

Proyecto de Grado

Presentado ante la ilustre UNIVERSIDAD DE LOS ANDES como requisito final para

obtener el Título de INGENIERO DE SISTEMAS

EVALUACIÓN DE POSTGRESQL COMO ALTERNATIVA A UNA BASE DE DATOS

NOSQL BASADA EN DOCUMENTOS

Por

Br. Kenia del V. Vergara H.

Tutor: Solazver Solé Álvarez.

Noviembre, 2019

©2019 Universidad de Los Andes Mérida, Venezuela

C.C. Reconocimiento

www.bdigital.ula.ve

EVALUACIÓN DE POSTGRESQL COMO ALTERNATIVA A UNA BASE DE

DATOS NOSQL BASADA EN DOCUMENTOS

Br. Kenia del V. Vergara H.

Proyecto de Grado – Sistemas Computacionales, 50 páginas

Escuela de Ingeniería de Sistemas, Universidad de Los Andes, 2019

Resumen: El contenido de este trabajo se fundamenta en la evaluación comparativa de

PostgreSQL (JSONB) y MongoDB (BSON) usando datos JSON, dicha evaluación se

enmarcó en la metodología puntos de referencia o benchmarking para obtener el mejor

rendimiento de los manejadores. Cabe destacar, la evaluación se constituyó en las

siguientes etapas. En la primera, se instaló la herramienta pg_nosql_benchmark,

postgresql 10.8, mongodb 4.0.9, bc, git, mongo-tools, apache2, phppgadmin y compass.

En la segunda, se eligió un caso de estudio compuesto por tres cargas de trabajo de 100,

1.000 y 100.000 registros o documentos. En la tercera, se creó una plantilla con un

generador llamado JSON GENERATOR, el cual contiene una serie de etiquetas

preestablecidas para generar documentos en línea. En la cuarta, se modificaron los

archivos pg_nosql_benchmark, common_func_lib.sh, pg_func_lib.sh y

mongo_func_lib.sh pertenecientes a la herramienta. Finalmente, se observó que el

tiempo de respuesta es menor en PostgreSQL cuando maneja poca cantidad de datos y

en MongoDB cuando maneja gran cantidad; por otra parte, en el almacenamiento

MongoDB ocupa menos espacio que PostgreSQL ya sea utilizando pocos o muchos

datos.

Palabras claves: Benchmarking, BSON, JSON, JSONB, MongoDB, NoSQL,

PostgreSQL.

C.C. Reconocimiento

www.bdigital.ula.ve

 iv

Índice

Lista de tablas…………………………………………………………………..…. vi

Lista de figuras……………………………………………………………...…...... vii

Capítulo 1

1. Introducción………………………………………………………….……....... 1

1.1 Planteamiento del Problema………………………………………….…… 2

 1.2 Objetivos……………………………………………………………….…. 3

 1.2.1 Objetivo General………………………………………………….…... 3

 1.2.2 Objetivos Específicos…………………………………………….…… 3

 1.3 Metodología……………………………………………………………...... 3

 1.4 Alcance…………………………………………………………………..... 4

 1.5 Justificación……………………………………………………………...... 5

 1.6 Antecedentes…………………………………………………………..….. 5

Capítulo 2

2. Marco Teórico…………………………………………………………………. 8

 2.1. NoSQL…………………………………………………………………..… 8

 2.1.1 Tipos de bases de datos NoSQL……………………………………...... 8

 2.1.2 Ventajas de las bases de datos NoSQL…………………………….….. 10

 2.1.3 Desventajas de las bases de datos NoSQL…………………………..… 10

 2.2 JSON (JavaScript Object Notation)………………………………….……. 10

 2.3 PostgreSQL……………………………………………………................... 11

 2.3.1 JSONB en PostgreSQL………………………………………….….…. 12

 2.3.2 Modelo de documentos en PostgreSQL……………………………..… 12

 2.4 MongoDB……………………………………………………...................... 13

 2.4.1 BSON en MongoDB.…………………………………………….……. 13

 2.4.2 Modelo de documentos en MongoDB…………………………………. 13

 2.5 Documentos embebidos en PostgreSQL y MongoDB…………………..… 14

 2.6 Teorema CAP………………………………………………………….…... 15

Capítulo 3

3. Análisis y diseño de casos de prueba………………………………………….. 17

C.C. Reconocimiento

www.bdigital.ula.ve

 v

Capítulo 4

4. Implementación……………………………………………………………..… 22

Capítulo 5

5. Resultados…………………………………………………………………….. 34

6. Conclusiones………………………………………………………………….. 39

Bibliografía………………………………………………………………………... 40

C.C. Reconocimiento

www.bdigital.ula.ve

 vi

Lista de tablas

Tabla 1. Operadores para el modelo de documentos en PostgreSQL………………... 12

Tabla 2. Operadores de consulta en MongoDB………………………..…………….. 14

Tabla 3. Resultados de la evaluación comparativa de PostgreSQL y MongoDB……. 35

C.C. Reconocimiento

www.bdigital.ula.ve

 vii

Lista de figuras

Figura 1. Bases de datos de documentos…………………….……………………….. 8

Figura 2. Bases de datos de grafos.………………………………………………...… 9

Figura 3. Bases de datos clave-valor….……………………………………………… 9

Figura 4. Bases de datos columnares.……………………………………………...… 9

Figura 5. Documento JSON.…………………………………………………….…… 11

Figura 6. Relación Persona – Domicilio.……………………………………..……… 14

Figura 7. Relación uno a uno embebido….…………………………………...……… 14

Figura 8. Relación Blog – Comentario…….………………………………………… 15

Figura 9. Relación uno a muchos embebido…..……………………...……………… 15

Figura 10. Configuraciones CAP en los sistemas de bases de datos………………… 16

Figura 11. Diagrama del Caso de Estudio…….……………………………………… 17

Figura 12. Plantilla JSON…………………..…………………………………...…… 18

Figura 13. Archivo JSON…….………………………………………………………. 19

Figura 14. ScriptA……………………….………………………………………..….. 19

Figura 15. Datos con el formato definido por PostgreSQL y MongoDB……………. 20

Figura 16. ScriptB…………………………….……………………………………… 20

Figura 17. Datos con el formato definido por la herramienta…………………...…… 21

Figura 18. Creación de usuario root en MongoDB……………………………...…… 22

Figura 19. Variables de entorno de PostgreSQL y MongoDB…………………..…… 23

Figura 20. Declaración de variable generadora de documentos………………...…… 23

Figura 21. Reporte de los resultados comparativos para PostgreSQL y

MongoDB………………………………………………………………………..……
24

Figura 22. Datos de la herramienta………………………………………………...… 24

Figura 23. Inserción de datos JSON en PostgreSQL…………………………….…... 25

Figura 24. Sentencias SELECT para 100 registros en PostgreSQL………………….. 25

Figura 25. Sentencias SELECT para 1.000 registros en PostgreSQL………………... 26

Figura 26. Sentencias SELECT para 100.000 registros en PostgreSQL……………... 26

Figura 27. Sentencias UPDATE para 100 registros en PostgreSQL………………… 27

Figura 28. Sentencias UPDATE para 1.000 registros en PostgreSQL………………. 27

Figura 29. Sentencias UPDATE para 100.000 registros en PostgreSQL……………. 28

C.C. Reconocimiento

www.bdigital.ula.ve

 viii

Figura 30. Inserción de datos JSON en MongoDB…………………………………... 28

Figura 31. Sentencias FIND para 100 documentos en MongoDB…………………… 29

Figura 32. Sentencias FIND para 1.000 documentos en MongoDB…………………. 29

Figura 33. Sentencias FIND para 100.000 documentos en MongoDB………………. 30

Figura 34. Sentencias UPDATE para 100 documentos en MongoDB………………. 30

Figura 35. Sentencias UPDATE para 1.000 documentos en MongoDB…………….. 31

Figura 36. Sentencias UPDATE para 100.000 documentos en MongoDB………….. 31

Figura 37. Tamaño de la colección en MongoDB…………………………………… 32

Figura 38. Índices en MongoDB para 100 documentos……………………….……... 32

Figura 39. Índices en MongoDB para 1.000 documentos.………………………..….. 32

Figura 40. Índices en MongoDB para 100.000 documentos.………………………… 33

Figura 41. Levantar servidor de PostgreSQL………………………………………… 33

Figura 42. Levantar servidor de MongoDB……………………………………..…… 33

Figura 43. Ejecución de la herramienta………………………………………….…… 33

Figura 44. Reporte de los resultados con 100 registros……………………………… 34

Figura 45. Reporte de los resultados con 1.000 registros………………….………… 34

Figura 46. Reporte de los resultados con 100.000 registros……………….………… 35

Figura 47. Representación gráfica del COPY vs IMPORT………………………….. 36

Figura 48. Representación gráfica del INSERT……………………………………… 36

Figura 49. Representación gráfica del SELECT vs FIND…………………………… 37

Figura 50. Representación gráfica del UPDATE…………………………………..… 37

Figura 51. Representación gráfica del tamaño de la tabla y la colección……………. 38

C.C. Reconocimiento

www.bdigital.ula.ve

1

Capítulo 1

1. Introducción

Hoy en día la necesidad de almacenar grandes vólumenes de información es de vital

importancia para la sociedad. Por ello, las bases de datos juegan un papel primordial, ya

que proporcionan disponibilidad inmediata, ahorro de espacio físico, fácil

mantenimiento, copias de seguridad, integridad de los datos, entre otros.

Cabe señalar, en el universo de las bases de datos existen dos vertientes que son, las

bases de datos relacionales y las no relacionales o NoSQL, estas últimas surgen por las

deficiencias encontradas en los modelos relacionales para manejar grandes vólumenes

de información de una manera rápida y eficaz.

El objetivo principal de este proyecto de grado, es evaluar el comportamiento de las

características NoSQL en PostgreSQL comparándolo con una base de datos NoSQL

basada en documentos como MongoDB. Dicho trabajo, se basó en la instalación de la

herramienta pg_nosql_benchmark desarrollada por EnterpriseDB Corporation, donde se

realizó una serie de modificaciones a los archivos pg_nosql_benchmark,

common_func_lib.sh, pg_func_lib.sh y mongo_func_lib.sh, pertenecientes a dicha

herramienta para obtener los tiempos de respuestas de PostgreSQL y MongoDB, así

como también, el tamaño que ocupa la tabla y la colección respectivamente.

Es importante destacar, que dicha evaluación se enmarcó en la metodología puntos

de referencia o benchmarking, el cual es un proceso continuo de comparación para

obtener el mejor rendimiento de los gestores. Según, Sim, Easterbrook & Holt (2003)

señalan que: “El benchmarking debe cumplir con siete propiedades las cuales son,

accesibilidad, asequibilidad, claridad, pertinencia, solubilidad, portabilidad y

escalabilidad” (p.77).

El presente proyecto está conformado por cinco capítulos. En el primer capítulo, se

describe el planteamiento del problema, los objetivos, metodología, alcance,

C.C. Reconocimiento

www.bdigital.ula.ve

2

justificación y los antecedentes. En el segundo capítulo, se refiere al marco teórico. En

el tercer capítulo, el análisis y diseño de casos de prueba. En el cuarto capítulo, la

implementación. Finalmente, en el quinto capítulo, los resultados.

1.1 Planteamiento del Problema

Actualmente, el empleo de datos semiestructurados para el almacenamiento de la

información es una tendencia. Por lo tanto, han surgido gestores especializados en

manipular dichos datos, como son las bases de datos no relacionales o NoSQL, que

ofrecen características de escalabilidad y velocidad en tiempos de respuesta, superiores a

las bases de datos relacionales.

Cabe destacar, que el gestor de bases de datos PostgreSQL ha ido incorporando

características NoSQL como la inclusión del tipo de dato JSON en la versión 9.2 y

posteriormente el tipo de dato JSONB en la versión 9.4, así como también, los

operadores modificadores para cada tipo de dato en la versión 9.3 y 9.5 respectivamente,

todo esto encaminado a agilizar y flexibilizar la manipulación de los datos.

Por otra parte, MongoDB es un gestor de base de datos NoSQL de código abierto, el

cual trabaja sobre una base de datos de documentos JSON (JavaScript Object Notation),

es decir, que en lugar de guardar los datos en registros, los guarda en documentos y

dichos documentos son almacenados en un formato binario llamado BSON. MongoDB

almacena en sus bases de datos, un conjunto de colecciones constituidas por documentos

que pueden tener esquemas diferentes.

Finalmente, el problema que se va a abordar en este trabajo, es comprobar si

PostgreSQL satisface las mismas necesidades que MongoDB, los cuales representan

modelos de datos distintos, así como también, determinar el mejor rendimiento entre

ambos manejadores en relación a, tiempo de respuesta del copy vs import, insert, select

vs find, update y el tamaño que ocupa la tabla y la colección.

C.C. Reconocimiento

www.bdigital.ula.ve

3

1.2 Objetivos

1.2.1 Objetivo General

Evaluar el comportamiento de las características NoSQL en PostgreSQL comparándolo

con una base de datos NoSQL basada en documentos como MongoDB.

1.2.2 Objetivos Específicos

1. Analizar las características NoSQL del gestor de bases de datos relacional

PostgreSQL.

2. Revisar un gestor de bases de datos NoSQL basado en documentos.

3. Definir benchmarks con operaciones de consultas equivalentes en PostgreSQL y

en MongoDB.

4. Ejecutar los benchmarks en un ambiente operativo con las últimas versiones

disponibles de PostgreSQL y MongoDB.

5. Comparar resultados de PostgreSQL y MongoDB para consultas y manipulación

de datos JSON.

1.3 Metodología

En las ciencias de la computación se han utilizado puntos de referencia o

benchmarking para comparar el rendimiento de sistemas informáticos, algoritmos de

recuperación de información, bases de datos y muchas otras tecnologías.

Según, Sim et al. (2003), en su trabajo titulado “Usando Benchmarking para

Avanzar en la Investigación: Un Desafío para la Ingeniería de Software”,

presentan siete propiedades que los puntos de referencia o bechmarking

deben tener: accesible (el punto de referencia debe ser fácil de obtener y de

usar), asequible (debe ser acorde con los beneficios), claridad (la

especificación deber ser clara, autónoma y lo más breve posible), pertinencia

(la tarea establecida en el punto de referencia deber ser representativa),

soluble (debe producir una buena solución), portable (debe especificarse a

un nivel de abstracción lo suficientemente alto para garantizar que sea

portátil para diferentes herramientas y que no influya a favor de una

tecnología) y escalable (las tareas del punto de referencia deben escalar para

trabajar con herramientas o técnicas en diferentes niveles de madurez)

(p.77).

C.C. Reconocimiento

www.bdigital.ula.ve

4

Cabe destacar, que en este trabajo se aplicará dicha técnica de evaluación que tiene

asociada las siguientes fases:

 Primera, se elige un caso de estudio, es decir, un conjunto de datos que se

representarán en el modelo de documentos de PostgreSQL y MongoDB.

 Segunda, se instala PostgreSQL y MongoDB, se crean las bases de datos, tabla o

colección según el manejador.

 Tercera, se almacenan los datos del caso de estudio en los manejadores

(definiendo varias cargas de trabajo 100, 1.000 y 100.000 registros o

documentos)

 Cuarta, se diseñan los benchmarks, con operaciones de consultas equivalentes en

PostgreSQL y en MongoDB para tomar las métricas de rendimiento.

 Quinta, se ejecutan los benchmarks.

 Sexta, se comparan los resultados.

 Séptima, se realizan las conclusiones de la evaluación.

1.4 Alcance

La evaluación comparativa de PostgreSQL (JSONB) y MongoDB (BSON), se

centrará en tres cargas de trabajos constituidas por 100, 1.000 y 100.000 registros o

documentos para los manejadores antes descritos. Estás cargas se delimitaron en un

rango de valores mínimos, medios y máximos para obtener tiempos de respuestas

distintos y de esta manera determinar el mejor rendimiento de cada gestor.

A continuación, se especifica la cantidad de consultas select y sentencias update

definidas para cada carga de trabajo en los manejadores, las cuales son: 20 select y 10

update para la carga de 100 registros, 80 select y 100 update para la carga de 1.000

registros y finalmente, 120 select y 300 update para la carga de 100.000 registros o

documentos. Es importante acotar, que la cantidad de select y update fue incrementada

de acuerdo al volumen de los datos.

C.C. Reconocimiento

www.bdigital.ula.ve

5

1.5 Justificación

Actualmente, las bases de datos NoSQL han ganado espacio especialmente por la

escalabilidad y velocidad en sus tiempos de respuestas, superiores a los sistemas

relacionales. Es importante señalar, las bases de datos NoSQL se basan en el teorema

CAP (consistencia, disponibilidad y tolerancia a particiones), el cual plantea que un

sistema de datos distribuidos puede contar con dos de las tres propiedades antes

descritas; en cambio, las bases de datos relacionales se basan en las propiedades ACID

(atomicidad, consistencia, aislamiento y durabilidad). No obstante, las bases de datos

NoSQL no se solapan con las relacionales ya que cada tipo garantiza las funcionalidades

para las que fueron desarrolladas.

Este proyecto se realizó con la finalidad de evaluar el comportamiento de las

características NoSQL en PostgreSQL comparándolo con una base de datos NoSQL

basada en documentos como MongoDB. Para comprobar si PostgreSQL arroja tiempos

de respuestas menores que MongoDB, así como también, si ocupa menos espacio de

almacenamiento, logrando de esta manera un manejador más completo donde convergen

las dos tecnologías SQL y NoSQL.

1.6 Antecedentes

Hanlon et al. (2015), en su trabajo titulado “Un Caso de Estudio para Aplicaciones

NoSQL y Beneficios de Rendimiento: CouchDB vs. Postgres”, utilizaron un modelo de

datos de prueba simple. Dicho trabajo, se fundamentó en varias etapas. En la primera,

compararon inserciones de una y varias filas. En la segunda, compararon el número de

consultas completadas en CouchDB y Postgres para aumentar el número de usuarios

simultáneos. En la tercera, compararon el tiempo promedio de ejecución de consultas en

un entorno de lectura / escritura. En cada etapa concluyen, que CouchDB superó a

Postgres en inserciones de una sola fila, pero Postgres superó a CouchDB en las

inserciones de múltiples filas. Del mismo modo, CouchDB completó más rápido las

consultas que Postgres e incrementó el número de usuarios simultáneos. Inclusive,

CouchDB obtuvo un gran rendimiento en el entorno de lectura/escritura. Finalmente

señalan, que las bases de datos NoSQL no son un reemplazo de las bases de datos

C.C. Reconocimiento

www.bdigital.ula.ve

6

relacionales, pues, en muchos casos tener una base de datos relacional sigue siendo

necesaria, debido a que no todos los datos se pueden componer de documentos.

Por otra parte, Fotache & Cogean (2013), en su trabajo titulado “Bases de Datos

NoSQL para Aplicaciones Móviles. Estudio de Caso: MongoDB versus PostgreSQL”,

utilizaron un esquema de base de datos relacional para PostgreSQL y una colección de

documentos para MongoDB; dado que, el modelo de datos es diferente la conexión a

cada manejador es distinta; del mismo modo, las diferencias entre los lenguajes de

definición de datos y manipulación de datos de ambos manejadores. En este trabajo

concluyen, que las bases de datos relacionales para aplicaciones móviles poseen dos

puntos débiles como son, la rigidez del esquema y la imposibilidad de manejar todos los

casos de uso diferentes que requieren dichas aplicaciones, en cambio, las no relacionales

proporcionan escalabilidad y velocidad cuando las aplicaciones móviles administran

gran cantidad de datos en un servidor central.

Kaur & Rani (2013), en su trabajo titulado “Modelado y Consulta de Datos en Bases

de Datos NoSQL”, utilizaron tres de bases de datos, la relacional para PostgreSQL, de

documentos para MongoDB y de grafos para Neo4j. Luego, representaron los modelos

de datos en los diversos diagramas de, entidad relación, clases y grafos respectivamente.

Seguidamente, consideraron siete consultas de diversas complejidades para el caso de

estudio, las cuales fueron representadas en los lenguajes, SQL, MQL y Cypher. En este

trabajo concluyen, que las bases de datos no relacionales brindan mejoras sobre las

relacionales, como rendimiento, flexibilidad y escalabilidad, del mismo modo, señalan

que las bases de datos no relacionales no deben considerarse como un reemplazo de las

relacionales, sino como un complemento.

Por otro lado, Kumar (2014), en su trabajo titulado “pg_nosql_benchmark” es una

herramienta para la evaluación comparativa de PostgreSQL (JSONB) y MongoDB

(BSON) utilizando datos JSON. Copyright (c) 2013-2014, EnterpriseDB Corporation.

Dicha herramienta genera un gran conjunto de documentos JSON, los cuales se cargan

en PostgreSQL y MongoDB usando el comando INSERT, de la misma manera, se

C.C. Reconocimiento

www.bdigital.ula.ve

7

ejecutan 4 consultas SELECT simples en los gestores y finalmente, se visualiza un

reporte con los tiempos de respuesta del, COPY vs IMPORT, INSERT, SELECT, así

como también, el tamaño que ocupa la tabla y la colección.

C.C. Reconocimiento

www.bdigital.ula.ve

8

Capítulo 2

2. Marco Teórico

2.1 NoSQL

Es una amplia clase de sistemas de gestión de bases de datos que difieren del

modelo clásico de SGBDR (Sistema de Gestión de Bases de Datos

Relacionales) en aspectos importantes, siendo el más destacado que no usan

SQL como lenguaje principal de consultas. Los datos almacenados no

requieren estructuras fijas como tablas, normalmente no soportan

operaciones JOIN, ni garantizan completamente ACID (atomicidad,

consistencia, aislamiento y durabilidad) y habitualmente escalan bien

horizontalmente (NoSQL, s.f)

2.1.1 Tipos de base de datos NoSQL

Bases de datos de documentos

Este tipo almacena la información como un documento, generalmente

utilizando para ello una estructura simple como JSON o XML y donde se

utiliza una clave única para cada registro. Este tipo de implementación

permite, además de realizar búsquedas por clave–valor, realizar consultas

más avanzadas sobre el contenido del documento. Son las bases de datos

NoSQL más versátiles. Se pueden utilizar en gran cantidad de proyectos,

incluyendo muchos que tradicionalmente funcionarían sobre bases de datos

relacionales. Algunos ejemplos de este tipo son: MongoDB o CouchDB

(Bases de datos NoSQL, s.f)

Figura 1. Bases de datos de documentos.

Bases de datos de grafos

En este tipo de bases de datos, la información se representa como nodos de

un grafo y sus relaciones con las aristas del mismo, de manera que se puede

hacer uso de la teoría de grafos para recorrerla. Para sacar el máximo

rendimiento a este tipo de bases de datos, su estructura debe estar totalmente

normalizada, de forma que cada tabla tenga una sola columna y cada

C.C. Reconocimiento

www.bdigital.ula.ve

9

relación dos. Este tipo de bases de datos ofrece una navegación más

eficiente entre relaciones que en un modelo relacional. Algunos ejemplos de

este tipo son: Neo4j, InfoGrid o Virtuoso (Bases de datos NoSQL, s.f)

Figura 2. Bases de datos de grafos.

Bases de datos clave-valor

Son el modelo de base de datos NoSQL más popular, además de ser la más

sencilla en cuanto a funcionalidad. En este tipo de sistema, cada elemento

está identificado por una llave única, lo que permite la recuperación de la

información de forma muy rápida, información que habitualmente está

almacenada como un objeto binario (BLOB). Se caracterizan por ser muy

eficientes tanto para las lecturas como para las escrituras. Algunos ejemplos

de este tipo son: Cassandra, BigTable o HBase (Bases de datos NoSQL, s.f)

Figura 3. Bases de datos clave-valor.

Bases de datos columnares

Como su nombre lo indica, guardan los datos en columnas en lugar de filas.

Por ejemplo, tendríamos una tabla como la que se muestra en la figura 1,

mientras que en una base orientada a columnas tendríamos las tablas que

muestra la figura 4. Con este cambio ganamos mucha velocidad en lecturas,

ya que si queremos consultar un número reducido de columnas, es muy

C.C. Reconocimiento

www.bdigital.ula.ve

10

rápido hacerlo. Al final tenemos una base muy parecida a la clave-valor. Por

otro lado, este paradigma no es muy eficiente para realizar escrituras. Por

ello este tipo de soluciones es usado en aplicaciones con un índice bajo de

escrituras, pero muchas lecturas (Camacho, s.f)

Figura 4. Bases de datos columnares.

2.1.2 Ventajas de las bases de datos NoSQL

Soportan estructuras distribuidas. Suelen ser bases de datos mucho más

abiertas y flexibles. Permiten adaptarse a necesidades de proyectos mucho

más fácil que los modelos de entidad relación. Se pueden hacer cambios de

los esquemas sin tener que parar las bases de datos. Escalabilidad horizontal,

es decir, son capaces de crecer en número de máquinas. Se pueden ejecutar

en máquinas con pocos recursos. Optimización de consultas en base de datos

para grandes cantidades de datos (Suárez, 2015)

2.1.3 Desventajas de las bases de datos NoSQL

No todas las bases de datos NoSQL contemplan la atomicidad de las

instrucciones y la integridad de los datos. Soportan lo que se llama

consistencia eventual. Problemas de compatibilidad entre instrucciones

SQL. Las nuevas bases de datos utilizan sus propias características en el

lenguaje de consulta y no son 100% compatibles con el SQL de las bases de

datos relacionales. Falta de estandarización. Hay muchas bases de datos

NoSQL y aún no hay un estándar como sí lo hay en las bases de datos

relacionales. Soporte multiplataforma. Aún quedan muchas mejoras en

algunos sistemas para que soporten sistemas operativos que no sean Linux.

Suelen tener herramientas de administración no muy usables o se accede por

consola (Suárez, 2015)

2.2 JSON (JavaScript Object Notation)

“Es un formato de texto ligero para el intercambio de datos, está formado como pares de

campo/valor. En los documentos JSON, los campos y los valores están encerrados por

comillas dobles, separados por dos puntos, así como también, por comas y los conjuntos

de campos están encapsulados en llaves” (Introduction to MongoDB, s.f)

C.C. Reconocimiento

www.bdigital.ula.ve

11

A continuación, se visualiza un documento JSON:

Figura 5. Documento JSON.

2.3 PostgreSQL

Es un gestor de base de datos relacional, su licencia y desarrollo es de

código abierto, siendo mantenida por una comunidad de desarrolladores,

colaboradores y organizaciones comerciales de forma libre y desinteresada.

Esta comunidad es denominada PGDG (PostgreSQL Global Development

Group). Utiliza SQL como lenguaje de consulta estructurada para

administrar y recuperar la información. (PostgreSQL, s.f)

A continuación, se describen las características más destacadas de PostgreSQL:

Presenta un sistema de alta concurrencia: Presenta un sistema

denominado MVCC, el cual permite que mientras un proceso escribe una

tabla, otros puedan acceder a la misma tabla sin necesidad de verse

bloqueados, y cada usuario obtiene una visión consistente.

Sistema Hot Standby: Este proceso permite a los usuarios poder conectarse

con el servidor y ejecutar búsquedas en la base de datos, mientras la misma

está en modo de recuperación o stand by. También, se puede pasar de este

modo a modo normal sin detener el flujo de búsquedas o consultas de los

usuarios, manteniendo las conexiones abiertas. Esto es posible únicamente

cuando la base de datos se encuentra en modo de solo lectura.

Soporte nativo: PostgreSQL presenta soporte nativo para los siguientes

tipos de datos: texto de largo ilimitado, números de precisión arbitraria,

figuras geométricas con funciones asociadas, direcciones MAC, protocolos

de direcciones IP (tanto IPv4 como IPv6), bloques de direcciones CDIR,

arrays y tipos de datos propios de los usuarios.

Uso de formato JSON: El formato JSON se convierte en el punto débil de

muchos sistemas de bases de datos relacionales. Sin embargo, PostgreSQL

presenta buenas herramientas con las que es posible indexar elementos y

realizar búsquedas en dicho formato. Aunque no se recomienda manejar

toda la base de datos en JSON, y se utiliza para el guardado de información

de algunos elementos e indexar sus propiedades.

Notificaciones a tiempo real: A pesar de que PostgreSQL no fue diseñada

para ser una BD que trabaje al 100% en tiempo real, si es posible mantener

sincronizado en varios dispositivos un sistema de notificación para cuando

se hacen cambios específicos en la base de datos, gracias a las funciones

LISTEN, UNLISTEN y NOTIFY.

C.C. Reconocimiento

www.bdigital.ula.ve

12

Registro y guardado de transacciones: Una de las características más

interesantes de PostgreSQL, es su capacidad de registrar cada transacción en

un WAL (Write Ahead Log). Esto permite restaurar la base de datos a

cualquier punto previamente guardado, una especie de Checkpoint. Esto

permite que no sea necesario realizar respaldos completos de forma

frecuente, en especial para los casos en los que se trabaja con una base de

datos que es muy grande o que contiene mucha cantidad de datos.

Disparadores o triggers: se define como la ejecución de un procedimiento

almacenado, basado en una acción determinada sobre una tabla específica en

la base de datos. (PostgreSQL, 2019)

2.3.1 JSONB en PostgreSQL

Son datos que se almacenan en forma binaria descompuesta, es decir, no

como una cadena ASCII/UTF-8, sino como un código binario. JSONB tiene

una serie de ventajas las cuales son: de rápido procesamiento, admite

diseños de esquemas más simples (reemplazando el número de tablas por

solo una de tipo jsonb donde se almacenan todos los datos); sin embargo,

cuenta con una serie de desventajas las cuales son: de entrada ligeramente

más lenta, puede tomar más espacio en el disco duro debido a la superficie

de la tabla, ciertas consultas pueden ser más lentas debido a que PostgreSQL

guarda estadísticas descriptivas como el número de valores distintos y

comunes, un histograma de la distribución de datos (Del Alba, 2017)

2.3.2 Modelo de documentos en PostgreSQL

Se refiere a la estructura del documento en el gestor de base de datos. En este caso, se

constituye por: la base de datos, la tabla y los registros. Es importante señalar, que para

consultar, actualizar y eliminar los registros, se deben utilizar los operadores que se

observan en la siguiente tabla (JSON Fnctions and Operators, s.f)

Tabla 1

Operadores para el modelo de documentos en PostgreSQL.

Operadores JSON Descripción
-> Obtener campo objeto json por clave.

->> Obtener campo objeto json como texto.
#> Obtener objeto json en la ruta especifica.

#>> Obtener objeto json en la ruta especifica como texto.
Operadores JSONB Descripción

@> Obtener el objeto json que tiene la clave y el valor asociado.
? Obtener los objetos json que tienen la clave asociada.
?| Obtener los objetos json que tienen algunas de las claves asociadas.

?& Obtener los objetos json que tienen todas las claves asociadas.

| |
Permite concatenar dos jsonb.
Permite actualizar el valor de un campo clave.

– Permite eliminar la clave/valor.

C.C. Reconocimiento

www.bdigital.ula.ve

13

2.4 MongoDB

Es un sistema de bases de datos no relacionales, multiplataforma e inspirada

en el tipo de bases de datos documental, admite esquemas flexibles, su

nombre proviene del término en inglés "humongous". Está bajo licencia de

software libre, específicamente GNU AGPL 3.0. Utiliza MQL como

lenguaje de consulta, el cual brinda el rendimiento de las consultas nativas

con la productividad de SQL. El entorno de MongoDB, está constituido por:

documentos y colecciones. Un documento, es un conjunto de datos

estructurados (sin un esquema estricto), que contiene pares clave-valor, el

tamaño de un documento está limitado a 16MB, son almacenados en BSON,

estos pueden ser comparados con los registro en una base de datos

relacional. La colección, es un conjunto de documentos, similar a una tabla

en las bases de datos relacionales. (Graterol, s.f)

A continuación, se describen las características más importantes de MongoDB:

Alto rendimiento: se basa en dos puntos, la posibilidad de tener

documentos con la información anidada, evitando, de esta forma, un número

elevado de operaciones de entrada-salida. Y el soporte de índices y la

posibilidad de crear índices sobre arrays y subdocumentos.

Alta disponibilidad: la proporciona mediante la réplica automática

conocida como replica set, la cual proporciona redundancia de datos y

failover automático, es decir, la transferencia automática a un nuevo nodo

cuando se encuentra un fallo en uno de los nodos.

Escalado horizontal: el sistema de sharding permite distribuir información

por diferentes máquinas (Características de MongoDB, s.f)

2.4.1 BSON en MongoDB

“Es un formato de intercambio de datos usado principalmente para su almacenamiento y

transferencia en la base de datos MongoDB. Es una representación binaria de estructuras

de datos y mapas. El nombre BSON está basado en el término JSON y significa Binary

JSON” (BSON, s.f)

2.4.2 Modelo de documentos en MongoDB

Se refiere a la estructura del documento en el manejador de base de datos. En este caso,

se constituye por: la base de datos, la colección y los documentos. Es importante

destacar, que para consultar, actualiza y eliminar los documentos, se deben utilizar los

operadores que se describren en la siguiente tabla (Query and Projection Operators, s.f)

C.C. Reconocimiento

www.bdigital.ula.ve

14

Tabla 2

Operadores de consulta en MongoDB.

2.5 Documentos embebidos en PostgreSQL y MongoDB

Capturan las relaciones de los datos en estructuras de documentos, tales como en

subdocumentos o arreglos de documentos. En general, se utilizan documentos

embebidos cuando:

Existan relaciones contenidas entre dos entidades; es decir, que dos

entidades independientes sean habitualmente accedidas a través de solo una

de ellas. Por ejemplo, Persona y Domicilio. Cuando únicamente se permitan

búsquedas por Persona para obtener su dirección. En ese caso, es preferible

tener el objeto Dirección embebido dentro de Persona (Modelado One-to-

One, s.f)

Figura 6. Relación Persona – Domicilio.

A continuación, se visualiza la entidad domicilio como subdocumento de persona.

Figura 7. Relación uno a uno embebido.

Nombre Descripción

$eq Coincide con valores que son iguales a un valor especificado.

$gt Coincide con los valores que son mayores que un valor especificado.

$gte Coincide con los valores que son mayores o iguales a un valor especificado.

$in Coincide con cualquiera de los valores especificados en una matriz.

$lt Coincide con valores que son menores que un valor especificado.

$lte Coincide con valores que son menores o iguales a un valor especificado.

$ne Coincide con todos los valores que no son iguales a un valor especificado.

$and Devuelve todos los documentos que coinciden con las condiciones de ambas cláusulas.

$or Devuelve todos los documentos que coinciden con las condiciones de las cláusulas.

$exists Coincide con los documentos que tienen el campo especificado.

$regex Selecciona documentos donde los valores coinciden con una expresión regular especificada.

$set Establece el valor de un campo en un documento.

$unset Elimina el campo especificado de un documento.

Relación de 1:1

Subdocumento

C.C. Reconocimiento

www.bdigital.ula.ve

15

“Cuando exista una relación uno a muchos entre entidades. En este caso, la parte de

muchos suele ir embebida dentro de la de uno” (Modelado One-to-Many, s.f)

Figura 8. Relación Blog – Comentario.

A continuación, se visualiza la entidad comentario como un arreglo de documentos del

blog.

Figura 9. Relación uno a muchos embebido.

2.6 Teorema CAP

CAP también conocido como el Teorema de Brewer, se aplica para sistemas

distribuidos y se garantiza dos de las tres configuraciones que se mencionan a

continuación:

Consistencia (Consistency): todos los nodos deben ver los mismos datos al

mismo tiempo. Es decir, cualquier cambio realizado en los datos del sistema

se deben aplicar en todos los nodos y debe ser el mismo datos en todos. Esto

se llama consistencia atómica y se consigue aplicando la información en

todos los nodos

Disponibilidad (Availability): garantiza que cada petición a un nodo reciba

una confirmación de si ha sido o no satisfactoriamente.

Tolerancia al Particionado (Partition Tolerance): debe funcionar a pesar de

que los nodos tengan un fallo de comunicación, garantizando la

disponibilidad a pesar que un nodo se separe del grupo sin importar la causa

(Moreno, 2018)

El teorema solo garantiza las siguientes configuraciones:

CA (Consistency & Availability): el sistema siempre estará disponibles

respondiendo las peticiones y los datos procesados serán consistentes. En este

caso no se puede permitir el particionado.

CP (Consistency & Partition): el sistema aplicara los cambios de forma

consistente y aunque se pierda la comunicación entre nodos ocasionando el

particionado. No se asegura la disponibilidad entre los nodos.

Relación de 1: N
Arreglo de

documentos

C.C. Reconocimiento

www.bdigital.ula.ve

16

AP (Availability & Partition): el sistema siempre estará disponible a las

peticiones aunque se pierda la comunicación entre los nodos ocasionando el

particionado. En consecuencia por la pérdida de comunicación existirá

inconsistencia porque no todos los nodos serán iguales (Moreno, 2018)

Figura 10. Configuraciones CAP en los sistemas de bases de datos.

C.C. Reconocimiento

www.bdigital.ula.ve

17

Capítulo 3

3. Análisis y diseño de casos de prueba

En este trabajo de investigación, se pretende modificar y crear funciones a la

herramienta pg_nosql_benchmark desarrollada para la evaluación comparativa de

PostgreSQL (JSONB) y MongoDB (BSON) usando datos JSON (Kumar, 2014).

Cabe señalar, que dicha herramienta está conformada por cuatro archivos que llevan

por nombre: pg_nosql_benchmark, common_func_lib.sh, pg_func_lib.sh y

mongo_func_lib.sh; El primer archivo, almacena las variables de entorno tanto de

PostgreSQL como de MongoDB. El segundo, contiene la semilla de datos json para

generar los documentos. El tercero, reúne todas las funciones de PostgreSQL. El cuarto,

guarda todas las funciones de MongoDB.

Se determinó para ambos manejadores un caso de estudio que estará constituido por

las siguientes entidades, campos y relaciones.

Figura 11. Diagrama del Caso de Estudio.

C.C. Reconocimiento

www.bdigital.ula.ve

18

Ahora bien, las entidades, campos y relaciones antes descritas se representaron en

una plantilla de JSON GENERATOR, es un generador en línea de archivos con formato

JSON.

A continuación, se visualiza la plantilla:

Figura 12. Plantilla JSON.

C.C. Reconocimiento

www.bdigital.ula.ve

19

Seguidamente, se generó el archivo JSON. A continuación, se observa:

Figura 13. Archivo JSON.

Luego, se desarrolló el ScriptA para eliminar la última coma de cada documento y

agregar un salto de línea, obteniendo de esta manera el formato definido por

PostgreSQL y MongoDB. A continuación, se visualiza el script y los datos.

Figura 14. ScriptA.

C.C. Reconocimiento

www.bdigital.ula.ve

20

Figura 15. Datos con el formato definido por PostgreSQL y MongoDB.

Posteriormente, se desarrolló el ScriptB para agregar una barra (\) antes de las

comillas, obteniendo de esta manera el formato definido por la herramienta

pg_nosql_benchmark. A continuación, se visualiza el script y los datos.

Figura 16. ScriptB.

C.C. Reconocimiento

www.bdigital.ula.ve

21

Figura 17. Datos con el formato definido por la herramienta.

C.C. Reconocimiento

www.bdigital.ula.ve

22

Capítulo 4

4. Implementación

En está etapa de la investigación se llevó a cabo una serie de pasos, los cuales se

describen a continuación, se instaló la herramienta pg_nosql_benchmark, así como

también, los paquetes de postgresql 10.8, mongodb 4.0.9, bc, git, mongo-tools, apache2,

phppgadmin y compass. Luego, se creó un usuario root en MongoDB, como se observa

en la figura 18. Posteriormente, se creó un superusuario en PostgreSQL de la siguiente

manera: CREATE USER kenia WITH LOGIN ENCRYPTED PASSWORD ‘kenia’

SUPERUSER;

La creación del usuario root y superusuario, se realizó con la finalidad de tener todos

los privilegios para administrar las bases de datos.

Figura 18. Creación de usuario root en MongoDB.

A continuación, se visualizan las funciones modificadas y creadas en los archivos de

la herramienta.

C.C. Reconocimiento

www.bdigital.ula.ve

23

Archivo pg_nosql_benchmark: se modificaron las variables de entorno de PostgreSQL

y MongoDB, las cuales permitirán la conexión a las bases de datos. A continuación, se

observan:

Figura 19. Variables de entorno de PostgreSQL y MongoDB.

Del mismo modo, se modificó el valor de la variable json_rows que sirve para

generar dinámicamente las tres cargas de trabajo de 100, 1.000 y 100.000 registros o

documentos que se almacenaran en PostgreSQL y MongoDB.

Figura 20. Declaración de variable generadora de documentos.

C.C. Reconocimiento

www.bdigital.ula.ve

24

También, se diseño el reporte de los resultados comparativos para PostgreSQL y

MongoDB.

Figura 21. Reporte de los resultados comparativos para PostgreSQL y MongoDB.

Archivo common_func_lib.sh

En la function json_seed_data, se agregaron los datos con el formato definido por

la herramienta, así como también, se añadió al campo code una función random para

generar números aleatorios.

Figura 22. Datos de la herramienta.

C.C. Reconocimiento

www.bdigital.ula.ve

25

Archivo pg_func_lib.sh

En la function pg_json_insert_maker, se insertan en la tabla json_tables los

registros que se encuentran en sample_pg_inserts.json.

Figura 23. Inserción de datos JSON en PostgreSQL.

En la function pg_select_benchmark, se crearon las consultas SELECT simples y

compuestas para cada carga de trabajo respectivamente. A continuación, se visualiza un

extracto de estas.

Para 100 registros le corresponde 20 consultas SELECT.

Figura 24. Sentencias SELECT para 100 registros en PostgreSQL.

C.C. Reconocimiento

www.bdigital.ula.ve

26

Para 1.000 registros le corresponden 80 consultas SELECT.

Figura 25. Sentencias SELECT para 1.000 registros en PostgreSQL.

Para 100.000 registros le corresponden 120 consultas SELECT.

Figura 26. Sentencias SELECT para 100.000 registros en PostgreSQL.

C.C. Reconocimiento

www.bdigital.ula.ve

27

En la function pg_update_benchmark, se crearon sentencias UPDATE para cada

carga de trabajo respectivamente. A continuación, se visualiza un extracto de estas.

Para 100 registros le corresponde 10 sentencias UPDATE.

Figura 27. Sentencias UPDATE para 100 registros en PostgreSQL.

Para 1.000 registros le corresponden 100 sentencias UPDATE.

Figura 28. Sentencias UPDATE para 1.000 registros en PostgreSQL.

C.C. Reconocimiento

www.bdigital.ula.ve

28

Para 100.000 registros le corresponden 300 sentencias UPDATE.

Figura 29. Sentencias UPDATE para 100.000 registros en PostgreSQL.

Archivo mongo_func_lib.sh

En la function mongo_json_insert_maker, se insertan en la colección json_tables

los documentos que se encuentran en sample_mongo_inserts.json.

Figura 30. Inserción de datos JSON en MongoDB.

En la function mongodb_select_benchmark, se crearon las consultas FIND

simples y compuestas para cada carga de trabajo respectivamente. A continuación, se

visualiza un extracto de estas.

C.C. Reconocimiento

www.bdigital.ula.ve

29

Para 100 registros le corresponde 20 consultas FIND.

Figura 31. Sentencias FIND para 100 documentos en MongoDB.

Para 1.000 registros le corresponden 80 consultas FIND.

Figura 32. Sentencias FIND para 1.000 documentos en MongoDB.

C.C. Reconocimiento

www.bdigital.ula.ve

30

Para 100.000 registros le corresponden 120 consultas FIND.

Figura 33. Sentencias FIND para 100.000 documentos en MongoDB.

En la function mongodb_update_benchmark, se crearon sentencias UPDATE

para cada carga de trabajo respectivamente. A continuación, se visualiza un extracto de

estas.

Para 100 registros le corresponde 10 sentencias UPDATE.

Figura 34. Sentencias UPDATE para 100 documentos en MongoDB.

C.C. Reconocimiento

www.bdigital.ula.ve

31

Para 1.000 registros le corresponden 100 sentencias UPDATE.

Figura 35. Sentencias UPDATE para 1.000 documentos en MongoDB.

Para 100.000 registros le corresponden 300 sentencias UPDATE.

Figura 36. Sentencias UPDATE para 100.000 documentos en MongoDB.

C.C. Reconocimiento

www.bdigital.ula.ve

32

En la function mongo_collection_size, se calculó el tamaño de la colección.

Figura 37. Tamaño de la colección en MongoDB.

En la function mongodb_create_index, se crearon los índices para cada carga de

trabajo respectivamente.

Para 100 registros le corresponden 14 índices.

Figura 38. Índices en MongoDB para 100 registros.

Para 1.000 registros le corresponden 16 índices.

Figura 39. Índices en MongoDB para 1.000 registros.

C.C. Reconocimiento

www.bdigital.ula.ve

33

Para 100.000 registros le corresponden 16 índices.

Figura 40. Índices en MongoDB para 100.000 registros.

Es importante señalar, que se deben levantar los servidores de la siguiente manera:

PostgreSQL

Figura 41. Levantar servidor de PostgreSQL.

MongoDB

Se agrega en una consola lo siguiente:

Y en otra:

Figura 42. Levantar servidor de MongoDB.

Finalmente, la herramienta se ejecuta de la siguiente forma:

Figura 43. Ejecución de la herramienta.

C.C. Reconocimiento

www.bdigital.ula.ve

34

Capítulo 5

5. Resultados

A continuación, se visualizan los reportes con los resultados obtenidos

correspondientes a las tres cargas de trabajo respectivamente.

Para 100 registros.

Figura 44. Reporte de los resultados con 100 registros.

Para 1.000 registros.

Figura 45. Reporte de los resultados con 1.000 registros.

C.C. Reconocimiento

www.bdigital.ula.ve

35

Para 100.000 registros.

Figura 46. Reporte de los resultados con 100.000 registros.

Tabla general de los resultados

Tabla 3

Resultados de la evaluación comparativa de PostgreSQL y MongoDB.

 100 1.000 100.000 Unidades

PostgreSQL COPY 120446328 183546890 6322754204

n
an

o
se

g
u
n
d
o
s

MongoDB IMPORT 422369583 755854442 524843856

PostgreSQL INSERT 217160074 657562304 41965708973

MongoDB INSERT 915686401 1861848373 172029763771

PostgreSQL SELECT 85017913 88326785 619980738

MongoDB FIND 161090212 162590717 136230483

PostgreSQL UPDATE 114945216 185505545 52121683459

MongoDB UPDATE 137854647 263679277 201459122

PostgreSQL TABLE 245760 2457600 245760000

b
y
te

s

MongoDB COLLECTION 103955 1038624 103940312

C.C. Reconocimiento

www.bdigital.ula.ve

36

A continuación, se visualizan los resultados gráficamente

Figura 47. Representación gráfica del COPY vs IMPORT.

 En la carga de 100 registros, se puede observar que el comando COPY tiene un mejor

rendimiento, es decir, el tiempo de respuesta es menor que el comando IMPORT. Del

mismo modo, ocurre con la carga de 1.000 registros. Sin embargo, en la carga de

100.000 registros el comando IMPORT tiene mejor rendimiento.

Figura 48. Representación gráfica del INSERT.

 En la carga de 100 registros, se puede observar que el comando INSERT de

PostgreSQL arroja un tiempo de respuesta menor que el comando INSERT de

MongoDB. Así mismo, ocurre con la carga de 1.000 y 100.000 registros.

C.C. Reconocimiento

www.bdigital.ula.ve

37

Figura 49. Representación gráfica del SELECT vs FIND.

 En la carga de 100 registros, se puede observar que las consultas SELECT arrojan un

tiempo de respuesta menor que las consultas FIND. Del mismo modo, ocurre con la

carga de 1.000 registros. No obstante, en la carga de 100.000 registros las consultas

FIND tienen mejor rendimiento.

Figura 50. Representación gráfica del UPDATE.

 En la carga de 100 registros, se puede observar que las sentencias UPDATE de

PostgreSQL arrojan un tiempo de respuesta menor que el UPDATE de MongoDB. Así

mismo, ocurre con la carga de 1.000 registros. Sin embargo, en la carga de 100.000

registros las sentencias UPDATE de MongoDB tienen mejor rendimiento.

C.C. Reconocimiento

www.bdigital.ula.ve

38

Figura 51. Representación gráfica del tamaño de la tabla y la colección.

 En la carga de 100, 1.000 y 100.000 registros, se puede observar que hay mejor

rendimiento cuando se almacena en una colección que en una tabla.

 De modo general, se puede concluir que el manejador de base de datos PostgreSQL

arroja tiempos de respuesta óptimos cuando manipula poca cantidad de datos, pero

ocupa más espacio de almacenamiento que MongoDB. Por el contrario, MongoDB

arroja tiempos de respuesta aceptables cuando maneja gran cantidad de datos, así como

también, ocupa menos espacio de almacenamiento que PostgreSQL.

C.C. Reconocimiento

www.bdigital.ula.ve

39

6. Conclusiones

En esta época donde se generan grandes cantidades de datos semiestructurados, las

bases de datos relacionales empiezan a mostrar deficiencias, en almacenamiento u

operaciones; siendo esta una de las principales razones de impulsar el uso de las

NoSQL.

Es por ello, que se llega a la siguiente interrogante ¿cúando se debe utilizar una base

de datos NoSQL y cuándo una relacional? A continuación, se señalan las características

más importantes para resolver dicha interrogante. Cuando los datos deben ser

consistentes sin dar posibilidad al error, SQL. Cuando se tiene poco presupuesto para

máquinas de alto rendimiento, NoSQL. Cuando las estructuras de datos que se manejan

son variables, NoSQL. Cuando existe el análisis de grandes cantidades de datos en

modo lectura, NoSQL.

Es importante señalar, que las características NoSQL incorporadas en las últimas

versiones de PostgreSQL satisfacen las mismas necesidades que MongoDB. Todo esto

encaminado a agilizar y flexibilizar la manipulación de los datos. En este trabajo de

grado, se obtuvo el mejor rendimiento de los manejadores en cuanto a tiempo de

respuesta y tamaño de la tabla y la colección.

En PostgreSQL, se obtuvo mejores tiempo de respuesta cuando maneja poca

cantidad de datos y en MongoDB, cuando maneja gran cantidad. Por otra parte, el

tamaño de la colección de MongoDB ocupa menos espacio que la tabla de PostgreSQL,

ya sea manipulando pocos o muchos datos.

En conclusión, las bases de datos no relacionales o NoSQL no reemplazan a las

relacionales, sino que las complementan cuando éstas se quedan pequeñas o poco

prácticas para el manejo y almacenamiento de grandes cantidades de información.

C.C. Reconocimiento

www.bdigital.ula.ve

40

Bibliografía

Bases de datos NoSQL. (s.f.). Recuperado 10 de septiembre de 2018 de

https://www.acens.com/wp-content/images/2014/02/bbdd-nosql-wp-acens.pdf

BSON. (s.f.). En Wikipedia. Recuperado el 10 de septiembre de 2018 de

https://es.wikipedia.org/wiki/BSON

Camacho, E. (s.f.). NoSQL la evolución de las bases de datos. Recuperado 10 de

septiembre de 2018 de https://sg.com.mx/revista/28/nosql-evolucion-bases-datos

JSON Fnctions and Operators. (s.f.). Recuperado el 10 de septiembre de 2018 de

https://www.postgresql.org/docs/current/functions-json.html

Características de MongoDB. (s.f.). Recuperado el 10 de septiembre de 2018 de

http://www.manualweb.net/mongodb/que-es-mongodb/

Del Alba, L. (20 de marzo de 2017). Operaciones más rápidas con el tipo de datos

JSONB en PostgreSQL. Recuperado 10 de septiembre de 2018 de

https://www.compose.com/articles/faster-operations-with-the-jsonb-data-type-in-

postgresql/

Fotache M & Cogean D. (2013). NoSQL and SQL Databases for Mobile Applications.

Case Study: MongoDB versus PostgreSQL. Informatica Economica, 17(2), 41-58. doi:

10.12948/issn14531305/17.2.2013.04

Graterol, Y. (s.f.). Mongo DB en Español. Recuperado el 10 de septiembre de 2018 de

https://tutorialesenpdf.com/mongodb/

Hanlon et al. (2015). A Case Study for NoSQL Applications and Performance Benefits:

CouchDB vs. Postgres. Figshare, 1-6.

C.C. Reconocimiento

www.bdigital.ula.ve

41

Introduction to MongoDB. (s.f.). Recuperado 10 de septiembre de 2018 de https:

https://docs.mongodb.com/manual/introduction/

Kaur K & Rani R. (2013). Modeling and Querying Data in NoSQL Databases.

International Conference on Big Data, pp. 1-7. IEEE, 2013.

Kumar, V. (17 de julio de 2014). Pg_nosql_benchmark. Recuperado 18 de noviembre de

2018 de https://github.com/EnterpriseDB/pg_nosql_benchmark

Modelado One-to-Many. (s.f.). Recuperado el 10 de septiembre de 2018 de

http://www.manualweb.net/mongodb/modelado-one-to-many-mongodb/

Modelado One-to-One. (s.f.). Recuperado el 10 de septiembre de 2018 de

http://www.manualweb.net/mongodb/modelado-one-to-one-mongodb/

Moreno, G. (31 de enero de 2018). Medium. [Blog]. Recuperado de

https://medium.com/@Gildder/teorema-cap-e99d66fde6a0

NoSQL. (s.f.). En Wikipedia. Recuperado el 10 de septiembre de 2018 de

https://es.wikipedia.org/wiki/NoSQL

PostgreSQL. (s.f.). En Wikipedia. Recuperado el 10 de septiembre de 2018 de

https://es.wikipedia.org/wiki/PostgreSQL

PostgreSQL. (7 de febrero de 2019). Recuperado el 29 de marzo de2019 de

https://hostingpedia.net/postgresql.html

Query and Projection Operators. (s.f.). Recuperado 10 de septiembre de 2018 de

https://docs.mongodb.com/manual/reference/operator/query/

C.C. Reconocimiento

www.bdigital.ula.ve

42

Sim S., Easterbrook S & Holt R. (2003). Using Benchmarking to Advance Research: A

Challenge to Software Engineering. In Proceedings of the 25th International

Conference on Software Engineering, pp. 74–83. IEEE, 2003.

Suárez, J. (18 de noviembre de 2015). Pandorafms. [Blog]. Recuperado de

https://blog.pandorafms.org/es/nosql-vs-sql-diferencias-y-cuando-elegir-cada-una

C.C. Reconocimiento

www.bdigital.ula.ve

