Proyecto de Grado

Presentado ante la ilustre UNIVERSIDAD DE LOS ANDES como requisito final para
obtener el Titulo de INGENIERO DE SISTEMAS

EVALUACION DE POSTGRESQL COMO ALTERNATIVA A UNA BASE DE DATOS
NOSQL BASADA EN DOCUMENTOS

Por

Br. Kenia del V. Vergara H.

Tutor: Solazver Solé Alvarez.

Noviembre, 2019

UNIVERSIDAD
DE LOS ANDES

MERIDA-VENEZUELA

©2019 Universidad de Los Andes Mérida, Venezuela

EVALUACION DE POSTGRESQL COMO ALTERNATIVA A UNA BASE DE
DATOS NOSQL BASADA EN DOCUMENTOS

Br. Kenia del V. Vergara H.

Proyecto de Grado — Sistemas Computacionales, 50 paginas
Escuela de Ingenieria de Sistemas, Universidad de Los Andes, 2019

Resumen: El contenido de este trabajo se fundamenta en la evaluacién comparativa de
PostgreSQL (JSONB) y MongoDB (BSON) usando datos JSON, dicha evaluacion se
enmarcé en la metodologia puntos de referencia o benchmarking para obtener el mejor
rendimiento de los manejadores. Cabe destacar, la evaluacion se constituyd en las
siguientes etapas. En la primera, se instalo la herramienta pg_nosql_benchmark,
postgresql 10.8, mongodb 4.0.9, bc, git, mongo-tools, apache2, phppgadmin y compass.
En la segunda, se eligio un caso de estudio compuesto por tres cargas de trabajo de 100,
1.000 y 100.000 registros o documentos. En la tercera, se cre6 una plantilla con un
generador llamado JSON GENERATOR, el cual contiene una serie de etiquetas
preestablecidas para generar documentos en linea. En la cuarta, se modificaron los
archivos pg_nosgl_benchmark, common_func_lib.sh, pg_func_lib.sh y
mongo_func_lib.sh pertenecientes a la herramienta. Finalmente, se observo que el
tiempo de respuesta es menor en PostgreSQL cuando maneja poca cantidad de datos y
en MongoDB cuando maneja gran cantidad; por otra parte, en el almacenamiento
MongoDB ocupa menos espacio que PostgreSQL ya sea utilizando pocos o muchos

datos.

Palabras claves: Benchmarking, BSON, JSON, JSONB, MongoDB, NoSQL,
PostgreSQL.

Indice
Listade tablas.o vi
LiSta 0 TIQUIAS. ..ottt vii
Capitulo 1
I 1011 oo [0 o oo A PP 1
1.1 Planteamiento del Problema...............oooiiiiiiiiie 2
L2 ODJELIVOS. ...t 3
1.2.10bjetivoGeneral...........cooiiiii 3
1.2.2 Objetivos ESPeCifiCoS.c.ooviniiii i 3
1.3 Metodologia.ooveiei i, 3
L4 ALCANCE. . et 4
L5 JUSHIFICACION. ...t e 5
1.6 ANTECRABNTES. ...ttt 5
Capitulo 2
2. MaArCO TEOMICO. ..o ueeiet ettt e e 8
2.1 NpgQUN AN L YC LG L L AL LA . N 8
2.1.1 Tipos de bases de datos NOSQL.........c.ouiiiiiiiiiiiii e, 8
2.1.2 Ventajas de las bases de datos NOSQL..............ccooiviiiiiiiiiiinnnn, 10
2.1.3 Desventajas de las bases de datos NOSQL...............ccoooviiiiininnns. 10
2.2 JSON (JavaScript Object Notation)............coovvviiiiiiiiiiieeieeieeaes 10
2.3 POSIgreSQL. ..ot 11
2.3.1JSONB en PostgreSQL.c.ooniiiiiii e 12
2.3.2 Modelo de documentos en PostgreSQL............cooovviiiiiiiiiiienes. 12
24 MONQODB. ..., 13
24.1BSONenMongoDB........cooii 13
2.4.2 Modelo de documentos en MongoDB............c.cooiviiiiiiiiii 13
2.5 Documentos embebidos en PostgreSQL y MongoDB.......................... 14
2.6 Teorema CAP ... 15
Capitulo 3
3. Anélisis y disefio de casos de prueba..............oooiiiiiiiii 17

Capitulo 4

4, IMPlemMeNtaCION.uit ittt e 22
Capitulo 5

5. ReSUNAAOS.eei 34
B. CONCIUSIONES. ...t 39

Bibliografia...........ooiii 40

Lista de tablas

Tabla 1. Operadores para el modelo de documentos en PostgreSQL.....................

Tabla 2. Operadores de consulta en MongoDB..............ccooiiiiiiiiiii i,
Tabla 3. Resultados de la evaluacion comparativa de PostgreSQL y MongoDB........

Vi

vii

Lista de figuras

Figura 1. Bases de datos de dOCUMENTOS.oiviriniieiiiiee e 8
Figura 2. Bases de datos de grafos.............ccoooiiiiiiiii 9
Figura 3. Bases de datos clave-valor..............ooiiiiiiii i 9
Figura 4. Bases de datos COIUMNAIES..........cvitiiiiiiitiie e aeaeae 9
Figura 5. Documento JSON...... ..ottt 11
Figura 6. Relacion Persona — DOMICIIO............eeeee e e e e, 14
Figura 7. Relacion uno a uno embebido.ooveeeeeeeieie e 14
Figura 8. Relacion BIog — Comentario...............oueuiuinininiiiieieieieieiaaenanenen. 15
Figura 9. Relacion uno a muchos embebido...............oooviiiiiiii i 15
Figura 10. Configuraciones CAP en los sistemas de bases de datos..................... 16
Figura 11. Diagrama del Caso de EStUTIO.ceeveiuueeeeeeeeeee e 17
Figura 12. Plantilla JSON.........oveeee oo, 18
Figura 13. Archivo JSON. ... 19
FIgURA L4, ST P A e e e e 19
Figura 15. Datos con el formato definido por PostgreSQL y MongoDB................ 20
FIQUIA 16. SCIIPIB. ...t e, 20
Figura 17. Datos con el formato definido por la herramienta.............................. 21
Figura 18. Creacion de usuario root en MongoDB..............cccooiiiiiiiiiiiiiiiiiieen 22
Figura 19. Variables de entorno de PostgreSQL y MongoDB.................eevvcee.... 23
Figura 20. Declaracion de variable generadora de documentos........................... 23
Figura 21. Reporte de los resultados comparativos para PostgreSQL y o4
MONGOD B. e
Figura 22. Datos de la herramienta..............cooiiiiiiiiiii e 24
Figura 23. Insercion de datos JSON en PostgreSQL.........ccoviviiiiiniiiiiiineeene, 25
Figura 24. Sentencias SELECT para 100 registros en PostgreSQL....................... 25
Figura 25. Sentencias SELECT para 1.000 registros en PostgreSQL..................... 26
Figura 26. Sentencias SELECT para 100.000 registros en PostgreSQL.................. 26
Figura 27. Sentencias UPDATE para 100 registros en PostgreSQL..................... 27
Figura 28. Sentencias UPDATE para 1.000 registros en PostgreSQL................... 27
28

Figura 29.

Sentencias UPDATE para 100.000 registros en PostgreSQL

Figura 30.
Figura 31.
Figura 32.
Figura 33.
Figura 34.

Figura 35.
Figura 36.

Figura 37.

Figura 38.
Figura 39.
Figura 40.
Figura 41.
Figura 42.
Figura 43.
Figura 44.
Figura 45.
Figura 46.
Figura 47.
Figura 48.
Figura 49.
Figura 50.
Figura 51.

Insercion de datos JSON en MongoDB..........c.oiviiiiiiiiiiiiiieieenn,
Sentencias FIND para 100 documentos en MongoDB........................
Sentencias FIND para 1.000 documentos en MongoDB......................
Sentencias FIND para 100.000 documentos en MongoDB...................

Sentencias UPDATE para 100 documentos en MongoDB...

Sentencias UPDATE para 1.000 documentos en MongoDB.

Sentencias UPDATE para 100.000 documentos en MongoDB..............

Tamafio de la coleccion en MongoDB..........................

indices en MongoDB para 100 doCUMENtOS.evuneeeneeeeeeeeean.
indices en MongoDB para 1.000 dOCUMENtOS.eevueeeeneieain...
indices en MongoDB para 100.000 doCUMENtoS................cccueevveeen...
Levantar servidor de PostgreSQL..........cccooiiiiiiiiiiiiiiieeeae
Levantar servidor de MongoDB...................oo
Ejecucion de la herramienta.................ocoiiiiiiiiiiiiiiieeeeee

Reporte de los resultados con 100 registros.....................

Reporte de los resultados con 1.000 registros..................

Reporte de los resultados con 100.000 registros...............

Representacion grafica del COPY vs IMPORT................
Representacion grafica del INSERT...........ooiiiiiiiiiiiiiiiie

Representacion gréafica del SELECT vs FIND.................

Representacion grafica del UPDATE. ...

Representacion grafica del tamafio de la tabla y la coleccion

viii

28
29
29
30
30
31
31
32
32
32
33
33
33
33
34
34
35
36
36
37
37
38

Capitulo 1

1. Introduccion

Hoy en dia la necesidad de almacenar grandes volumenes de informacion es de vital
importancia para la sociedad. Por ello, las bases de datos juegan un papel primordial, ya
que proporcionan disponibilidad inmediata, ahorro de espacio fisico, facil

mantenimiento, copias de seguridad, integridad de los datos, entre otros.

Cabe sefialar, en el universo de las bases de datos existen dos vertientes que son, las
bases de datos relacionales y las no relacionales o NoSQL, estas ultimas surgen por las
deficiencias encontradas en los modelos relacionales para manejar grandes vélumenes

de informacion de una manera rapida y eficaz.

El objetivo principal de este proyecto de grado, es evaluar el comportamiento de las
caracteristicas NoSQL en PostgreSQL comparandolo con una base de datos NoSQL
basada en documentos como MongoDB. Dicho trabajo, se baso en la instalacion de la
herramienta pg_nosgl_benchmark desarrollada por EnterpriseDB Corporation, donde se
realizO una serie de modificaciones a los archivos pg_nosgl_benchmark,
common_func_lib.sh, pg_func_lib.sh y mongo_func_lib.sh, pertenecientes a dicha
herramienta para obtener los tiempos de respuestas de PostgreSQL y MongoDB, asi

como también, el tamafio que ocupa la tabla y la coleccion respectivamente.

Es importante destacar, que dicha evaluacion se enmarcé en la metodologia puntos
de referencia o benchmarking, el cual es un proceso continuo de comparacion para
obtener el mejor rendimiento de los gestores. Segun, Sim, Easterbrook & Holt (2003)
sefialan que: “El benchmarking debe cumplir con siete propiedades las cuales son,
accesibilidad, asequibilidad, claridad, pertinencia, solubilidad, portabilidad vy
escalabilidad” (p.77).

El presente proyecto estd conformado por cinco capitulos. En el primer capitulo, se
describe el planteamiento del problema, los objetivos, metodologia, alcance,

justificacion y los antecedentes. En el segundo capitulo, se refiere al marco teorico. En
el tercer capitulo, el andlisis y disefio de casos de prueba. En el cuarto capitulo, la

implementacién. Finalmente, en el quinto capitulo, los resultados.

1.1 Planteamiento del Problema

Actualmente, el empleo de datos semiestructurados para el almacenamiento de la
informacién es una tendencia. Por lo tanto, han surgido gestores especializados en
manipular dichos datos, como son las bases de datos no relacionales 0 NoSQL, que
ofrecen caracteristicas de escalabilidad y velocidad en tiempos de respuesta, superiores a
las bases de datos relacionales.

Cabe destacar, que el gestor de bases de datos PostgreSQL ha ido incorporando
caracteristicas NoSQL como la inclusion del tipo de dato JSON en la version 9.2 y
posteriormente el tipo de dato JSONB en la version 9.4, asi como también, los
operadores modificadores para cada tipo de dato en la version 9.3 y 9.5 respectivamente,

todo esto encaminado a agilizar y flexibilizar la manipulacion de los datos.

Por otra parte, MongoDB es un gestor de base de datos NoSQL de cddigo abierto, el
cual trabaja sobre una base de datos de documentos JSON (JavaScript Object Notation),
es decir, que en lugar de guardar los datos en registros, los guarda en documentos y
dichos documentos son almacenados en un formato binario llamado BSON. MongoDB
almacena en sus bases de datos, un conjunto de colecciones constituidas por documentos

gue pueden tener esquemas diferentes.

Finalmente, el problema que se va a abordar en este trabajo, es comprobar si
PostgreSQL satisface las mismas necesidades que MongoDB, los cuales representan
modelos de datos distintos, asi como también, determinar el mejor rendimiento entre
ambos manejadores en relacién a, tiempo de respuesta del copy vs import, insert, select

vs find, update y el tamafio que ocupa la tabla y la coleccion.

1.2 Objetivos

1.2.1 Objetivo General

Evaluar el comportamiento de las caracteristicas NoSQL en PostgreSQL comparandolo

con una base de datos NoSQL basada en documentos como MongoDB.

1.2.2 Objetivos Especificos

1.

Analizar las caracteristicas NoSQL del gestor de bases de datos relacional

PostgreSQL.

Revisar un gestor de bases de datos NoSQL basado en documentos.

Definir benchmarks con operaciones de consultas equivalentes en PostgreSQL y

en MongoDB.

Ejecutar los benchmarks en un ambiente operativo con las ultimas versiones

disponibles de PostgreSQL y MongoDB.

Comparar resultados de PostgreSQL y MongoDB para consultas y manipulacion

de datos JSON.

1.3 Metodologia

En las ciencias de la computacion se han utilizado puntos de referencia o

benchmarking para comparar el rendimiento de sistemas informaticos, algoritmos de

recuperacion de informacion, bases de datos y muchas otras tecnologias.

Segun, Sim et al. (2003), en su trabajo titulado “Usando Benchmarking para
Avanzar en la Investigacion: Un Desafio para la Ingenieria de Software”,
presentan siete propiedades que los puntos de referencia o bechmarking
deben tener: accesible (el punto de referencia debe ser facil de obtener y de
usar), asequible (debe ser acorde con los beneficios), claridad (la
especificacion deber ser clara, autbnoma y lo méas breve posible), pertinencia
(la tarea establecida en el punto de referencia deber ser representativa),
soluble (debe producir una buena solucion), portable (debe especificarse a
un nivel de abstraccién lo suficientemente alto para garantizar que sea
portatil para diferentes herramientas y que no influya a favor de una
tecnologia) y escalable (las tareas del punto de referencia deben escalar para
trabajar con herramientas o técnicas en diferentes niveles de madurez)

(p.77).

Cabe destacar, que en este trabajo se aplicard dicha técnica de evaluacién que tiene
asociada las siguientes fases:

» Primera, se elige un caso de estudio, es decir, un conjunto de datos que se
representaran en el modelo de documentos de PostgreSQL y MongoDB.

= Segunda, se instala PostgreSQL y MongoDB, se crean las bases de datos, tabla o
coleccion segln el manejador.

= Tercera, se almacenan los datos del caso de estudio en los manejadores
(definiendo varias cargas de trabajo 100, 1.000 y 100.000 registros o
documentos)

= Cuarta, se disefian los benchmarks, con operaciones de consultas equivalentes en
PostgreSQL y en MongoDB para tomar las métricas de rendimiento.

= Quinta, se ejecutan los benchmarks.

= Sexta, se comparan los resultados.

= Séptima, se realizan las conclusiones de la evaluacion.

1.4 Alcance
La evaluacion comparativa de PostgreSQL (JSONB) y MongoDB (BSON), se

centrard en tres cargas de trabajos constituidas por 100, 1.000 y 100.000 registros o
documentos para los manejadores antes descritos. Estas cargas se delimitaron en un
rango de valores minimos, medios y maximos para obtener tiempos de respuestas

distintos y de esta manera determinar el mejor rendimiento de cada gestor.

A continuacion, se especifica la cantidad de consultas select y sentencias update
definidas para cada carga de trabajo en los manejadores, las cuales son: 20 select y 10
update para la carga de 100 registros, 80 select y 100 update para la carga de 1.000
registros y finalmente, 120 select y 300 update para la carga de 100.000 registros o
documentos. Es importante acotar, que la cantidad de select y update fue incrementada

de acuerdo al volumen de los datos.

1.5 Justificacion

Actualmente, las bases de datos NoSQL han ganado espacio especialmente por la
escalabilidad y velocidad en sus tiempos de respuestas, superiores a los sistemas
relacionales. Es importante sefalar, las bases de datos NoSQL se basan en el teorema
CAP (consistencia, disponibilidad y tolerancia a particiones), el cual plantea que un
sistema de datos distribuidos puede contar con dos de las tres propiedades antes
descritas; en cambio, las bases de datos relacionales se basan en las propiedades ACID
(atomicidad, consistencia, aislamiento y durabilidad). No obstante, las bases de datos
NoSQL no se solapan con las relacionales ya que cada tipo garantiza las funcionalidades

para las que fueron desarrolladas.

Este proyecto se realizd con la finalidad de evaluar el comportamiento de las
caracteristicas NoSQL en PostgreSQL comparandolo con una base de datos NoSQL
basada en documentos como MongoDB. Para comprobar si PostgreSQL arroja tiempos
de respuestas menores que MongoDB, asi como también, si ocupa menos espacio de
almacenamiento, logrando de esta manera un manejador mas completo donde convergen
las dos tecnologias SQL y NoSQL.

1.6 Antecedentes

Hanlon et al. (2015), en su trabajo titulado “Un Caso de Estudio para Aplicaciones
NoSQL y Beneficios de Rendimiento: CouchDB vs. Postgres”, utilizaron un modelo de
datos de prueba simple. Dicho trabajo, se fundamentd en varias etapas. En la primera,
compararon inserciones de una y varias filas. En la segunda, compararon el nimero de
consultas completadas en CouchDB y Postgres para aumentar el nimero de usuarios
simultaneos. En la tercera, compararon el tiempo promedio de ejecucion de consultas en
un entorno de lectura / escritura. En cada etapa concluyen, que CouchDB super6 a
Postgres en inserciones de una sola fila, pero Postgres super6 a CouchDB en las
inserciones de multiples filas. Del mismo modo, CouchDB completé mas rapido las
consultas que Postgres e incrementd el nimero de usuarios simultaneos. Inclusive,
CouchDB obtuvo un gran rendimiento en el entorno de lectura/escritura. Finalmente

sefialan, que las bases de datos NoSQL no son un reemplazo de las bases de datos

relacionales, pues, en muchos casos tener una base de datos relacional sigue siendo

necesaria, debido a que no todos los datos se pueden componer de documentos.

Por otra parte, Fotache & Cogean (2013), en su trabajo titulado “Bases de Datos
NoSQL para Aplicaciones Moviles. Estudio de Caso: MongoDB versus PostgreSQL”,
utilizaron un esquema de base de datos relacional para PostgreSQL y una coleccion de
documentos para MongoDB; dado que, el modelo de datos es diferente la conexion a
cada manejador es distinta; del mismo modo, las diferencias entre los lenguajes de
definicién de datos y manipulacion de datos de ambos manejadores. En este trabajo
concluyen, que las bases de datos relacionales para aplicaciones mdviles poseen dos
puntos débiles como son, la rigidez del esquema y la imposibilidad de manejar todos los
casos de uso diferentes que requieren dichas aplicaciones, en cambio, las no relacionales
proporcionan escalabilidad y velocidad cuando las aplicaciones moviles administran
gran cantidad de datos en un servidor central.

Kaur & Rani (2013), en su trabajo titulado “Modelado y Consulta de Datos en Bases
de Datos NoSQL”, utilizaron tres de bases de datos, la relacional para PostgreSQL, de
documentos para MongoDB y de grafos para Neo4j. Luego, representaron los modelos
de datos en los diversos diagramas de, entidad relacion, clases y grafos respectivamente.
Seguidamente, consideraron siete consultas de diversas complejidades para el caso de
estudio, las cuales fueron representadas en los lenguajes, SQL, MQL y Cypher. En este
trabajo concluyen, que las bases de datos no relacionales brindan mejoras sobre las
relacionales, como rendimiento, flexibilidad y escalabilidad, del mismo modo, sefialan
que las bases de datos no relacionales no deben considerarse como un reemplazo de las

relacionales, sino como un complemento.

Por otro lado, Kumar (2014), en su trabajo titulado “pg nosql_benchmark” es una
herramienta para la evaluacién comparativa de PostgreSQL (JSONB) y MongoDB
(BSON) utilizando datos JSON. Copyright (c) 2013-2014, EnterpriseDB Corporation.
Dicha herramienta genera un gran conjunto de documentos JSON, los cuales se cargan
en PostgreSQL y MongoDB usando el comando INSERT, de la misma manera, se

ejecutan 4 consultas SELECT simples en los gestores y finalmente, se visualiza un
reporte con los tiempos de respuesta del, COPY vs IMPORT, INSERT, SELECT, asi

como también, el tamafio que ocupa la tabla y la coleccion.

Capitulo 2

2. Marco Tedrico

2.1 NoSQL

Es una amplia clase de sistemas de gestion de bases de datos que difieren del
modelo clasico de SGBDR (Sistema de Gestion de Bases de Datos
Relacionales) en aspectos importantes, siendo el mas destacado que no usan
SQL como lenguaje principal de consultas. Los datos almacenados no
requieren estructuras fijas como tablas, normalmente no soportan
operaciones JOIN, ni garantizan completamente ACID (atomicidad,
consistencia, aislamiento y durabilidad) y habitualmente escalan bien
horizontalmente (NoSQL, s.f)

2.1.1 Tipos de base de datos NoSQL
Bases de datos de documentos

Este tipo almacena la informacién como un documento, generalmente
utilizando para ello una estructura simple como JSON o XML y donde se
utiliza una clave Unica para cada registro. Este tipo de implementacion
permite, ademés de realizar basquedas por clave—valor, realizar consultas
mas avanzadas sobre el contenido del documento. Son las bases de datos
NoSQL maés versatiles. Se pueden utilizar en gran cantidad de proyectos,
incluyendo muchos que tradicionalmente funcionarian sobre bases de datos
relacionales. Algunos ejemplos de este tipo son: MongoDB o CouchDB
(Bases de datos NoSQL, s.f)

User Info Address Info
. [o Wswe) |
{ 1 DEN O 30303
2 AL
“FIRST”: “Frank”,
“LAST”: “Weigel", -— Ali Dodson 2 + 2 MV CA 94040
“ZIP": “94040",
“CITY”: “MV”, R
3 Mark Azad 2 3 CHI i 60609
“STATE”: “CA”
}
JSON a Steve Yen 3 4 NY NY 10010

Figura 1. Bases de datos de documentos.

Bases de datos de grafos

En este tipo de bases de datos, la informacion se representa como nodos de
un grafo y sus relaciones con las aristas del mismo, de manera que se puede
hacer uso de la teoria de grafos para recorrerla. Para sacar el maximo
rendimiento a este tipo de bases de datos, su estructura debe estar totalmente
normalizada, de forma que cada tabla tenga una sola columna y cada

relacion dos. Este tipo de bases de datos ofrece una navegacion mas
eficiente entre relaciones que en un modelo relacional. Algunos ejemplos de
este tipo son: Neo4j, InfoGrid o Virtuoso (Bases de datos NoSQL, s.f)

Figura 2. Bases de datos de grafos.

Bases de datos clave-valor

Son el modelo de base de datos NoSQL maés popular, ademas de ser la méas
sencilla en cuanto a funcionalidad. En este tipo de sistema, cada elemento
esta identificado por una llave Unica, lo que permite la recuperacion de la
informacién de forma muy rapida, informacion que habitualmente esta
almacenada como un objeto binario (BLOB). Se caracterizan por ser muy
eficientes tanto para las lecturas como para las escrituras. Algunos ejemplos
de este tipo son: Cassandra, BigTable o HBase (Bases de datos NoSQL, s.f)

Keys Values

521-8976

521-1234

Lisa Smith

521-5030

Figura 3. Bases de datos clave-valor.

Bases de datos columnares

Como su nombre lo indica, guardan los datos en columnas en lugar de filas.
Por ejemplo, tendriamos una tabla como la que se muestra en la figura 1,
mientras que en una base orientada a columnas tendriamos las tablas que
muestra la figura 4. Con este cambio ganamos mucha velocidad en lecturas,
ya que si queremos consultar un nimero reducido de columnas, es muy

10

rapido hacerlo. Al final tenemos una base muy parecida a la clave-valor. Por
otro lado, este paradigma no es muy eficiente para realizar escrituras. Por
ello este tipo de soluciones es usado en aplicaciones con un indice bajo de
escrituras, pero muchas lecturas (Camacho, s.f)

ROWID Matricula ROWID Modelo ROWID Precio
1 6548 HCF il Fiat Bravo 1 9861
2. 6589 GDB 2 VW Passat 2 12500
3 3215 FGD 3 Ford Fiesta 3 4589
4 4836 DVN 4 Audi A6 4 8956

Figura 4. Bases de datos columnares.

2.1.2 Ventajas de las bases de datos NoSQL

Soportan estructuras distribuidas. Suelen ser bases de datos mucho mas
abiertas y flexibles. Permiten adaptarse a necesidades de proyectos mucho
mas facil que los modelos de entidad relacion. Se pueden hacer cambios de
los esquemas sin tener que parar las bases de datos. Escalabilidad horizontal,
es decir, son capaces de crecer en numero de maquinas. Se pueden ejecutar
en maqguinas con pocos recursos. Optimizacion de consultas en base de datos
para grandes cantidades de datos (Suarez, 2015)

2.1.3 Desventajas de las bases de datos NoSQL

No todas las bases de datos NoSQL contemplan la atomicidad de las
instrucciones y la integridad de los datos. Soportan lo que se llama
consistencia eventual. Problemas de compatibilidad entre instrucciones
SQL. Las nuevas bases de datos utilizan sus propias caracteristicas en el
lenguaje de consulta y no son 100% compatibles con el SQL de las bases de
datos relacionales. Falta de estandarizacion. Hay muchas bases de datos
NoSQL y aln no hay un estdndar como si lo hay en las bases de datos
relacionales. Soporte multiplataforma. Alun quedan muchas mejoras en
algunos sistemas para que soporten sistemas operativos que no sean Linux.
Suelen tener herramientas de administracion no muy usables o se accede por
consola (Suérez, 2015)

2.2 JSON (JavaScript Object Notation)

“Es un formato de texto ligero para el intercambio de datos, esta formado como pares de
campo/valor. En los documentos JSON, los campos y los valores estan encerrados por
comillas dobles, separados por dos puntos, asi como también, por comas y los conjuntos

de campos estan encapsulados en llaves” (Introduction to MongoDB, s.f)

A continuacién, se visualiza un documento JSON:

1
"Nombre™ - "Juan”,
"Edad": 28,
"aficiones": ["Masica™, "Cine"”, "Tenis"],
"Residencia™: "Madrid”

Figura 5. Documento JSON.

2.3 PostgreSQL

Es un gestor de base de datos relacional, su licencia y desarrollo es de
codigo abierto, siendo mantenida por una comunidad de desarrolladores,
colaboradores y organizaciones comerciales de forma libre y desinteresada.
Esta comunidad es denominada PGDG (PostgreSQL Global Development
Group). Utiliza SQL como lenguaje de consulta estructurada para
administrar y recuperar la informacion. (PostgreSQL, s.f)

A continuacion, se describen las caracteristicas mas destacadas de PostgreSQL:

Presenta un sistema de alta concurrencia: Presenta un sistema
denominado MVCC, el cual permite que mientras un proceso escribe una
tabla, otros puedan acceder a la misma tabla sin necesidad de verse
blogueados, y cada usuario obtiene una vision consistente.

Sistema Hot Standby: Este proceso permite a los usuarios poder conectarse
con el servidor y ejecutar busquedas en la base de datos, mientras la misma
estd en modo de recuperacién o stand by. También, se puede pasar de este
modo a modo normal sin detener el flujo de blsquedas o consultas de los
usuarios, manteniendo las conexiones abiertas. Esto es posible Unicamente
cuando la base de datos se encuentra en modo de solo lectura.

Soporte nativo: PostgreSQL presenta soporte nativo para los siguientes
tipos de datos: texto de largo ilimitado, numeros de precision arbitraria,
figuras geomeétricas con funciones asociadas, direcciones MAC, protocolos
de direcciones IP (tanto IPv4 como IPv6), blogues de direcciones CDIR,
arrays y tipos de datos propios de los usuarios.

Uso de formato JSON: EIl formato JSON se convierte en el punto débil de
muchos sistemas de bases de datos relacionales. Sin embargo, PostgreSQL
presenta buenas herramientas con las que es posible indexar elementos y
realizar bdsquedas en dicho formato. Aunque no se recomienda manejar
toda la base de datos en JSON, y se utiliza para el guardado de informacion
de algunos elementos e indexar sus propiedades.

Notificaciones a tiempo real: A pesar de que PostgreSQL no fue disefiada
para ser una BD que trabaje al 100% en tiempo real, si es posible mantener
sincronizado en varios dispositivos un sistema de notificacion para cuando
se hacen cambios especificos en la base de datos, gracias a las funciones
LISTEN, UNLISTEN y NOTIFY.

12

Registro y guardado de transacciones: Una de las caracteristicas mas
interesantes de PostgreSQL, es su capacidad de registrar cada transaccion en
un WAL (Write Ahead Log). Esto permite restaurar la base de datos a
cualquier punto previamente guardado, una especie de Checkpoint. Esto
permite que no sea necesario realizar respaldos completos de forma
frecuente, en especial para los casos en los que se trabaja con una base de
datos que es muy grande o que contiene mucha cantidad de datos.
Disparadores o triggers: se define como la ejecucion de un procedimiento
almacenado, basado en una accion determinada sobre una tabla especifica en
la base de datos. (PostgreSQL, 2019)

2.3.1 JSONB en PostgreSQL

Son datos que se almacenan en forma binaria descompuesta, es decir, no
como una cadena ASCII/UTF-8, sino como un codigo binario. JSONB tiene
una serie de ventajas las cuales son: de rapido procesamiento, admite
disefios de esquemas mas simples (reemplazando el nimero de tablas por
solo una de tipo jsonb donde se almacenan todos los datos); sin embargo,
cuenta con una serie de desventajas las cuales son: de entrada ligeramente
mas lenta, puede tomar méas espacio en el disco duro debido a la superficie
de la tabla, ciertas consultas pueden ser mas lentas debido a que PostgreSQL
guarda estadisticas descriptivas como el nimero de valores distintos y
comunes, un histograma de la distribucion de datos (Del Alba, 2017)

2.3.2 Modelo de documentos en PostgreSQL

Se refiere a la estructura del documento en el gestor de base de datos. En este caso, se
constituye por: la base de datos, la tabla y los registros. Es importante sefialar, que para
consultar, actualizar y eliminar los registros, se deben utilizar los operadores que se

observan en la siguiente tabla (JSON Fnctions and Operators, s.f)

Tabla 1
Operadores para el modelo de documentos en PostgreSQL.
Operadores JSON Descripcion
-> Obtener campo objeto json por clave.
->> Obtener campo objeto json como texto.
#> Obtener objeto json en la ruta especifica.
#>> Obtener objeto json en la ruta especifica como texto.
Operadores JSONB | Descripcion
@> Obtener el objeto json que tiene la clave y el valor asociado.
? Obtener los objetos json que tienen la clave asociada.
?| Obtener los objetos json que tienen algunas de las claves asociadas.
?2& Obtener los objetos json que tienen todas las claves asociadas.
Permite concatenar dos jsonb.
1 Permite actualizar el valor de un campo clave.
- Permite eliminar la clave/valor.

13

2.4 MongoDB

Es un sistema de bases de datos no relacionales, multiplataforma e inspirada
en el tipo de bases de datos documental, admite esquemas flexibles, su
nombre proviene del término en inglés "humongous”. Esta bajo licencia de
software libre, especificamente GNU AGPL 3.0. Utiliza MQL como
lenguaje de consulta, el cual brinda el rendimiento de las consultas nativas
con la productividad de SQL. El entorno de MongoDB, esta constituido por:
documentos y colecciones. Un documento, es un conjunto de datos
estructurados (sin un esquema estricto), que contiene pares clave-valor, el
tamafio de un documento esta limitado a 16MB, son almacenados en BSON,
estos pueden ser comparados con los registro en una base de datos
relacional. La coleccidn, es un conjunto de documentos, similar a una tabla
en las bases de datos relacionales. (Graterol, s.f)

A continuacion, se describen las caracteristicas mas importantes de MongoDB:

Alto rendimiento: se basa en dos puntos, la posibilidad de tener
documentos con la informacion anidada, evitando, de esta forma, un nimero
elevado de operaciones de entrada-salida. Y el soporte de indices y la
posibilidad de crear indices sobre arrays y subdocumentos.

Alta disponibilidad: la proporciona mediante la réplica automatica
conocida como replica set, la cual proporciona redundancia de datos y
failover automatico, es decir, la transferencia automatica a un nuevo nodo
cuando se encuentra un fallo en uno de los nodos.

Escalado horizontal: el sistema de sharding permite distribuir informacién
por diferentes maquinas (Caracteristicas de MongoDB, s.f)

2.4.1 BSON en MongoDB

“Es un formato de intercambio de datos usado principalmente para su almacenamiento y
transferencia en la base de datos MongoDB. Es una representacion binaria de estructuras
de datos y mapas. EI nombre BSON esté basado en el término JSON vy significa Binary
JSON” (BSON, s.f)

2.4.2 Modelo de documentos en MongoDB

Se refiere a la estructura del documento en el manejador de base de datos. En este caso,
se constituye por: la base de datos, la coleccion y los documentos. Es importante
destacar, que para consultar, actualiza y eliminar los documentos, se deben utilizar los

operadores que se describren en la siguiente tabla (Query and Projection Operators, s.f)

14

Tabla 2
Operadores de consulta en MongoDB.
Nombre | Descripcién
$eq Coincide con valores que son iguales a un valor especificado.
$gt Coincide con los valores que son mayores que un valor especificado.
Sgte Coincide con los valores que son mayores o iguales a un valor especificado.
$in Coincide con cualquiera de los valores especificados en una matriz.
St Coincide con valores que son menores que un valor especificado.
$lte Coincide con valores que son menores o iguales a un valor especificado.
$ne Coincide con todos los valores que no son iguales a un valor especificado.
$and Devuelve todos los documentos que coinciden con las condiciones de ambas clausulas.
Sor Devuelve todos los documentos que coinciden con las condiciones de las clausulas.
$exists | Coincide con los documentos que tienen el campo especificado.
$regex | Selecciona documentos donde los valores coinciden con una expresion regular especificada.
Pset Establece el valor de un campo en un documento.
$unset | Elimina el campo especificado de un documento.

2.5 Documentos embebidos en PostgreSQL y MongoDB

Capturan las relaciones de los datos en estructuras de documentos, tales como en

subdocumentos o arreglos de documentos. En general, se utilizan documentos

embebidos cuando:

Existan relaciones contenidas entre dos entidades; es decir, que dos
entidades independientes sean habitualmente accedidas a través de solo una
de ellas. Por ejemplo, Persona y Domicilio. Cuando Unicamente se permitan
busquedas por Persona para obtener su direccion. En ese caso, es preferible
tener el objeto Direccion embebido dentro de Persona (Modelado One-to-
One, s.f)

Figura 6. Relacion Persona — Domicilio.

A continuacion, se visualiza la entidad domicilio como subdocumento de persona.

{
nombre: "Wictor Cuerwvo™,
edad: 28,
direccidn: {
calle: "Alcala, 15", Relacion de 1:1
codigo: 28822, Subdocumento
ciudad: "Madrid”

3

Figura 7. Relacién uno a uno embebido.

15

“Cuando exista una relacion uno a muchos entre entidades. En este caso, la parte de

muchos suele ir embebida dentro de la de uno” (Modelado One-to-Many, s.f)

L:N Comentario

Figura 8. Relacién Blog — Comentario.

A continuacion, se visualiza la entidad comentario como un arreglo de documentos del

blog. {
title: "Linea de Cddigo™,
wrl: "http://lineadecodigo.com”,
text: "Aprende a Programar”,
comments: [
name: "Carlos Camacho",
created_on: ISODate("2815-12-81T18:81:227"),
comment: "Me gusts tu blog” .,
T | Relacion de 1: N
(Arreglo de
name: "Fran Honrubia™, documentos
created_on: ISODate("2215-12-81T14:15:18Z"),
comment: “"Gran trabajo”
¥
1
Figura 9. Relacion uno a muchos embebido.
2.6 Teorema CAP

CAP también conocido como el Teorema de Brewer, se aplica para sistemas
distribuidos y se garantiza dos de las tres configuraciones que se mencionan a
continuacion:

Consistencia (Consistency): todos los nodos deben ver los mismos datos al
mismo tiempo. Es decir, cualquier cambio realizado en los datos del sistema
se deben aplicar en todos los nodos y debe ser el mismo datos en todos. Esto
se llama consistencia atdbmica y se consigue aplicando la informacion en
todos los nodos

Disponibilidad (Availability): garantiza que cada peticion a un nodo reciba
una confirmacion de si ha sido o no satisfactoriamente.

Tolerancia al Particionado (Partition Tolerance): debe funcionar a pesar de
que los nodos tengan un fallo de comunicacion, garantizando la
disponibilidad a pesar que un nodo se separe del grupo sin importar la causa
(Moreno, 2018)

El teorema solo garantiza las siguientes configuraciones:

CA (Consistency & Availability): el sistema siempre estard disponibles
respondiendo las peticiones y los datos procesados seran consistentes. En este
caso no se puede permitir el particionado.

CP (Consistency & Partition): el sistema aplicara los cambios de forma
consistente y aunque se pierda la comunicacion entre nodos ocasionando el
particionado. No se asegura la disponibilidad entre los nodos.

AP (Availability & Partition): el sistema siempre estara disponible a las
peticiones aunque se pierda la comunicacion entre los nodos ocasionando el
particionado. En consecuencia por la pérdida de comunicacion existira
inconsistencia porque no todos los nodos seran iguales (Moreno, 2018)

Availability
RDBMS Riak,Cassandra,
CA Oracle, Mysql, PostgreSQL, CouchDB,Voldemort, AP
SqlServer, etc. Dynamo
Consistency MongaDB, Redis, Partition Tolerance
Big Table, BerkeleyDB, HBase
CcP

Figura 10. Configuraciones CAP en los sistemas de bases de datos.

16

17

Capitulo 3

3. Analisis y disefio de casos de prueba

En este trabajo de investigacion, se pretende modificar y crear funciones a la
herramienta pg_nosql_benchmark desarrollada para la evaluacion comparativa de
PostgreSQL (JSONB) y MongoDB (BSON) usando datos JSON (Kumar, 2014).

Cabe senalar, que dicha herramienta esta conformada por cuatro archivos que llevan
por nombre: pg_nosql_benchmark, common_func_lib.sh, pg_func lib.sh vy
mongo_func_lib.sh; El primer archivo, almacena las variables de entorno tanto de
PostgreSQL como de MongoDB. EIl segundo, contiene la semilla de datos json para
generar los documentos. El tercero, retne todas las funciones de PostgreSQL. El cuarto,

guarda todas las funciones de MongoDB.

Se determind para ambos manejadores un caso de estudio que estara constituido por

las siguientes entidades, campos y relaciones.

car mascots
plague petMame
make petAge
colour petGuid
:F persona PS
Ll Ll
T | code Tl
firstMame
lastName bankAccounts
- bankM
mabile ankiName
passpport T o | | email banklLocation
serial T T T accounthctivation
expiration £ T (O] | annualBalance
address
street (O tradeMarks
city " brandMame
state T registared

Figura 11. Diagrama del Caso de Estudio.

18

Ahora bien, las entidades, campos y relaciones antes descritas se representaron en

una plantilla de JSON GENERATOR, es un generador en linea de archivos con formato

JSON.

A continuacion, se visualiza la plantilla:

JSON GENERATOR

1]

2 "{{repeat(18}}}',

2

4 coder ' {{index(1}}',

5 firsthame: '{{firstlame(}}}',

B lastlame: '{{surname(}}}',

7 age: '[{integer(22 GE}1Y',

] address:

18 street: '{{street(}}}', city: '{{city(}}}', state: '{{state(]}}
11

12 mobile: '+1 {{phone(}}}',

13 passport:

14 {

15 serial: '{{guid(}}}', expiration: '{{dzte(new Date(2023, ©, L}, new Datel), "dd-MM-YYYY"}1}!
16 '

¥ Car:

18 {

18 plague: '{{guid(}}}',

i] make: function [tags) {

n var makes = ['TOYOTA', 'CHEVROLET', 'FURD', 'JEEP', 'FIAT', 'MAZDA', 'REAMULT', 'KIA', 'HYUMDAI'];
1 retirn makes (tags. integer (8, makes.length - 111;

PE h

H colour: function {colers) {

15 ver color = ['Blee', 'Oreen', 'Red', 'Yellow', 'Black', 'Brown', 'Gray','White'];
il ceturn color[colers. integer(8, coler.length - 115

I }

18 L

] tradeflarks: [

38 "{{repeat(1, 3}}}',

E{ {

1 branddame: '{{lorem (1,"words"}}}',

13 registered: '{[date(new Date(2008, @, b, new Date(}, “dd-MM-YVVY1H}
3 }

3 1,

k] mascots: [

7 "{{repeat(1, 3}}}',

3B {

0 pethame: '{{firstlame(]}}',

48 pethge: '{{integer(1,14}1}',

41 petbuid: '{{guid(}}}'

42

43 I,

4 bankdccounts: [

45 "{{repeat(1, 311},

46 {

7 bankiame: '{{company(}.telpperCase(}1},

] banklocation: '{{state(}}}',

48 accountActivation: '{{date(new Date(2008, @, 1}, new Date(), "dd-MM-VVPY}1Y',
] annualBalance: '{{floating(l880, 6008, 2, 8,0 088")1}

51 }

52 1,

33 emailt '{{email(}}}'

i1

i

Figura 12. Plantilla JSON.

o

19

Seguidamente, se genero el archivo JSON. A continuacion, se observa:

{"code":0,"firstName": "Alta","lastName": "Chaney","age":60,"address" : {"street":"Tiffany Place","city":"Edgewater","state":"District Of
Columbia"},"mobile" 1 (923) 468-3067","passport”:{"serial”:"0693eb1f-259e-4848-8f05-3491f3eefa65", "expiration":"16-03-2023"},"car":
{"plaque":"5a4f237b-0462-4236-828c-BasBabbcee4ff", "make":"JEEP","colour":"Black"},"tradeMarks":[{"brandName":"qui","registered":"23-05-2019"},
{"brandName":"cillun","registered":"15-83-2008"}], "mascots" :[{"petMame":"Petra", "petAge":14, "petGuid": "78e776eb-deab-47e9-
b32b-7bdd9674d4fe"}], "bankAccounts” : [{"bankName" : "AEORA" ,"bankLocation": "New
York","accountActivation":"29-89-2005","annualBalance":"2,404.305"},

{"bankName" : "PLASTO", "bankLocation": "Kentucky","accountActivation":"19-83-2017","annualBalance":"3,020.785"}], "email":"
{"code":1,"firstName Bright","lastName":"Gilmore","age":29,"address":{"street":"Holcott Street " "Arizona"},"mobile" 1
(808) 533-2889","passport”:{"serial":"686bcc57-5a09-474d-83bb-50e230dfbcbs", "expiration":"23-10-2023"},"car":{"plaque":"74f85be4-
be72-454b-883c-b80439cc46de” , "make" : "CHEVROLET" , "colour" :"Green"}, "tradeMarks" : [{"brandName": "veniam","registered":"31-16-2000"}], "mascots":
[{"petName":"Cotton","petAge":11,"petGuid":"d83506a1-6868-4c4d-aca2-c4382fec9b89"},{"petName": "Mayra","petAge":5,"petGuid":"bb1d5600- fcdb-482a-
adb5-bbbl4eafala2"}], "bankAccounts":[{"bankName" : "COMCUR", "bankLocation": "New
Hampshire","accountActivation":"21-85-20882","annualBalance":"1,295.965"}], "email”: "mayragilmore@concur.com"}|
{"code":2,"firstName":"Jacobson","lastName":"Huber","age":67,"address":{"street":"Forbell
Street","city":"Falconaire","state":"Alabama"},"mobile":"+1 (831) 460-2670","passport":{"serial":"844f1378-e7fa-4273-
badc-49630da697e7", "expiration”:"28-06-2020"}, " "car" :{"plaque":"0782b6fc-8a34-401f-aelb-

b2fdbc639d2a", "make" : "TOYOTA", "colour":"Black"},"tradeMarks": [{"brandName":"cillum","registered”:"07-04-2005"},

{"brandName": "ullamco","registered”:"18-12-2013"}], "mascots":[{"petName": "Parsons","petAge":11, "petGuid":"44464cla-5036-49b2-bas55-
fs50c619b994e"}, {"petName" : "Dianne" etAge":7,"petGuid":"d111ea02-b825-456a-946F-093ac7a5db24"}, {"petName": "Katy", "petAge":
4,"petGuid":"a7e5e7d7-ae8b-427a-8758-11993ca2c9e5"}], "bankAccounts" :

[{"bankName" : "SAVVY","bankLocation": "Texas","accountActivation":"15-08-2018","annualBalance":"3,350.915"}], "email"”
{"code":3,"firstName": "Owen","lastName":"Fry","age":68,"address":{"street": "Woods Place","city":"Weogufka","state"
(875) 587-3054","passport”:{"serial":"e®3cf64a-e46f-4f1d-94a2-a995ebf48331", "expiration":"09-04-2023"},"car":
{"plaque":"38574bf4-3606-42de-8b95-271423337e4a", "make" : "KIA", "colour": "Red"},"tradeMarks" : [{"brandName" : "laborum", "registered":"28-06-2001"},
{"brandName":"irure","registered":"01-08-2007"}], "mascots {"petName":"Randall","petAge":12,"petGuid":"904c1e33-
f744-4d08-80fc-921e435b3896"}], "bankAccounts” : [{"bankName bankLocation":"Federated States Of
Micronesia","accountActivation":"13-04-2006","annualBalance":"1,801.51%"},

{"bankNam "MEDICROIX", "bankLocatio "Wisconsin","accountActivation":"24-07-2008","annualBalance":"5,766.155"},

{"bankNam "GALLAXIA","bankLocation": "Missouri","accountActivation" 3-86-2015","annualBalance”:"1,223.425"}],"email" :"randallfry@gallaxia.com
{"code":4,"firstName": "Blake","lastName":"Bonner","age":32,"address":{"street": "Fountain

Avenue”,"city":"Chase"”,"state Minnesota"},"mobile":"+1 (921) 485-3398","passport”:{"serial":"46086864-4c9a-4eda-
bB66-908c33409a85" , "expiration”:"04-03-2023"}, "car":{"plaque 09868dff-a014-4d60-a2ba-

efeee98ee930", "make" : "HYUNDAI colour":"Blue"},"tradeMarks":[{"brandName": "sint","registered":"08-07-2012"%},
{"brandName":"ea","registered":"09-12-2001"},{"brandName":"1d","registered”:"26-04-2013"}], "mascots":[{"petName":"Arlene","petAge":
1,"petGuid":"eb1237e4-296c-4933-9ab5-b0943b069e3"},{ "petName": "Michael", "petAge"”:14,"petGuid":"5b86970a-639f-4bod-
b464-34e8boo1aen7"}], "bankAccounts":

[{"bankName" : "COLUMELLA" , "bankLocation":"Connecticut”,"accountActivation":"03-01-2018","annualBalance":"3,907.005"},

etrachaney@plasto.com"}|

: "katyhuber@savvy.com" I
:"Georgia"}, "mobile":"+1

Figura 13. Archivo JSON.

Luego, se desarroll6 el ScriptA para eliminar la Gltima coma de cada documento y
agregar un salto de linea, obteniendo de esta manera el formato definido por

PostgreSQL y MongoDB. A continuacion, se visualiza el script y los datos.

python
#! /bin/env python

file = open("archivo.json”, "r")
file2 = open("archivoModificado.json”, "w")

for f in file:
f = f.replace('.com\"},"', '.com\"}\n")

file2.write(f)

file.close()
file2.close()

Figura 14. ScriptA.

20

{"code":0,"firstName":"Alta","lastName":"Chaney","age":60,"address":{"street":"Tiffany Place","city":"Edgewater","state":"District Of

i :"+1 (923) 468-3067","passport":{"serial 0693eb1f-259e-4848-8f05-3491f3eef065", "expiration”:"16-03-2023"},"car":
f237b-0462-4236-828c-8a8abbcee4ff","make":"JEEP", "colour":"Black"},"tradeMarks":[{"brandName":"qui","registered":"23-05-2019"},
cillum","registered"” 5-03-2008"}],"mascots":[{"petName":"Petra","petAge":14,"petGuid":"78e776eb-deab-47e9-
b32b-7bdd9674d4fe"}], "bankAccounts": [{"bankName" : "AEORA" , "bankLocation" : "New
York","accountActivation":"29-09-2005","annualBalance":"2,404.305"
{"bankName" : "PLASTO", "bankLocation":"Kentucky","accountActivation":"19-03-2017","annualBalance":"3,020.78%"}],"email": "petrachaney@plasto.com"}
{"code":1,"firstName":"Bright","lastName":"Gilmore","age":29,"address":{"street":"Wolcott Street","city":"Zeba","state":"Arizona"},"mobile":"+1
(808) 533-2809","passport”:{"serial":"686bcc57-5a09-474d-83bb-50e230dfbcb8","expiration":"23-10-2023"},"car":{"plaque":"74f85be4-
b972-454b-883c-b80439cc46d0” , "make" : "CHEVROLET","colour":"Green"},"tradeMarks":[{"brandName":"veniam","registered":"31-10-2000"}],"mascots":
[{"petName":"Cotton","petAge":11,"petGuid":"d83506a1-6868-4c4d-aca2-c4382fec9b89"},{"petNam "Mayra","petAge":5,"petGuid":"bb1d5600-fcdb-482a-
adb5-bbb14eafala2"}], "bankAccounts" : [{"bankName":"COMCUR", "bankLocation": "New
Hampshire","accountActivation":"21-05-2002","annualBalance":"1,295.96$"}],"email": "mayragilmore@comcur.com"}
{"code":2,"firstName":"Jacobson","lastName": "Huber",6"age":67,"address":{"street":"Forbell
Street","city":"Falconaire","state":"Alabama"},"mobile":"+1 (831) 460-2670","passport":{"serial":"844f1378-e7fa-4273-
badc-49630da697e7" ,"expiration":"28-06-2020"},"car":{"plaque":"0782b6fc-8a34-401f-aelb-
b2fdbc639d2a", "make" : "TOYOTA","colour":"Black"},"tradeMarks": [{"brandName":"cillum","registered":"07-04-2005"},
{"brandName": "ullamco","registered":"18-12-2013"}], "mascots":[{"petName":"Parsons","petAge":11,"petGuid": "44464c1a-5036-49b2-ba55-
f50c619b994e"}, {"petName": "Dianne", "petAge":7,"petGuid":"d111ea02-b825-456a-946f-093ac7a5db24"},{"petName": "Katy", "petAge”:
4,"petGuid":"a7e5e7d7-ae8b-427a-8758-11993¢
[{"bankName
{"code":

,"annualBalance 3,350.915"}], "email
"Woods Place","city":"Weogufka","state
,"expiration":"09-04-2023"},"car":
"Red"},"tradeMarks":[{"brandName":"laborum","registered":"28-06-2001"},
"Randall","petAge":12,"petGuid":"904c1e33-

katyhuber@savvy.com"}
Georgia"},"mobile":"+1

{"plaque":"38574bf4-3606-42de-8b95-271423337e4a" , "make
{"brandName":"irure","registered":"01-08-2007"}], "mascots
f744-4d08-80fc-921e435b3896"}], "bankAccounts": [{"bankName" : "GEEKMOSIS" ,"bankLocation":"Federated States Of
","accountActivation":"13-0 006", "annualBalance":"1,801.515%"}
"accountActivation

4-07-2008", "annualBalanc

"5,766.15$"},
1,223.42$"}],"email": "randallfry@gallaxia.com

:"03-06-2015","annualBalance":
,"firstName":"Blake","lastName":"Bonner","age":32,"address":{"street":"Fountain
,"city":"Chase","state":"Minnesota"},"mobile":"+1 (921) 405-3398","passport”:{"serial":"46086864-4c9a-4eda-
b866-908c33409a85","expiration":"04-03-2023"},"car":{"plaque":"09868dff-a014-4d60-a2ba-

efeee98ee930", "make" : "HYUNDAI" ,"colour":"Blue"}, "tradeMarks":[{"brandName":"sint","registered":"08-07-2012"},
{"brandName":"ea","registered":"09-12-2001"},{"brandName" : " i "registered":"26-04-2013"}],"mascots":[{"petName":"Arlene","petAge":
1,"petGuid":"eb1237e4-296c-4933-9ab5-b094f3b069e3"},{"petName": "Michael","petAge":14,"petGuid":"5b06970a-639F-4bod-
b464-34e8b001aed7"}], "bankAccounts":

[{"bankName" : "COLUMELLA" ,"bankLocation":"Connecticut","accountActivation":"63-01-2018","annualBalance":"3,907.00%"},

Figura 15. Datos con el formato definido por PostgreSQL y MongoDB.

Posteriormente, se desarroll6 el ScriptB para agregar una barra (\) antes de las
comillas, obteniendo de esta manera el formato definido por la herramienta

pg_nosgl_benchmark. A continuacion, se visualiza el script y los datos.

python
#! /bin/env python

file = open("archivoModificado.json", "r")
file2 = open("formatoFinal.json", "w"

for ¥ in file:
f = f.replace('\""', "\\\"")
filez.write(f)

file.close()

file2.close()
Figura 16. ScriptB.

21

{M'code\":0,\"firstName\":\"Alta\",\"lastName\":\"Chaney\",\"age\":60,\"address\":{\"street\":\"Tiffany Place\",\"city\":\"Edgewater\",
\"state\":\"District Of Columbia\"},\"mobi :\"+1 (923) 468-3067\",\"passport\":{\"serial\":\"0693eb1f-259e-4848-8f05-3491f3eef065\",
\"expiration\ "16-03-2023\"},\"car\" :\"5a4f237b-0462-4236-828c-8a8abbcee4ff\",\ "make\":\"JEEP\",\"colour\":\"Black\"},
\"tradeMarks\ {\"brandName\":\"qui\",\"registered\":\"23-05-2019\"},{\"brandName\":\"cillum\",\"registered\":\"15-03-2008\"}],\"mascots\":
[{\"petName\" Petra\",\"petAge\":14,\"petGuid\":\"78e776eb-deab-47e9-b32b-7bdd9674d4fe\"}],\ "bankAccounts\":[{\"bankName\":\"AEORA\",
\"bankLocation\":\"New York\",\"accountActivation\":\"29-09-2005\",\"annualBalance\":\"2,404.305\"},{\"bankName\" :\"PLASTO\",\"bankLocation\":
"Kentucky\",\"accountActivation\":\"19-03-2017\",\"annualBalance\":\"3,020.78$\"}],\"email\":\"petrachaney@plasto.com\"}

"code\":1,\"firstName\":\"Bright\",\"lastName\":\"Gilmore\",\"age\":29,\"address\":{\"street\":\"Wolcott Street\",\"city\":\"Zeba\",
\"state\":\"Arizona\"},\"mobile\":\"+1 (808) 533-2809\",\"passport\":{\"serial\":\"686bcc57-5a09-474d-83bb-50e230dfbcb8\",\"expiration\":
\"23-10-2023\"},\"car\":{\"plaque\":\"74f85be4-b972-454b-883c-bB80439cc46d0\",\ "make\":\"CHEVROLET\",\"colour\":\"Green\"},\"tradeMarks\":
[{\"brandName\":\"veniam\",\"registered\":\"31-10-2000\"}],\"mascots\":[{\"petName\":\"Cotton\",\"petAge\":11,\"petGuid\":\"d83506a1-6868-4c4d-
aca2-c4382fec9b89\"},{\"petName\":\"Mayra\",\"petAge\":5,\"petGuid\":\"bb1d5600-fcdb-482a-adb5-bbbl4eafala2\"}],\"bankAccounts\":
[{\"bankName\":\"COMCUR\",\"bankLocation\":\"New Hampshire\",\"accountActivation\":\"21-05-2002\",\"annualBalance\":\"1,295.965\"}],\"email\":

"mayragilmore@comcur.com\"}
h"code\" :2,\"firstName\":\"Jacobson\",\"lastName\":\"Huber\",\"age\":67,\"address\":{\"street\":\"Forbell Street\",\"city\":\"Falconaire\",
\"state\":\"Alabama\"},\"mobile\":\"+1 (831) 460-2670\",\"passport\":{\"serial\":\"844f1378-e7fa-4273-badc-49630da697e7\",\"expiration\":
\"28-06-2020\"},\"car\":{\"plaque\":\"0782b6fc-8a34-401f-aelb-b2fdbc639d2a\",\ "make\":\"TOYOTA\",\"colour\":\"Black\"},\"tradeMarks\":
[{\"brandName\":\"cillum\",\"registered\":\"07-04-2005\"},{\"brandName\":\"ullamco\",\"registered\":\"18-12-2013\"}],\"mascots\":[{\"petName\":
\"Parsons\",\"petAge\":11,\"petGuid\":\"44464c1a-5036-49b2-ba55-f50c619b994e\"},{\"petName\":\"Dianne\",\"petAge\":7,\"petGuid\":\"d111ead2-
b825-456a-946f-093ac7a5db24\"},{\ "petName\":\"Katy\",\"petAge\":4,\"petGuid\":\"a7e5e7d7-ae8b-427a-8758-11993ca2c9e5\"}],\ "bankAccounts\":
[{\"bankName\":\"SAVVY\",\"bankLocation\":\"Texas\",\"accountActivation\":\"15-08-2016\",\"annualBalance\":\"3,350.915\"}],\ "email\":

"katyhuber@savvy.com\"}

"code\":3,\"firstName\":\"Owen\",\"lastName\":\"Fry\",\"age\":68,\"address\":{\"street\":\"Woods Place\",\"city\":\"Weogufka\",\"state\":
\"Georgia\"},\"mobile\":\"+1 (875) 587-3054\",\"passport\":{\"serial\":\"e03cf64a-e46f-4f1d-94a2-a995ebf48331\",\"expiration\":\"09-04-2023\"},
\"car\":{\"plaque\":\"38574bf4-3606-42de-8b95-271423337e4a\",\ "make\":\"KIA\",\"colour\":\"Red\"},\"tradeMarks\":[{\"brandName\":\"laborum\",
\"registered\":\"28-06-2001\"},{\"brandName\":\"irure\",\"registered\":\"01-08-2007\"}],\"mascots\":[{\"petName\":\"Randall\",\"petAge\":
12,\"petGuid\ "904c1e33-f744-4d08-80fc-921e435b3896\"}],\ "bankAccounts\":[{\"bankName\" :\"GEEKMOSIS\",\"bankLocation\":\"Federated States Of
Micronesia\",\"accountActivation\":\"13-04-2006\",\"annualBalance\":\"1,801.51$\"},{\"bankName\":\"MEDICROIX\",\"bankLocation\":\"Wisconsin\",
\"accountActivation\":\"24-07-2008\",\"annualBalance\":\"5,766.155\"},{\"bankName\":\"GALLAXIA\",\"bankLocation\":\"Missouri\",

"accountActivation\":\" 6-2015\",\"annualBalance\":\"1,223.425\"}],\"email\":\"randallfry@gallaxia.com\"}
h”(ode\":4,\"fi.rstNane\' "Blake\",\"lastName\":\"Bonner\",\"age\":32,\"address\":{\"street\":\"Fountain Avenue\",\"city\":\"Chase\",
\"state\":\"Minnesota\"},\"mobile\":\"+1 (921) 405-3398\",\"passport\":{\"serial\":\"46086864-4c9a-4eda-b866-908c33409a85\",\"expiration\":
\"04-03-2023\"},\"car\":{\"plaque\":\"09868dff-a014-4d60-a2ba-efeee98ee930\",\ "make\":\"HYUNDAI\",\"colour\":\"Blue\"},\"tradeMarks\":
[{\"brandName\":\"sint\",\"registered\":\"08-07-2012\"},{\"brandName\":\"ea\",\"registered\":\"09-12-2001\"},{\"brandName\":\"id\",
\"registered\ "26-04-2013\"}],\"mascots\":[{\"petName\":\"Arlene\",\"petAge\":1,\"petGuid\":\"eb1237e4-296c-4933-9ab5-b094f3b069e3\"},
{\"petName\":\"Michael\",\"petAge\":14,\"petGuid\":\"5b06970a-639f-4b9d-b464-34e8b001ae07\"}],\ " "bankAccounts\":[{\"bankName\":\"COLUMELLA\",
\"bankLocation\":\"Connecticut\",\"accountActivation\":\"03-01-2018\",\ "annualBalance\":\"3,907.005\"},{\ "bankName\":\"ENORMO\",

Figura 17. Datos con el formato definido por la herramienta.

22

Capitulo 4

4. Implementacién

En esta etapa de la investigacion se llevo a cabo una serie de pasos, los cuales se
describen a continuacion, se instalé la herramienta pg_nosql_benchmark, asi como
también, los paquetes de postgresql 10.8, mongodb 4.0.9, bc, git, mongo-tools, apache2,
phppgadmin y compass. Luego, se cred un usuario root en MongoDB, como se observa
en la figura 18. Posteriormente, se cred un superusuario en PostgreSQL de la siguiente
manera: CREATE USER kenia WITH LOGIN ENCRYPTED PASSWORD ‘kenia’
SUPERUSER,;

La creacidn del usuario root y superusuario, se realizé con la finalidad de tener todos

los privilegios para administrar las bases de datos.

0.000GB

.046GB

.000GB

.005GB

.000GB

.000GB

.000GB
0.009GB

> use admin

switched to db admin

> db.createUser({user:"kenia",pwd:"kenia",roles:[{role:"root",db:"admin"}]})

Successfully added user: {
"user" : "kenia",
"roles" : [

{

o
V]
V]
V]
0
0

"role" : "root",
lldbll : lladm.i_nll

Figura 18. Creacion de usuario root en MongoDB.

A continuacion, se visualizan las funciones modificadas y creadas en los archivos de
la herramienta.

23

Archivo pg_nosgl_benchmark: se modificaron las variables de entorno de PostgreSQL
y MongoDB, las cuales permitiran la conexion a las bases de datos. A continuacion, se

observan:

e]
set postgre wariables.
BEEHREEERRAREA R R AR ERR R RS
PGHOME=" fusr"

PGHOST="127.08.0.1"

PGPORT="5432"

PGUSER="kenia"

PGPASSWORD="kenia"
PGDATABASE="benchmark"

PGBIN="/usr/bin"

e S]
set mongo variables.

e e g T g g g]
MONGO="/usr/bin/mongo"
MONGOIMPORT="/usr/bin/mongoimport”
MOMGOHOST="127.0.6.1"
MONGOPORT="270817"

MOMGOUSER="kenia"
MOMGOPASSWORD="kenia"
MONGODBNAME="benchmark"

Figura 19. Variables de entorno de PostgreSQL y MongoDB.

Del mismo modo, se modificé el valor de la variable json_rows que sirve para
generar dinamicamente las tres cargas de trabajo de 100, 1.000 y 100.000 registros o
documentos que se almacenaran en PostgreSQL y MongoDB.

BREEERSARARREEERRARRRRREEEEER
declare require arrays
BREEERSARARREEERRARRRRREEEEER
declare -a json_rows=(100)

B
declare require arrays

B
declare -a json_rows=(1000)

HRERRRERRRERRERRR RN ERRRE
declare require arrays
BRERERERREEERERRRE R RERRE
declare -a json_rows=(100000)

Figura 20. Declaracion de variable generadora de documentos.

24

También, se disefio el reporte de los resultados comparativos para PostgreSQL y
MongoDB.

Print_FesULE M-- oo s s s o m e
print_result "number of rows" "S{json_rows[@]}"

Print_FesULE M -- oo s s s o e
print_result
Print_FesULE M-- oo e s s o e

print_result " PostgresQL COPY " "S{pg_copy_time[@]}"
print_result " MongoDB IMPORT " "S{mongo_copy_time[@]}"
Print_FesULE M-- o e s s o m o "
print_result " PostgresSQL INSERT" "S{pg_inserts_time[@]}"
print_result " MongoDB INSERT " "S{mongo_inserts_time[@]}"
Print_FesULE M-- - e s s o e "
print_result " PostgresQL SELECT" "S{pg_select_time[@]}"
print_result " MongoDB SELECT " "S{mongo_select_time[@]}"
Print_FesULE M -- oo s s s o s "
print_result " PostgresSQL UPDATE" "${pg_update_time[@]}"
print_result " MongoDB UPDATE " "${mongo_update_time[@]}"
Print_FesULE M -- oo s s s o s "
print_result "#*#** Collection or Table Size (bytes) .
Print_FesULE M-- oo s s o e "
print_result " PostgresgL" "${pg_size_time[@]}"

print_result MongoDB "S{mongo_size_time[@]}"
print_result "-----------cmcmc e !

Figura 21. Reporte de los resultados comparativos para PostgreSQL y MongoDB.

Archivo common_func_lib.sh
En la function json_seed_data, se agregaron los datos con el formato definido por
la herramienta, asi como también, se afiadié al campo code una funcién random para

generar nimeros aleatorios.

function: json_seed_data

function json_seed_data ()

local INDX="5S1"
local SEED_DATA

if [[${INDX} -eq ©]]
then

INDX=1
fi
SEED_DATA="{\"code\":\"AC3S((S{RANDOM}/SINDX + SINDX))\",\"firstName\":\"Ana\",\"lastName\":\"Chaney\",\"age\":60,\"address\":
{\"street\":\"Tiffany Place\",\"city\":\"Edgewater\",\"state\":\"District Of Columbia\"},\"mobile\":\"+1 (923) 468-3067\",\"passport\":
{\"serial\":\"0693eb1f-259e-4848-8f05-3491f3eef065\",\ "expiration\":\"16-03-2023\"},\"car\":{\"plaque\":
\"5a4f237b-0462-4236-828c-8a8abbceedff\",\ "make\":\"JEEP\",\"colour\":\"Black\"},\"tradeMarks\":[{\"brandName\":\"qui\",\"registered\":
1"23-05-2019\"}, {\"brandName\ " :\"cillum\",\"registered\":\"15-03-2008\"}],\"mascots\":[{\"petName\":\"Petra\",\"petAge\":14,\ "petGuid\":
\"78e776eb-deab-47e9-b32b-7bdd9674d4fe\"}],\ "bankAccounts\" :[{\"bankName\":\"AEORA\",\"bankLocation\":\"New York\",\"accountActivation\":
\"29-09-2085\",\"annualBalance\":\"2,404.305\ "}, {\"bankName\" :\"PLASTO\",\"bankLocation\":\ "Kentucky\",\"accountActivation\":\"19-03-2017\",
\"annualBalance\":\"3,020.785\"}],\"email\":\ "petrachaney@plasto.com\"}
{\"code\" :\"AC3S((S{RANDOM]} /SINDX + SINDX))\",\"firstName\":\"Bright\",\"lastName\":\"Gilmore\",\"age\":29,\"address\":{\"street\":\"Wolcott
Street\",\"city\":\"Zeba\",\"state\":\"Arizona\"},\"mobile\":\"+1 (808) 533-2809\",\"passport\":{\"serial\":
\"686bcc57-5a09-474d-83bb-50e230dfbcb8\",\ "expiration\":\"23-10-2023\"},\"car\":{\"plaque\":\"74f85be4-b972-454b-883c-b80439cc46de\",\ "make\":
\"CHEVROLET\",\"colour\":\"Green\"},\"tradeMarks\":[{\"brandName\":\"veniam\",\"registered\":\"31-18-2000\"}],\"mascots\":[{\"petName\":
\"Cotton\",\"petAge\":11,\ "petGuid\":\ "d83506a1-6868-4c4d-aca2-c4382fec9b89\"},{\ "petName\":\"Mayra\",\"petAge\":5,\ petGuid}":\"bb1d5600-
fcdb-482a-adb5-bbb14eafalaz\"}],\ "bankAccounts\" :[{\"bankName\ " :\"COMCUR\",\"bankLocation\":\"New Hampshire\",\"accountActivation\":
\"21-05-20082\",\"annualBalance\":\"1,295.96%\"}],\"email\" :\"mayragilmore@comcur.com\"}
{\"code\":\"AC3S((S{RANDOM}/SINDX + SINDX))\",\"firstName\":\"Jacobson\",\"lastName\":\"Huber\",\"age\":67,\"address\":{\"street\":\"Forbell
Street\",\"city\":\"Falconaire\",\"state\":\"Alabama\"},\"mobile\":\"+1 (831) 460-2670\",\"passport\":{\"serial\":\"844f1378-e7fa-4273-
badc-49630da697e7\",\ "expiration\":\"28-06-2020\"},\ " "car\":{\"plaque\":\"0782b6fc-8a34-401f-aelb-b2fdbc639d2a\",\ "make\":\"TOYOTA\",\"colour\":
\"Black\"},\"tradeMarks\":[{\"brandName\":\"cillum\",\"registered\":\"07-084-2005\"},{\"brandName\":\"ullamco\",\"registered\":\"18-12-2013\"}],
\"mascots\":[{\"petName\":\"Parsons\",\"petAge\":11,\ "petGuid\":\"44464c1la-5036-49b2-ba55-f50c619b994e\"},{\ "petName\":\"Dianne\",\"petAge\":
7,\"petGuid\":\"d111ead2-b825-456a-946F-093ac7a5db24\ "}, {\"petName\" :\ "Katy\",\ "petAge\":4,\ " "petCuid\":\ "a7e5e7d7-
ae8b-427a-8758-11993ca2c9e5\"}],\ "bankAccounts\ " : [{\ "bankName\ ":\"SAVVY\",\"bankLocation\":\"Texas\",\ "accountActivation\":\"15-08-2010\",

Figura 22. Datos de la herramienta.

25

Archivo pg_func_lib.sh
En la function pg_json_insert_maker, se insertan en la tabla json_tables los

registros que se encuentran en sample_pg_inserts.json.

BRI R R R R R R R R R A R R R R R R R R R R
function: pg_json_insert_maker
HHHHHH R R R R R R R TR,
function pg_json_insert_maker ()

{
typeset -r COLLECTION_NAME="S1"
typeset -r NO_OF_ROWS="52"
typeset -r JSON_FILENAME="53"

process_log "preparing postgresql INSERTs."

rm -rf ${JSON_FILENAME}

NO_OF_LOOPS=$((S{NO_OF_ROWS}/10))

for ((i=0;1<${NO_OF LOOPS};i++))

do
json_seed data Si | \
sed "s/AJINSERT INTO S${COLLECTION_ MAME} VALUES(\SJSON\S/"] \
sed "s/$/\$ISON\S);/" >>${ISON_FILENAME}

done

Figura 23. Insercion de datos JSON en PostgreSQL.

En la function pg_select _benchmark, se crearon las consultas SELECT simples y
compuestas para cada carga de trabajo respectivamente. A continuacion, se visualiza un

extracto de estas.

Para 100 registros le corresponde 20 consultas SELECT.

function: benchmark postgresql select

function pg_select_benchmark ()

{
typeset -r F_PGHOST="51"
typeset -r F_PGPORT="$2"
typeset -r F_DBNAME="$3"
typeset -r F_PGUSER="54"
typeset -r F_PGPASSWORD="55"
typeset -r F_COLLECTION="$6"
typeset -r F_SELECT1="SELECT data->'firstName', data->'lastName' FROM ${F_COLLECTION};"
typeset -r F_SELECT2="SELECT *FROM ${F_COLLECTION} WHERE data#=>>'{passport,serial}'="'0693eb1f-259e-4848-8f05-3491f3eef065"';"
typeset -r F_SELECT3="SELECT * FROM ${F_COLLECTION} WHERE data->'car'-=>>'plaque' = '74785be4-b972-454b-883c-b80439cc46de’ ;"
typeset -r F_SELECT4="SELECT * FROM S{F_COLLECTION} WHERE data-='passport'-=>'serial' = '686bcc57-5a09-474d-83bb-50e230dfbcb8" ;"
typeset -r F_SELECT5="SELECT * FROM ${F_COLLECTION} WHERE (data?& array['firstName','email','mascots']);"
typeset -r F_SELECT6="SELECT * FROM S${F_COLLECTION} WHERE (data?| array['firstName','passport']);"
typeset -r F_SELECT7="SELECT * FROM ${F_COLLECTION} WHERE (data?'email');"
typeset -r F_SELECT8="SELECT * FROM S${F_COLLECTION};"
typeset -r F_SELECT9="SELECT data->>'firstName', data->>'lastName', data->>'email' FROM S${F_COLLECTION};"
typeset -r F_SELECT10="SELECT * FROM ${F_COLLECTION} WHERE (data-=>='lastName') = 'Chaney';"
typeset -r F_SELECT11="SELECT * FROM ${F_COLLECTION} WHERE (data->>'age') = '32';"
typeset -r F_SELECT12="SELECT * FROM S${F_COLLECTION} WHERE (data->'address'->> 'city') = 'Fredericktown';"
typeset -r F_SELECT13="SELECT * FROM S{F_COLLECTION} WHERE (data-=>>'firstName') = 'Lowery';"

Figura 24. Sentencias SELECT para 100 registros en PostgreSQL.

Para 1.000 registros le corresponden 80 consultas SELECT.

R A R A R i S R O R A R
function: benchmark postgresql select
I L e B L L L B L b L L s
function pg select benchmark ()

{
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset

typeset

typeset

-T
-r
-r
-r
-r
-F

F_PGHOST="51"

F_PGPORT="52"

F_DBNAME="53"

F_PGUSER="54"

F_PGPASSWORD="55"
F_COLLECTION="56"
F_SELECT1="SELECT
F_SELECT2="SELECT
F_SELECT3="SELECT
F_SELECT4="SELECT
F_SELECTS5="SELECT
F_SELECT6="SELECT
F_SELECT7="SELECT
F_SELECT8="SELECT

F_SELECT9="SELECT

F_SELECT10="SELECT * FROM S{F_COLLECTION} WHERE
F_SELECT11="SELECT * FROM S${F_COLLECTION} WHERE

F_SELECT12="SELECT * FROM S${F_COLLECTION} WHERE

* FROM ${F_COLLECTION};"

data->'firstName'
data->'firstName'
data->'firstName'

data->'firstName'

, data->'lastName' FROM S${F_COLLECTION};"
, data->'email', data->'mascots' FROM S{F_COLLECTION};"
, data->'lastName', data->'email' FROM S{F_COLLECTION};"

, data->'mobile' FROM ${F_COLLECTION};"

26

* FROM S{F_COLLECTION} WHERE (data?& array['firstName', 'mobile', 'mascots']);"

* FROM S{F_COLLECTION} WHERE (data?| array['firstName','lastName:1','age']);"

* FROM ${F_COLLECTION} WHERE

* FROM S{F_COLLECTION} WHERE

(data->>'age') = '60";"

(data->'age') = '29';"

(data->>'age') = '67';"
(data->'age') = '68';"
(data->>'age') = '32';"

Figura 25. Sentencias SELECT para 1.000 registros en PostgreSQL.

Para 100.000 registros le corresponden 120 consultas SELECT.

function: benchmark postgresql select

function pg_select_benchmark ()

typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset

typeset

typeset

-r
-r
-r
-r
-r
-r

'
-

"
-

'
-

'
-

"
-

'
-

"
-

'
-

'
-

F_PGHOST="51"

F_PGPORT="52"

F_DBNAME="%53"

F_PGUSER="54"

F_PGPASSWORD="55"
F_COLLECTION="56"
F_SELECT1="SELECT
F_SELECT2="SELECT
F_SELECT3="SELECT
F_SELECT4="SELECT
F_SELECT5="SELECT
F_SELECT6="SELECT *
F_SELECT7="SELECT *
F_SELECT8="SELECT *

F_SELECT9="SELECT *

F_SELECT10="SELECT * FROM S${F_COLLECTION} WHERE
F_SELECT11="SELECT * FROM S{F_COLLECTION} WHERE
F_SELECT12="SELECT * FROM ${F_COLLECTION} WHERE

F_SELECT13="SELECT * FROM ${F_COLLECTION} WHERE

data-='firstName'

2

data->'firstName',
data-='firstName',
data-='firstName',
FROM S${F_COLLECTION} WHERE (data?& array['firstMName','mobile', 'mascots']);"
FROM S${F_COLLECTION} WHERE (data?| array['firstMame','lastName:1','age']);"
FROM S{F_COLLECTION} WHERE

FROM ${F_COLLECTION} WHERE

* FROM ${F_COLLECTION};"

data->'lastName' FROM ${F_COLLECTION};"
data->'email', data->'mascots' FROM ${F_COLLECTION};"
data->'lastName', data->'email' FROM S${F_COLLECTION};"

data->'mobile' FROM ${F_COLLECTION};"

(data-»>'age') = '60';"

(data->'age') = '29';"

(data->="age') = '67";"
(data->'age') = '68';"
(data->>"age') = '32";"

(data->'age') = '62';"

Figura 26. Sentencias SELECT para 100.000 registros en PostgreSQL.

27

En la function pg_update_benchmark, se crearon sentencias UPDATE para cada
carga de trabajo respectivamente. A continuacion, se visualiza un extracto de estas.

Para 100 registros le corresponde 10 sentencias UPDATE.

function: benchmark postgresql update

function pg_update_benchmark ()

typeset -r F_PGHOST="51"
typeset -r F_PGPORT="52"
typeset -r F_DBNAM 53"
typeset -r F_PGUSER="54"
typeset -r F_PGPASSWORD="55"
typeset -r F_COLLECTION="56"

typeset -r F_UPDATE1="UPDATE S{F_COLLECTION} SET data = data::jsonb
'Jacobson';"

"{\"nationality\":\"American\"}' WHERE data->>'firstName' =

typeset -r F_UPDATE2="UPDATE ${F_COLLECTION} SET data = data::JSONB

'Ana’;

"{\"nationality\":\"American\"}"'::JSONB WHERE data->>'firstName' =

typeset -r F_UPDATE3="UPDATE ${F_COLLECTION} SET data = data::jsonb
'Bright';"

"{\"nationality\":\"American\"}"' WHERE data-=>'firstName' =

typeset -r F_UPDATE4="UPDATE ${F_COLLECTION} SET data = data::JSONB

'Owen';

"{\"nationality\":\"American\"}"'::JSONB WHERE data->>'firstName' =

typeset -r F_UPDATES5="UPDATE S${F_COLLECTION} SET data = data::jsonb

"{\"nationality\":\"American\"}"' WHERE data->>'firstName' = 'Blake';"

typeset -r F_UPDATE6="UPDATE ${F_COLLECTION} SET data = data::JSONB
'Barlow';"

"{\"nationality\":\"American\"}'::]S0NB WHERE data->>'firstName' =

typeset -r F_UPDATE7="UPDATE S${F_COLLECTION} SET data = data::JSONB
"Faye':"

"{\"nationality\":\"American\"}'::]S0NB WHERE data->>'firstName' =

typeset -r F_UPDATES="UPDATE S{F_COLLECTION} SET data = data::JSONB
'Buckley';"

"{\"nationality\":\"American\"}'::JSONB WHERE data->>'firstName' =

typeset -r F_UPDATE9="UPDATE ${F_COLLECTION} SET data = data::jsonb

'Fannie’;

"{\"nationality\":\"American\"}"' WHERE data->>'firstName' =

Figura 27. Sentencias UPDATE para 100 registros en PostgreSQL.

Para 1.000 registros le corresponden 100 sentencias UPDATE.

function: benchmark postgresql update

function pg_update_benchmark ()
{

typeset -r F_PGHOST="51"
typeset -r F_PGPORT="%2"
typeset -r F_DBNAME="53"
typeset -r F_PGUSER="54"
typeset -r F_PGPASSWORD="5$5"
typeset -r F_COLLECTION="56"

typeset -r F_UPDATE1="UPDATE S{F_COLLECTION} SET data = data::jsonb
'Jacobson';"

"{\"nationality\":\"American\"}' WHERE data->>'firstName' =

typeset -r F_UPDATE2="UPDATE ${F_COLLECTION} SET data = data::JSONB

"Ana';

"{\"nationality\":\"American\"}'::JSONB WHERE data->>'firstName' =

typeset -r F_UPDATE3="UPDATE S${F_COLLECTION} SET data = data::jsonb
'Bright';"

"{\"nationality\":\"American\"}"' WHERE data->>'firstName' =

typeset -r F_UPDATE4="UPDATE S${F_COLLECTION} SET data = data::JSONB
"Owen';"

"{\"nationality\":\"American\"}'::JSONB WHERE data->>'firstName' =

typeset -r F_UPDATES="UPDATE S{F_COLLECTION} SET data = data::jsonb '{\"nationality\":\"American\"}"' WHERE data->>'firstName' = 'Blake';"

typeset -r F_UPDATE6="UPDATE ${F_COLLECTION} SET data = data::JSONB

"Barlow';

"{\"nationality\":\"American\"}'::JS0ONB WHERE data-=>>'firstName' =

typeset -r F_UPDATE7="UPDATE ${F_COLLECTION} SET data = data::JSONB

'Faye';

"{\"nationality\":\"American\"}'::JSONB WHERE data->>'firstName' =

typeset -r F_UPDATE8="UPDATE ${F_COLLECTION} SET data = data::JSONB
'Buckley';"

"{\"nationality\":\"American\"}'::JSONB WHERE data-=>'firstName' =

Figura 28. Sentencias UPDATE para 1.000 registros en PostgreSQL.

28

Para 100.000 registros le corresponden 300 sentencias UPDATE.

function: benchmark postgresql update

function pg_update_benchmark ()
{

typeset -r F_PGHOST="51"

typeset -r F_PGPORT="52"

typeset -r F_DBNAME="53"

typeset -r F_PGUSER="54"

typeset -r F_PGPASSWORD="55"

typeset -r F_COLLECTION="56"

typeset -r F_UPDATE1="UPDATE S${F_COLLECTION} SET data = data::jsonb || '{\"nationality\":\"American\"}' WHERE data->>'firstName' =
'Jacobson’';"

typeset -r F_UPDATE2="UPDATE S${F_COLLECTION} SET data = data::JSONB || '{\"nationality\":\"American\"}'::]JSONB WHERE data->>'firstName' =
‘Ana‘;"

typeset -r F_UPDATE3="UPDATE S${F_COLLECTION} SET data = data::jsonb || '{\"nationality\":\"American\"}' WHERE data->>'firstName' =
'Bright';"

typeset -r F_UPDATE4="UPDATE S${F_COLLECTION} SET data = data::JSONB || '{\"nationality\":\"American\"}'::JSONB WHERE data->>'firstName' =
"Owen';"

typeset -r F_UPDATES="UPDATE ${F_COLLECTION} SET data = data::jsonb || '{\"nationality\":\"American\"}' WHERE data->>'firstName' = 'Blake';"

typeset -r F_UPDATE6="UPDATE S${F_COLLECTION} SET data = data::JSONB || '{\"nationality\":\"American\"}'::JSONB WHERE data->>'firstName' =
"Barlow';"

typeset -r F_UPDATE7="UPDATE ${F_COLLECTION} SET data = data::JSONB || '{\"nationality\":\"American\"}'::JSONB WHERE data-==>'firstName' =
'Faye';"

typeset -r F_UPDATE8="UPDATE S${F_COLLECTION} SET data = data::JsoNB || '{\"nationality\":\"American\"}'::JSONB WHERE data->>'firstName' =
'Buckley';"

typeset -r F_UPDATE9="UPDATE S${F_COLLECTION} SET data = data::jsonb || '{\"nationality\":\"American\"}' WHERE data->>'firstName' =
'Fannie’;"

Figura 29. Sentencias UPDATE para 100.000 registros en PostgreSQL.

Archivo mongo_func_lib.sh
En la function mongo_json_insert_maker, se insertan en la coleccion json_tables

los documentos que se encuentran en sample_mongo_inserts.json.

HRHBHBHE R R R R B R R AU R R AR AR R R R AR AR B R R R R H R A R R R R H B R R R AR R
function: mongo_insert_maker
BRI R R R R R R R R AR R A AR R R R R R AR R R AR R AR HE R R R R H R R R SRS R
function mongo_json_insert_maker ()
{

typeset -r COLLECTION NAME="51"

typeset -r NO_OF_ROWS="52"

typeset -r JSOM_FILENAME="S3"

rm -rf ${JSON_FILENAME}
process_log "preparing mongo insert commands."
NO_OF LOOPS=S$((${ND_OF ROWS}/10))
for ((i=0;1<S{NO_OF LOOPS};i++))
do
json_seed data $i | sed "s/~/db.S{COLLECTION MAME}.insert(/" | \
sed "s/S$/)/" >>5${J1SON_FILENAME}
done

Figura 30. Insercién de datos JSON en MongoDB.

En la function mongodb_select benchmark, se crearon las consultas FIND
simples y compuestas para cada carga de trabajo respectivamente. A continuacion, se

visualiza un extracto de estas.

Para 100 registros le corresponde 20 consultas FIND.

function: benchmark mongo-select

function mongodb_select_benchmark ()

{

typeset -r F_MONGOHOST="S51"
typeset -r F_MONGOPORT="52"
typeset -r F_MONGODBNAME="53"
typeset -r F_MONGOUSER="54"
typeset -r F_MONGOPASSWORD="55"
typeset -r F_COLLECTION="56"

typeset -r F_MONGOSELECT1="db.${F_COLLECTION}.find({},{firstName:1, lastName:1})"

typeset -r F_MONGOSELECT2="db.S{F_COLLECTION}.find({passport.serial: '0693eb1f-259e-4848-8f05-3491f3eef065'})"
typeset -r F_MONGOSELECT3="db.S${F_COLLECTION}.find({car.plaque: '74f85be4-b972-454b-883c-b80439cc46dn’'})"
typeset -r F_MONGOSELECT4="db.S${F_COLLECTION}.find({passport.serial: '686bcc57-5a09-474d-83bb-50e230dfbcb8"'})"
typeset -r F_MONGOSELECTS5="db.S{F_COLLECTION}.find({},{firstName:1, email:1, mascots:1})"

typeset -r F_MONGOSELECT6="db.${F_COLLECTION}.find({\Sor:[{firstName:/~/},{passport:/~/}]1})"

typeset -r F_MONGOSELECT7="db.S${F_COLLECTION}.find({email:1, firstName:1, age:1})"

typeset -r F_MONGOSELECT8="db.S{F COLLECTION}.find()"

typeset -r F_MONGOSELECT9="db.S{F_COLLECTION}.find({},{firstName:1, lastName:1, email:1})"

typeset -r F_MONGOSELECT1@8="db.${F_COLLECTION}.find({lastMame: 'Chaney'})"

typeset -r F_MONGOSELECT11="db.${F_COLLECTION}.find({age: 32})"

typeset -r F_MONGOSELECT12="db.${F_COLLECTION}.find({address.city: 'Fredericktown'})"

Figura 31. Sentencias FIND para 100 documentos en MongoDB.

Para 1.000 registros le corresponden 80 consultas FIND.

function: benchmark mongo-select

function mongodb_select_benchmark ()

{
typeset -r F_MONGOHOST="5§1"
typeset -r F_MONGOPORT="52"
typeset -r F_MONGODBNAME="53"
typeset -r F_MONGOUSER="54"
typeset -r F_MONGOPASSWORD="$5"
typeset -r F_COLLECTION="S6"
typeset -r F_MONGOSELECT1="db.S${F_COLLECTION}.find()"
typeset -r F_MONGOSELECT2="db.S{F_COLLECTION}.find({},{firstName:1, lastMame:13})"
typeset -r F_MONGOSELECT3="db.S${F_COLLECTION}.find{({},{firstName:1, email:1, mascots:1})"
typeset -r F_MONGOSELECT4="db.S${F_COLLECTION}.find({},{firstName:1, lastMame:1, email:1})"

typeset -r F_MONGOSELECTS5="db.${F_COLLECTION}.find({},{firstName:1, mobile:1})"

typeset -r F_MONGOSELECT6="db.S{F_COLLECTION}.find({firstName:1, mobile:1, mascots:1})"
typeset -r F_MOMGOSELECT7="db.S{F_COLLECTION}.find({firstMame:1, lastMame:1, age:1})"
typeset -r F_MONGOSELECT8="db.S${F COLLECTION}.find({age: 60})"

typeset -r F_MONGOSELECT9="db.S${F COLLECTION}.find({age: 29})"

typeset -r F_MONGOSELECT10="db.S${F_COLLECTION}.find({age: 67})"

typeset -r F_MONGOSELECT11="db.${F_COLLECTION}.find({age: 68})"

typeset -r F_MONGOSELECT12="db.S${F_COLLECTION}.find({age: 32})"

Figura 32. Sentencias FIND para 1.000 documentos en MongoDB.

Para 100.000 registros le corresponden 120 consultas FIND.

function: benchmark postgresql select

function pg_select_benchmark ()

{

typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset

typeset

typeset

-r F_PGHOST="51"
-r F_PGPORT="52"
-r F_DBNAME="5$3"
-r F_PGUSER="$4"
-r F_PGPASSHORD="5$5"
-r F_COLLECTION="S6"

-r F_SELECT1="SELECT * FROM S{F_COLLECTION};"

-r F_SELECT2="SELECT data->'firstName', data->'lastName' FROM S${F_COLLECTION};"

-r F_SELECT3="SELECT data->'firstName', data->'email', data->'mascots' FROM ${F_COLLECTION};"

-r F_SELECT4="SELECT data->'firstName', data->'lastName', data->'email' FROM S{F_COLLECTION};"

-r F_SELECT5="SELECT data->'firstName', data->'mobile' FROM S${F_COLLECTION};"

-r F_SELECT6="SELECT * FROM S${F_COLLECTION} WHERE (data?& array['firstName','mobile','mascots']);"

-r F_SELECT7="SELECT * FROM ${F_COLLECTION} WHERE (data?| array['firstName','lastName:1',6'age']);"

-r F_SELECT8="SELECT * FROM ${F_COLLECTION} WHERE (data->>'age') = '60';"

-r F_SELECT9="SELECT * FROM ${F_COLLECTION} WHERE (data->'age') = '29';"

-r F_SELECT10="SELECT * FROM S${F_COLLECTION} WHERE (data->>'age') = '67';"

-r F_SELECT11="SELECT * FROM ${F_COLLECTION} WHERE (data-='age') = '68';"

-r F_SELECT12="SELECT * FROM S${F_COLLECTION} WHERE (data->>'age') = '32';"

-r F_SELECT13="SELECT * FROM S${F_COLLECTION} WHERE (data->"'age') = '62';"

Figura 33. Sentencias FIND para 100.000 documentos en MongoDB.

30

En la function mongodb_update benchmark, se crearon sentencias UPDATE

para cada carga de trabajo respectivamente. A continuacion, se visualiza un extracto de

estas.

Para 100 registros le corresponde 10 sentencias UPDATE.

function: benchmark mongo-update

function mongodb_update_benchmark ()

{

typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset

typeset

typeset

-r F_MONGOHOST="$1"

-r F_MONGOPORT="§2"

-r F_MONGODBNAME="53"

-r F_MONGOUSER="54"

-r F_MONGOPASSWORD="55"

-r F_COLLECTION="56"

-r F_MONGOUPDATE1="db.${F_COLLECTTON}
-r F_MONGOUPDATE2="db.${F_COLLECTTON}
-r F_MONGOUPDATE3="db.${F_COLLECTION}
-r F_MONGOUPDATE4="db.${F_COLLECTTON}
-r F_MONGOUPDATES="db.${F_COLLECTTON}
-r F_MONGOUPDATE6="db.${F_COLLECTION}
-r F_MONGOUPDATE7="db.${F_COLLECTION}
-r F_MONGOUPDATE8="db.${F_COLLECTTON}

-r F_MONGOUPDATE9="db.${F_COLLECTTON}

.update({firstName:\"Jacobson\"},{\"$\"set: {\"nationality\":\"American}"}})"
.update({firstName:\"Ana\"},{\"$\ " "set:{\"nationality\":\"American\"}})"
.update({firstName:\"Bright\"},{\"$\"set:{\ "nationality\":\"American\"}})"
.update({firstName:\"Owen\"},{\ "5\ "set:{\"nationality\":\"American\"1}})"
.update({firstName:\"Blake\"},{\"$\"set:{\"nationality\":\"American\"}})"
.update({firstName:\"Barlow\"},{\"$\"set:{\ "nationality\":\"American\"}})"
.update({firstName:\"Faye\"},{\"S\"set:{\"nationality\":\"American\"}})"
.update({firstName:\"Buckley\"},{\"$\"set:{\ "nationality\":\"American\"}})"

.update({firstName:\"Fannie\"},{\"$\"set:{\"nationality\":\"American\"}})"

-r F_MONGOUPDATE10="db.S${F_COLLECTION}.update({firstName:\"Lowery\"},{\"$\"set:{\"nationality\":\"American\"}})"

Figura 34. Sentencias UPDATE para 100 documentos en MongoDB.

31

Para 1.000 registros le corresponden 100 sentencias UPDATE.

function: benchmark mongo-update

function mongodb_update_benchmark ()

{
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset

typeset

typeset

a

-
-
-
-
-
-

2

a

a

a

a

2

a

a

2

a

a

4

F_MONGOHOST="51"
F_MONGOPORT="52"
F_MONGODBNAME="53"
F_MONGOUSER="54"

F_MONGOPASSHORD="55"

F_COLLECTION="56"

F_MONGOUPDATE1="db.
F_MONGOUPDATE2="db.
F_MONGOUPDATE3="db.
F_MONGOUPDATE4="db.
F_MONGOUPDATE5="db.

F_MONGOUPDATEG6="db.

F_MONGOUPDATE7="db
F_MONGOUPDATE8="db

F_MONGOUPDATE9="db

${F_COLLECTION}
${F_COLLECTION}
S{F_COLLECTTON}
S{F_COLLECTION}
${F_COLLECTION}

${F_COLLECTION}

.${F_COLLECTION}
.${F_COLLECTTON}

.${F_COLLECTION}

.update({firstName
.update({firstName
.update({firstName
.update({firstName
.update({firstName
.update({firstName
.update({firstName
.update({firstName

.update({firstName

:\"Jacobson\"},{\"$\"set:{\"nationality\":\"American\"}})"
:\"ana\"},{\"$\"set:{\"nationality\":\"American\"}})"
S\"Bright\"},{\"$\ "set:{\"nationality\":\"American\"}})"
t\"owen\"},{\"S\"set:{\"nationality\":\"American\"}})"
:\"Blake\"},{\"$\"set:{\"nationality\":\"American\"}})"
\"Barlow\"},{\"S\"set:{\"nationality\":\"American\"}})"
s\ "Faye\"},{\"$\"set:{\"nationality\":\"American\"}})"

1\ "Buckley\"},{\"S\"set:{\"nationality\":\"American\"}})"

t\"Fannie\"},{\"$\"set:{\"nationality\":\"American\"}})"

F_MONGOUPDATE10="db.S${F_COLLECTION}.update({firstName:\"Lowery\"},{\"S\"set:{\"nationality\":\"American\"}})"

F_MONGOUPDATE11="db.S${F_COLLECTION}.update({firstName:\"Jacobson\"},{\"S\"set:{\"civilstatus\":\"married\"}})"

F_MONGOUPDATE12="db.${F_COLLECTION}.update({firstName:\"Ana\"},{\"$\"set:{\"civilStatus\":\"single\"}})"

F_MONGOUPDATE13="db.S{F_COLLECTION}.update({firstName:\"Bright\"},{\"S\ " "set:{\"civilStatus\":\"married\"}})"

Figura 35. Sentencias UPDATE para 1.000 documentos en MongoDB.

Para 100.000 registros le corresponden 300 sentencias UPDATE.

function: benchmark mongeo-update

function mongodb_update_benchmark ()

typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset

typeset

typeset

24

-

24

-

-
-
-
-
-
-

r

4

2

-

4

4

-

-

4

F_MONGOHOST="51"
F_MONGOPORT="52"
F_MONGODBNAME="53"
F_MONGOUSER="54"

F_MONGOPASSWORD="55"

F_COLLECTION="56"
F_MONGOUPDATE1="db

F_MONGOUPDATE2="db

F_MONGOUPDATE3="db.

F_MONGOUPDATE4="db.

F_MONGOUPDATES="db

F_MONGOUPDATE6="db.
F_MONGOUPDATE7="db.

F_MONGOUPDATE8="db.

F_MONGOUPDATE9="db

.${F_COLLECTION}

.${F_COLLECTION}

${F_COLLECTION}

S{F_COLLECTION}

.${F_COLLECTION}

${F_COLLECTION}
${F_COLLECTION}

S{F_COLLECTION}

.${F_COLLECTION}

.update({firstName

.update({firstName

.update({firstName:

.update({firstName:

.update({firstName

.update({firstName:
.update({firstName:
.update({firstName:

.update({firstName:

:\"Jacobson\"},{\"$\"set:{\"nationality\":\"American\"}})"

s\ "Ana\ "}, {\"S\"set:{\"nationality\":\"American\"}})"

\"Bright\"},{\"s\"set:{\"nationality\":\"American\"}})"

\'owen\ "}, {\"S\"set:{\"nationality\":\"American\"}})"

:\"Blake\"},{\"$\"set:{\"nationality\":\ "American\"}})"

\"Barlow\"},{\"S\"set:{\"nationality\":\"American\"}})"
\"Faye\"},{\"$\"set:{\"nationality\":\"American\"}})"
\"Buckley\"},{\"S\"set:{\"nationality\":\"American\"}})"

\"Fannie\"},{\"S\"set:{\"nationality\":\"American\"}})"

F_MONGOUPDATE10="db.S{F_COLLECTION}.update({firstName:\"Lowery\"},{\"S\ " "set:{\"nationality\":\"American\"}})"

F_MONGOUPDATE11="db.S${F_COLLECTION}.update({firstName:\"Jacobson\"},{\"S\"set:{\"civilStatus\":\"married\"}})"

F_MONGOUPDATE12="db.S${F_COLLECTION}.update({firstName:\"Ana\"},{\"$\"set:{\"civilstatus\":\"single\"}})"

F_MONGOUPDATE13="db.S${F_COLLECTION}.update({firstName:\"Bright\"},{\"S\"set:{\"civilstatus\":\"married\"3}})"

Figura 36. Sentencias UPDATE para 100.000 documentos en MongoDB.

En la function mongo_collection_size,

se calcul6 el tamafio de la coleccién.

function: mongdb collection size

function mongo_collection_size ()

{
typeset -r F_MONGOHOST="51"
typeset -r F_MONGOPORT="52"
typeset -r F_MONGODBMAME="5$3"
typeset -r F_MONGOUSER="54"
typeset -r F_MONGOPASSWORD="55"
typeset -r F_COLLECTION="$6"
typeset -r

process_log "calculating the size of mongo collection."

output="$(run_mongo_command "S${F_MONGOHOST}" "${F_MONGOPORT}"
"S{F_MONGODBNAME}" "S{F_MONGOUSER}" \
"${F_MONGOPASSWORD}" "${F_COMMAND}")"

collectionsize="$(echo -n S${output})”

echo "S{collectionsize}"

F_COMMAND="printjson(db.getSiblingDB(' ${F_MOMGODBNAME}').S${F_COLLECTION}.stats().size)"

\

Figura 37. Tamafio de la coleccidon en MongoDB.

32

En la function mongodb_create_index, se crearon los indices para cada carga de

trabajo respectivamente.

Para 100 registros le corresponden 14 indices.

typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset

-r
4R
-r
-r
-r
-r
-r
-r
-r

-r F_MONGODBIDX10="db.S{F_COLLECTION}.
-r F_MONGODBIDX11="db.S{F_COLLECTION}.
-r F_MONGODBIDX12="db.S{F_COLLECTION}.
-r F_MONGODBIDX13="db.S{F_COLLECTION}.
-r F_MONGODBIDX14="db.S{F_COLLECTION}.

F_MONGODBIDX1="db.
F_MONGODBIDX2="db.
F_MONGODBIDX3="db.
F_MONGODBIDX4="db.
F_MONGODBIDX5="db.
F_MONGODBIDX6="db.
F_MONGODBIDX7="db.
F_MONGODBIDX8="db.
F_MONGODBIDX9="db.

${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}

.ensureIndex(
.ensureIndex(
.ensureIndex(
.ensureIndex(
.ensureIndex(
.ensureIndex(
.ensureIndex(
.ensureIndex(
.ensurelIndex(
ensureIndex({ \"car.make\": 1});"
ensureIndex({ \"car.colour\": 1});"
ensureIndex({ \"mascots.petName\": 1});"
ensureIndex({ \"tradeMarks.brandName\": 1});"

Para 1.000 registros le corresponden 16 indices.

typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset
typeset

-r
-r
-r
-r
-r
-r
-r
-r
-r
-r
-r
-r
-r
-r
-r
-r

F_MONGODBIDX1="db.
F_MONGODBIDX2="db.
F_MONGODBIDX3="db.
F_MONGODBIDX4="db.
F_MONGODBIDX5="db.
F_MONGODBIDX6="db.
F_MONGODBIDX7="db.
F_MONGODBIDX8="db.
F_MONGODBIDX9="db.

F_MONGODBIDX10="db.
F_MONGODBIDX11="db.
F_MONGODBIDX12="db.
F_MONGODBIDX13="db.
F_MONGODBIDX14="db.
F_MONGODBIDX15="db.

${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}
${F_COLLECTION}

{
{
{
{
{
{
{
{
{

\"firstName\": 1});"
\"lastName\": 13});"
\"passport.serial\": 1});"
\"car.plaque\": 1});"
\email\": 13});"
\"mascots\": 13});"
\"passport\": 1});"
\"age\": 1});"
\"address.city\": 1});"

ensureIndex({ \"bankAccounts.bankName\": 1});"
Figura 38. Indices en MongoDB para 100 registros.

.ensureIndex({ \"firstName\": 13});"

.ensureIndex({ \"lastName\": 1});"

.ensurelndex({ \"passport.serial\": 1});"

.ensureIndex({ \"car.plaque\": 1});"

.ensureIndex({ \"email\": 1});"

.ensurelndex({ \"mascots\": 1});"

.ensurelndex({ \"passport\": 1});"

.ensureIndex({ \"age\": 1});"

.ensureIndex({ \"address.city\": 1});"
.ensureIndex({ \"car.colour\": 13});"
.ensurelIndex({ \"car.make\": 1});"
.ensureIndex({ \"tradeMarks.brandName\": 1});"
.ensureIndex({ \"mascots.petName\": 1});"
.ensureIndex({ \"mobile\": 1});"

.ensureIndex({ \"bankAccounts.bankName\": 1});"
.ensureIndex({ \"passport.expiration\": 1});"

F_MONGODBIDX16="db.

${F_COLLECTION}

Figura 39. indices en MongoDB para 1.000 registros.

Para 100.000 registros le corresponden 16 indices.

33

typeset -r F_MONGODBIDX1="db.S{F_COLLECTION}.ensureIndex({ \"firstName\": 1});"

typeset -r F_MONGODBIDX2="db.S{F_COLLECTION}.ensureIndex({ \"lastMame\": 1});"

typeset -r F_MONGODBIDX3="db.S${F_COLLECTION}.ensurelndex{ { \"passport.serial\": 1});"
typeset -r F_MONGODBIDX4="db.S{F_COLLECTION}.ensureIndex({ \"car.plaque\": 1});"

typeset -r F_MONGODBIDX5="db.S${F_COLLECTION}.ensureIndex({ \"emaill": 1});"

typeset -r F_MONGODBIDX6="db.S5{F_COLLECTION}.ensurelndex({ { \"mascots\": 13});"

typeset -r F_MONGODBIDX7="db.S${F_COLLECTION}.ensurelndex({ { \"passport\": 13});"

typeset -r F_MONGODBIDX8="db.S${F_COLLECTION}.ensurelndex{ { \"age\": 1});"

typeset -r F_MONGODBIDX9="db.S{F_COLLECTION}.ensureIndex({ \"address.city\": 1});"

typeset -r F_MONGODBIDX16="db.S${F_COLLECTION}.ensureIndex({ \"car.make\": 1});"

typeset -r F_MONGODBIDX11="db.S${F_COLLECTION}.ensurelndex({ \"car.colour\": 13});"

typeset -r F_MONGODBIDX12="db.S${F_COLLECTION}.ensurelndex({ \"mascots.petName\": 1});"
typeset -r F_MONGODBIDX13="db.S${F_COLLECTION}.ensureIndex({ \"tradeMarks.brandName\": 13});"
typeset -r F_MONGODBIDX14="db.S${F_COLLECTION}.ensureIndex({ \"bankAccounts.bankName\": 1});"
typeset -r F_MONGODBIDX15="db.S${F_COLLECTION}.ensurelndex({ \"passport.expiration\": 13});"
typeset -r F_MONGODBIDX16="db.S${F_COLLECTION}.ensureIndex({ \"mobile\": 1});"

Figura 40. Indices en MongoDB para 100.000 registros.

Es importante sefialar, que se deben levantar los servidores de la siguiente manera:
PostgreSQL

kenia@kenia-Dell-System-Inspiron-N4110:~$ sudo su

[sudo] contrasefa para kenia:
root@kenia-Dell-System-Inspiron-N4110: /home/kenia# su postgres
postgres@kenia-Dell-System-Inspiron-N4110: /home/kenia$ psql
psql (10.10 (Ubuntu 10.10-0ubuntu®.18.04.1))

Type "help" for help.

postgres=# D
Figura 41. Levantar servidor de PostgreSQL.

MongoDB
Se agrega en una consola lo siguiente:
kenia@kenia-Dell-System-Inspiron-N4110:~5 sudo mongod --dbpath=/var/lib/mongodb
Y en otra:
kenia@kenia-Dell-System-Inspiron-N4116:~$ mongo

Figura 42. Levantar servidor de MongoDB.

Finalmente, la herramienta se ejecuta de la siguiente forma:

kenia@kenia-Dell-System-Inspiron-N4118:~/pg_nosql_benchmark_cienS ./pg_nosql_benchmark

Figura 43. Ejecucion de la herramienta.

34

Capitulo 5

5. Resultados

A continuacion, se visualizan los reportes con los resultados obtenidos
correspondientes a las tres cargas de trabajo respectivamente.

Para 100 registros.

PostgreSQL COPY 120446328
MongoDB IMPORT 422369583
PostgreSQL INSERT 217160074
MongoDB INSERT 915686401
PostgreSQL SELECT 85017913
MongoDB FIND 161090212
PostgresSQL UPDATE 114945216
MongoDB UPDATE 137854647

PostgreSQL 245766
MongoDB 103955

Figura 44. Reporte de los resultados con 100 registros.

Para 1.000 registros.

--

PostgreSQL COPY 183546890
MongoDB IMPORT 755854442
PostgresQL INSERT 657562304
MongoDB INSERT 1861848373
PostgreSQL SELECT 88326785
MongoDB FIND 162590717
PostgresQL UPDATE 185505545
MongoDB UPDATE 263679277

PostgresqQL 2457600
MongoDB 1038624

Figura 45. Reporte de los resultados con 1.000 registros.

Para 100.000 registros.

PostgreSQL COPY 6322754204
MongoDB IMPORT 524843856
PostgreSQL INSERT 41965708973
MongoDB INSERT 172029763771
PostgreSQL SELECT 619980738
MongoDB FIND 136230483

PostgresSQL UPDATE 52121683459
MongoDB UPDATE 201459122

PostgresQL 245760000
MongoDB 103940312

Figura 46. Reporte de los resultados con 100.000 registros.

Tabla general de los resultados
Tabla 3

Resultados de la evaluacion comparativa de PostgreSQL y MongoDB.
100 1.000 100.000

PostgreSQL COPY 120446328 183546890 6322754204
MongoDB IMPORT 422369583 = 755854442 524843856
PostgreSQL INSERT 217160074 657562304 41965708973
MongoDB INSERT 915686401 1861848373 172029763771
PostgreSQL SELECT 85017913 88326785 619980738
MongoDB FIND 161090212 162590717 136230483
PostgreSQL UPDATE 114945216 185505545 52121683459
MongoDB UPDATE 137854647 263679277 201459122
PostgreSQL TABLE = 245760 2457600 245760000
MongoDB COLLECTION 103955 1038624 103940312

35

Unidades ‘

nanosegundos

bytes

36

A continuacion, se visualizan los resultados graficamente

COPY vs IMPORT

JE+0D

BE+0%
g
i) SE+05
E; ¥ PostgreSQL COPY
E 4E=09
&
= saos u MongoDB IMPORT
By
£
= 2E+08

1E+05

0 — - || . -

100 1.000 100.000
Cargas de trabajo

Figura 47. Representacion gréfica del COPY vs IMPORT.
En la carga de 100 registros, se puede observar que el comando COPY tiene un mejor

rendimiento, es decir, el tiempo de respuesta es menor que el comando IMPORT. Del
mismo modo, ocurre con la carga de 1.000 registros. Sin embargo, en la carga de
100.000 registros el comando IMPORT tiene mejor rendimiento.

INSERT

1E+12

1E+11
1E+10
1E+0%
100000000
10000000
1000000
100000
10000
1000
100
10
1

100 1.000

100.000

Tiempo de respuesta (ns)

Cargas de trabajo

= PostgreSQL INSERT = MongoDB INSERT
Figura 48. Representacién grafica del INSERT.
En la carga de 100 registros, se puede observar que el comando INSERT de
PostgreSQL arroja un tiempo de respuesta menor que el comando INSERT de

MongoDB. Asi mismo, ocurre con la carga de 1.000 y 100.000 registros.

37

SELECT vs FIND
700000000

600000000

500000000

400000000 u PostgreSQL SELECT
® MongoDB FIND

300000000

200000000

1) I I I
, M []
100 1.000

100.000

Tiempo de respuesta (ns)

Cargas de trabajo

Figura 49. Representacion gréfica del SELECT vs FIND.
En la carga de 100 registros, se puede observar que las consultas SELECT arrojan un

tiempo de respuesta menor que las consultas FIND. Del mismo modo, ocurre con la
carga de 1.000 registros. No obstante, en la carga de 100.000 registros las consultas

FIND tienen mejor rendimiento.

UPDATE
1E+11
1E+10
E 1E+08
Al
& 100000000
§ 10000000
-9
2 1000000
-
& 100000
g. 10000
g 1000
= 100
10
1
100 1.000 100.000
Carga de trabajo
W PostgreSQL UPDATE ® MongoDB UFDATE

Figura 50. Representacién grafica del UPDATE.
En la carga de 100 registros, se puede observar que las sentencias UPDATE de

PostgreSQL arrojan un tiempo de respuesta menor que el UPDATE de MongoDB. Asi
mismo, ocurre con la carga de 1.000 registros. Sin embargo, en la carga de 100.000

registros las sentencias UPDATE de MongoDB tienen mejor rendimiento.

38

TABLE vs COLLECTION

1E+09

100000000

10000000
—

< 1000000
=4

< 100000
@

N 10000
w

1000

100

10

1

100 1.000 100.000

Carga de trabajo
B PostgreSQL TABLE ® MongoDB COLLECTION
Figura 51. Representacion gréafica del tamafio de la tabla y la coleccidn.
En la carga de 100, 1.000 y 100.000 registros, se puede observar que hay mejor

rendimiento cuando se almacena en una coleccion que en una tabla.

De modo general, se puede concluir que el manejador de base de datos PostgreSQL
arroja tiempos de respuesta Optimos cuando manipula poca cantidad de datos, pero
ocupa mas espacio de almacenamiento que MongoDB. Por el contrario, MongoDB
arroja tiempos de respuesta aceptables cuando maneja gran cantidad de datos, asi como

también, ocupa menos espacio de almacenamiento que PostgreSQL.

39

6. Conclusiones

En esta época donde se generan grandes cantidades de datos semiestructurados, las
bases de datos relacionales empiezan a mostrar deficiencias, en almacenamiento u
operaciones; siendo esta una de las principales razones de impulsar el uso de las
NoSQL.

Es por ello, que se llega a la siguiente interrogante ¢ctando se debe utilizar una base
de datos NoSQL y cuando una relacional? A continuacion, se sefialan las caracteristicas
mas importantes para resolver dicha interrogante. Cuando los datos deben ser
consistentes sin dar posibilidad al error, SQL. Cuando se tiene poco presupuesto para
maquinas de alto rendimiento, NoSQL. Cuando las estructuras de datos que se manejan
son variables, NoSQL. Cuando existe el analisis de grandes cantidades de datos en
modo lectura, NoSQL.

Es importante sefialar, que las caracteristicas NoSQL incorporadas en las ultimas
versiones de PostgreSQL satisfacen las mismas necesidades que MongoDB. Todo esto
encaminado a agilizar y flexibilizar la manipulaciéon de los datos. En este trabajo de
grado, se obtuvo el mejor rendimiento de los manejadores en cuanto a tiempo de

respuesta y tamafio de la tabla y la coleccion.

En PostgreSQL, se obtuvo mejores tiempo de respuesta cuando maneja poca
cantidad de datos y en MongoDB, cuando maneja gran cantidad. Por otra parte, el
tamafo de la coleccién de MongoDB ocupa menos espacio que la tabla de PostgreSQL,

ya sea manipulando pocos o0 muchos datos.

En conclusion, las bases de datos no relacionales o NoSQL no reemplazan a las
relacionales, sino que las complementan cuando éstas se quedan pequefias 0 poco

practicas para el manejo y almacenamiento de grandes cantidades de informacion.

40

Bibliografia

Bases de datos NoSQL. (s.f.). Recuperado 10 de septiembre de 2018 de
https://www.acens.com/wp-content/images/2014/02/bbdd-nosql-wp-acens.pdf

BSON. (s.f.). En Wikipedia. Recuperado el 10 de septiembre de 2018 de
https://es.wikipedia.org/wiki/BSON

Camacho, E. (s.f.). NoSQL la evolucion de las bases de datos. Recuperado 10 de
septiembre de 2018 de https://sg.com.mx/revista/28/nosql-evolucion-bases-datos
JSON Fnctions and Operators. (s.f.). Recuperado el 10 de septiembre de 2018 de

https://www.postgresql.org/docs/current/functions-json.htmi

Caracteristicas de MongoDB. (s.f.). Recuperado el 10 de septiembre de 2018 de
http://www.manualweb.net/mongodb/que-es-mongodb/

Del Alba, L. (20 de marzo de 2017). Operaciones més rapidas con el tipo de datos
JSONB en PostgreSQL. Recuperado 10 de septiembre de 2018 de
https://www.compose.com/articles/faster-operations-with-the-jsonb-data-type-in-

postgresql/

Fotache M & Cogean D. (2013). NoSQL and SQL Databases for Mobile Applications.
Case Study: MongoDB versus PostgreSQL. Informatica Economica, 17(2), 41-58. doi:
10.12948/issn14531305/17.2.2013.04

Graterol, Y. (s.f.). Mongo DB en Espafiol. Recuperado el 10 de septiembre de 2018 de
https://tutorialesenpdf.com/mongodb/

Hanlon et al. (2015). A Case Study for NoSQL Applications and Performance Benefits:
CouchDB vs. Postgres. Figshare, 1-6.

41

Introduction to MongoDB. (s.f.). Recuperado 10 de septiembre de 2018 de https:
https://docs.mongodb.com/manual/introduction/

Kaur K & Rani R. (2013). Modeling and Querying Data in NoSQL Databases.
International Conference on Big Data, pp. 1-7. IEEE, 2013.

Kumar, V. (17 de julio de 2014). Pg_nosql_benchmark. Recuperado 18 de noviembre de
2018 de https://github.com/EnterpriseDB/pg_nosql_benchmark

Modelado One-to-Many. (s.f.). Recuperado el 10 de septiembre de 2018 de

http://www.manualweb.net/mongodb/modelado-one-to-many-mongodb/

Modelado One-to-One. (s.f.). Recuperado el 10 de septiembre de 2018 de
http://www.manualweb.net/mongodb/modelado-one-to-one-mongodb/

Moreno, G. (31 de enero de 2018). Medium. [Blog]. Recuperado de
https://medium.com/@Gildder/teorema-cap-e99d66fde6a0

NoSQL. (s.f). En Wikipedia. Recuperado el 10 de septiembre de 2018 de
https://es.wikipedia.org/wiki/NoSQL

PostgreSQL. (s.f.). En Wikipedia. Recuperado el 10 de septiembre de 2018 de
https://es.wikipedia.org/wiki/PostgreSQL

PostgreSQL. (7 de febrero de 2019). Recuperado el 29 de marzo de2019 de
https://hostingpedia.net/postgresql.html

Query and Projection Operators. (s.f.). Recuperado 10 de septiembre de 2018 de

https://docs.mongodb.com/manual/reference/operator/query/

42

Sim S., Easterbrook S & Holt R. (2003). Using Benchmarking to Advance Research: A
Challenge to Software Engineering. In Proceedings of the 25th International

Conference on Software Engineering, pp. 74-83. IEEE, 2003.

Suérez, J. (18 de noviembre de 2015). Pandorafms. [Blog]. Recuperado de
https://blog.pandorafms.org/es/nosql-vs-sql-diferencias-y-cuando-elegir-cada-una

