
Proyecto de Grado

Presentado ante la ilustre Universidad de Los Andes como requisito final para

obtener el T́ıtulo de Ingeniero de Sistemas

Sistema de Compresión Automática y Adaptativa

para la Transmisión Eficiente de Datos y Uso

Adecuado de los Recursos Computacionales

Por

Br. Jhonathan Daniel Abreu Luque

Tutor: José Luis Paredes Quintero, PhD.

Octubre, 2018

c©2018 Universidad de Los Andes Mérida, Venezuela

C.C. Reconocimiento

www.bdigital.ula.ve



Sistema de Compresión Automática y Adaptativa para la

Transmisión Eficiente de Datos y Uso Adecuado de los

Recursos Computacionales

Br. Jhonathan Daniel Abreu Luque

Proyecto de Grado — Sistemas Computacionales, 63 páginas

Resumen: La compresión de datos es una estrategia muy últil para reducir la

cantidad de datos que representan la información siendo transmitida para aśı mejorar el

rendimiento de la comunicación. Desafortunadamente, ningún algoritmo es conveniente

en todas las situaciones y pueden incluso degradar el desemepeño de la transmisión,

dependiendo de muchos factores del entorno y de los datos. Debido a esto, se

propone un mecanismo de compresión automática y adaptativa que seleccione y

utilice el mejor algoritmo de compresión en cada oportunidad, o decida no comprimir

cuando sea conveniente. Para la evaluación de este mecanismo, se desarrolló un

sistema cliente-servidor de transmisión de datos que lo implementa. Los resultados

muestran que el mecanismo propuesto logra lidiar con situaciones en la que algunos

compresores se hacen subóptimos o más costos que no comprimir y, pese a que toma

decisiones equivocadas en algunas situaciones, entender el por qué permite encontrar las

limitaciones y nuevos retos a los que se deben enfrentar los mecanismos de compresión

adaptativa.

Palabras clave: Compresión de datos, optimización del uso de los recursos

computacionales, transmisión de información, compresión automática, compresión

adaptativa.

Este trabajo fue procesado en LATEX.

C.C. Reconocimiento

www.bdigital.ula.ve



Índice

Índice de Tablas vii

Índice de Figuras viii

Índice de Algoritmos x

Agradecimientos xi

1 Introducción 1

1.1 Antecedentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Planteamiento del problema . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Justificación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Objetivo General . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Objetivos Espećıficos . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Metodoloǵıa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Estructura del documento . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Marco teórico 8

2.1 Compresión de datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Tipos de compresión . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Medidas de rendimiento . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Recursos computacionales . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Tiempo de CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Ancho de banda . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv

C.C. Reconocimiento

www.bdigital.ula.ve



2.2.3 Memoria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Árboles de decisión . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Descripción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Ventajas y desventajas . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Desarrollo de software iterativo e incremental . . . . . . . . . . . . . . 18

2.4.1 El proceso de desarrollo de software . . . . . . . . . . . . . . . . 18

3 Desarrollo del sistema de transmisión de datos 20

3.1 Requerimientos del sistema . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Requerimientos funcionales . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Requerimientos no funcionales . . . . . . . . . . . . . . . . . . . 21

3.2 Módulo de compresión de datos . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Compresión adaptativa . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Compresión estática . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Capa de transmisión de datos . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Protocolo de transmisión . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 Cliente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Servidor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Mecanismo de compresión automática y adaptativa 28

4.1 Compresión adaptativa . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Aspectos de adaptación . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Abstracción de los sistemas de compresión adaptativa . . . . . . 30

4.2 Algoritmos de compresión . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Snappy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 zlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 bzip2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.4 Estudio comparativo . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Monitores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Carga del CPU en el transmisor . . . . . . . . . . . . . . . . . . 34

4.3.2 Estado de la red . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.3 Tipo de datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

C.C. Reconocimiento

www.bdigital.ula.ve



4.4 Modelo adaptativo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Función objetivo . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Cuantización del espacio de oportunidades . . . . . . . . . . . . 40

4.4.3 Proceso de toma de decisiones . . . . . . . . . . . . . . . . . . . 41

4.4.4 Algoritmo de compresión automática y adaptativa . . . . . . . . 43

5 Evaluación del mecanismo de compresión 45

5.1 Prueba de adaptabilidad . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Diseño del experimento . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.2 Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Pruebas de rendimiento . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Descripción del entorno . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.2 Datos de prueba . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.3 Diseño del experimento . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.4 Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusiones 57

6.1 Recomendaciones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliograf́ıa 60

C.C. Reconocimiento

www.bdigital.ula.ve



Índice de Tablas

3.1 Mensajes utilizados en el protocolo de transmisión de archivos. . . . . . 25

4.1 Niveles de cuantización del espacio de oportunidades. . . . . . . . . . . 41

4.2 Porcentaje de clasificación correcta de los clasificadores estudiados. . . 42

vii

C.C. Reconocimiento

www.bdigital.ula.ve



5.5 Porcentaje de mejora de cada método relativo a no comprimir para datos

tipo latex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Porcentaje de mejora de cada método relativo a no comprimir para datos

tipo multimedia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C.C. Reconocimiento

www.bdigital.ula.ve



Índice de Figuras

2.1 Ejemplo hipotético de cómo un un árbol de decisión podŕıa predecir

interacciones entre genes (adaptado de Kingsford y Salzberg (2008)). . 17

2.2 Fases detalladas y flujo de trabajo del modelo incremental. . . . . . . . 19

3.1 Diseño del módulo de compresión del sistema siguiendo el patrón de

diseño por estrategias. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Diagrama de actividades para el programa cliente. . . . . . . . . . . . . 26

3.3 Diagrama de actividades para el programa servidor. . . . . . . . . . . . 27

4.1 Estudio comparativo de las capacidades de los métodos de compresión

seleccionados. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Pruebas de validación del método de estimación del ancho de banda

disponible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Relación entre el porcentaje de compresión (PC) y el valor del bytecounting. 39

4.4 Matrices de confusión de los clasificadores estudiados. . . . . . . . . . . 43

5.1 Pruebas de adaptabilidad del mecanismo de compresión propuesto ante

cambios en el ancho de banda. . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Porcentaje de mejora de cada método relativo a no comprimir para datos

tipo cero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Porcentaje de mejora de cada método relativo a no comprimir para datos

tipo aleatorio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Porcentaje de mejora de cada método relativo a no comprimir para datos

tipo código. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

viii

C.C. Reconocimiento

www.bdigital.ula.ve



Índice de Algoritmos

4.1 Estimación del ancho de banda disponible . . . . . . . . . . . . . . . . 35

4.2 Cálculo del bytecounting . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Algoritmo de compresión adaptativa propuesto . . . . . . . . . . . . . . 44

x

C.C. Reconocimiento

www.bdigital.ula.ve



Caṕıtulo 1

Introducción

“Nos encontramos en medio de la evolución a los procesadores multinúcleo, lo

cual ocasiona que la capacidad computacional crezca más rápido que la capacidad

de comunicación disponible” (Jägemar et al., 2016). Esto, aunado a la vigencia de la

Ley de Moore, trae como consecuencia un aumento en la demanda de mecanismos de

comunicación de alto rendimiento.

En aplicaciones modernas, el volumen de información generada y potencialmente

transportada es substancial, pudiendo estresar incluso a infraestructuras de

comunicación de muy alto desempeño (Wiseman et al., 2004). La información se

genera en grandes volúmenes y a tazas muy elevadas, pudiendo provenir de sensores,

satélites de observación, fuentes de información especializada o de grandes aplicaciones

de negocios. La compresión juega, aśı, un papel importante en la reducción de volumen

de información que debe ser transmitida o almacenada.

Existen diversos métodos y algoritmos de compresión, cada uno con sus ventajas y

limitaciones. A modo de ilustración, según Jägemar et al. (2016), el algoritmo Snappy

(Google, 2018b) ofrece compresión muy rápida y es apropiado para texto, mientras

que el QLZ (QuickLZ, 2018) ofrece compresión muy rápida y es adecuado sólo para

mensajes pequeños. En consecuencia, dependiendo del tipo de datos a comprimir y de

los recursos disponibles, un algoritmo en espećıfico puede ser el más apropiado de entre

un conjunto dado de algoritmos de compresión.

Factores adicionales, de gran importancia, que se deben tomar en cuenta en el

C.C. Reconocimiento

www.bdigital.ula.ve



1.1 Antecedentes 2

desarrollo de un sistema de compresión, además de los tipos de datos o contenidos a

ser transmitidos, son la carga del CPU y la congestión de la red: un servicio puede

compartir recursos con muchos otros y se debe garantizar que estos nunca lleguen

a un estado de inanición al utilizar toda la capacidad de cómputo en el proceso

de compresión. Además, se debe considerar un equilibrio entre el ancho de banda

disponible y la cantidad de información que se transmite.

1.1 Antecedentes

En las últimas décadas, la compresión de datos y, más espećıficamente, el problema

de la compresión automática o adaptativa, han sido investigados desde muchos ángulos

y con diversos enfoques. Krintz y Sucu (2006) implementaron un sistema llamado

Adaptive Compression Environment (ACE), para el cual se generan, de forma offline,

ĺıneas de regresión que relacionan cada par de algoritmos de compresión disponibles,

las cuales son utilizadas por el sistema para predecir el desempeño de cada algoritmo a

partir del rendimiento del último algoritmo utilizado y aśı seleccionar el más adecuado

en un instante determinado para transmitir el próximo archivo o paquete.

Peterson y Reiher (2016), en su investigación, refutan a Krintz y Sucu (2006)

observando que no se debe generalizar y suponer relaciones lineales entre los distintos

algoritmos de compresión. Presentan, entonces, Datacomp, un sistema cuyo proceso de

toma de decisiones se basa en la afirmación de que un método de compresión tendrá

siempre el mismo desempeño dado un conjunto de condiciones del entorno. De forma

también offline, cuantizan el dominio de las condiciones de los recursos (CPU, ancho

de banda, entre otros) y la compresibilidad de los datos para obtener un modelo que

utiliza el sistema para determinar el algoritmo más apto en un instante dado, a partir

de información de desempeño calculada, en ĺınea, para cada método y para cada clase

del modelo.

Las investigaciones previamente mencionadas tienen en común la utilización, en

mayor o menor medida, de información generada previo a la inicialización del sistema.

Jägemar et al. (2016), por otro lado, realizan la selección automática completamente

en ĺınea, dividiendo el flujo de mensajes en rondas de tamaño fijo, cada una con una

C.C. Reconocimiento

www.bdigital.ula.ve



1.2 Planteamiento del problema 3

etapa inicial en la que se calcula una distribución de probabilidad a partir de los datos

de rendimiento de la ronda anterior, asignando la mayor probabilidad de ser utilizado

al algoritmo que dio mejores resultados en la ronda previa.

Existen algoritmos que permiten regular el esfuerzo aplicado a la compresión, siendo

esto útil en casos en los que se requiera ajustarse a ĺımites de uso del CPU. En este

sentido, Zohar y Cassuto (2014) desarrollaron un sistema aplicado al servidor Web

Apache (Apache Software Fundation, 2018) que, a partir de mediciones instantáneas

de la carga del CPU, ajusta el nivel de compresión del algoritmo gzip (Gailly y Adler,

2018a), protegiendo aśı al host de sobrecargas causadas por peticiones en horas pico

o ataques del tipo de Denegación de Servicios (DoS) y de comprimir cuando no es

necesario.

Es notorio también que, como ya fue mencionado, la compresión no siempre es

adecuada y las investigaciones previamente mencionadas manejan este escenario de

diferentes maneras, ya sea implementando mecanismos de control de tipo PID para

ajustar el tiempo disponible para comprimir (Jägemar et al., 2016), con una clase

particular en el modelo cuantizado para información no compresible (Peterson y Reiher,

2016), comparando predicciones de tiempo de transmisión del archivo comprimido o

sin comprimir (Krintz y Sucu, 2006) o ajustando el nivel de compresión a 0 para evitar

la compresión (Zohar y Cassuto, 2014).

1.2 Planteamiento del problema

La computación enfrenta actualmente un gran reto con respecto a la creciente

brecha existente entre el poder de cómputo y la capacidad de comunicación y de

acceso a memoria, especialmente con la popularización de la computación paralela

y distribuida, los clusters y la computación en malla. La creciente demanda de este y

otros tipo de sistemas distribuidos (sistemas Web, P2P, multimedia, etc.) y el volumen

de información que en estos se transmite, requieren que se desarrollen sistemas de

comunicación más eficientes.

La comunicación, como lo afirman Peterson y Reiher (2016), es una función del

tamaño de la información, el cual puede ser reducido utilizando compresión. Sin

C.C. Reconocimiento

www.bdigital.ula.ve



1.3 Justificación 4

embargo, la compresión puede, en ciertos casos, ser innecesaria e incluso degradar

el desempeño de la comunicación al incrementar el tiempo efectivo de transmisión o

incluso aumentar el tamaño de los datos. Dicho esto, son numerosos los aspectos

que se deben tomar en cuenta al considerar la compresión como estrategia para

mejorar el proceso de comunicación, entre ellos el formato de la información o la

compresibilidad de la misma y los recursos disponibles (CPU, ancho de banda, etc.).

Numerosas investigaciones han tratado este problema por muchos años y desde distintos

ángulos, aportando, sin embargo, soluciones parciales al mismo (Zohar y Cassuto,

2015), incluyendo en su mayoŕıa soluciones atadas a ciertos sistemas espećıficos. En ese

orden de ideas, es necesario continuar ampliando el espectro de soluciones y mecanismos

de simple integración en cuanto al uso de la compresión para mejorar la efectividad de

la comunicación en sistemas que aśı lo requieran.

1.3 Justificación

Los desaf́ıos a los que actualmente hace frente la computación en cuanto al acelerado

incremento del poder de cómputo disponible, en contraste con las capacidades de

comunicación existentes, aunado al creciente volumen de información siendo generada

y transmitida, requieren de métodos innovadores que mejoren y optimicen la utilización

deolvio el internet! los recursos de comunicación disponibles. Debido a la cantidad de

variables involucradas en la comunicación y transmisión de datos, de las cuales depende

su desempeño, no existe aún una solución global al problema de la selección automática

del algoritmo más apto en la utilización de la compresión como medio para la mejora de

la transmisión. Es por esto que se requiere que se continúen las investigaciones en este

campo, de modo que se aporten cada vez más soluciones que conlleven a la optimización

de la utilización de los recursos en cuanto a la comunicación y transmisión de datos se

refiere y, además, se identifiquen las limitaciones y nuevos retos que estas implican.

C.C. Reconocimiento

www.bdigital.ula.ve



1.4 Objetivos 5

1.4 Objetivos

1.4.1 Objetivo General

Desarrollar un sistema de compresión y transmisión de datos que seleccione, de

forma automática y cuando sea conveniente, el algoritmo de compresión más apto de

entre un conjunto de algoritmos disponibles y se adapte a las condiciones instantáneas

de los recursos computacionales y de comunicación disponibles.

1.4.2 Objetivos Espećıficos

• Seleccionar los tipos caracteŕısticos de datos a comprimir y generar la base de

datos de prueba.

• Seleccionar los algoritmos de compresión a utilizar.

• Analizar la información de rendimiento de cada algoritmo para cada tipo de datos

de la base de datos de prueba.

• Seleccionar los recursos computacionales a tomar en cuenta: carga del CPU,

ancho de banda disponible, congestionamiento de la red, uso de memoria, entre

otros.

• Diseñar la estrategia de selección automática del algoritmo más apto y adaptación

a las condiciones de los recursos.

• Implementar el sistema de transmisión y compresión de datos automático y

adaptativo.

• Evaluar el rendimiento del sistema implementado mediante las métricas más

apropiadas encontradas en la literatura.

C.C. Reconocimiento

www.bdigital.ula.ve



1.5 Metodoloǵıa 6

1.5 Metodoloǵıa

El sistema propuesto fue desarrollado siguiendo el modelo iterativo e incremental

en todo el ciclo de vida del desarrollo. No obstante, el núcleo del sistema es la

estrategia de compresión automática y adaptativa, por lo cual se siguieron los siguientes

pasos o actividades como enfoque metodológico para el cumplimiento de los objetivos

planteados:

• Se llevó a cabo una revisión bibliográfica exhaustiva sobre los conceptos

relacionados a la compresión de datos en general y compresión adaptativa.

• Se diseñó una arquitectura preliminar del sistema de transmisión de datos a

partir de un conjunto base de requerimientos, especificando los protocolos y

funcionalidades principales requeridas para el sistema.

• Se procedió con el desarrollo del sistema de transmisión, como ya fue mencionado,

siguiendo el modelo de desarrollo iterativo e incremental.

• El mecanismo de compresión automática y adaptativa fue diseñado e

implementado, integrándolo al sistema de transmisión de datos desarrollado.

• Finalmente, se llevó acabo la evaluación del sistema de compresión automática y

adaptativa, tomando en cuenta diferentes escenarios y pruebas comparativas que

permitieron evaluar el desempeño de la estrategia de compresión diseñada y el

sistema que la implementa.

1.6 Estructura del documento

El resto del presente documento se organiza como sigue.

El caṕıtulo 2 presenta las bases teóricas del presente trabajo. Se reseñan los

conceptos básicos de la compresión de datos y sus medidas de rendimiento. Además,

se presenta un resumen de los recursos computacionales de los que se disponen y sus

potenciales métodos de medición o estimación. Adicionalmente, se describen los árboles

C.C. Reconocimiento

www.bdigital.ula.ve



1.6 Estructura del documento 7

de decisión como algoritmos de clasificación rápida y eficiente y sus aplicaciones, para

finalizar con conceptos del modelo de desarrollo iterativo e incremental.

El caṕıtulo 3 presenta el ciclo de vida del desarrollo del sistema de transmisión de

datos, con las funcionalidades requeridas para proveer compresión de datos estática y

adaptativa.

En el caṕıtulo 4 se presenta el diseño del mecanismo automático y adaptativo

de compresión de datos para la transmisión eficiente de información junto con su

integración en el sistema de transmisión de datos.

En el caṕıtulo 5, se describen las pruebas de evaluación a las que fue sometido el

mecanismo de compresión automática y se discuten los resultados obtenidos.

Finalmente, en el caṕıtulo 6 se presentan las conclusiones del trabajo realizado, aśı

como también las recomendaciones finales y potencial trabajo futuro.

C.C. Reconocimiento

www.bdigital.ula.ve



Caṕıtulo 2

Marco teórico

2.1 Compresión de datos

La compresión es el proceso de reducir el tamaño de un archivo de datos, lo cual

se logra al reducir el volumen de datos o la cantidad de bits que lo representan. En

otras palabras, el resultado de la compresión es una representación compacta de la

información, ocupando menos espacio a cambio de tiempo y capacidad de cómputo.

Pu (2004) define a la compresión de datos como la ciencia y arte de representar la

información de forma compacta, cuyo enfoque se basa en dos pasos: el modelado —

que consiste en la construcción de sistemas de conocimiento para la compresión — y

la codificación — que es el diseño del código que representa la información de forma

compacta. Lo anterior tiene sentido, pues la compresión es una especialización de la

codificación, con la diferencia que en la primera, el resultado es de menor tamaño.

2.1.1 Tipos de compresión

Según los aspectos de la información tomados en cuenta por los distintos algoritmos

de compresión, se deriva una clasificación que depende de si el algoritmo permite

regenerar o no la información intacta después de la descompresión.

C.C. Reconocimiento

www.bdigital.ula.ve



2.1 Compresión de datos 9

Compresión sin pérdidas

Los métodos de compresión sin pérdidas son aquellos que permiten que cada

bit que representa la información pueda ser recuperado, en el mismo orden, en el

proceso de descompresión. Esto significa, en otras palabras, que las señales original y

descomprimida, son numéricamente idénticas. Esta categoŕıa aplica principalmente a

aquellos algoritmos que se fundamentan en la Teoŕıa de la Información y que aprovechan

la redundancia estad́ıstica natural de la mayor parte de la información del mundo real

(Mahmud, 2012).

En este tipo de técnicas de compresión, la capacidad y la tasa de compresión son

funciones de la utilización de los recursos de computación. Estos métodos, por lo

general, se basan en modelos de probabilidad o en la frecuencia de aparición de los

bytes y cadenas de estos — como la codificación de Huffman (Huffman, 1952) — o

en diccionarios, manteniendo tablas de códigos simples que reemplazan cadenas de

śımbolos — como la familia de algoritmos Lempel-Ziv (Ziv y Lempel, 1977).

Compresión con pérdidas

La compresión con pérdidas es posible solo en casos en los que existe cierta tolerancia

a las pérdidas y la realizan aquellos métodos que no permiten reconstruir la información

exactamente. Esto ocurre debido a que estos métodos de compresión reducen el tamaño

de los archivos al eliminar de forma permanente información redundante o irrelevante

para reducir la cantidad de bits que los representan (Mahmud, 2012).

Este tipo de compresión aplica principalmente a imágenes (JPEG, por ejemplo),

audio y video (MPEG-2, por ejemplo), en los que, por lo general, la información se

reconstruye con pérdidas que son perceptibles pero tolerables — como lo es en el

caso de las videoconferencias, lo cual se refleja en la calidad del audio y video —

en cuyo caso podŕıa decirse que la compresión es subjetivamente con pérdidas. Si el

algoritmo de compresión elimina información redundante y/o irrelevante, haciendo que

las pérdidas sean prácticamente imperceptibles, se está frente a un caso de compresión

subjetivamente sin pérdidas — como en el caso del JPG, donde la pérdida es perceptible

solo al acercar (zoom), por lo que la falta de información es invisible a simple vista.

C.C. Reconocimiento

www.bdigital.ula.ve



2.1 Compresión de datos 10

En esta clase, los niveles de compresión neta que se alcanzan pueden ser de hasta 80%

con degradación de la señal, imagen o video prácticamente imperceptible.

2.1.2 Medidas de rendimiento

Esencialmente, son dos las métricas que se utilizan para medir el desempeño de un

algoritmo de compresión: el porcentaje de compresión o compression ratio y la tasa

de compresión o compression rate. Estas métricas refieren a las capacidades de un

compresor, tanto en eficacia como en eficiencia.

Porcentaje de compresión

El porcentaje de compresión o compression ratio (PC) es una medida de

cuantificación de la reducción del tamaño de un archivo o señal por parte de un

algoritmo de compresión. Formalmente, se define como la razón o proporción entre

el tamaño del archivo original y el tamaño del archivo comprimido (Ecuación 2.1) y

depende de las propiedades de los datos y del algoritmo.

PC =
To

Tc

(2.1)

donde:

To = Tamaño original

Tc = Tamaño comprimido

Del mismo modo, puede utilizarse el concepto de ahorro de espacio o space

savings (AE), que representa la reducción del tamaño relativo al tamaño del archivo

descomprimido — es decir, la proporción o porcentaje de reducción de espacio — y se

define como en la ecuación 2.2.

AE = 1− 1

PC
= 1− Tc

To

(2.2)

Dicho esto, una compresión que lleva un archivo de 20MB a una representación

compacta de 5MB, tiene un PC de 4 (20/5 = 4) y un AE de 0,75 (1 - 5/20 = 0,75),

C.C. Reconocimiento

www.bdigital.ula.ve



2.1 Compresión de datos 11

lo que significa que se comprime el archivo a un cuarto de su tamaño original y que se

ahorra un 75% del espacio requerido para almacenarlo, respectivamente. Lo ideal es,

entonces, diseñar compresores con alta capacidad de compresión, pues de esta manera

se consiguen representaciones más compactas de los archivos — permitiendo aśı su

transmisión en forma más rápida o ahorros en recursos de almacenamiento — no sin

tomar en cuenta que altas capacidades de compresión requieren tiempo y esfuerzo de

computación.

Tasa de compresión

La tasa o velocidad de compresión (compression rate o compression speed), TC,

depende de los recursos computacionales (y su estado) y se define como la tasa

o velocidad a la cual un algoritmo reduce la cantidad de bits que representan un

determinado archivo. Se mide en unidades de información por unidad de tiempo

y, considerando recursos computacionales y condiciones constantes, puede depender

únicamente del formato de los datos y del algoritmo mismo. La Ecuación 2.3 define

formalmente la forma de calcular la velocidad de compresión.

TC =
To

tc
(2.3)

donde:

tc = Tiempo de compresión

Aśı mismo, este concepto aplica a la velocidad de descompresión o decompression

speed (TD), para medir el rendimiento del proceso de descompresión (Ecuación 2.4).

TD =
To

td
(2.4)

donde:

td = Tiempo de descompresión

Los algoritmos de compresión, por lo general, intercambian capacidad de

compresión por velocidad (y viceversa), dependiendo de los fines para los que son

C.C. Reconocimiento

www.bdigital.ula.ve



2.2 Recursos computacionales 12

diseñados. Por ejemplo, según Jägemar et al. (2016), los algoritmos LZFX (Collette,

2018) y LZO (Oberhumer, 2018) ofrecen compresión rápida pero con bajo PC, mientras

que el algoritmo LZMA (Pavlov, 2018) ofrece compresión lenta con alto PC, existiendo

también puntos intermedios, como en el caso de LZW (Welch, 1984) y BZIP2 (Seward,

2018). Este fenómeno es ilustrado en el Caṕıtulo 4.

2.2 Recursos computacionales

Todo componente, sea f́ısico o virtual, con capacidades limitadas en un sistema

computacional, se considera un recurso. Un dispositivo conectado a un sistema

computacional y cualquier componente dentro del mismo se considera un recurso.

Los recursos virtuales incluyen los descriptores de archivos, sockets de red, áreas de

memoria, entre otros.

Algunos recursos pueden ser regulados por el kernel, ocasionando que el usuario se

vea limitado o ralentizado proporcionalmente a dicha regulación. Espećıficamente —

y tomando en cuenta aquellos que pueden afectar el rendimiento de la compresión de

datos — los recursos de importancia para la presente investigación son el tiempo de

CPU, el ancho de banda y la memoria.

2.2.1 Tiempo de CPU

El tiempo total que una unidad central de procesamiento (CPU) es utilizado para

procesar instrucciones de un programa de computadora, en lugar de, por ejemplo,

esperar por operaciones de entrada/salida (E/S), es denominado tiempo de CPU y

es asignado y medido en unidades discretas denominadas clocks o ticks del reloj

del sistema, que corresponde, usualmente, a 1/100 segundos en la mayoŕıa de las

arquitecturas (Kerrisk, 2018).

Clasificación del tiempo de CPU

El tiempo de CPU es generalmente clasificado dependiendo de su estado o las tareas

que este estuvo ejecutando en el último intervalo de tiempo. En las páginas del manual

C.C. Reconocimiento

www.bdigital.ula.ve



2.2 Recursos computacionales 13

de Linux (Kerrisk, 2018), espećıficamente en la sección proc, se describe la siguiente

clasificación del tiempo del CPU para los valores reportados por el sistema operativo:

• Tiempo de usuario (tcpu usuario): corresponde al tiempo que el CPU estuvo

ocupado ejecutando instrucciones de procesos en modo usuario.

• Tiempo del sistema (tcpu sistema): corresponde al tiempo que el CPU fue

utilizado ejecutando instrucciones en modo kernel, es decir, instrucciones del

núcleo del sistema operativo o en nombre del usuario, como en el caso de las

llamadas al sistema.

• Tiempo ocioso o idle (tcpu idle): tiempo que el CPU estuvo desocupado y mide

la capacidad no utilizada del CPU.

• Tiempo de espera de entrada/salida (tcpu es): tiempo que el CPU estuvo

desocupado en espera por operaciones de entrada salida (E/S o I/O, por sus

siglas en inglés).

Adicionalmente, el tiempo total del CPU (tcpu total), elapsed time o wall time, es

el tiempo total transcurrido desde el inicio del sistema hasta el instante de su consulta,

mientras que el tiempo total de uso del CPU (tcpu total uso) es el tiempo durante el

cual el CPU fue efectivamente utilizado.

Carga del CPU

El principal uso del tiempo del CPU es la medición de la carga del CPU, que se

define como el porcentaje del tiempo del CPU que fue efectivamente utilizado en un

intervalo de tiempo — lo cual también puede interpretarse como una medida de qué

tan cargado se encuentra el CPU — y puede ser calculado con la Ecuación 2.5 (Zohar

y Cassuto, 2014).

Uso del CPU =
tcpu total uso

tcpu total

=
tcpu total − tcpu idle − tcpu es

tcpu total

(2.5)

C.C. Reconocimiento

www.bdigital.ula.ve



2.2 Recursos computacionales 14

El tiempo total del CPU se calcula de manera intuitiva como la suma de cada tiempo

individual según la clasificación presentada anteriormente de la siguiente manera:

tcpu total = tcpu usuario + tcpu sistema + tcpu idle + tcpu es

De este modo, la Ecuación 2.5 para el cálculo del uso o carga del CPU puede

escribirse como en la Ecuación 2.6.

Uso del CPU =
(tcpu usuario + tcpu sistema + tcpu idle + tcpu es)− tcpu idle − tcpu es

tcpu usuario + tcpu sistema + tcpu idle + tcpu es

=
tcpu usuario + tcpu sistema

tcpu usuario + tcpu sistema + tcpu idle + tcpu es

(2.6)

2.2.2 Ancho de banda

En este caso aplicado a la red, el ancho de banda es la tasa de transmisión de datos

o la cantidad de bits que pueden ser transmitidos por unidad de tiempo. Se mide en

bits por segundo (bit/s) y depende en gran medida del ruido del canal de comunicación.

Pueden extraerse dos conceptos distintos en el caso de los sistemas de comunicación,

siendo estos la capacidad de ancho de banda y el consumo de ancho de banda

(Forouzan, 2006).

Capacidad de ancho de banda

La capacidad de ancho de banda o ancho de banda disponible, representa la

capacidad neta del canal de comunicación o su tasa máxima de transmisión y tiene

un ĺımite teórico definido por el teorema de Shannon-Hartley (Shannon, 1949).

Consumo de ancho de banda

La tasa promedio efectiva de transmisión exitosa a través de un canal de

comunicación se denomina consumo de ancho de banda. Esto difiere del concepto

C.C. Reconocimiento

www.bdigital.ula.ve



2.3 Árboles de decisión 15

de capacidad de ancho de banda debido a que, en aplicaciones reales, los protocolos,

el cifrado y otros factores, agregan un overhead considerable que no permite alcanzar

efectivamente el ancho de banda disponible desde el punto de vista del usuario.

2.2.3 Memoria

Espećıficamente la memoria de acceso aleatorio (RAM), es un recurso que permite

almacenar los datos y código ejecutable actualmente en uso. Este tipo de memoria es

volátil, normalmente costosa y es utilizada como medio de almacenamiento y espacio

de trabajo para el sistema operativo y otras aplicaciones. Una de las principales

restricciones de este tipo de memoria es la diferencia de velocidades con el CPU, pues

se encuentra fuera del chip y las capacidades de comunicación y ancho de banda entre

estos recursos es relativamente limitado.

2.3 Árboles de decisión

El proceso de toma de decisiones para seleccionar el mejor algoritmo de compresión

en un instante determinado, dado un conjunto de variables que definen el estado del

entorno y las propiedades de los datos, puede verse desde la perspectiva del aprendizaje

automatizado, espećıficamente como un problema de clasificación, donde los atributos

corresponden a las caracteŕısticas actuales del entorno, a saber, carga del CPU, estado

de la red, tipos de datos, entre otros.

El problema de clasificar o etiquetar observaciones o individuos de cierto fenómeno o

población en un conjunto finito de clases, es uno de los campos de acción del aprendizaje

automatizado o machine learning y de la ciencia de datos en general y se encuentra

presente en muchos ámbitos del mundo real. Los árboles de decisión son una de las

herramientas más básicas del aprendizaje automatizado para la tarea de clasificación

y pertenecen al subconjunto de algoritmos de aprendizaje supervisado, los cuales

utilizan datos de entrada o entrenamiento, cuyas clases son conocidas, para aprender

— ya sea según patrones encontrados en los datos, reglas o funciones matemáticas —

cómo clasificar individuos no presentes en el conjunto de datos de entrenamiento.

C.C. Reconocimiento

www.bdigital.ula.ve



2.3 Árboles de decisión 16

2.3.1 Descripción

Los árboles de decisión clasifican individuos u observaciones planteando una serie

de preguntas acerca de las caracteŕısticas de dichos individuos. Estas preguntas se

plantean de forma jerárquica en forma de árbol, donde cada nodo interno almacena

una pregunta y tiene tantos hijos como posibles respuestas tenga la pregunta. Los

nodos hojas — aquellos que no tienen ningún hijo — no almacenan preguntas sino

clases. La clasificación en un árbol de decisión se lleva a cabo encontrando el único

camino que lleva, para una observación dada, desde la ráız hacia una hoja, la cual

contiene la clase a la que pertenece dicha observación, de acuerdo a las respuestas

asociadas a las caracteŕısticas de la misma. En algunas variaciones, los nodos hoja no

almacenan una clase espećıfica sino un arreglo de probabilidades o una distribución que

estima la probabilidad de que un individuo que haya alcanzado dicha hoja pertenezca

a una clase particular (Kingsford y Salzberg, 2008).

Las preguntas almacenadas en cada nodo pueden tener numerosas respuestas y

pueden ser tan complicadas como sea necesario, mientras puedan ser computadas de

forma eficiente. Sin embargo, en su forma más sencilla, las preguntas son binarias (si

o no) y se codifican en un árbol binario.

Por ejemplo, dado un conjunto de observaciones conocidas sobre diferentes pares de

genes (Figura 2.1(a)) con caracteŕısticas que definen si este par de genes interactúa. Un

árbol de decisión puede construirse para clasificar pares de genes que no se encuentren

presentes en el conjunto de datos (Figura 2.1(b)). En este ejemplo, las preguntas

en cada nodo son binarias y los nodos hoja contienen la probabilidad de interacción

entre el par de genes que se clasifica (representado por los gráficos de tortas), de modo

que se predice que un par de genes interactúa si su clasificación lleva a un nodo hoja

predominantemente verde.

2.3.2 Ventajas y desventajas

Algunas de las ventajas y desventajas principales de los árboles de decisión, según

Kingsford y Salzberg (2008) y la documentación de la biblioteca de aprendizaje

automático de Python, scikit-learn (Pedregosa et al., 2011), se presentan a

C.C. Reconocimiento

www.bdigital.ula.ve



2.3 Árboles de decisión 17

(a) Datos de entrenamiento. (b) Árbol de decisión resultante.

Figura 2.1: Ejemplo hipotético de cómo un un árbol de decisión podŕıa predecir
interacciones entre genes (adaptado de Kingsford y Salzberg (2008)).

continuación.

Ventajas

• Son mas sencillos de entender e interpretar que otros algoritmos de clasificación,

pues pueden ser visualizados gráficamente.

• El costo de utilizarlos, una vez construidos, es logaŕıtmico con respecto al número

de observaciones utilizadas para entrenarlos.

• Requieren poca preparación de datos, pues manejan naturalmente tanto datos

numéricos como categóricos, aśı como también clasificación multiclase.

• Su modelo es caja blanca, pues cualquier situación u observación es fácilmente

explicable mediante lógica booleana.

Desventajas

• Pueden ser inestables, debido a que pequeños cambios en los datos de entrada

puede resultar en la generación de un árbol completamente diferente.

• Se pueden generar árboles sesgados si una clase predomina en el conjunto de

datos de entrenamiento.

C.C. Reconocimiento

www.bdigital.ula.ve



2.4 Desarrollo de software iterativo e incremental 18

• Se pueden generar árboles demasiado complejos (sobreentrenamiento) cuando no

es posible generalizar muy bien los datos.

2.4 Desarrollo de software iterativo e incremental

El modelo iterativo, como una implementación del ciclo de vida del desarrollo

de software, se enfoca en una implementación inicial y simplificada — generada

basándose en un conjunto de requerimientos iniciales razonablemente bien definidos

— que progresivamente crece en complejidad, con un conjunto de caracteŕısticas

y funcionalidades cada vez mas amplio, hasta que el sistema final esté completo.

Es común que los términos iterativo e incremental se utilicen liberalmente y de

forma intercambiable. El término incremental, entonces, describe las alteraciones

incrementales que se llevan a cabo durante el diseño e implementación de cada nueva

iteración.

Cada iteración corresponde a una secuencia de actividades (ciclo de vida) que

generan un incremento entregable del producto. El primer incremento es denominado

producto núcleo y aborda los requerimientos básicos, dejando otras funcionalidades

complementarias para posteriores incrementos. El usuario final o cliente usa y evalúa

cada incremento y, con su retroalimentación, se genera el plan para el siguiente

incremento. Este proceso se lleva a cabo al finalizar cada incremento y hasta que

se obtenga el producto final (Pressman, 2015).

2.4.1 El proceso de desarrollo de software

El proceso que se sigue en el desarrollo de software bajo el modelo iterativo e

incremental sigue un proceso ćıclico que, después de una fase inicial de planeación,

repite una serie de fases una y otra vez, generando un incremento al final de cada ciclo

o iteración que mejora el software o le añade nuevas funcionalidades. El proceso se

ilustra en la Figura 2.2 y se describe en detalle a continuación.

Planeación y Requerimientos: La fase inicial, incluso antes de comenzar las

iteraciones, pasa por la elaboración de un plan inicial para generar un conjunto

C.C. Reconocimiento

www.bdigital.ula.ve



2.4 Desarrollo de software iterativo e incremental 19

Figura 2.2: Fases detalladas y flujo de trabajo del modelo incremental.

de requerimientos base y preparar el proceso para las fases venideras del ciclo.

Análisis y Diseño: Una vez se tiene un plan y un conjunto de requerimientos,

se realiza un procedimiento de análisis para determinar la lógica de negocios

requerida. En esta fase de diseñan los modelos de bases de datos y se establecen

los aspectos técnicos — como los lenguajes, capas, servicios, protocolos, etc. —

requeridos para cumplir las necesidades de la fase de análisis.

Implementación: En esta fase, se codifican e implementan todos los requerimientos

obtenidos en las fases anteriores.

Pruebas: Se llevan a cabo una serie de procedimiento de prueba para identificar

cualquier potencial problema o bug en la implementación o diseño.

Evaluación: Finalmente, el producto de todas las etapas anteriores es evaluado para

determinar el estado del proyecto e identificar las necesidades y posibles cambios

que deban ser llevados a cabo.

Ya finalizadas todas las etapas de una iteración, es cuando la esencia de este

modelo se pone en práctica: la retroalimentación obtenida de la etapa de evaluación

permite generar un nuevo plan de trabajo y un nuevo conjunto de requerimientos, lo

cual da inicio a una nueva iteración que va a dar como resultado un incremento del

software en desarrollo. Este ciclo se repite hasta alcanzar un nivel de refinamiento

predeterminado o aceptable y se obtenga un producto final (lo que corresponde en el

recuadro “Despliegue” en la Figura 2.2).

C.C. Reconocimiento

www.bdigital.ula.ve



Caṕıtulo 3

Desarrollo del sistema de

transmisión de datos

Un mecanismo de compresión adaptativa debe abstraerse dentro de un sistema o

aplicación que lo implemente para acelerar el proceso de transmisión de datos. En

el presente caṕıtulo se describe el proceso de desarrollo del sistema de transmisión

de datos que, posteriormente, podrá habilitar compresión automática y adaptativa

con la finalidad de aprovechar de forma eficiente los recursos computacionales y de

comunicación subyacentes y mejorar el desempeño de la comunicación.

3.1 Requerimientos del sistema

El proceso de desarrollo, bajo el modelo iterativo e incremental, comienza con una

serie de requerimientos base bien definidos para la obtención del producto núcleo. En

este proyecto, el proceso de recaudación de requerimientos, planeación y evaluación de

las iteraciones semanales se dio en reuniones con el tutor, quien funǵıa, al igual que

el autor, como usuario y miembro del equipo de desarrollo. No obstante, el diseño e

implementación fue llevado a cabo en su totalidad por el autor. Los requerimientos,

listados a continuación, evolucionaron de una iteración a otra, como es de esperarse

con este tipo de metodoloǵıas de desarrollo.

C.C. Reconocimiento

www.bdigital.ula.ve



3.1 Requerimientos del sistema 21

3.1.1 Requerimientos funcionales

Los siguientes son los requisitos funcionales del sistema en desarrollo, es decir,

aquellos que definen la funcionalidad del sistema y sus componentes:

• El sistema debe funcionar como una herramienta de transmisión de datos cliente-

servidor (como scp o rsync1): del lado del servidor, un servicio o demonio espera

por solicitudes de transmisiones que se generan del lado del cliente.

• El sistema debe poder transmitir tanto archivos individuales como directorios

completos.

• Debe permitirse escoger, en tiempo de ejecución, entre diversas estrategias de

compresión disponibles, ya sean estáticas o adaptativas, según opciones emitidas

por el usuario, incluyendo la opción de no compresión.

• Se debe habilitar la compresión y transmisión simultáneas: los archivos se

deben leer en trozos o chunks que, una vez comprimidos, se env́ıan mientras

los siguientes trozos se comprimen. De este modo, se evita que la interfaz de

red esté ociosa mientras se lleva a cabo la compresión, con lo cual se espera una

mejora del desempeño general.

• Como una prueba de concepto, el mecanismo “automático y adaptativo”, en una

primera iteración, comprimirá cada trozo en modalidad round-robin — esto es,

de forma secuencial y ordenada, comenzando con el primer compresor de la lista

(circular) hasta llegar al último, para comenzar de nuevo con el primero de la

lista.

3.1.2 Requerimientos no funcionales

A continuación, se listan los requerimientos no funcionales del sistema, que

describen sus restricciones y criterios para juzgar su operabilidad:

1scp es un programa que implementa el protocolo SCP (Secure Copy Protocol), basado en el
protocolo SSH (Secure Shell), para transferir archivos entre dos — posiblemente remotos — terminales
o hosts. rsync es una herramienta que permite la transferencia de archivos incremental y sincronización
de directorios entre dos hosts, permitiendo compresión y encriptación.

C.C. Reconocimiento

www.bdigital.ula.ve



3.2 Módulo de compresión de datos 22

• Debe ser implementado en el lenguaje C++, utilizando el framework Google Test

(Google, 2018a) para la implementación de las pruebas unitarias.

• Debe funcionar y ser probado en sistemas operativos Linux.

• No debe agregar ningún tipo de overhead adicional al proceso de transmisión de

datos.

3.2 Módulo de compresión de datos

Con respecto a la compresión de datos, el requisito más importante plantea que

el sistema debe poder cambiar, en tiempo de ejecución, el mecanismo de compresión,

según el estado actual del mismo (carga del CPU, ancho de banda disponible, etc.).

Además, debe permitir que el usuario escoja manualmente el método de compresión a

utilizar. El principal objetivo de esto es permitir compresión estática (con un algoritmo

particular) para efectos de realización de pruebas. En este caso, el patrón de diseño

por estrategias provee una solución útil para este problema.

Según Pressman (2015), un patrón de diseño es una abstracción que proporciona

una receta para un problema de diseño en un contexto particular. Espećıficamente, el

patrón de diseño por estrategias provee una solución que encapsula un conjunto

de algoritmos y los hace intercambiables en tiempo de ejecución en un contexto dado.

La utilidad es clara en el contexto del presente trabajo, pues se tiene un conjunto de

algoritmos de compresión, estáticos y adaptativos, que deben ser intercambiables de

acuerdo a las decisiones tomadas por el mecanismo adaptativo o a las opciones emitidas

por el usuario.

3.2.1 Compresión adaptativa

El diseño del módulo de compresión, como diagrama de clases UML, se muestra en la

Figura 3.1, donde es notable que el servidor únicamente interactúa con la clase abstracta

AdaptiveCompressionStrategy, la cual debe ser implementada por las clases que

modelan diferentes mecanismos de compresión automática y adaptativa. De esta

manera, el servidor únicamente configura el objeto adaptiveCompressionStrategy

C.C. Reconocimiento

www.bdigital.ula.ve



3.2 Módulo de compresión de datos 23

para utilizar el indicado por el usuario, con la lógica de cada uno abstráıda en el método

compress(). Hasta el momento de la finalización del desarrollo del sistema, solo

el mecanismo “automático y adaptativo” RoundRobinCompressor estaba disponible,

como una prueba de concepto, el cual comprime cada trozo de datos con uno de los

algoritmos disponibles, de manera equitativa y secuencial. El mecanismo de compresión

adaptativa propuesto en este proyecto se agregó, como una implementación de la clase

abstracta AdaptiveCompressionStrategy, una vez que su diseño fue completado.

Figura 3.1: Diseño del módulo de compresión del sistema siguiendo el patrón de
diseño por estrategias.

También se remarca que el diseño por estrategias fue utilizado de forma “anidada”,

pues la lógica de un algoritmo de compresión particular se abstrae en el método

compress() de la clase abstracta CompressionStrategy, cuyo comportamiento

(comprimir con uno de los compresores en particular) puede ser seleccionado, en tiempo

de ejecución, por las clases que implementan los mecanismos de compresión adaptativa.

Nótese que, para no modificar el comportamiento del servidor, el no comprimir o

“copia” también es considerado un algoritmo o estrategia de compresión (clase Copy).

C.C. Reconocimiento

www.bdigital.ula.ve



3.3 Capa de transmisión de datos 24

3.2.2 Compresión estática

Para efectos de la evaluación del mecanismo de compresión adaptativa propuesto,

surgió un nuevo requerimiento: un mecanismo “adaptativo” que comprima, de forma

estática, con el algoritmo especificado por el usuario. Para este fin, se agregó la clase

SingleCompressor (Figura 3.1), que no paga ningún costo de adaptación y comprime

cada trozo con un mismo compresor. Aunque no es un mecanismo adaptativo, se

implementa bajo esta estrategia para no proveer una interfaz distinta al servidor para

que solicite compresión estática de los datos.

3.3 Capa de transmisión de datos

La capa superior del sistema es una aplicación cliente-servidor, en la cual, un

demonio del lado del servidor se encuentra bloqueado hasta que recibe una petición

de transmisión de un cliente. La petición requiere la ruta del archivo o directorio que

se solicita, aśı como también un parámetro opcional que indica el tipo de compresor

a utilizar; de no recibirse este último parámetro, el sistema utiliza el mecanismo de

compresión adaptativa propuesto en este trabajo.

Para soportar compresión y transmisión simultáneas, el servidor utiliza dos hilos

para comprimir y transmitir, comunicados a través de una cola en la cual el hilo

compresor almacena los trozos de datos a ser consumidos y enviados por el hilo

transmisor. El mismo concepto aplica al cliente, en el que la recepción y la

descompresión son simultáneas.

3.3.1 Protocolo de transmisión

El proceso de transmisión utiliza los mensajes de la Tabla 3.1 y se da de la siguiente

manera:

1. El cliente solicita la transmisión de un archivo o directorio mediante una

instancia del mensaje FileRequestMessage. El cliente puede especificar el modo,

compresor y nivel de compresión a utilizar.

C.C. Reconocimiento

www.bdigital.ula.ve



3.3 Capa de transmisión de datos 25

Tabla 3.1: Mensajes utilizados en el protocolo de transmisión de archivos.

Mensaje Campo Opcional Tamaño máximo (bytes)

FileRequest

path No

3 + tamaño(path)
mode Si

compressor Si
compressionLevel Si

FileHeader

filename No

17 + tamaño(filename)
fileSize No

chunkSize No
lastFile Si

ChunkHeader
compressor No

2
lastChunk Si

2. El servidor recibe la solicitud y, para cada archivo (uno solo si no es un directorio),

env́ıa un mensaje de tipo FileInitialMessage con el tamaño del archivo y de

cada trozo. El último archivo es marcado como lastFile.

2.1. Para cada trozo o chunk de un archivo, env́ıa antes una cabecera

(ChunkHeader). Del mismo modo, el último trozo de cada archivo es

marcado como lastChunk.

3.3.2 Cliente

El diagrama de actividades UML mostrado en la Figura 3.2, presenta el diseño

del programa cliente para el sistema de transmisión de datos desarrollado. Se

representan gráficamente, en cada sección del diagrama, la transmisión y descompresión

simultáneas.

3.3.3 Servidor

Del mismo modo que para el cliente, el diagrama de actividades de la Figura 3.3

muestra el diseño del programa servidor, en el cual se remarca tanto el proceso de

compresión y transmisión simultáneas, como la posibilidad de transmitir una serie de

archivos (un directorio) con una misma petición.

C.C. Reconocimiento

www.bdigital.ula.ve



3.3 Capa de transmisión de datos 26

Nótese, además, la acción “Comprimir trozo”, la cual abstrae cualquier tipo

de decisiones que se tomen en el proceso de compresión. Cabe resaltar también

que el diagrama no muestra el proceso inherente de configuración del objeto

adaptiveCompressionStrategy.

Figura 3.2: Diagrama de actividades para el programa cliente.

C.C. Reconocimiento

www.bdigital.ula.ve



3.3 Capa de transmisión de datos 27

Figura 3.3: Diagrama de actividades para el programa servidor.

C.C. Reconocimiento

www.bdigital.ula.ve



Caṕıtulo 4

Mecanismo de compresión

automática y adaptativa

En la búsqueda de la optimización de la transmisión de datos, se debe minimizar

o maximizar una función objetivo o una medida de rendimiento, tomando en cuenta

los factores que afectan el proceso de cómputo y comunicación. El objetivo de una

estrategia de compresión automática y adaptativa es, entonces, minimizar o maximizar

una función objetivo para aśı mejorar el rendimiento de la transmisión de información.

En este caṕıtulo se presenta el mecanismo propuesto y la función objetivo a

optimizar, aśı como también los procedimientos para la medición o estimación de

los aspectos del entorno que afectan el proceso de compresión y transmisión para su

posterior utilización en el proceso de toma de decisiones.

4.1 Compresión adaptativa

La compresión, al ser el proceso de disminuir el número de bits que representan

cierta información, es una de las estrategias estudiadas como mecanismo para mejorar

el rendimiento de la transmisión de datos, permitiendo disminuir la cantidad de datos

siendo transmitidos y, por consiguiente, aumentando el ancho de banda percibido. Sin

embargo, el uso de la compresión sin ninguna consideración puede ser perjudicial para

las aplicaciones de que sirven de ella.

C.C. Reconocimiento

www.bdigital.ula.ve



4.1 Compresión adaptativa 29

Muchos sistemas y aplicaciones no utilizan la compresión por el inherente riesgo de

degradar el desempeño o la utilizan únicamente cuando se tiene completa certeza de

que el cómputo adicional de la compresión mejorará el desempeño de la comunicación

o al menos no lo degradará. Otros sistemas se basan en configuración manual

para lidiar con el dinamismo de las condiciones de transmisión (normalmente con

intervención humana), como es el caso del servidor Web Apache (Apache Software

Fundation, 2018); no obstante, es imposible para un humano establecer la configuración

óptima lo suficientemente frecuente. Adicionalmente, los algoritmos de compresión se

desempeñan de forma distinta dependiendo tanto del estado los recursos subyacentes

como de la estructura de los datos siendo comprimidos. A esto se añaden numerosos

factores que aumentan el riesgo de utilizar la compresión (o no) sin ningún tipo de

consideración.

4.1.1 Aspectos de adaptación

El proceso de adaptación (utilizar el mejor compresor para cierto tipo de datos,

ajustar el nivel de compresión o incluso deshabilitar la compresión) debe tomar en

cuenta diversos aspectos, entre los cuales se mencionan los siguientes:

• El tiempo de CPU disponible en el sistema en un momento determinado,

debido a que la compresión requiere poder computacional. El rendimiento

de un algoritmo de compresión puede verse degradado cuando el tiempo de

CPU disponible es muy limitado (CPU cargado), pudiendo disminuir la tasa

de transmisión si la tasa de compresión es menor que la primera. La carga del

CPU vaŕıa con el tiempo y con la cantidad de procesos en ejecución, por lo cual

es un aspecto de adaptación significativo que se debe tomar en cuenta.

• El estado actual de la red o el ancho de banda disponible. El dinamismo de

este aspecto se encuentra en que, por lo general, la red se comparte con otros

usuarios, por lo cual su capacidad vaŕıa con el tiempo. En este caso, si la red es

muy rápida, podŕıa no haber tiempo suficiente para comprimir; por el otro lado,

si la red es muy lenta, podŕıa aprovecharse los recursos de cómputo para reducir

la cantidad de datos que se deben transmitir.

C.C. Reconocimiento

www.bdigital.ula.ve



4.1 Compresión adaptativa 30

• El tipo de datos que se transmiten, pues la capacidad de compresión de un

algoritmo en particular depende de los datos que procesa. Por ejemplo, el texto

(ASCII) es más compresible — y se comprime más rápido — que los datos

binarios, principalmente debido a la cantidad máxima de bytes utilizados en

su estructura.

• Los algoritmos de compresión disponibles, los cuales poseen caracteŕısticas

que los diferencian y que determinan su desempeño. Algunos compresores

sacrifican velocidad para generar salidas muy compactas, mientras que otros

están optimizados para comprimir muy rápidamente a costa de tener razones

de compresión pobres. Esto hace que ningún compresor sea óptimo en todas las

condiciones posibles.

4.1.2 Abstracción de los sistemas de compresión adaptativa

Generalmente, los sistemas de compresión adaptativa buscan optimizar el

rendimiento de la transmisión de datos seleccionando, de forma dinámica, el algoritmo

de compresión disponible que mejor se desempeñe en cada conjunto de condiciones, lo

cual es una tarea altamente retadora debido a los aspectos expuestos en la Sección 4.1.1.

Esta similitud entre los sistemas de compresión adaptativa es abstráıda por Peterson

y Reiher (2016) en cuatro componentes principales: métodos, monitores, modelos y

mecanismos.

Métodos

Un método se define como un algoritmo de compresión particular del cual se sirve

un sistema de compresión adaptativa. Existen diversos algoritmos de compresión y

muchos de estos — como el caso de gzip (Gailly y Adler, 2018a) — proveen múltiples

métodos o niveles que modulan el poder computacional aplicado a la compresión.

Monitores

Los monitores son los módulos encargados de medir, estimar o predecir información

necesaria para el proceso de toma de decisiones, como lo son las propiedades de los

C.C. Reconocimiento

www.bdigital.ula.ve



4.2 Algoritmos de compresión 31

datos y de los recursos subyacentes.

Modelos

Podŕıa decirse que los modelos son el núcleo de los sistemas de compresión

adaptativa, pues son los encargados de tomar decisiones a partir de los valores generados

u obtenidos por los monitores.

Mecanismos

Los mecanismos conglomeran los componentes antes mencionados y definen la capa

de abstracción en la que actúa el sistema de compresión, ya sea como una biblioteca

de usuario, proxys remotos, kernel, etc.

4.2 Algoritmos de compresión

Como se menciona en la Sección 4.1.2, los algoritmos de compresión conforman el

primer componente de un sistema de compresión adaptativa. El objetivo es seleccionar

algoritmos con caracteŕısticas bien diferenciadas que lo conviertan en el potencial

mejor método en ciertas oportunidades. En las siguientes subsecciones, se describen

los algoritmos de compresión sin pérdidas utilizados por el mecanismo de compresión

adaptativa que se propone en el presente trabajo.

4.2.1 Snappy

Snappy (Google, 2018b) es una biblioteca de compresión sin pérdidas de código

abierto desarrollada por Google que apunta a obtener compresión decente a muy altas

velocidades. No existe una descripción formal del algoritmo, pero según las notas

distribuidas junto con el código fuente, se basa en el algoritmo LZ77 (Ziv y Lempel,

1977) y, al ser comparado con zlib en su nivel más alto, Snappy es una orden de

magnitud más rápido, generando, sin embargo, salidas con tamaños que van de 20% a

100% más grandes que los de zlib.

C.C. Reconocimiento

www.bdigital.ula.ve



4.2 Algoritmos de compresión 32

4.2.2 zlib

zlib (Gailly y Adler, 2018b) es una biblioteca de compresión sin pérdidas de código

abierto que implementa el algoritmo gzip (Gailly y Adler, 2018a), el cual se basa en

el algoritmo DEFLATE, que a su vez es una variación de LZ77 y de la codificación de

Huffman (Huffman, 1952). Es ampliamente utilizado — por ejemplo, en el kernel de

Linux, el servidor Apache, Git, entre otros — y provee 9 niveles de compresión que

permiten ajustar el poder de cómputo requerido y, por consiguiente, la velocidad de

compresión, a expensas de capacidad de compresión. Este algoritmo es considerado

bien balanceado (Peterson y Reiher, 2016), pues encuentra un equilibro entre su

porcentaje de compresión y la tasa a la que procesa los datos.

4.2.3 bzip2

bzip2 (Seward, 2018) es una biblioteca y un programa de compresión sin pérdidas de

código abierto que utiliza la transformación de Burrows-Wheeler (Burrows y Wheeler,

1994) y codificación de Huffman. Al igual que zlib, bzip2 provee 9 niveles que regulan

la cantidad de memoria que utiliza y, por consiguiente, su capacidad de compresión.

A diferencia de Snappy y zlib, bzip2 es más poderoso, con porcentajes de compresión

mucho mayores pero a tasas muy reducidas.

4.2.4 Estudio comparativo

Los métodos antes mencionados (snappy, zlib y bzip2) fueron seleccionados debido

a las caracteŕısticas que los diferencian unos de otros, lo cual puede convertir a cada

uno en el mejor compresor en diferentes oportunidades. Snappy es un compresor que

optimiza la velocidad, con porcentajes de compresión decentes; bzip2 permite obtener

porcentajes de compresión muy altos a tasas muy bajas; y zlib, por otro lado, es un

punto medio entre snappy y bzip2. La Figura 4.1 muestra un diagrama de dispersión

del porcentaje de compresión o compression ratio contra el tiempo de compresión para

un conjunto de archivos tomados de los corpus de compresión de Calgary (Bell et al.,

1989) y Canterbury (Universidad de Canterbury, 2018). El diagrama muestra cómo

las nubes de puntos tienden a trasladarse más hacia los infinitos de ambos ejes (más

C.C. Reconocimiento

www.bdigital.ula.ve



4.3 Monitores 33

tiempo de compresión, más ganancia) al pasar de compresor a compresor según sus

caracteŕısticas ya mencionadas.

Figura 4.1: Estudio comparativo de las capacidades de los métodos de compresión
seleccionados.

4.3 Monitores

En la Sección 4.1.1 se trataron solo algunos de los aspectos que se deben considerar

para la toma de decisiones en sistemas de compresión adaptativa. Desafortunadamente,

es imposible monitorear o estimar todos los aspectos posibles que afectan el proceso

de transmisión y compresión, pues se correŕıa el riesgo de degradar el desempeño solo

en la etapa de monitoreo. Por lo tanto, es necesario elegir un conjunto de factores

que permitan modelar las propiedades del entorno y de los datos en un instante

determinado. En este trabajo, se va a tratar con tres aspectos que se consideran

de gran importancia y que podŕıan modelar de forma eficiente el entorno: la carga

del CPU de la máquina que transmite, el estado de la red y el tipo de datos siendo

transmitidos.

C.C. Reconocimiento

www.bdigital.ula.ve



4.3 Monitores 34

4.3.1 Carga del CPU en el transmisor

La carga del CPU es una medida que determina indirectamente el tiempo de CPU

disponible para operar en un instante determinado. Si la carga es alta en un intervalo

de tiempo determinado, significa que el CPU ha estado siendo utilizado intensivamente

por otros procesos. La carga del CPU es calculada utilizando el método mostrado en la

Sección 2.2.1 como el porcentaje de tiempo que el CPU ha sido utilizado efectivamente

en en último intervalo de tiempo, de tal manera que la Ecuación 2.5 se reescribe como

en la Ecuación 4.1.

Uso del CPU =
∆tcpu total uso

∆tcpu total

(4.1)

El monitor del CPU es un proceso independiente que reporta el valor en un segmento

de memoria compartida. Los valores necesarios para el cálculo de la carga de CPU son

léıdos del sistema de archivos /proc (sistema de archivos de procesos) de los sistemas

operativos Unix, espećıficamente del archivo /proc/stat, en el cual se encuentran,

en tiempo real, estad́ısticas y métricas del sistema desde que se inició, incluyendo los

tiempos que el CPU estuvo realizando diferentes tipos de tareas. Se debe seleccionar un

intervalo lo suficientemente corto para seguir el ritmo al dinamismo de las condiciones

pero tomando en cuenta que el cálculo requerido para monitorear la carga del CPU

puede cargarlo en śı mismo si se calcula con una frecuencia muy alta. En este trabajo

se seleccionó un intervalo de 0,5 segundos para este fin.

4.3.2 Estado de la red

Se decidió utilizar el ancho de banda disponible (ABD) como métrica para

determinar el estado del canal de transmisión. Para esto, se estima el ABD midiendo

la tasa a la cual el kernel env́ıa los datos del socket. El Algoritmo 4.1 muestra, en

pseudocódigo, el procedimiento para la estimación del ABD.

La técnica que se utilizó para estimar el ABD (que se muestra en el Algoritmo

C.C. Reconocimiento

www.bdigital.ula.ve



4.3 Monitores 35

Algoritmo 4.1 Estimación del ancho de banda disponible

1: procedimiento EstimarABD(socket)
2: ti ← obtener tiempo actual()
3: bytes en buffer en ti ← 0
4: mientras true hacer
5: datos← esperar datos para enviar()
6: tf = obtener tiempo actual()
7: ∆t← tf − ti
8: si ∆t ≥ UMBRAL entonces
9: bytes en buffer en tf ← obtener bytes en buffer(socket)

10: ABD← (bytes en buffer en tf − bytes en buffer en ti) / ∆t
11: escribir datos a enviar(datos, socket)
12: bytes en buffer en ti ← obtener bytes en buffer(socket) + tamaño(datos)
13: ti ← obtener tiempo actual()
14: si no
15: escribir datos a enviar(datos, socket);
16: bytes en buffer en ti ← bytes en buffer en ti + tamaño(datos)
17: fin si
18: fin mientras
19: fin procedimiento

4.1) consiste en rastrear las adiciones al buffer de escritura del socket y los tiempos

correspondientes para posteriormente utilizar la llamada al sistema ioctl (UNIX) con

el parámetro SIOCOUTQ para obtener la cantidad de bytes almacenados en el buffer

de escritura en un instante determinado y aśı estimar el ABD. En el algoritmo, la

funciones obtener bytes en buffer() y escribir datos a enviar() corresponden

a la llamada al sistema ioctl y a la función send() de los sockets, respectivamente.

En cuanto a la constante UMBRAL, es definida como el intervalo de tiempo mı́nimo

entre estimaciones del ancho de banda, pues se debe tener cierta cantidad de datos

acumulados en el buffer para obtener una medición válida del ABD; este umbral fue

definido en 10 ms, con la suposición de tener un flujo de datos continuo dado que se

desea mejorar la eficiencia de la transmisión.

Validación

Con la intención de validar el algoritmo de estimación del ABD, se realizó la

siguiente prueba: utilizando el sistema de transmisión de datos desarrollado en modo

copia, se midió el ancho de banda para 60 transmisiones de 60 segundos de duración

C.C. Reconocimiento

www.bdigital.ula.ve



4.3 Monitores 36

cada una — tomando el promedio de los valores reportados por el sistema en cada

transmisión — con diversos ĺımites de ancho de banda. Para contrastar, se realizaron

las mismas pruebas, en igualdad de condiciones, con el software iPerf (iPerf, 2018)

que mide el ABD entre dos interfaces de red. El error relativo entre las mediciones

fue calculado, tomando como valores reales los reportados por iPerf, resultados que

pueden observarse en la Figura 4.2. En la Figura 4.2(a) se puede observar que, para

la mayoŕıa de las mediciones, el error relativo es muy cercano al 0, lo cual se confirma

en el digrama de caja de la Figura 4.2(b), el cual muestra solo 3 valores at́ıpicos, con

una media del 5.5%, desviación estándar de 5.05% y el 50% de las observaciones entre

el 1.8% y 6.8%. Con esta información, es posible aceptar las mediciones del método

propuesto como válidas.

(a) Histograma de frecuencia de aparición de
errores relativos.

(b) Diagrama de caja del error relativo de
las mediciones.

Figura 4.2: Pruebas de validación del método de estimación del ancho de banda
disponible.

4.3.3 Tipo de datos

Existen diversos métodos para estimar las propiedades o la compresibilidad de

los datos: se podŕıa utilizar el contexto para este fin, como el formato o extensión

de los archivos, mas sin embargo esto ataŕıa al sistema al concepto de archivo que,

adicionalmente, debeŕıa tener extensión, lo cual no es un escenario completamente

realista; se puede realizar un muestro de los datos a transmitir y comprimirlos

con un algoritmo lo suficientemente rápido y observar el porcentaje de compresión,

C.C. Reconocimiento

www.bdigital.ula.ve



4.3 Monitores 37

pero esto conllevaŕıa pérdidas cuando la compresión realizada sea descartada; Harnik

et al. (2013) proponen heuŕısticas, tanto para pre-compresión como para compresión

en ĺınea, basadas en entroṕıa y la cantidad de bytes únicos que representan los

datos; no obstante, Peterson y Reiher (2016) proponen una técnica muy sencilla pero

igualmente eficiente y poderosa para estimar no las propiedades de los datos, sino su

compresibilidad, la cual se describe a continuación.

Bytecounting

La técnica propuesta por Peterson y Reiher (2016) (la cual es utilizada en el presente

trabajo para estimar la compresibilidad), se denomina bytecounting (BC) o “conteo

de bytes” (aunque su traducción literal al español no refleja su esencia) y estudia la

distribución de bytes únicos en el archivo a comprimir. El BC es un número entero

que indica la cantidad de bytes en la entrada que aparecen al menos N veces, donde

N es un umbral que depende del tamaño de los datos de entrada y se define como

N = tamaño(datos)/256. En otras palabras, el BC indica el número de bytes que

aparecen al menos la cantidad de veces que debeŕıan aparecer si todos los bytes posibles

(28 = 256) estuvieran uniformemente distribuidos. El BC, entonces, permite medir la

uniformidad de los bytes que representan la entrada. El principio del cálculo del BC

es presentado en el Algoritmo 4.2.

Algoritmo 4.2 Cálculo del bytecounting

1: función Bytecounting(datos)
2: ocurrencias[256]← {0, 0, ..., 0}
3: BC← 0
4: umbral← tamaño(datos) / 256
5: para byte ∈ datos hacer
6: ocurrencias[byte]← ocurrencias[byte] + 1
7: fin para
8: para ocurrence ∈ ocurrences hacer
9: si ocurrence ≥ umbral entonces

10: BC← BC + 1
11: fin si
12: fin para
13: retornar BC
14: fin función

C.C. Reconocimiento

www.bdigital.ula.ve



4.4 Modelo adaptativo 38

Mientras menor sea el BC, menor la cantidad de caracteres que relativamente

representan los datos de entrada; valores de BC en el extremo superior indican que la

entrada está compuesta por la mayoŕıa de todos los bytes posibles. Para ejemplificar,

un BC de 1 indica que la entrada esta representada virtualmente por un único byte, lo

cual la hace altamente compresible. Un valor de BC de 127 indica que la mitad de los

bytes posibles aparecen frecuentemente, lo cual, al igual que valores de BC mayores,

da indicios de que los bytes se encuentran distribuidos uniformemente, la cual es una

propiedad t́ıpica de datos incompresibles.

Validación del bytecounting

Para mostrar y validar lo que el BC representa, se llevó a cabo una prueba en la

que se comprimieron los mismos archivos utilizados en el estudio comparativo de los

algoritmos de compresión en la Sección 4.2.4, a los cuales se añadieron 5 archivos de 1

MB cada uno con datos aleatorios extráıdos del dispositivo /dev/urandom (Linux), una

serie de archivos multimedia personales del autor y 1 archivo de 1 MB con un solo byte

repetido (extráıdo del dispositivo /dev/zero). La Figura 4.3 muestra un gráfico de la

relación entre el porcentaje de compresión y el BC para cada uno de los archivos, donde

se observa que, efectivamente, el porcentaje de compresión tiende a 1 (cero ganancia)

cuando el BC aumenta; de hecho, la ganancia de compresión es nula para valores de

BC entre 100 y 256. Es decir, si la distribución de los bytes es prácticamente uniforme,

no se obtiene ganancia alguna al realizar la compresión.

4.4 Modelo adaptativo

El modelo propuesto se basa en dos principios propuestos por Peterson y Reiher

(2016):

1. El concepto de oportunidad de compresión, que definen como el conjunto de

condiciones (propiedades de los datos y estado del entorno) que determinan el

desempeño de un método de compresión en un instante determinado.

C.C. Reconocimiento

www.bdigital.ula.ve



4.4 Modelo adaptativo 39

Figura 4.3: Relación entre el porcentaje de compresión (PC) y el valor del
bytecounting.

2. El supuesto de que el desempeño de un algoritmo de compresión en una

oportunidad dada es constante, debido al comportamiento determinista de los

mismos.

Si se puede determinar el espacio de oportunidades y el conjunto de aspectos

que definen una oportunidad, es viable entonces conocer el mejor compresor en cada

oportunidad posible.

4.4.1 Función objetivo

El mecanismo de compresión adaptativa propuesto tiene el objetivo de seleccionar

el mejor algoritmo de compresión en una oportunidad dada. El reto no es solo saber

cuál es el mejor compresor, sino por qué lo es y como decidirlo.

El ancho de banda disponible determina la tasa a la cual se transmiten los datos

a través de una canal de comunicación. No obstante, la tasa a la cual se transmite la

información puede ser mayor que el ABD. Cuando se habilita la compresión, es posible

C.C. Reconocimiento

www.bdigital.ula.ve



4.4 Modelo adaptativo 40

transmitir la misma información representada con menos datos, lo que aumentaŕıa el

ABD percibido. Esto se conoce como Tasa Efectiva de Transmisión (TET) (Peterson

y Reiher, 2016) y se modela con la Ecuación 4.2.

TET = mı́n(ABD, TC) ∗ PC (4.2)

donde:

ABD = Ancho de banda disponible

TC = Tasa o velocidad de compresión

PC = Porcentaje de compresión o compression ratio

En la Ecuación 4.2, si se comprime a velocidades menores al ABD, la TET es

definida por la velocidad de compresión, mientras que si se comprime más rápido de lo

que se pueden transmitir los datos, la TET es definida por el ABD. De igual manera,

el factor PC indica la cantidad de información (no de datos) que se transmiten, sin

importar la cantidad de bytes que la representan — es decir, si se obtiene un PC de

2, se transmite la misma cantidad de información pero con la mitad de los bytes que

ciertamente se requieren para su representación original. De este modo, el objetivo

del mecanismo propuesto se convierte en encontrar y seleccionar, en una oportunidad

dada, el algoritmo de compresión que provea la mayor TET.

4.4.2 Cuantización del espacio de oportunidades

Determinar el espacio de oportunidades (ABD, carga del CPU y BC) a alta

resolución es abrumador y, debido a la continuidad de algunos de ellos, seŕıa

prácticamente imposible determinar una oportunidad de manera exacta. Por lo tanto,

se propone cuantizar o discretizar el espacio de oportunidades, como lo proponen

Peterson y Reiher (2016), pero a mayor resolución, debido al tipo de modelo de toma

de decisiones que se utiliza en este trabajo.

La Tabla 4.1 muestra los niveles de cuantización seleccionados. La carga del CPU

se dividió en intervalos de 10%; el ABD se dividió en intervalos de 5 Mbits/s para

valores menores a 100 Mbits/s, mientras que para valores entre 100 Mbits/s y 1 Gbit/s

los niveles se dividen en intervalos de 100 Mbit/s; el BC es un caso especial, dividido en

C.C. Reconocimiento

www.bdigital.ula.ve



4.4 Modelo adaptativo 41

Tabla 4.1: Niveles de cuantización del espacio de oportunidades.

Nivel Carga del CPU ABD BC

0 [0%, 10%) (0 Mbit/s, 5 Mbit/s) [1, 10)
1 [10%, 20%) [5 Mbit/s, 10 Mbit/s) [10, 20)
...

...
...

...
9 [90%, 100%) [45 Mbit/s, 50 Mbit/s) [90, 100)
10 100% [50 Mbit/s, 55 Mbit/s) –
... –

...
19 [95 Mbit/s, 100 Mbit/s)
20 [100 Mbit/s, 200 Mbit/s)
21 [200 Mbit/s, 300 Mbit/s)
...

...
28 [900 Mbit/s, 1 Gbit/s]

intervalos de 10, únicamente para valores menores a 100. Por los resultados encontrados

y mostrados en la Sección 4.3.3, el mecanismo de compresión ignora las entradas con

BC mayor o igual a 100 y los env́ıa sin comprimir.

4.4.3 Proceso de toma de decisiones

La decisión de seleccionar el mejor algoritmo de compresión en una oportunidad

dada, puede verse como una tarea de clasificación, tal y como se le conoce en el ámbito

del aprendizaje automatizado. Para esto, es necesario conocer, en la instalación del

sistema, la información del desempeño de cada compresor en cada oportunidad posible.

Conjunto de datos de entrenamiento

Para recaudar los datos de entrenamiento, se realizaron transmisiones de un

conjunto de archivos de prueba extráıdos de los corpus de Calgary, Canterbury y Silesia

(Universidad Politécnica de Silesia, 2018), a los cuales se añadieron cinco archivos de

1 MB, cada uno, de datos aleatorios, cinco archivos de 1 MB, cada uno, con un único

byte repetido y un conjunto de archivos multimedia propios del autor, totalizando 146

MB.

En total, se realizaron transmisiones de los archivos con cada compresor (incluyendo

compresión “nula” o copia), bajo 16 ĺımites de ancho de banda — modulado con el

C.C. Reconocimiento

www.bdigital.ula.ve



4.4 Modelo adaptativo 42

Tabla 4.2: Porcentaje de clasificación correcta de los clasificadores estudiados.

Porcentaje de clasificación correcta

Clasificador Entrenamiento Prueba

SVM 92,9% 85,4%

Árbol de decisión 91,4% 84,7%
AdaBoost 100% 85,4%
Bayesiano ingenuo 69,3% 68,8%

software Wondershaper (Hubert et al., 2018) — y 5 niveles de carga artificial al CPU,

para un total de 320 transmisiones, las cuales se llevaron a cabo 10 veces, cada una,

para tener datos lo suficientemente correctos. En cada oportunidad, fueron registrados

la TET y los datos que definen la oportunidad en ese instante para posteriormente

extraer, para cada oportunidad, el compresor con la mayor TET promedio.

El clasificador

Cuatro tipos de clasificadores fueron estudiados, siendo estos las máquinas de

vectores de soporte (SVM, por sus siglas en inglés), árboles de decisión, AdaBoost

(con árboles de decisión como clasificadores débiles) y un bayesiano ingenuo. Las

exactitudes de prueba y entrenamiento, obtenidos dividiendo los datos disponibles en

datos de entrenamiento y prueba en proporción 9:1, se muestran en la Tabla 4.2.

La diferencia de resultados en la Tabla 4.2 entre el bayesiano ingenuo y los demás

clasificadores es suficiente como para descartarlo. Los mejores resultados se obtuvieron

con el SVM y el AdaBoost, mas sin embargo, con el árbol de decisión se obtuvieron

resultados prácticamente idénticos a los del SVM. La Figura 4.4 muestra las matrices

de confusión para los clasificadores. De nuevo, se reafirma la decisión de prescindir del

bayesiano ingenuo. Los mejores resultados se ven con el AdaBoost, con porcentajes

de exactitud sobre el 80% en todas las clases. Sin embargo, por la diferencia de

complejidad de éstos y de los SVM multi-clase con respecto al árbol de decisión,

tanto en funcionamiento como en implementación, se decidió utilizar este último como

clasificador para este problema. Se debe recordar que es necesario un proceso de toma

de decisiones lo suficientemente rápido y sencillo para no agregar overhead innecesario

a la transmisión de datos.

C.C. Reconocimiento

www.bdigital.ula.ve



4.4 Modelo adaptativo 43

Figura 4.4: Matrices de confusión de los clasificadores estudiados.

4.4.4 Algoritmo de compresión automática y adaptativa

Es momento de definir el algoritmo de compresión automática propuesto, el cual se

muestra en el Algoritmo 4.3, sobre el cual se resaltan algunas caracteŕısticas:

• Cuando se solicita la compresión de un trozo de datos incompresibles (BC ≥ 100),

el algoritmo env́ıa los siguientes 512 KB sin costo de adaptación.

• Cuando el porcentaje de ocupación del buffer de salida del socket es menor al

5%, lo cual ocurre principalmente al comienzo de la transmisión, se comprime

con zlib. Esto se decidió debido a que al comienzo de la transmisión no se

tiene información para el clasificador, por lo tanto se debe utilizar un compresor

equilibrado para no reducir la ganancia ni degradar el desempeño a bajos y altos

ABD, respectivamente.

C.C. Reconocimiento

www.bdigital.ula.ve



4.4 Modelo adaptativo 44

• Se debe recordar que el clasificador puede decidir utilizar “copia” como el

mejor compresor, por lo cual el método comprimir encapsula la abstracción del

compresor “copia” y retorna los datos originales inmediatamente.

Algoritmo 4.3 Algoritmo de compresión adaptativa propuesto

1: función ComprimirAdaptativamente(datos)
2: bytesAEnviarSinComprimir← 0 . Variable estática
3: porcentajeDatosEnBuffer← 0 . Variable estática
4: si bytesAEnviarSinComprimir > 0 entonces
5: bytesAEnviarSinComprimir← bytesAEnviarSinComprimir− tamaño(datos)
6: retornar datos . No comprimir
7: fin si
8: BCActual← Bytecounting(datos)
9: si BCActual ≥ 100 entonces

10: bytesAEnviarSinComprimir← 512 ∗ 1024
11: retornar datos . No comprimir
12: fin si
13: porcentajeDatosEnBuffer← obtener porcentaje ocupación bufer socket()
14: si porcentajeDatosEnBuffer < 5% entonces
15: datosComprimidos← comprimir(datos, ZLIB)
16: retornar datosComprimidos
17: fin si
18: cargaCPU← leer carga cpu()
19: ABD← leer abd()
20: compresor← clasificar(cargaCPU, ABD, BCActual)
21: datosComprimidos← comprimir(datos, compresor)
22: retornar datosComprimidos
23: fin función

C.C. Reconocimiento

www.bdigital.ula.ve



Caṕıtulo 5

Evaluación del mecanismo de

compresión

Con el sistema de transmisión desarrollado y el mecanismo de compresión

adaptativa diseñado, implementado e integrado al sistema de transmisión, se presentan

en este caṕıtulo las pruebas realizadas para evaluar el rendimiento y las capacidades

adaptativas del sistema en cuestión.

5.1 Prueba de adaptabilidad

El mecanismo de compresión propuesto debe ser adaptativo, por lo cual, para probar

si efectivamente se adapta a cambios en el entorno, se llevaron a cabo dos pruebas

sencillas que muestran la adaptabilidad del mecanismo ante cambios en el estado de la

red.

5.1.1 Diseño del experimento

Para la prueba de adaptabilidad, se utilizó un conjunto de 1000 archivos de 1 MB,

cada uno, totalizando 1 GB, compuestos de un único byte repetido. Los experimentos

se describen a continuación:

1. Los datos fueron transmitidos a un ĺımite de 1 Gbit/s y, en cierto punto de

la transferencia, se limitó el ancho de banda a 15 Mbits/s para,poco después,

C.C. Reconocimiento

www.bdigital.ula.ve



5.1 Prueba de adaptabilidad 46

restablecerlo a 1 Gbit/s. En este caso, se espera que la compresión pase

de realizarse mediante el compresor más rápido (snappy) o sin comprimir en

absoluto cuando el ancho de banda es superior, a realizarse a través un método

computacionalmente intensivo con altos porcentajes de compresión como bzip2 o

zlib cuando el ancho de banda es menor.

2. El segundo experimento fue similar: la transmisión comenzó a 15 Mbits/s, en

cierto punto se moduló a 1 Gbit/s y se restableció a 15 Mbits/s. El resultado

esperado es, ciertamente, el reverso del que se espera en el primer experimento.

5.1.2 Resultados

La Figura 5.1 muestra los resultados de los experimentos realizados. Según la

Figura 5.1(a), el mecanismo de compresión adaptativa, en efecto, reacciona ante una

variación de ancho de banda de alto a bajo seleccionando mayoritariamente un método

con mejores porcentajes de compresión, siendo, en este caso, zlib; en esta situación, el

uso de zlib en unos cuantos mensajes al comienzo de la transmisión se explica en la

Sección 4.4.4. Del mismo modo, en la Figura 5.1(b) se observa cómo, ante variaciones

del ancho de banda de bajo a alto, el mecanismo selecciona un método más ligero

(snappy). En ambos casos se observa el mismo fenómeno: para altos anchos de banda,

el sistema reacciona disminuyendo el costo computacional al usar un método más ligero,

mientras que para anchos de banda bajos, se utiliza intensivamente el CPU en tareas

de compresión para reducir el volumen de información transmitida.

Un aspecto muy importante que se extrae de los resultados de estas pruebas, es

el hecho de que, para el nivel más alto de ancho de banda disponible, el sistema no

decide no comprimir, sino que utiliza snappy, lo cual da indicios de que la rapidez de

este algoritmo es tal, que para que su utilización se convierta en un cuello de botella,

se debe contar con anchos de banda mayores a 1 Gbit/s.

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 47

(a) Variación de ABD de alto a bajo. (b) Variación de ABD de bajo a alto.

Figura 5.1: Pruebas de adaptabilidad del mecanismo de compresión propuesto ante
cambios en el ancho de banda.

5.2 Pruebas de rendimiento

El principal motivo de un mecanismo de compresión adaptativa es mejorar el

rendimiento de la transmisión de información mediante la compresión, cuando esta

sea beneficiosa, de acuerdo al tipo de información que se transmite y al estado de los

recursos computacionales y de comunicación subyacentes. La mayoŕıa de los sistemas

de transmisión de datos no utiliza compresión o la utiliza de manera estática, es

decir, utilizando un mismo algoritmo durante toda la transmisión (Peterson y Reiher,

2016). Debido a esto, se decidió estudiar el rendimiento del mecanismo propuesto ante

compresión estática (un algoritmo fijo o no comprimir en absoluto).

5.2.1 Descripción del entorno

Las pruebas fueron realizadas en una LAN gigabit privada, con el transmisor

ejecutándose en un procesador Intel i7-5820K y el receptor en un Intel i5-4690, con

6 y 4 núcleos de CPU disponibles, respectivamente. Para modular el ancho de banda

disponible se utilizó el software Wondershaper (Hubert et al., 2018). La carga del CPU,

por otro lado, fue modulada lanzando procesos que, de forma continua, leen 32 KB de

datos del archivo especial /dev/urandom (Linux), los comprimen con zlib y escriben el

resultado en /dev/null; se realizaron pruebas con 0, 2, 3 y 5 procesos de carga.

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 48

5.2.2 Datos de prueba

Para representar un amplio rango de tipos de información con caracteŕısticas

variadas, fueron recolectados 5 tipos de datos con variados porcentajes de compresión

esperados: (a) datos tipo código, conformados por una recopilación de código fuente

de varias bibliotecas y frameworks libres y de código abierto, totalizando 74 MB;

(b) datos tipo latex, conformados por un conjunto de códigos LATEX de proyectos

(tesis, papers, etc.), para un total de 71 MB; (c) datos tipo multimedia, los cuales

consisten en una serie de 76 MB de archivos multimedia (imágenes, audio, videos,

archivos pdf, etc.) propios del autor; y por último, los datos tipo (d) cero (60 MB) y

(e) aleatorio (60 MB), los cuales consisten en 60 archivos de 1 MB, cada uno, de un

byte repetido (tomado de /dev/zero) y datos aleatorios (tomados de /dev/urandom),

respectivamente.

Los datos tipo cero y aleatorio representan los extremos en cuanto a ganancia de

compresión, siendo el mejor y peor caso, respectivamente. Los datos tipo código se

componen, en su mayoŕıa, de archivos de texto plano (código fuente), que es altamente

compresible. Por otro lado, los datos tipo multimedia son muy poco compresibles

debido a que, la mayoŕıa, se almacena en formatos pre-comprimidos (mp3, jpg,

etc.). Los datos tipo latex, por su parte, representan el punto intermedio, con una

relación entre imágenes (poco compresible) y texto (muy compresible) relativamente

equilibrada.

5.2.3 Diseño del experimento

El experimento consistió en una serie de transmisiones, para cada conjunto de

datos descritos en la Sección 5.2.2, en diferentes condiciones (ĺımite de ancho de banda

y carga del CPU) y utilizando el mecanismo de compresión adaptativa propuesto,

las cuales fueron cronometradas. Adicionalmente, y en igualdad de condiciones, las

mismas transmisiones fueron realizadas utilizando compresión estática — utilizando

snappy, zlib y bzip2 — y sin comprimir (copia). Los experimentos fueron realizados

un total de 10 veces para tener datos lo suficientemente representativos.

Cada método de compresión (los estáticos y el adaptativo) fue comparado con

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 49

el caso por defecto (copia), para medir la ganancia de cada uno en las diferentes

oportunidades. Para esto, se calculó, para cada método, la ganancia, expresada en

porcentaje, con respecto a la transmisión sin compresión, con la Ecuación 5.1.

GP =
TTc − TTm

TTc

× 100 (5.1)

donde:

GP = Ganancia porcentual respecto a la transmisión sin compresión

TTc = Tiempo de transmisión sin compresión (o copia)

TTm = Tiempo de transmisión con el método m

En este sentido, un valor de GP de 50% significa que el método en cuestión llevó

el tiempo de transmisión a la mitad, por lo cual un GP de 100% es imposible, debido

a que significaŕıa que el tiempo de transmisión fue de 0. Del mismo modo, un GP de

-50% significa que con el método en cuestión, la transmisión de realizó en 1,5 veces el

tiempo que llevó la transmisión sin compresión, es decir, que el tiempo de transmisión

aumentó en la mitad, mientras que un GP de -100% indica que el tiempo de transmisión

aumento el doble.

5.2.4 Resultados

Las siguientes gráficas muestran los resultados del experimento diseñado, en las

que las ĺıneas correspondientes a snappy, zlib y bzip2 denotan la mejora obtenida

por dichos métodos estáticos, mientras que autocomp denota la mejora obtenida por

el mecanismo de compresión automática y adaptativa propuesto en este trabajo.

Datos tipo cero

Los datos tipo cero (aquellos consistentes de un único byte repetido) corresponden

al mejor caso y es donde se debeŕıan obtener los resultados de mejor ganancia a través

de la compresión. La Figura 5.2 muestra los resultados para los datos tipo cero, donde

se puede observar que el método adaptativo propuesto supera el desempeño de los tres

métodos estáticos para anchos de banda de hasta 100 Mbits/s, disminuyendo el tiempo

de transmisión incluso en 99% a 10 Mbits/s. No obstante, snappy supera a autocomp

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 50

para anchos de banda sobre los 100 Mbits/s. El que autocomp supere tanto a zlib

como a bzip2 pero no a snappy a altos anchos de banda, indica que (a) se está usando

snappy intensivamente, (b) posiblemente se esté intercalando con el método “copia”

y/o (c) se está pagando costosamente el bytecounting y la clasificación. Según

los resultados de las pruebas de adaptabilidad (Sección 5.1.2), la respuesta al anterior

cuestionamiento se encuentra en los items a y c: śı se está tomando la decisión acertada,

pero se está pagando costosamente el bytecounting y la clasificación. Debido a estos

resultados, se espera que, probablemente, snappy supere a autocomp mientras los datos

sean lo suficientemente compresibles a altos anchos de banda.

(a) Pruebas con 0 procesos de carga. (b) Pruebas con 2 procesos de carga.

(c) Pruebas con 3 procesos de carga. (d) Pruebas con 5 procesos de carga.

Figura 5.2: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo cero.

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 51

Datos tipo aleatorio

El peor escenario se trata de la trasmisión de datos aleatorios, los cuales son

incompresibles y se espera que todos los métodos degraden el desempeño o, a lo sumo,

lo igualen al de no comprimir. Los resultados para este tipo de datos se muestran

en la Figura 5.3. autocomp logra mantener su rendimiento cercano al de la copia, al

igual que snappy, mientras que zlib comienza a degradar el desempeño visiblemente

a los 60 Mbits/s y bzip2 trabaja a pérdida en todos los casos, llegando incluso a

obtener pérdidas de ∼1300% a 1 Gbit/s; lo anterior se debe al tiempo computacional

intensiva e innecesariamente utilizado por bzip2 y zlib. No obstante, todos los métodos

degradan el desempeño incluso a anchos de banda bajos: a 10 Mbits/s, el porcentaje de

degradación para autocomp, snappy, zlib y bzip2 es de ∼0, 002% , ∼0, 006%, ∼0, 1%y

∼1, 2%, respectivamente, debido al trabajo de compresión innecesario realizado por los

métodos estáticos y al costo de adaptación, como el bytecounting, en el caso del método

adaptativo (pues este no comprime datos aleatorios).

En el caso de los datos aleatorios, autocomp siempre pagará el costo de adaptación,

pero superando a los métodos estáticos incluso a altos anchos de banda, como a

1 Gbit/s, donde degrada el desempeño cerca de ∼2% (únicamente con 3 procesos

de carga), mientras que snappy y zlib lo degradan, en promedio, ∼1, 6% y ∼227%,

respectivamente.

Datos tipo código

Para los datos de tipo código, la Figura 5.4 muestra los resultados, donde se observa

que a 10 Mbits/s, todos los métodos mejoran el desempeño entre 64% y 78%. autocomp

lo hace∼31% más lento que bzip2 a 20 Mbits/s, donde este último comienza a disminuir

su porcentaje de mejora muy rápidamente, llegando incluso a degradarlo a partir de

anchos de banda de 80 Mbits/s (alcanzando ∼950% de degradación a 1 Gbit/s). Del

mismo modo, autocomp pierde frente a zlib hasta los 100 Mbits/s, donde este último

comienza a disminuir su ganancia pero más lentamente que bzip2, llegando a degradar

el desempeño a anchos de banda a partir de los 300 Mbits/s.

Se debe recordar que la compresión pierde su ganancia cuando el ancho de banda se

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 52

(a) Pruebas con 0 procesos de carga. (b) Pruebas con 2 procesos de carga.

(c) Pruebas con 3 procesos de carga. (d) Pruebas con 5 procesos de carga.

Figura 5.3: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo aleatorio.

hace lo suficientemente alto (según la Ecuación 4.2), lo cual se ve reflejado para bzip2 y

zlib a partir de anchos de banda de 80 Mbits/s y 300 Mbits/s, respectivamente, en este

caso. autocomp, por otro lado, obtiene ganancia de la compresión en la mayoŕıa de los

casos, debido a las decisiones que puede estar tomando de comprimir con snappy o no

comprimir en absoluto (la excepción es la degradación vista a 1 Gbit/s con 5 procesos

de carga que, en el entorno de prueba, cargan el CPU al 100%, lo cual puede deberse al

sobreúso del CPU en compresión, adaptación y toma de decisiones innecesarias a altas

velocidades de transmisión). Con respecto a snappy, una vez más autocomp pierde

terreno ante este compresor a altos anchos de banda. Sin embargo, la tendencia es

que autocomp obtiene un aproximado de 7% de mejora más que snappy a 800 Mbits/s

y 1 Gbit/s, posiblemente debido a que, a altos anchos de banda, se esté decidiendo

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 53

(a) Pruebas con 0 procesos de carga. (b) Pruebas con 2 procesos de carga.

(c) Pruebas con 3 procesos de carga. (d) Pruebas con 5 procesos de carga.

Figura 5.4: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo código.

no comprimir algunos mensajes cuando comprimir no es producente (de nuevo, la

excepción se da a 1 Gbits/s con 5 procesos de carga, donde se observa que incluso

snappy disminuye su porcentaje de mejora a cerca de 10%).

En este tipo de datos se observa claramente el hecho de que la selección del mejor

compresor (de forma estática) depende tanto del ancho de banda como del tipo de

datos, pues ningún método es siempre el mejor y algunas decisiones pueden llegar a ser

muy costosas.

Datos tipo latex

El comportamiento para los datos tipo latex, mostrado en la Figura 5.5, es similar

al de los datos tipo código, pero, como es de esperarse por la naturaleza de los datos,

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 54

con porcentajes de mejora mucho menores (entre 13% y 22% para todos los métodos a

10Mbits/s). En este caso autocomp es superado por snappy — mostrando de nuevo el

alto costo que se está pagando en la toma de decisiones — mas sin embargo autocomp

logra superar a zlib y bzip2 cuando el ancho de banda es lo suficientemente alto para

que estos compresores trabajen a pérdida.

(a) Pruebas con 0 procesos de carga. (b) Pruebas con 2 procesos de carga.

(c) Pruebas con 3 procesos de carga. (d) Pruebas con 5 procesos de carga.

Figura 5.5: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo latex.

El efecto de la pérdida de ganancia para los compresores computacionalmente más

intensivos (bzip2 y zlib) se presenta de igual manera, con porcentajes de degradación

mucho mayores — una vez más, como se espera para este tipo de datos. Sin embargo,

prácticamente no hay degradación por parte de autocomp para este tipo de datos,

siendo el peor caso la condición de “empate” (degradación de ∼2%) frente a la

transmisión sin compresión a 1 Gbit/s con 2 procesos de carga, posiblemente debido a

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 55

que el mecanismo adaptativo propuesto ignora todos los trozos de este tipo de datos

para los cuales la compresión no es conveniente.

Datos tipo multimedia

Este caso es muy similar al del tipo de datos aleatorio pues los datos son

prácticamente incompresibles, como se muestra en la Figura 5.6. De nuevo se observa

cómo la compresión pierde valor para bzip2 y zlib cuando el ancho de banda es lo

suficientemente alto, incluso para autocomp, que degrada el desempeño un máximo

de 5% a los niveles más altos de ancho de banda disponibles, principalmente debido

a los costos de adaptación. Snappy y autocomp, sin embargo, manejan muy bien el

caso de datos prácticamente incompresibles. En el caso de snappy, se demuestra que

el compresor sacrifica en gran medida su capacidad de compresión por velocidad, para

obtener ganancias relativamente decentes; para autocomp, por otro lado, se debe a que

puede decidir no comprimir en absoluto la mayor parte de la información transmitida,

pues en este caso comprimir seŕıa mayoritariamente contraproducente.

C.C. Reconocimiento

www.bdigital.ula.ve



5.2 Pruebas de rendimiento 56

(a) Pruebas con 0 procesos de carga. (b) Pruebas con 2 procesos de carga.

(c) Pruebas con 3 procesos de carga. (d) Pruebas con 5 procesos de carga.

Figura 5.6: Porcentaje de mejora de cada método relativo a no comprimir para datos
tipo multimedia.

C.C. Reconocimiento

www.bdigital.ula.ve



Caṕıtulo 6

Conclusiones

Se propuso un mecanismo o estrategia de compresión automática y adaptativa, el

cual fue implementado e integrado a un sistema de transmisión de datos desarrollado

también como parte de este proyecto, para su evaluación y prueba de concepto.

El mecanismo se basa en el supuesto presentado por Peterson y Reiher (2016) de

que el desempeño de un algoritmo de compresión es constante en una oportunidad

determinada. Basándose en lo anterior, el mecanismo cuantiza o discretiza el espacio

de oportunidades e intenta seleccionar el algoritmo más apto en cada oportunidad, es

decir, aquel que provea la mejor TET, mediante un árbol de decisión como herramienta

de clasificación, debido a su simplicidad de funcionamiento e implementación y a que

su desempeño es similar al de los demás clasificadores — más complejos — estudiados.

Los resultados muestran que, en el escenario de mayor ganancia esperada, el

mecanismo adaptativo se comporta de manera similar a los mejores algoritmos a 10

Mbits/s, superándolos cuando el ancho de banda se hace lo suficientemente alto para

superar la velocidad de estos compresores. No obstante, la compresión siempre se

convertirá en un cuello de botella cuando el ancho de banda sea lo suficientemente alto

(Peterson y Reiher, 2016). Del mismo modo, la suma de la adaptación, monitoreo y

potencial compresión, se convertirá en un cuello de botella más rápidamente cuando el

ancho de banda alcanza niveles lo suficientemente altos, por lo cual es imperativo que el

método de clasificación sea lo suficientemente rápido y que los módulos de monitoreo

y adaptación pasen por una fase intensiva de optimización para mitigar este efecto.

C.C. Reconocimiento

www.bdigital.ula.ve



6 Conclusiones 58

Esto ocurre, en este caso, cuando el ancho de banda supera los 100 Mbits/s, donde un

algoritmo tan rápido como snappy logra superar por mucho al mecanismo propuesto

— aunque este último esté utilizando intensivamente también a snappy — debido a

que se paga el costo de adaptación y clasificación. Esto podŕıa solucionarse agregando

una especie de “bypass” para evitar la clasificación a altos anchos de banda y utilizar

siempre snappy como mejor elección; sin embargo, esto se pagaŕıa costosamente cuando

los datos sean incompresibles. Otra solución seŕıa que, a medida que el ancho de banda

crece, se calcule el bytecounting para un trozo o chunk y se asuma este mismo para los

trozos subsiguiente y, de esta manera, mitigar el costo de adaptación. En los peores

escenarios, donde los datos son virtualmente incompresibles, el mecanismo propuesto

logra mantener su desempeño cercano al de la transmisión sin compresión, pagando

únicamente el costo de adaptación, con un porcentaje de degradación máximo cercano

al 5% a 800 Mbits/s.

Los resultados además muestran que un único algoritmo de compresión nunca

es óptimo, lo cual se observa mayormente en los algoritmos computacionalmente

más costosos (zlib y bzip2), que reducen su porcentaje de ganancia de manera

significativa cuando el ancho de banda crece (se hacen subóptimos), incluso degradando

el desempeño cuando el canal de comunicación es lo suficientemente rápido.

En resumen, para un variado tipo de datos, aun cuando el mecanismo de

compresión propuesto toma decisiones muy costosas — muy probablemente debido

a la caracteŕıstica de los árboles de decisión que los hace muy sensibles antes pequeñas

variaciones en los datos de entrada, como se menciona en la Sección 2.3.2 — este logra

adaptarse a las condiciones del entorno y a las propiedades de los datos, evitando los

costos de compresión y el consecuente deterioro del desempeño de la transmisión cuando

los datos no son compresibles y obteniendo altos porcentajes de mejora a velocidades

sobre los 100 Mbits/s donde, según Peterson y Reiher (2016), la compresión está, por

lo general, deshabilitada en los sistemas de transmisión para evitar el riesgo de usar la

compresión cuando no hay tiempo para ello.

C.C. Reconocimiento

www.bdigital.ula.ve



6.1 Recomendaciones 59

6.1 Recomendaciones

El uso de un árbol de decisión como clasificador fue una elección realizada de

una forma que podŕıa decirse directa o inocente (naive), debido a su simplicidad de

funcionamiento e implementación. No obstante, es muy probable este clasificador esté

tomando decisiones erróneas ante cambios sutiles en los datos de entrada. Valdŕıa la

pena realizar un estudio completo y detallado de este y otros clasificadores que puedan

ser integrados al sistema, mientras sean lo suficientemente rápidos, y realizar pruebas

de adaptabilidad y rendimiento más exhaustivas con cada uno, aśı como también un

perfilado temporal para determinar el porcentaje de tiempo, en cada oportunidad,

efectivamente utilizado en la toma de decisiones.

Para lidiar con el poco tiempo disponible para compresión a anchos de banda sobre

los 100 Mbits/s — si es que hubiere — es posible que se deba deshabilitar todo proceso

de adaptación (bytecounting) y toma de decisiones (clasificación) y evitar la compresión.

Sin embargo, es notorio que snappy es un compresor lo suficientemente rápido como

para obtener ganancia incluso a 1 Gbit/s, por lo cual también se debeŕıa estudiar alguna

estrategia para reducir la cantidad de veces que se calcula el bytecounting y utilizarlo

únicamente para detectar flujos de datos con poco o ningún potencial de compresión.

Adicionalmente, se puede utilizar una técnica estad́ıstica de muestreo para

seleccionar, para cada trozo en una oportunidad dada, sub-trozos para los cuales

se calcule el bytecounting y se utilice alguna métrica o estad́ıstico para obtener el

bytecounting general del trozo en cuestión. Esto responde a la necesidad de reducir

el costo de adaptación, principalmente a altos anchos de banda, que se genera por el

cálculo del bytecounting.

C.C. Reconocimiento

www.bdigital.ula.ve



Bibliograf́ıa

Apache Software Fundation (2018). Apache http server project. Versión 2.4.29. https:

//httpd.apache.org/.

Bell, T., Witten, I. H., y Cleary, J. G. (1989). Modeling for text compression. ACM

Comput. Surv., 21(4):557–591.

Burrows, M. y Wheeler, D. J. (1994). A block-sorting lossless data compression

algorithm. Reporte técnico.

Collette, A. (2018). LZFX Data Compression Library. https://code.google.com/

archive/p/lzfx/.

Forouzan, A. B. (2006). Data communications & networking (sie). Tata McGraw-Hill

Education.

Gailly, J.-l. y Adler, M. (2018a). GNU Gzip. Versión 1.9. https://www.gnu.org/

software/gzip/.

Gailly, J.-l. y Adler, M. (2018b). zlib, sitio Web. https://www.gnu.org/software/gzip/.

Fecha de consulta 26/09/2018.

Google (2018a). Google Test. https://github.com/google/googletest. Fecha de consulta

30/09/2018.

Google (2018b). Snappy. Versión 1.1.7. http://google.github.io/snappy/.

Harnik, D., Kat, R. I., Margalit, O., Sotnikov, D., y Traeger, A. (2013). To zip or not

to zip: effective resource usage for real-time compression. En FAST, p. 229–242.

C.C. Reconocimiento

www.bdigital.ula.ve

https://httpd.apache.org/
https://httpd.apache.org/
https://code.google.com/archive/p/lzfx/
https://code.google.com/archive/p/lzfx/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://github.com/google/googletest
http://google.github.io/snappy/


BIBLIOGRAFÍA 61

Hubert, B., Geul, J., y Séhier, S. (2018). Wondershaper. https://github.com/

magnific0/wondershaper. Fecha de consulta 29/09/2018.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101.

iPerf (2018). Sitio Web. https://iperf.fr/. Fecha de consulta 27/09/2018.

Jägemar, M., Eldh, S., Ermedahl, A., y Lisper, B. (2016). Automatic message

compression with overload protection. Journal of Systems and Software, 121(C):209–

222.

Kerrisk, M. (2018). Projecto man-pages de linux. http://man7.org/. Fecha de consulta

01/10/2018.

Kingsford, C. y Salzberg, S. L. (2008). What are decision trees? Nature biotechnology,

26(9):1011.

Krintz, C. y Sucu, S. (2006). Adaptive on-the-fly compression. IEEE Transactions on

Parallel and Distributed Systems, 17(1):15–24.

Larman, C. y Basili, V. R. (2003). Iterative and incremental developments. a brief

history. Computer, 36(6):47–56.

Mahmud, S. (2012). An improved data compression method for general data.

International Journal of Scientific & Engineering Research, 3(3):2.

Oberhumer, M. (2018). LZO (Lempel-Ziv-Oberhumer) Data Compression Library.

Versión 2.10. http://www.oberhumer.com/opensource/lzo/.

Pavlov, I. (2018). LZMA Software Development Kit. Versión 18.05. https://www.

7-zip.org/sdk.html.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., y Duchesnay, E. (2011). Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

C.C. Reconocimiento

www.bdigital.ula.ve

https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper
https://iperf.fr/
http://man7.org/
http://www.oberhumer.com/opensource/lzo/
https://www.7-zip.org/sdk.html
https://www.7-zip.org/sdk.html


BIBLIOGRAFÍA 62

Peterson, P. A. y Reiher, P. L. (2016). Datacomp: Locally independent adaptive

compression for real-world systems. En 2016 IEEE 36th International Conference

on Distributed Computing Systems (ICDCS), p. 211–220. IEEE.

Pressman, R. S. (2015). Software Engineering: A Practitioner’s Approach. McGraw-

Hill, Inc., New York, NY, USA, 8 edición.

Pu, I. (2004). Data Compression. University of London. Consultado en https://london.

ac.uk/courses/data-compression-co3325. Fecha de consulta: 12 de Junio de 2018.

QuickLZ (2018). QuickLZ. Versión 1.5.0. http://www.quicklz.com/.

Seward, J. (2018). BZIP2, a program and library for data compression. Versión 1.0.6.

http://www.bzip.org/.

Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the

IRE, 37(1):10–21.

Universidad de Canterbury, N. Z. (2018). Corpus de Canterbury, sitio Web. http:

//corpus.canterbury.ac.nz/. Fecha de consulta 27/09/2018.

Universidad Politécnica de Silesia, P. (2018). Sitio Web. http://sun.aei.polsl.pl/∼sdeor/

index.php?page=silesia. Fecha de consulta 29/09/2018.

Welch, T. A. (1984). A technique for high-performance data compression. Computer,

17(6):8–19.

Wiseman, Y., Schwan, K., y Widener, P. (2004). Efficient end to end data exchange

using configurable compression. En 24th International Conference on Distributed

Computing Systems, 2004. Proceedings., p. 228–235.

Ziv, J. y Lempel, A. (1977). A universal algorithm for sequential data compression.

IEEE Transactions on Information Theory, 23(3):337–343.

Zohar, E. y Cassuto, Y. (2014). Automatic and dynamic configuration of data

compression for web servers. En 28th Large Installation System Administration

Conference (LISA14), p. 106–117, Seattle, WA. USENIX Association. http://www.

eyalzo.com/projects/ecomp. Fecha de consulta 01/10/2018.

C.C. Reconocimiento

www.bdigital.ula.ve

https://london.ac.uk/courses/data-compression-co3325
https://london.ac.uk/courses/data-compression-co3325
http://www.quicklz.com/
http://www.bzip.org/
http://corpus.canterbury.ac.nz/
http://corpus.canterbury.ac.nz/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://www.eyalzo.com/projects/ecomp
http://www.eyalzo.com/projects/ecomp


BIBLIOGRAFÍA 63

Zohar, E. y Cassuto, Y. (2015). Data compression cost optimization. En 2015 Data

Compression Conference, p. 393–402.

C.C. Reconocimiento

www.bdigital.ula.ve


	Índice de Tablas
	Índice de Figuras
	Índice de Algoritmos
	Agradecimientos
	Introducción
	Antecedentes
	Planteamiento del problema
	Justificación
	Objetivos
	Objetivo General
	Objetivos Específicos

	Metodología
	Estructura del documento

	Marco teórico
	Compresión de datos
	Tipos de compresión
	Medidas de rendimiento

	Recursos computacionales
	Tiempo de CPU
	Ancho de banda
	Memoria

	Árboles de decisión
	Descripción
	Ventajas y desventajas

	Desarrollo de software iterativo e incremental
	El proceso de desarrollo de software


	Desarrollo del sistema de transmisión de datos
	Requerimientos del sistema
	Requerimientos funcionales
	Requerimientos no funcionales

	Módulo de compresión de datos
	Compresión adaptativa
	Compresión estática

	Capa de transmisión de datos
	Protocolo de transmisión
	Cliente
	Servidor


	Mecanismo de compresión automática y adaptativa
	Compresión adaptativa
	Aspectos de adaptación
	Abstracción de los sistemas de compresión adaptativa

	Algoritmos de compresión
	Snappy
	zlib
	bzip2
	Estudio comparativo

	Monitores
	Carga del CPU en el transmisor
	Estado de la red
	Tipo de datos

	Modelo adaptativo
	Función objetivo
	Cuantización del espacio de oportunidades
	Proceso de toma de decisiones
	Algoritmo de compresión automática y adaptativa


	Evaluación del mecanismo de compresión
	Prueba de adaptabilidad
	Diseño del experimento
	Resultados

	Pruebas de rendimiento
	Descripción del entorno
	Datos de prueba
	Diseño del experimento
	Resultados


	Conclusiones
	Recomendaciones

	Bibliografía



