip2 provee 9 niveles que regulan
la cantidad de memoria que utiliza y, por consiguiente, su capacidad de compresion.
A diferencia de Snappy y zlib, bzip2 es mas poderoso, con porcentajes de compresién

mucho mayores pero a tasas muy reducidas.

4.2.4 Estudio comparativo

Los métodos antes mencionados (snappy, zlib y bzip2) fueron seleccionados debido
a las caracteristicas que los diferencian unos de otros, lo cual puede convertir a cada
uno en el mejor compresor en diferentes oportunidades. Snappy es un compresor que
optimiza la velocidad, con porcentajes de compresion decentes; bzip2 permite obtener
porcentajes de compresion muy altos a tasas muy bajas; y zlib, por otro lado, es un
punto medio entre snappy y bzip2. La Figura 4.1 muestra un diagrama de dispersion
del porcentaje de compresion o compression ratio contra el tiempo de compresion para
un conjunto de archivos tomados de los corpus de compresién de Calgary (Bell et al.,
1989) y Canterbury (Universidad de Canterbury, 2018). El diagrama muestra cémo

las nubes de puntos tienden a trasladarse mas hacia los infinitos de ambos ejes (més

4.3 MONITORES

33

tiempo de compresién, més ganancia) al pasar de compresor a compresor segun sus

caracteristicas ya mencionadas.

" ® snappy

3 107 zib
© A bzip2
C
S
o
€
o
L
S 61
o ® A
o
g AA
(O]
o 41 4 & A
©
K Aad A A A A
& P $Aoa A
S '
0]
— 2'
RN T

o

0 10000 20000 30000 40000 50000 60000

Tiempo de compresién (us)

Figura 4.1: Estudio comparativo de las capacidades de los métodos de compresion

seleccionados.

4.3 Monitores

En la Seccién 4.1.1 se trataron solo algunos de los aspectos que se deben considerar

para la toma de decisiones en sistemas de compresion adaptativa. Desafortunadamente,

es imposible monitorear o estimar todos los aspectos posibles que afectan el proceso

de transmision y compresion, pues se correria el riesgo de degradar el desempeno solo

en la etapa de monitoreo. Por lo tanto, es necesario elegir un conjunto de factores

que permitan modelar las propiedades del entorno y de los datos en un instante

determinado.

En este trabajo, se va a tratar con tres aspectos que se consideran

de gran importancia y que podrian modelar de forma eficiente el entorno: la carga

del CPU de la maquina que transmite, el estado de la red y el tipo de datos siendo

transmitidos.

4.3 MONITORES 34

4.3.1 Carga del CPU en el transmisor

La carga del CPU es una medida que determina indirectamente el tiempo de CPU
disponible para operar en un instante determinado. Si la carga es alta en un intervalo
de tiempo determinado, significa que el CPU ha estado siendo utilizado intensivamente
por otros procesos. La carga del CPU es calculada utilizando el método mostrado en la
Seccion 2.2.1 como el porcentaje de tiempo que el CPU ha sido utilizado efectivamente
en en ultimo intervalo de tiempo, de tal manera que la Ecuacién 2.5 se reescribe como

en la Ecuacion 4.1.

Atc u-total-uso
Uso del CPU = —2utotaluso (4.1)
Atcpu,total

El monitor del CPU es un proceso independiente que reporta el valor en un segmento
de memoria compartida. Los valores necesarios para el cdlculo de la carga de CPU son
leidos del sistema de archivos /proc (sistema de archivos de procesos) de los sistemas
operativos Unix, especificamente del archivo /proc/stat, en el cual se encuentran,
en tiempo real, estadisticas y métricas del sistema desde que se inicid, incluyendo los
tiempos que el CPU estuvo realizando diferentes tipos de tareas. Se debe seleccionar un
intervalo lo suficientemente corto para seguir el ritmo al dinamismo de las condiciones
pero tomando en cuenta que el cédlculo requerido para monitorear la carga del CPU
puede cargarlo en si mismo si se calcula con una frecuencia muy alta. En este trabajo

se selecciond un intervalo de 0,5 segundos para este fin.

4.3.2 Estado de la red

Se decidié utilizar el ancho de banda disponible (ABD) como métrica para
determinar el estado del canal de transmision. Para esto, se estima el ABD midiendo
la tasa a la cual el kernel envia los datos del socket. El Algoritmo 4.1 muestra, en

pseudocddigo, el procedimiento para la estimacién del ABD.

La técnica que se utilizé para estimar el ABD (que se muestra en el Algoritmo

4.3 MONITORES 35

Algoritmo 4.1 Estimacion del ancho de banda disponible

1: procedimiento ESTIMARABD (socket)

2 t; <— obtener_tiempo_actual()

3 bytes_en_buffer_en_t; < 0

4 mientras true hacer

5: datos <— esperar_datos_para_enviar()

6 tf = obtener_tiempo_actual()

7 At — tf — t;

8 si At > UMBRAL entonces

9: bytes_en_buffer_en_t; <— obtener_bytes_en_buffer(socket)
10: ABD < (bytes_en_buffer_en_t¢ — bytes_en_buffer_en_t;) / At
11: escribir_datos_a_enviar(datos, socket)
12: bytes_en_buffer_en_t; < obtener_bytes_en_buffer(socket) 4+ tamano(datos)
13: t; <— obtener_tiempo_actual()
14: si no
15: escribir_datos_a_enviar(datos, socket);
16: bytes_en_buffer_en_t; < bytes_en_buffer_en_t; + tamano(datos)
17: fin si
18: fin mientras

19: fin procedimiento

4.1) consiste en rastrear las adiciones al buffer de escritura del socket y los tiempos
correspondientes para posteriormente utilizar la llamada al sistema ioctl (UNIX) con
el pardmetro SIOCOUTQ para obtener la cantidad de bytes almacenados en el buffer
de escritura en un instante determinado y asi estimar el ABD. En el algoritmo, la
funciones obtener_bytes_en buffer() y escribir_datos_a_enviar() corresponden
a la llamada al sistema ioctl y a la funciéon send() de los sockets, respectivamente.
En cuanto a la constante UMBRAL, es definida como el intervalo de tiempo minimo
entre estimaciones del ancho de banda, pues se debe tener cierta cantidad de datos
acumulados en el buffer para obtener una medicién valida del ABD; este umbral fue
definido en 10 ms, con la suposicién de tener un flujo de datos continuo dado que se

desea mejorar la eficiencia de la transmision.

Validacién

Con la intencion de validar el algoritmo de estimacion del ABD, se realizé la
siguiente prueba: utilizando el sistema de transmision de datos desarrollado en modo

copia, se midio el ancho de banda para 60 transmisiones de 60 segundos de duracién

4.3 MONITORES 36

cada una — tomando el promedio de los valores reportados por el sistema en cada
transmision — con diversos limites de ancho de banda. Para contrastar, se realizaron
las mismas pruebas, en igualdad de condiciones, con el software iPerf (iPerf, 2018)
que mide el ABD entre dos interfaces de red. El error relativo entre las mediciones
fue calculado, tomando como valores reales los reportados por iPerf, resultados que
pueden observarse en la Figura 4.2. En la Figura 4.2(a) se puede observar que, para
la mayoria de las mediciones, el error relativo es muy cercano al 0, lo cual se confirma
en el digrama de caja de la Figura 4.2(b), el cual muestra solo 3 valores atipicos, con
una media del 5.5%, desviacion estandar de 5.05% y el 50% de las observaciones entre
el 1.8% y 6.8%. Con esta informacion, es posible aceptar las mediciones del método

propuesto como vélidas.

Estadisticos:
20 1=0.0550
s=0.0505
§ 15 @
S &
(@] o1 ° °
510 B
Q [0}
= =
5
0
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
Errores relativos (Valor real: iPerf) Errores relativos (Valor real: iPerf)

(a) Histograma de frecuencia de apariciéon de (b) Diagrama de caja del error relativo de
errores relativos. las mediciones.

Figura 4.2: Pruebas de validacion del método de estimacion del ancho de banda
disponible.

4.3.3 Tipo de datos

Existen diversos métodos para estimar las propiedades o la compresibilidad de
los datos: se podria utilizar el contexto para este fin, como el formato o extensién
de los archivos, mas sin embargo esto ataria al sistema al concepto de archivo que,
adicionalmente, deberia tener extension, lo cual no es un escenario completamente
realista; se puede realizar un muestro de los datos a transmitir y comprimirlos

con un algoritmo lo suficientemente rapido y observar el porcentaje de compresion,

4.3 MONITORES 37

pero esto conllevaria pérdidas cuando la compresion realizada sea descartada; Harnik
et al. (2013) proponen heuristicas, tanto para pre-compresién como para compresion
en linea, basadas en entropia y la cantidad de bytes unicos que representan los
datos; no obstante, Peterson y Reiher (2016) proponen una técnica muy sencilla pero
igualmente eficiente y poderosa para estimar no las propiedades de los datos, sino su

compresibilidad, la cual se describe a continuacion.

Bytecounting

La técnica propuesta por Peterson y Reiher (2016) (la cual es utilizada en el presente
trabajo para estimar la compresibilidad), se denomina bytecounting (BC) o “conteo
de bytes” (aunque su traduccién literal al espatiol no refleja su esencia) y estudia la
distribucién de bytes tnicos en el archivo a comprimir. El BC es un ntmero entero
que indica la cantidad de bytes en la entrada que aparecen al menos N veces, donde
N es un umbral que depende del tamano de los datos de entrada y se define como
N = tamano(datos)/256. En otras palabras, el BC indica el nimero de bytes que
aparecen al menos la cantidad de veces que deberian aparecer si todos los bytes posibles
(28 = 256) estuvieran uniformemente distribuidos. El BC, entonces, permite medir la
uniformidad de los bytes que representan la entrada. El principio del cédlculo del BC

es presentado en el Algoritmo 4.2.

Algoritmo 4.2 Calculo del bytecounting

1: funcién BYTECOUNTING (datos)

2 ocurrencias[256] < {0,0,...,0}

3 BC+0

4: umbral + tamano(datos) / 256

5: para byte € datos hacer

6: ocurrencias[byte] < ocurrencias[byte] + 1
7 fin para

8 para ocurrence € ocurrences hacer
9: si ocurrence > umbral entonces
10: BC+«+ BC+1

11: fin si

12: fin para

13: retornar BC

14: fin funcién

4.4 MODELO ADAPTATIVO 38

Mientras menor sea el BC, menor la cantidad de caracteres que relativamente
representan los datos de entrada; valores de BC en el extremo superior indican que la
entrada estd compuesta por la mayoria de todos los bytes posibles. Para ejemplificar,
un BC de 1 indica que la entrada esta representada virtualmente por un unico byte, lo
cual la hace altamente compresible. Un valor de BC de 127 indica que la mitad de los
bytes posibles aparecen frecuentemente, lo cual, al igual que valores de BC mayores,
da indicios de que los bytes se encuentran distribuidos uniformemente, la cual es una

propiedad tipica de datos incompresibles.

Validacién del bytecounting

Para mostrar y validar lo que el BC representa, se llevd a cabo una prueba en la
que se comprimieron los mismos archivos utilizados en el estudio comparativo de los
algoritmos de compresién en la Seccion 4.2.4, a los cuales se anadieron 5 archivos de 1
MB cada uno con datos aleatorios extraidos del dispositivo /dev/urandom (Linux), una
serie de archivos multimedia personales del autor y 1 archivo de 1 MB con un solo byte
repetido (extraido del dispositivo /dev/zero). La Figura 4.3 muestra un grafico de la
relacion entre el porcentaje de compresién y el BC para cada uno de los archivos, donde
se observa que, efectivamente, el porcentaje de compresion tiende a 1 (cero ganancia)
cuando el BC aumenta; de hecho, la ganancia de compresiéon es nula para valores de
BC entre 100 y 256. Es decir, si la distribuciéon de los bytes es practicamente uniforme,

no se obtiene ganancia alguna al realizar la compresién.

4.4 Modelo adaptativo

El modelo propuesto se basa en dos principios propuestos por Peterson y Reiher
(2016):

1. El concepto de oportunidad de compresiéon, que definen como el conjunto de
condiciones (propiedades de los datos y estado del entorno) que determinan el

desempeno de un método de compresién en un instante determinado.

4.4 MODELO ADAPTATIVO 39

10 + e zib
bzip2
® PC=1
8_
°
)
o
c 64
°
)]
= e o
E 4-
o ®
Tl
9
& .
2 - ® e °
® [J ®0
............................. \.vl..---m-w..........(\AM............................\v’...........g‘Af
0 T T T T T T
0 50 100 150 200 250

Bytecounting

Figura 4.3: Relacién entre el porcentaje de compresiéon (PC) y el valor del
bytecounting.

2. El supuesto de que el desempeno de un algoritmo de compresién en una
oportunidad dada es constante, debido al comportamiento determinista de los

mismos.

Si se puede determinar el espacio de oportunidades y el conjunto de aspectos
que definen una oportunidad, es viable entonces conocer el mejor compresor en cada

oportunidad posible.

4.4.1 Funcién objetivo

El mecanismo de compresién adaptativa propuesto tiene el objetivo de seleccionar
el mejor algoritmo de compresion en una oportunidad dada. El reto no es solo saber
cual es el mejor compresor, sino por qué lo es y como decidirlo.

El ancho de banda disponible determina la tasa a la cual se transmiten los datos
a través de una canal de comunicacién. No obstante, la tasa a la cual se transmite la

informacion puede ser mayor que el ABD. Cuando se habilita la compresion, es posible

4.4 MODELO ADAPTATIVO 40

transmitir la misma informacién representada con menos datos, lo que aumentaria el
ABD percibido. Esto se conoce como Tasa Efectiva de Transmisién (TET) (Peterson

y Reiher, 2016) y se modela con la Ecuacién 4.2.

TET = min(ABD,TC) %« PC (4.2)
donde:

ABD = Ancho de banda disponible
TC = Tasa o velocidad de compresion

PC = Porcentaje de compresién o compression ratio

En la Ecuacién 4.2, si se comprime a velocidades menores al ABD, la TET es
definida por la velocidad de compresion, mientras que si se comprime més rapido de lo
que se pueden transmitir los datos, la TET es definida por el ABD. De igual manera,
el factor PC indica la cantidad de informacién (no de datos) que se transmiten, sin
importar la cantidad de bytes que la representan — es decir, si se obtiene un PC de
2, se transmite la misma cantidad de informacién pero con la mitad de los bytes que
ciertamente se requieren para su representacién original. De este modo, el objetivo
del mecanismo propuesto se convierte en encontrar y seleccionar, en una oportunidad

dada, el algoritmo de compresién que provea la mayor TET.

4.4.2 Cuantizacion del espacio de oportunidades

Determinar el espacio de oportunidades (ABD, carga del CPU y BC) a alta
resolucién es abrumador y, debido a la continuidad de algunos de ellos, seria
practicamente imposible determinar una oportunidad de manera exacta. Por lo tanto,
se propone cuantizar o discretizar el espacio de oportunidades, como lo proponen
Peterson y Reiher (2016), pero a mayor resolucién, debido al tipo de modelo de toma
de decisiones que se utiliza en este trabajo.

La Tabla 4.1 muestra los niveles de cuantizacién seleccionados. La carga del CPU
se dividié en intervalos de 10%; el ABD se dividi6 en intervalos de 5 Mbits/s para
valores menores a 100 Mbits/s, mientras que para valores entre 100 Mbits/s y 1 Gbit/s

los niveles se dividen en intervalos de 100 Mbit/s; el BC es un caso especial, dividido en

4.4 MODELO ADAPTATIVO 41

Tabla 4.1: Niveles de cuantizacién del espacio de oportunidades.

Nivel Carga del CPU ABD BC

0 0%, 10%) (0 Mbit /s, 5 Mbit/s) [1, 10)
1 [10%, 20%) [5 Mbit/s, 10 Mbit/s) [10, 20)
9 [90%, 100%) [45 Mbit/s, 50 Mbit/s) [90, 100)
10 100% [50 Mbit/s, 55 Mbit/s) -

19 [95 Mbit/s, 100 Mbit/s)

20 [100 Mbit/s, 200 Mbit/s)

21 [200 Mbit /s, 300 Mbit/s)

28 [900 Mbit/s, 1 Gbit/s]

intervalos de 10, inicamente para valores menores a 100. Por los resultados encontrados
y mostrados en la Seccién 4.3.3, el mecanismo de compresion ignora las entradas con

BC mayor o igual a 100 y los envia sin comprimir.

4.4.3 Proceso de toma de decisiones

La decision de seleccionar el mejor algoritmo de compresién en una oportunidad
dada, puede verse como una tarea de clasificacién, tal y como se le conoce en el ambito
del aprendizaje automatizado. Para esto, es necesario conocer, en la instalacion del

sistema, la informacion del desempeno de cada compresor en cada oportunidad posible.

Conjunto de datos de entrenamiento

Para recaudar los datos de entrenamiento, se realizaron transmisiones de un
conjunto de archivos de prueba extraidos de los corpus de Calgary, Canterbury y Silesia
(Universidad Politécnica de Silesia, 2018), a los cuales se anadieron cinco archivos de
1 MB, cada uno, de datos aleatorios, cinco archivos de 1 MB, cada uno, con un tnico
byte repetido y un conjunto de archivos multimedia propios del autor, totalizando 146
MB.

En total, se realizaron transmisiones de los archivos con cada compresor (incluyendo

compresiéon “nula” o copia), bajo 16 limites de ancho de banda — modulado con el

4.4 MODELO ADAPTATIVO 42

Tabla 4.2: Porcentaje de clasificacion correcta de los clasificadores estudiados.

Porcentaje de clasificacion correcta

Clasificador Entrenamiento Prueba
SVM 92,9% 85,4%
Arbol de decisién 91,4% 84,7%
AdaBoost 100% 85,4%
Bayesiano ingenuo 69,3% 68,8%

software Wondershaper (Hubert et al., 2018) — y 5 niveles de carga artificial al CPU,
para un total de 320 transmisiones, las cuales se llevaron a cabo 10 veces, cada una,
para tener datos lo suficientemente correctos. En cada oportunidad, fueron registrados
la TET y los datos que definen la oportunidad en ese instante para posteriormente

extraer, para cada oportunidad, el compresor con la mayor TET promedio.

El clasificador

Cuatro tipos de clasificadores fueron estudiados, siendo estos las maquinas de
vectores de soporte (SVM, por sus siglas en inglés), drboles de decisiéon, AdaBoost
(con &rboles de decisién como clasificadores débiles) y un bayesiano ingenuo. Las
exactitudes de prueba y entrenamiento, obtenidos dividiendo los datos disponibles en
datos de entrenamiento y prueba en proporcion 9:1, se muestran en la Tabla 4.2.

La diferencia de resultados en la Tabla 4.2 entre el bayesiano ingenuo y los demés
clasificadores es suficiente como para descartarlo. Los mejores resultados se obtuvieron
con el SVM y el AdaBoost, mas sin embargo, con el arbol de decisién se obtuvieron
resultados practicamente idénticos a los del SVM. La Figura 4.4 muestra las matrices
de confusién para los clasificadores. De nuevo, se reafirma la decision de prescindir del
bayesiano ingenuo. Los mejores resultados se ven con el AdaBoost, con porcentajes
de exactitud sobre el 80% en todas las clases. Sin embargo, por la diferencia de
complejidad de éstos y de los SVM multi-clase con respecto al arbol de decision,
tanto en funcionamiento como en implementacion, se decidié utilizar este ultimo como
clasificador para este problema. Se debe recordar que es necesario un proceso de toma
de decisiones lo suficientemente rapido y sencillo para no agregar overhead innecesario

a la transmision de datos.

4.4 MODELO ADAPTATIVO 43

Maquina de vectores de soporte Arbol de decision

018 002 0.8
% 075
o 060 06
=1
B 0.45
04
% 0.30
= 02
P 015
(=
8 0.00 0.0
AdaBoost Bayesiano ingenuo multinomial
016 0.02 0.00
] 0.75 0.75
060
[0.60 0.00
=3
B 0.45 045
g 0.30 000 0.30
a
® 000 0.15 0.00 015
(=%
8 _ . 0.00 : _ _ 0.00
Zlib bzip2 snappy copia Zlb bzip2 snappy copia

Figura 4.4: Matrices de confusion de los clasificadores estudiados.

4.4.4 Algoritmo de compresion automatica y adaptativa

Es momento de definir el algoritmo de compresion automatica propuesto, el cual se

muestra en el Algoritmo 4.3, sobre el cual se resaltan algunas caracteristicas:

e Cuando se solicita la compresion de un trozo de datos incompresibles (BC' > 100),

el algoritmo envia los siguientes 512 KB sin costo de adaptacion.

e Cuando el porcentaje de ocupacion del buffer de salida del socket es menor al
5%, lo cual ocurre principalmente al comienzo de la transmision, se comprime
con zlib. Esto se decidi6 debido a que al comienzo de la transmisiéon no se
tiene informacion para el clasificador, por lo tanto se debe utilizar un compresor

equilibrado para no reducir la ganancia ni degradar el desempeno a bajos y altos

ABD, respectivamente.

4.4 MODELO ADAPTATIVO 44

e Se debe recordar que el clasificador puede decidir utilizar “copia” como el

mejor compresor, por lo cual el método comprimir encapsula la abstraccién del

compresor “copia”’ y retorna los datos originales inmediatamente.

Algoritmo 4.3 Algoritmo de compresién adaptativa propuesto

1:
2
3
4:
5:
6.
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

funcién COMPRIMIRADAPTATIVAMENTE(datos)

bytesAEnviarSinComprimir < 0 > Variable estatica
porcentajeDatosEnBuffer <— 0 > Variable estatica
si bytesAEnviarSinComprimir > 0 entonces
bytesAEnviarSinComprimir < bytesAEnviarSinComprimir — tamano(datos)
retornar datos > No comprimir
fin si
BCActual < Bytecounting(datos)
si BCActual > 100 entonces
bytesAEnviarSinComprimir < 512 % 1024
retornar datos > No comprimir
fin si
porcentajeDatosEnBuffer <— obtener_porcentaje_ocupacién_bufer_socket|()
si porcentajeDatosEnBuffer < 5% entonces
datosComprimidos < comprimir(datos, ZLIB)
retornar datosComprimidos
fin si
cargaCPU <« leer_carga_cpu()
ABD < leer_abd()
compresor < clasificar(cargaCPU, ABD, BCActual)
datosComprimidos - comprimir(datos, compresor)
retornar datosComprimidos

23: fin funcién

Capitulo 5

Evaluacion del mecanismo de

compresion

Con el sistema de transmisién desarrollado y el mecanismo de compresion
adaptativa disenado, implementado e integrado al sistema de transmision, se presentan
en este capitulo las pruebas realizadas para evaluar el rendimiento y las capacidades

adaptativas del sistema en cuestion.

5.1 Prueba de adaptabilidad

El mecanismo de compresién propuesto debe ser adaptativo, por lo cual, para probar
si efectivamente se adapta a cambios en el entorno, se llevaron a cabo dos pruebas
sencillas que muestran la adaptabilidad del mecanismo ante cambios en el estado de la

red.

5.1.1 Diseno del experimento

Para la prueba de adaptabilidad, se utiliz6 un conjunto de 1000 archivos de 1 MB,
cada uno, totalizando 1 GB, compuestos de un tinico byte repetido. Los experimentos

se describen a continuacién:

1. Los datos fueron transmitidos a un limite de 1 Gbit/s y, en cierto punto de

la transferencia, se limité el ancho de banda a 15 Mbits/s para,poco después,

5.1 PRUEBA DE ADAPTABILIDAD 46

restablecerlo a 1 Gbit/s. En este caso, se espera que la compresién pase
de realizarse mediante el compresor mas rapido (snappy) o sin comprimir en
absoluto cuando el ancho de banda es superior, a realizarse a través un método
computacionalmente intensivo con altos porcentajes de compresion como bzip2 o

zlib cuando el ancho de banda es menor.

2. El segundo experimento fue similar: la transmisién comenzé a 15 Mbits/s, en
cierto punto se modulé a 1 Gbit/s y se restablecié a 15 Mbits/s. El resultado

esperado es, ciertamente, el reverso del que se espera en el primer experimento.

5.1.2 Resultados

La Figura 5.1 muestra los resultados de los experimentos realizados. Segun la
Figura 5.1(a), el mecanismo de compresién adaptativa, en efecto, reacciona ante una
variacién de ancho de banda de alto a bajo seleccionando mayoritariamente un método
con mejores porcentajes de compresion, siendo, en este caso, zlib; en esta situacion, el
uso de zlib en unos cuantos mensajes al comienzo de la transmisién se explica en la
Seccién 4.4.4. Del mismo modo, en la Figura 5.1(b) se observa cémo, ante variaciones
del ancho de banda de bajo a alto, el mecanismo selecciona un método mas ligero
(snappy). En ambos casos se observa el mismo fenémeno: para altos anchos de banda,
el sistema reacciona disminuyendo el costo computacional al usar un método mas ligero,
mientras que para anchos de banda bajos, se utiliza intensivamente el CPU en tareas
de compresion para reducir el volumen de informacién transmitida.

Un aspecto muy importante que se extrae de los resultados de estas pruebas, es
el hecho de que, para el nivel mas alto de ancho de banda disponible, el sistema no
decide no comprimir, sino que utiliza snappy, lo cual da indicios de que la rapidez de
este algoritmo es tal, que para que su utilizacion se convierta en un cuello de botella,

se debe contar con anchos de banda mayores a 1 Gbit/s.

5.2 PRUEBAS DE RENDIMIENTO 47

1 Gbit/s 15 Mbits/s 1 Gbit/s 15 Mbits/s 1 Gbit/s 15 Mbits/s

zlib
zlib

snappy
snappy

(’) BDbO 60‘00 90‘00 120’00 6 30‘00 GObO 90b0 12600
Trozos o mensajes Trozos o mensajes

(a) Variacién de ABD de alto a bajo. (b) Variacién de ABD de bajo a alto.

Figura 5.1: Pruebas de adaptabilidad del mecanismo de compresiéon propuesto ante
cambios en el ancho de banda.

5.2 Pruebas de rendimiento

El principal motivo de un mecanismo de compresion adaptativa es mejorar el
rendimiento de la transmision de informacién mediante la compresion, cuando esta
sea beneficiosa, de acuerdo al tipo de informacién que se transmite y al estado de los
recursos computacionales y de comunicacion subyacentes. La mayoria de los sistemas
de transmision de datos no utiliza compresion o la utiliza de manera estatica, es
decir, utilizando un mismo algoritmo durante toda la transmisién (Peterson y Reiher,
2016). Debido a esto, se decidi6 estudiar el rendimiento del mecanismo propuesto ante

compresion estatica (un algoritmo fijo o no comprimir en absoluto).

5.2.1 Descripcién del entorno

Las pruebas fueron realizadas en una LAN gigabit privada, con el transmisor
ejecutandose en un procesador Intel i7-5820K y el receptor en un Intel i5-4690, con
6 y 4 nucleos de CPU disponibles, respectivamente. Para modular el ancho de banda
disponible se utilizo el software Wondershaper (Hubert et al., 2018). La carga del CPU,
por otro lado, fue modulada lanzando procesos que, de forma continua, leen 32 KB de
datos del archivo especial /dev/urandom (Linux), los comprimen con zlib y escriben el

resultado en /dev/null; se realizaron pruebas con 0, 2, 3 y 5 procesos de carga.

5.2 PRUEBAS DE RENDIMIENTO 48

5.2.2 Datos de prueba

Para representar un amplio rango de tipos de informacién con caracteristicas
variadas, fueron recolectados 5 tipos de datos con variados porcentajes de compresiéon
esperados: (a) datos tipo cddigo, conformados por una recopilacién de codigo fuente
de varias bibliotecas y frameworks libres y de cddigo abierto, totalizando 74 MB;
(b) datos tipo later, conformados por un conjunto de cédigos IXTEX de proyectos
(tesis, papers, etc.), para un total de 71 MB; (¢) datos tipo multimedia, los cuales
consisten en una serie de 76 MB de archivos multimedia (imégenes, audio, videos,
archivos pdf, etc.) propios del autor; y por ultimo, los datos tipo (d) cero (60 MB) y
(e) aleatorio (60 MB), los cuales consisten en 60 archivos de 1 MB, cada uno, de un
byte repetido (tomado de /dev/zero) y datos aleatorios (tomados de /dev/urandom),
respectivamente.

Los datos tipo cero y aleatorio representan los extremos en cuanto a ganancia de
compresion, siendo el mejor y peor caso, respectivamente. Los datos tipo cddigo se
componen, en su mayoria, de archivos de texto plano (cédigo fuente), que es altamente
compresible. Por otro lado, los datos tipo multimedia son muy poco compresibles
debido a que, la mayoria, se almacena en formatos pre-comprimidos (mp3, jpg,
etc.). Los datos tipo latez, por su parte, representan el punto intermedio, con una
relacién entre imagenes (poco compresible) y texto (muy compresible) relativamente

equilibrada.

5.2.3 Diseno del experimento

El experimento consistié en una serie de transmisiones, para cada conjunto de
datos descritos en la Seccién 5.2.2, en diferentes condiciones (limite de ancho de banda
y carga del CPU) y utilizando el mecanismo de compresién adaptativa propuesto,
las cuales fueron cronometradas. Adicionalmente, y en igualdad de condiciones, las
mismas transmisiones fueron realizadas utilizando compresién estatica — utilizando
snappy, zlib y bzip2 — y sin comprimir (copia). Los experimentos fueron realizados
un total de 10 veces para tener datos lo suficientemente representativos.

Cada método de compresion (los estaticos y el adaptativo) fue comparado con

5.2 PRUEBAS DE RENDIMIENTO 49

el caso por defecto (copia), para medir la ganancia de cada uno en las diferentes
oportunidades. Para esto, se calculd, para cada método, la ganancia, expresada en

porcentaje, con respecto a la transmision sin compresion, con la Ecuaciéon 5.1.

TT. —TT,
GP=—"—"—"—\+""x100 5.1
T (5.1)
donde:
G P = Ganancia porcentual respecto a la transmisién sin compresion

TT. = Tiempo de transmisién sin compresién (o copia)

TT,, = Tiempo de transmisién con el método m

En este sentido, un valor de GP de 50% significa que el método en cuestién llevd
el tiempo de transmision a la mitad, por lo cual un GP de 100% es imposible, debido
a que significaria que el tiempo de transmisién fue de 0. Del mismo modo, un GP de
-50% significa que con el método en cuestién, la transmision de realizé en 1,5 veces el
tiempo que llevé la transmision sin compresion, es decir, que el tiempo de transmision
aument6 en la mitad, mientras que un GP de -100% indica que el tiempo de transmision

aumento el doble.

5.2.4 Resultados

Las siguientes graficas muestran los resultados del experimento disenado, en las
que las lineas correspondientes a snappy, z1ib y bzip2 denotan la mejora obtenida
por dichos métodos estaticos, mientras que autocomp denota la mejora obtenida por

el mecanismo de compresion automatica y adaptativa propuesto en este trabajo.

Datos tipo cero

Los datos tipo cero (aquellos consistentes de un tinico byte repetido) corresponden
al mejor caso y es donde se deberian obtener los resultados de mejor ganancia a través
de la compresién. La Figura 5.2 muestra los resultados para los datos tipo cero, donde
se puede observar que el método adaptativo propuesto supera el desempeno de los tres
métodos estaticos para anchos de banda de hasta 100 Mbits/s, disminuyendo el tiempo

de transmisién incluso en 99% a 10 Mbits/s. No obstante, snappy supera a autocomp

5.2 PRUEBAS DE RENDIMIENTO 50

para anchos de banda sobre los 100 Mbits/s. El que autocomp supere tanto a zlib
como a bzip2 pero no a snappy a altos anchos de banda, indica que (a) se esta usando
snappy intensivamente, (b) posiblemente se esté intercalando con el método “copia”
y/o (c) se estd pagando costosamente el bytecounting y la clasificacién. Segun
los resultados de las pruebas de adaptabilidad (Seccién 5.1.2), la respuesta al anterior
cuestionamiento se encuentra en los items a y c¢: si se estd tomando la decision acertada,
pero se esta pagando costosamente el bytecounting y la clasificacion. Debido a estos
resultados, se espera que, probablemente, snappy supere a autocomp mientras los datos

sean lo suficientemente compresibles a altos anchos de banda.

100 A 100 gy
80 80
s]
z 2
g §
d 60 1 é 60
. :
£]
g 404 g 40
g s
g 2
7 20 g 2
g g
5 5
I~ 2
& 0 e 0
—e— snappy —e— snappy
—¥— zlib ~¥— zlib
50]~ bzip2 —&— bzip2
—m— autocomp 201 _m autocomp
o o o o o X o & & & & & o & @ <X & <X o &
& @ &
\,Q ,]/Q Q)Q Q’Q QQ QQ QQ QQ 00 » ,\,0 ,‘/0 60 %Q e% QQ QQ QQ QD Y
> Vv > o) @ ~ v > 9 L
Ancho de banda Ancho de banda
(a) Pruebas con 0 procesos de carga. (b) Pruebas con 2 procesos de carga.

100 + 100

80 80
60 60
40 40

20 20

Porcentaje de mejora vs. copia
Porcentaje de mejora vs. copia

0+ —e— snappy 01 —e— snappy
—¥— zlib —¥— zlib
—&— bzip2 —— bzip2
2071 _m autocomp 207 _m autocomp
6\& ‘o‘& & 6\& & 0\& S & *o‘d’ é& 0\& o\& 0\& o\& *o‘& & 6\‘\6 0\& ‘6\& (}&\e &
9
\9“‘ ,Lo"‘ & Q’Q“\ \9@ ’190\‘\ N N Q’Qo"‘ ~ ,\9"‘ ,@“‘ bo“\ Q’o‘“ »"0\‘\ w@‘“ 50‘\ :,,00\“ %Qe‘“ v
Ancho de banda Ancho de banda
(c) Pruebas con 3 procesos de carga. (d) Pruebas con 5 procesos de carga.

Figura 5.2: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo cero.

5.2 PRUEBAS DE RENDIMIENTO 51

Datos tipo aleatorio

El peor escenario se trata de la trasmision de datos aleatorios, los cuales son
incompresibles y se espera que todos los métodos degraden el desempeno o, a lo sumo,
lo igualen al de no comprimir. Los resultados para este tipo de datos se muestran
en la Figura 5.3. autocomp logra mantener su rendimiento cercano al de la copia, al
igual que snappy, mientras que zlib comienza a degradar el desempeno visiblemente
a los 60 Mbits/s y bzip2 trabaja a pérdida en todos los casos, llegando incluso a
obtener pérdidas de ~1300% a 1 Gbit/s; lo anterior se debe al tiempo computacional
intensiva e innecesariamente utilizado por bzip2 y zlib. No obstante, todos los métodos
degradan el desempeno incluso a anchos de banda bajos: a 10 Mbits/s, el porcentaje de
degradacién para autocomp, snappy, zlib y bzip2 es de ~0,002% , ~0,006%, ~0, 1%y
~1,2%, respectivamente, debido al trabajo de compresién innecesario realizado por los
métodos estaticos y al costo de adaptaciéon, como el bytecounting, en el caso del método
adaptativo (pues este no comprime datos aleatorios).

En el caso de los datos aleatorios, autocomp siempre pagara el costo de adaptacion,
pero superando a los métodos estaticos incluso a altos anchos de banda, como a
1 Gbit/s, donde degrada el desempeno cerca de ~2% (dnicamente con 3 procesos
de carga), mientras que snappy y zlib lo degradan, en promedio, ~1,6% y ~227%,

respectivamente.

Datos tipo codigo

Para los datos de tipo cddigo, la Figura 5.4 muestra los resultados, donde se observa
que a 10 Mbits/s, todos los métodos mejoran el desempenio entre 64% y 78%. autocomp
lo hace ~31% maés lento que bzip2 a 20 Mbits/s, donde este iltimo comienza a disminuir
su porcentaje de mejora muy rapidamente, llegando incluso a degradarlo a partir de
anchos de banda de 80 Mbits/s (alcanzando ~950% de degradacién a 1 Gbit/s). Del
mismo modo, autocomp pierde frente a zlib hasta los 100 Mbits/s, donde este iltimo
comienza a disminuir su ganancia pero mas lentamente que bzip2, llegando a degradar
el desempeno a anchos de banda a partir de los 300 Mbits/s.

Se debe recordar que la compresion pierde su ganancia cuando el ancho de banda se

5.2 PRUEBAS DE RENDIMIENTO

52

Porcentaje de mejora vs. copia

~8— sna
a0 PPy |

|
-
5

|
N
5]

|
w
o

Porcentaje de mejora vs. copia

—8— sna \
_a0 PPy

¥ z2lib \ ¥ Zib
—&— bzip2 \\ —+— bzip2 \
—m— autocomp \ —m— autocomp \
-50 ‘ 50 : - . . — .
o @ @ o © o @ © © o o © o o o o ©
F & ¢ &S F & ¢ ¢ ¢ & & & S
Q“\ Q\“ Qe\ Qe\ Qé\ Q@ 0\‘\ O Q“\ '\o Qe‘ Q\‘\ Qé °§‘~ 0\‘\ Qe‘ O L Qé\ ,\(7
~ v © 3 .\Q ,,LQ 4)0 o Q’Q -~ v © @ ,\0 ,LQ ,55 4’0 Q’Q

Ancho de banda

(a) Pruebas con 0 procesos de carga.

-104

|
N
1)

Porcentaje de mejora vs. copia
|
w
S

—e— snappy \
T -+ zib \

1
Iy
S

Ancho de banda

(b) Pruebas con 2 procesos de carga.

-10

|
N
o

|
w
o

Porcentaje de mejora vs. copia

—— snappy \

—¥— zlib \
—h— bzip2 \ —— bzip2 \
—m— autocomp \ —m— autocomp \\
-50 : -50
6“\(1 ‘_’\K\a é&\a é& & & 0\&\9 (_)\&\a 0\& ‘(}‘\e S o 6& ~o‘& & 0\& 6\& o‘& 6\& ~o‘& R o
S & S S & S S & & ° S & S & N N & & & °
~ > S &§ & S 5 &5 o ~ > S & K S S S5 S

Ancho de banda

(c) Pruebas con 3 procesos de carga.

Ancho de banda

(d) Pruebas con 5 procesos de carga.

Figura 5.3: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo aleatorio.

hace lo suficientemente alto (segin la Ecuacién 4.2), lo cual se ve reflejado para bzip2 y

zlib a partir de anchos de banda de 80 Mbits/s y 300 Mbits/s, respectivamente, en este

caso. autocomp, por otro lado, obtiene ganancia de la compresion en la mayoria de los

casos, debido a las decisiones que puede estar tomando de comprimir con snappy o no

comprimir en absoluto (la excepcién es la degradacién vista a 1 Gbit/s con 5 procesos

de carga que, en el entorno de prueba, cargan el CPU al 100%, lo cual puede deberse al

sobretso del CPU en compresion, adaptacion y toma de decisiones innecesarias a altas

velocidades de transmisién). Con respecto a snappy, una vez mdas autocomp pierde

terreno ante este compresor a altos anchos de banda. Sin embargo, la tendencia es

que autocomp obtiene un aproximado de 7% de mejora més que snappy a 800 Mbits/s

y 1 Gbit/s, posiblemente debido a que, a altos anchos de banda, se esté decidiendo

5.2 PRUEBAS DE RENDIMIENTO

53

100

50

Porcentaje de mejora vs. copia
|
o
o

—e— snappy
1 —¥% zlib
—&— bzip2
—#— autocomp

Ancho de banda

(a) Pruebas con 0 procesos de carga.

e ———

50

o

—100 4

Porcentaje de mejora vs. copia
|
o
o

—8— snappy
~¥— zlib

—&— bzip2
~#— autocomp

—150 1

—200

£
S N
O N O
Q ,19 '§Q
Ancho de banda

;

(c) Pruebas con 3 procesos de carga.

Porcentaje de mejora vs. copia

Porcentaje de mejora vs. copia

100

50

o

100

50

-100

-150

—200

—e— snappy
—¥— zlib

—&— bzip2
—®— autocomp

Ancho de banda

(b) Pruebas con 2 procesos de carga.

- — ———

—— snappy
~¥— zlib

—&— bzip2
~#— autocomp

Ancho de banda

(d) Pruebas con 5 procesos de carga.

Figura 5.4: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo codigo.

no comprimir algunos mensajes cuando comprimir no es producente (de nuevo, la

excepcion se da a 1 Gbits/s con 5 procesos de carga, donde se observa que incluso

snappy disminuye su porcentaje de mejora a cerca de 10%).

En este tipo de datos se observa claramente el hecho de que la seleccion del mejor

compresor (de forma estdtica) depende tanto del ancho de banda como del tipo de

datos, pues ningiin método es siempre el mejor y algunas decisiones pueden llegar a ser

muy costosas.

Datos tipo latex

El comportamiento para los datos tipo later, mostrado en la Figura 5.5, es similar

al de los datos tipo codigo, pero, como es de esperarse por la naturaleza de los datos,

5.2 PRUEBAS DE RENDIMIENTO 54

con porcentajes de mejora mucho menores (entre 13% y 22% para todos los métodos a
10Mbits/s). En este caso autocomp es superado por snappy — mostrando de nuevo el
alto costo que se estd pagando en la toma de decisiones — mas sin embargo autocomp
logra superar a zlib y bzip2 cuando el ancho de banda es lo suficientemente alto para

que estos compresores trabajen a pérdida.

20 =T — 20 — T
— —e . g o . e
© ©
& 09 2 0
g g
g s
= €
e 6
© —20 © —20
g g
9 o
13 £
: :
o —40 o —40
£ g
g :
5 5
¢ ¢
I _60 | —® snappy & _60 4 —® snappy
—¥— zlib —¥— zlib
—— bzip2 —&— bzip2
—#— autocomp —#— autocomp
-80 -— . -80 . - '
6‘& »5\'*\(1 @& v\& ‘o“\‘) 0‘& S & & 0\& r & g o 6\& ’(_’\‘\e & & (_)\‘\t» r o 6\& *o‘& e o
\“ N N N N S N N O N N > \“ N N N 3 Q)
,\0 ,LQ bQ Q’Q \QQ ’\90 4}00 (’)QQ Q;QQ h \,Q ,\/Q & Q’Q ‘\00 ’190 ’bb 6,00 %00 ~
Ancho de banda Ancho de banda
(a) Pruebas con 0 procesos de carga. (b) Pruebas con 2 procesos de carga.
20 l:b'*‘!——‘\ 20 l:ﬁ#ﬂ

W = i S ———

—404

Porcentaje de mejora contra copia
Porcentaje de mejora contra copia

—8— snappy —8— snappy

—60 4

—¥— zlib —¥— zlib
—&— bzip2 —&— bzip2
—m— autocomp —#— autocomp
-80 -80

I I R SR G I G e e T I

o

S & & & RIS S $ $ ~ S & & & ’\IQQ“\ ’PQ“\ ’P@ s %00"‘ ~

Ancho de banda Ancho de banda
(c) Pruebas con 3 procesos de carga. (d) Pruebas con 5 procesos de carga.

Figura 5.5: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo latexz.

El efecto de la pérdida de ganancia para los compresores computacionalmente méas
intensivos (bzip2 y zlib) se presenta de igual manera, con porcentajes de degradacién
mucho mayores — una vez mas, como se espera para este tipo de datos. Sin embargo,
practicamente no hay degradacién por parte de autocomp para este tipo de datos,
siendo el peor caso la condiciéon de “empate” (degradacion de ~2%) frente a la

transmisién sin compresién a 1 Gbit/s con 2 procesos de carga, posiblemente debido a

5.2 PRUEBAS DE RENDIMIENTO 55

que el mecanismo adaptativo propuesto ignora todos los trozos de este tipo de datos

para los cuales la compresion no es conveniente.

Datos tipo multimedia

Este caso es muy similar al del tipo de datos aleatorio pues los datos son
practicamente incompresibles, como se muestra en la Figura 5.6. De nuevo se observa
como la compresion pierde valor para bzip2 y zlib cuando el ancho de banda es lo
suficientemente alto, incluso para autocomp, que degrada el desempeno un maximo
de 5% a los niveles mds altos de ancho de banda disponibles, principalmente debido
a los costos de adaptacion. Snappy y autocomp, sin embargo, manejan muy bien el
caso de datos practicamente incompresibles. En el caso de snappy, se demuestra que
el compresor sacrifica en gran medida su capacidad de compresion por velocidad, para
obtener ganancias relativamente decentes; para autocomp, por otro lado, se debe a que
puede decidir no comprimir en absoluto la mayor parte de la informacién transmitida,

pues en este caso comprimir seria mayoritariamente contraproducente.

5.2 PRUEBAS DE RENDIMIENTO

56

Porcentaje de mejora vs. copia

Porcentaje de mejora vs. copia

51 5
[——— = —— o] F——= ——°
\\—. . \'\\/
2
-5+ S -5
@
¢
s
-10 5 -10
k)
£
@
-151 T -15
Q
T
5
=20 P =20
2
—e— snappy —e— snappy
_o5] —¥ zib _o5 | ¥ zib
—&— bzip2 —— bzip2
—m— autocomp —m— autocomp
=30 T T T -30 T T T
F & & & & & & & & F & ¢ & ¢ ¢ ¢ & &
S N S S S $ & N & ¥ S S & S & & & & & °
~ v © 3 \Q ’LQ ,50 ‘,)Q Q’Q ~ v © L ,\G ’LQ ,50 (,’Q Q’Q

Ancho de banda

(a) Pruebas con 0 procesos de carga.

Ancho de banda

(b) Pruebas con 2 procesos de carga.

54 5
o] —— 0
‘.\'\-\-/. o
2
-5+ S -5
@
¢
°
-10 S -10
@
£
o
=15 T -15
2
3
$
=20 L =20
2
—e— snappy —e— snappy
o5 | =7 b o5 | —7 aib
—— bzip2 —&— bzip2
—m— autocomp —®— autocomp
-30 T T T T T -30 T T
& & & & & & & & & & & & & g * & & & & &
& F S R A I S
,\,Q ,1/0 bQ Q’Q QQ QQ °Q QQ QQ s \0 ,‘9 bQ Q’Q 00 QQ °§ QQ QQ ~
~ v i) 9 @ % Vv > 2 @

Ancho de banda

(c) Pruebas con 3 procesos de carga.

Ancho de banda

(d) Pruebas con 5 procesos de carga.

Figura 5.6: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo multimedia.

Capitulo 6
Conclusiones

Se propuso un mecanismo o estrategia de compresiéon automatica y adaptativa, el
cual fue implementado e integrado a un sistema de transmision de datos desarrollado
también como parte de este proyecto, para su evaluaciéon y prueba de concepto.
El mecanismo se basa en el supuesto presentado por Peterson y Reiher (2016) de
que el desempeno de un algoritmo de compresién es constante en una oportunidad
determinada. Basandose en lo anterior, el mecanismo cuantiza o discretiza el espacio
de oportunidades e intenta seleccionar el algoritmo maés apto en cada oportunidad, es
decir, aquel que provea la mejor TET, mediante un arbol de decisién como herramienta
de clasificacion, debido a su simplicidad de funcionamiento e implementacién y a que
su desempeno es similar al de los demas clasificadores — méas complejos — estudiados.

Los resultados muestran que, en el escenario de mayor ganancia esperada, el
mecanismo adaptativo se comporta de manera similar a los mejores algoritmos a 10
Mbits/s, superdandolos cuando el ancho de banda se hace lo suficientemente alto para
superar la velocidad de estos compresores. No obstante, la compresion siempre se
convertird en un cuello de botella cuando el ancho de banda sea lo suficientemente alto
(Peterson y Reiher, 2016). Del mismo modo, la suma de la adaptaciéon, monitoreo y
potencial compresién, se convertird en un cuello de botella mas rdpidamente cuando el
ancho de banda alcanza niveles lo suficientemente altos, por lo cual es imperativo que el
método de clasificacion sea lo suficientemente rapido y que los moédulos de monitoreo

y adaptacién pasen por una fase intensiva de optimizacion para mitigar este efecto.

6 CONCLUSIONES 58

Esto ocurre, en este caso, cuando el ancho de banda supera los 100 Mbits/s, donde un
algoritmo tan rdpido como snappy logra superar por mucho al mecanismo propuesto
— aunque este ultimo esté utilizando intensivamente también a snappy — debido a
que se paga el costo de adaptacion y clasificacion. Esto podria solucionarse agregando
una especie de “bypass” para evitar la clasificacion a altos anchos de banda y utilizar
siempre snappy como mejor eleccion; sin embargo, esto se pagaria costosamente cuando
los datos sean incompresibles. Otra solucién seria que, a medida que el ancho de banda
crece, se calcule el bytecounting para un trozo o chunk y se asuma este mismo para los
trozos subsiguiente y, de esta manera, mitigar el costo de adaptacién. En los peores
escenarios, donde los datos son virtualmente incompresibles, el mecanismo propuesto
logra mantener su desempeno cercano al de la transmision sin compresion, pagando
unicamente el costo de adaptacion, con un porcentaje de degradacion maximo cercano
al 5% a 800 Mbits/s.

Los resultados ademas muestran que un tnico algoritmo de compresiéon nunca
es Optimo, lo cual se observa mayormente en los algoritmos computacionalmente
més costosos (zlib y bzip2), que reducen su porcentaje de ganancia de manera
significativa cuando el ancho de banda crece (se hacen subdptimos), incluso degradando
el desempeno cuando el canal de comunicacion es lo suficientemente rapido.

En resumen, para un variado tipo de datos, aun cuando el mecanismo de
compresion propuesto toma decisiones muy costosas — muy probablemente debido
a la caracteristica de los arboles de decisién que los hace muy sensibles antes pequenas
variaciones en los datos de entrada, como se menciona en la Seccién 2.3.2 — este logra
adaptarse a las condiciones del entorno y a las propiedades de los datos, evitando los
costos de compresion y el consecuente deterioro del desempeno de la transmisién cuando
los datos no son compresibles y obteniendo altos porcentajes de mejora a velocidades
sobre los 100 Mbits/s donde, segun Peterson y Reiher (2016), la compresién esta, por
lo general, deshabilitada en los sistemas de transmisién para evitar el riesgo de usar la

compresién cuando no hay tiempo para ello.

6.1 RECOMENDACIONES 59

6.1 Recomendaciones

El uso de un arbol de decisién como clasificador fue una elecciéon realizada de
una forma que podria decirse directa o inocente (naive), debido a su simplicidad de
funcionamiento e implementacién. No obstante, es muy probable este clasificador esté
tomando decisiones erréneas ante cambios sutiles en los datos de entrada. Valdria la
pena realizar un estudio completo y detallado de este y otros clasificadores que puedan
ser integrados al sistema, mientras sean lo suficientemente rapidos, y realizar pruebas
de adaptabilidad y rendimiento mas exhaustivas con cada uno, asi como también un
perfilado temporal para determinar el porcentaje de tiempo, en cada oportunidad,
efectivamente utilizado en la toma de decisiones.

Para lidiar con el poco tiempo disponible para compresién a anchos de banda sobre
los 100 Mbits/s — si es que hubiere — es posible que se deba deshabilitar todo proceso
de adaptacién (bytecounting) y toma de decisiones (clasificacién) y evitar la compresion.
Sin embargo, es notorio que snappy es un compresor lo suficientemente rapido como
para obtener ganancia incluso a 1 Gbit/s, por lo cual también se deberia estudiar alguna
estrategia para reducir la cantidad de veces que se calcula el bytecounting y utilizarlo
unicamente para detectar flujos de datos con poco o ningiin potencial de compresion.

Adicionalmente, se puede utilizar una técnica estadistica de muestreo para
seleccionar, para cada trozo en una oportunidad dada, sub-trozos para los cuales
se calcule el bytecounting y se utilice alguna métrica o estadistico para obtener el
bytecounting general del trozo en cuestion. Esto responde a la necesidad de reducir
el costo de adaptacion, principalmente a altos anchos de banda, que se genera por el

calculo del bytecounting.

Bibliografia

Apache Software Fundation (2018). Apache http server project. Versién 2.4.29. https:
//httpd.apache.org/.

Bell, T., Witten, I. H., y Cleary, J. G. (1989). Modeling for text compression. ACM
Comput. Surv., 21(4):557-591.

Burrows, M. y Wheeler, D. J. (1994). A block-sorting lossless data compression

algorithm. Reporte técnico.

Collette, A. (2018). LZFX Data Compression Library. https://code.google.com/
archive/p/lzfx/.

Forouzan, A. B. (2006). Data communications & networking (sie). Tata McGraw-Hill

Education.

Gailly, J.-1. y Adler, M. (2018a). GNU Guzip. Versién 1.9. https://www.gnu.org/
software/gzip/.

Gailly, J.-1. y Adler, M. (2018b). zlib, sitio Web. https://www.gnu.org/software/gzip/.
Fecha de consulta 26/09/2018.

Google (2018a). Google Test. https://github.com/google/googletest. Fecha de consulta
30/09/2018.

Google (2018b). Snappy. Versién 1.1.7. http://google.github.io/snappy/.

Harnik, D., Kat, R. 1., Margalit, O., Sotnikov, D., y Traeger, A. (2013). To zip or not

to zip: effective resource usage for real-time compression. En FAST, p. 229-242.

https://httpd.apache.org/
https://httpd.apache.org/
https://code.google.com/archive/p/lzfx/
https://code.google.com/archive/p/lzfx/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://github.com/google/googletest
http://google.github.io/snappy/

BIBLIOGRAFIA 61

Hubert, B., Geul, J., y Séhier, S. (2018). Wondershaper. https://github.com/
magnificO/wondershaper. Fecha de consulta 29/09/2018.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098-1101.

iPerf (2018). Sitio Web. https://iperf.fr/. Fecha de consulta 27/09/2018.

Jagemar, M., Eldh, S., Ermedahl, A.; y Lisper, B. (2016). Automatic message
compression with overload protection. Journal of Systems and Software, 121(C):209—

222.

Kerrisk, M. (2018). Projecto man-pages de linux. http://man7.org/. Fecha de consulta
01/10/2018.

Kingsford, C. y Salzberg, S. L. (2008). What are decision trees? Nature biotechnology,
26(9):1011.

Krintz, C. y Sucu, S. (2006). Adaptive on-the-fly compression. IEEE Transactions on
Parallel and Distributed Systems, 17(1):15-24.

Larman, C. y Basili, V. R. (2003). Iterative and incremental developments. a brief

history. Computer, 36(6):47-56.

Mahmud, S. (2012). An improved data compression method for general data.
International Journal of Scientific & Engineering Research, 3(3):2.

Oberhumer, M. (2018). LZO (Lempel-Ziv-Oberhumer) Data Compression Library.

Versién 2.10. http://www.oberhumer.com/opensource/lzo/ .

Pavlov, I. (2018). LZMA Software Development Kit. Version 18.05. https://www.
7-zip.org/sdk.html.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., y Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830.

https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper
https://iperf.fr/
http://man7.org/
http://www.oberhumer.com/opensource/lzo/
https://www.7-zip.org/sdk.html
https://www.7-zip.org/sdk.html

BIBLIOGRAFIA 62

Peterson, P. A. y Reiher, P. L. (2016). Datacomp: Locally independent adaptive
compression for real-world systems. En 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS), p. 211-220. IEEE.

Pressman, R. S. (2015). Software Engineering: A Practitioner’s Approach. McGraw-
Hill, Inc., New York, NY, USA, 8 edicién.

Pu, I. (2004). Data Compression. University of London. Consultado en https://london.

ac.uk/courses/data-compression-co3325. Fecha de consulta: 12 de Junio de 2018.
QuickLZ (2018). QuickLZ. Versién 1.5.0. http://www.quicklz.com/.

Seward, J. (2018). BZIP2, a program and library for data compression. Versién 1.0.6.
http://www.bzip.org/.

Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the
IRE, 37(1):10-21.

Universidad de Canterbury, N. Z. (2018). Corpus de Canterbury, sitio Web. http:
//corpus.canterbury.ac.nz/. Fecha de consulta 27/09/2018.

Universidad Politécnica de Silesia, P. (2018). Sitio Web. http://sun.aei.polsl.pl/~sdeor/
index.php?page=silesia. Fecha de consulta 29/09/2018.

Welch, T. A. (1984). A technique for high-performance data compression. Computer,
17(6):8-19.

Wiseman, Y., Schwan, K., y Widener, P. (2004). Efficient end to end data exchange
using configurable compression. En 2/th International Conference on Distributed

Computing Systems, 2004. Proceedings., p. 228—-235.

Ziv, J. y Lempel, A. (1977). A universal algorithm for sequential data compression.

IEEFE Transactions on Information Theory, 23(3):337-343.

Zohar, E. y Cassuto, Y. (2014). Automatic and dynamic configuration of data
compression for web servers. En 28th Large Installation System Administration
Conference (LISA14), p. 106-117, Seattle, WA. USENIX Association. http://www.
eyalzo.com/projects/ecomp. Fecha de consulta 01/10/2018.

https://london.ac.uk/courses/data-compression-co3325
https://london.ac.uk/courses/data-compression-co3325
http://www.quicklz.com/
http://www.bzip.org/
http://corpus.canterbury.ac.nz/
http://corpus.canterbury.ac.nz/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://www.eyalzo.com/projects/ecomp
http://www.eyalzo.com/projects/ecomp

BIBLIOGRAFIA 63

Zohar, E. y Cassuto, Y. (2015). Data compression cost optimization. En 2015 Data
Compression Conference, p. 393-402.

	Índice de Tablas
	Índice de Figuras
	Índice de Algoritmos
	Agradecimientos
	Introducción
	Antecedentes
	Planteamiento del problema
	Justificación
	Objetivos
	Objetivo General
	Objetivos Específicos

	Metodología
	Estructura del documento

	Marco teórico
	Compresión de datos
	Tipos de compresión
	Medidas de rendimiento

	Recursos computacionales
	Tiempo de CPU
	Ancho de banda
	Memoria

	Árboles de decisión
	Descripción
	Ventajas y desventajas

	Desarrollo de software iterativo e incremental
	El proceso de desarrollo de software

	Desarrollo del sistema de transmisión de datos
	Requerimientos del sistema
	Requerimientos funcionales
	Requerimientos no funcionales

	Módulo de compresión de datos
	Compresión adaptativa
	Compresión estática

	Capa de transmisión de datos
	Protocolo de transmisión
	Cliente
	Servidor

	Mecanismo de compresión automática y adaptativa
	Compresión adaptativa
	Aspectos de adaptación
	Abstracción de los sistemas de compresión adaptativa

	Algoritmos de compresión
	Snappy
	zlib
	bzip2
	Estudio comparativo

	Monitores
	Carga del CPU en el transmisor
	Estado de la red
	Tipo de datos

	Modelo adaptativo
	Función objetivo
	Cuantización del espacio de oportunidades
	Proceso de toma de decisiones
	Algoritmo de compresión automática y adaptativa

	Evaluación del mecanismo de compresión
	Prueba de adaptabilidad
	Diseño del experimento
	Resultados

	Pruebas de rendimiento
	Descripción del entorno
	Datos de prueba
	Diseño del experimento
	Resultados

	Conclusiones
	Recomendaciones

	Bibliografía

