L

e b

—
-
i:)%’)

il
o |

T O

Desarrollo de una Herramienta Libre para la Simulacion

Rigurosa de Columnas de Destilacion en Estado

Estacionario

UNIVERSIDAD
DE LOS ANDES

Gustavo A. Ledn Diaz
Facultad de Ingenieria, Postgrado de Ingenieria Quimica
Universidad de Los Andes

Trabajo presentado como requisito parcial para obtener el grado de

Magister Scientiae

Junio 2014

Resumen

Desde el punto de vista de la ingenieria quimica, se puede decir que La Simulacién es una técni-
ca para evaluar en forma rapida un proceso quimico con base en una representacion del mismo
mediante modelos matematicos para tener un mejor conocimiento de su comportamiento. La
solucién de estos modelos se lleva a cabo por medio de programas de computadora denomina-
dos simuladores de procesos que facilitan la evaluacién, control y optimizacion, especialmente
en el caso de procesos complejos tal como los que se encuentran en la industria petrolera.
No obstante, los simuladores de proceso utilizados actualmente se adquieren a través de una
autorizacién formal con caracter contractual denominada licencia, teniendo solo el derecho a
ejecutar el simulador bajo ciertas condiciones, comtnmente fijadas por el proveedor. Este tipo
de licencias implican por lo general restricciones ya sea para su uso, estudio, modificacién y/o
distribucion, por lo que el desarrollo del simulador depende totalmente de la empresa propieta-
ria. Ante esta situacién, se identificé DWSIM, un software bajo Licencia Publica General version
3 (GPL v3, por sus siglas en inglés) para la simulacién de procesos quimicos, que cuenta con
una estructura tecnologica y funcional semejante a los simuladores comerciales existentes. Por
ser un programa con licencia libre, a diferencia de los programas propietario, respeta la liber-
tad de los usuarios sobre el simulador y, por tanto, una vez obtenido puede ser usado, copiado,
estudiado, modificado y redistribuido libremente. Ademas DWSIM posee una arquitectura fle-
xible que permite incorporar componentes de terceros utilizando los estdndares abiertos para
simulacién de procesos quimicos CAPE-OPEN. Con el soporte de la libertad de modificacién
de cédigo que brinda la licencia de DWSIM y su compatibilidad con los estandares abiertos
CAPE-OPEN. En el presente estudio se logrd su adaptacion para el modelado de columnas de
destilacién en estado estacionario. Para su validacion se utilizaron tanto datos experimentales
disponibles en la literatura como datos operacionales de unidades de destilacién de la industria
petrolera nacional. En ambos casos los resultados obtenidos se mostraron en concordancia con

los datos de validacién obteniéndose porcentajes de desviacion por debajo del 5 %.

Palabras Clave: Simulacién de procesos, Destilacién, CAPE-OPEN , Software Li-
bre, DWSIM

A mi esposa Claudina, quien es impulso y el pilar principal de mi vida y
carrera. Amiga, consejera, compafiera, guerrera inseparable. Fuente de
sabiduria, calma y consejo en todo momento. quien a pesar de las
distancias momentdneas siempre me ha brindado su apoyo constante y
amor incondicional.

A mi hermana Ysabel , por ser ejemplo de lucha, voluntad y éxito le hago el
honor de este logro.

A mi sobrino Salvador, que Dios lo tenga en su gloria, angelito que

encendié la vida de alegria.

Agradecimientos

A mis padres Ligia y Felipe, las personas que me dieron la oportunidad de vivir
y que con su gran sabiduria y amor me han llevado a ser lo que soy.

A mi Amada Esposa Claudina, por su amor, paciencia y motivacién a o largo de
estos afios de vida que hemos compartido.

A la Ilustre Universidad de Los Andes, por brindarme la oportunidad de realizar
mis estudios de postgrado, para llevar a cabo el presente trabajo especial de
grado.

A Daniel Wagner, por su incondicional ayuda y brindarme la oportunidad de
formar parte del gran proyecto de DWSIM.

A César Pernalete, que con su gran apoyo, experiencia y consejos, colaboré de
manera importante a la elaboracion del presente trabajo especial de grado,

A mi primo Javier Rincén, por siempre creer siempre en mi y su excelente apoyo
en el camino de ser un mejor programador.

Al personal de las Gerencias de RIRF y RIVC de Intevep Norte 3 Piso 4, por
hacerme sentir como uno mas del equipo.

A La Profesora Yezabel Rivera, por su orientacion, su apoyo incondicional y
consideracion.

A Mis Compafieros de Postgrado Yanira, Aram, Glenda por su gran apoyo y
ayuda con quienes comparti una vida post-universitaria llenas de excelentes y
gratas experiencias.

A Marbeth le agradezco enormemente su maravillosa y excelente atencidn, ca-
lidez humana y comprensién desde el inicio de mis estudios de postgrado.

A Luis, Anggy, Deivis y Jorge por ser parte significativa en mi estadia en Los
Téques, y por haber hecho el papel de familia, gracias por su apoyo y amistad.

Indice General

Indice General

Indice de Figuras

Indice de Tablas

1.

2.

Introduccion

1.1. La Simulacion en la Ingenierfa Quimica.

1.2. El Simulador de Procesos i e
1.2.1. ResefaHistérica

1.2.3. Arquitectura general de un simulador de procesos y CAPE-OPEN
1.3. Simulacidon del Proceso de Destilacion oL ool
1.4. Objetivosy Alcancedeestatesis.
1.5. EstructuradelaTesis e

Modelado y Simulacién del Proceso de Destilacién

2.1. Descripcién del Modelo de Columna
2.1.1. Modelo de Etapa de Equilibrio
2.1.2. Ecuaciones MESH
2.1.3. GradosdelLibertad

2.2. Métodos Rigurosos de Columnas de Destilacion
2.2.1. Clasificacién de Los Métodos Rigurosos.

2.3. Método INSIDE-OuT de Russell (1983)
2.3.1. Ecuaciones MESH para el método Inside-Out.
2.3.2. Modelos aproximados de propiedades termodindmicas
2.3.3. Algoritmo Inside-Out e

v

v

VI

VIII

(o R N N S

11
14
16
17

3. Arquitectura del Simulador de Procesos DWSIM 49

3.1. Vista Arquitectonica General 50
3.2. Arquitectura del Ejecutivo del Simulador 0. 52
3.2.1. Diagrama de Clases del Ejecutivo del Simulador 52

3.2.2. Diagrama de Objetos de Columna de Destilacién 55

3.3. Breve Descripcién del Cédigo Fuentede DWSIM 58

4. Casos de Estudio 62
4.1. Casosde Estudiode Literatura. 62
4.2. Casos de Estudio Operacionales 69

5. Conclusiones y Recomendaciones 78
Referencias Bibliograficas 80
A. Métodos Numéricos 85
A.1. Método de Matriz Tridiagonal 85
A.2. Método de Newton-Raphson 88

B. Diagramas de Actividades del Método Inside-Out Russell (1983) 91
B.1. Diagramas de Actividades Capa-A 91
B.2. Diagramas de Actividades Capa-B0 s oL o o L 93
B.3. Diagramas de Actividades Capa-C 97
B.4. Diagramas de ActividadesCapa-D 105
B.5. Diagramas de Actividades Capa-E 109

C. Diagrama de Clases de DWSIM 3 111
D. Tablas de Valores para Graficas de Paridad de Simulaciones 112
D.1. Casode Literatura 6 e e e 113
D.2. Casos Operacionales i i v it 114

E. Archivos de Cddigo Fuente Modificados de DWSIM 116
E.1. Archivo Script parcial RigorousColumn.vb 116
E.2. Archivo Script parcial RigorousColumnSolver.vb 125

indice de Figuras

1.1.

1.2.
1.3.
1.4.

2.1.
2.2.
2.3.
2.4,
2.5.
2.6.

2.7.
2.8.

3.1.
3.2.
3.3.
3.4.

3.5.

4.1.
4.2.
4.3.
4.4.

El nuevo paradigma de la Ingenieria de Procesos: La simulacién como acti-

vidad principal en investigacion y desarrollo, disefio y operacién 3
Esquema general del modelo de unidad de operacién 8
Enfoque conceptual CAPE-OPEN 13
Figura esquematica del proceso de destilacién 15
Diagrama conceptual de una etapa de equilibrio.(Wilson et al., 2000) 20
Modelo generalizado para columna multiples etapas (Seader et al.,, 2011) . 21
Pasos involucrados en un método riguroso (Kister, 1992). 26
Algoritmo de Método BP por Wang-Henke (Seader et al., 2011) 29
Algoritmo del método SR de Burningham & Otto (Seader et al., 2011) . . . 31
Incorporacién de correlaciones termodindmicas en bucles interactivos (Seader

etal, 2011) . . . L e e e e 36
Seleccion de variables de iteracidon para distintas configuraciones 43
Diagrama de flujo general del algoritmo INSIDE-OUT de RUSSELL (1983) . . 47
Arquitectura Generalde DWSIM, 51
Diagrama de Clases Simplificadode DWSIM 54
Clase DistillationColumn v v v v v vt et e e e 56

Instantdnea fotogréfica del explorador de solucién para DWSIM 3 en Sharp-

Develop 4 e e 59
Localizacién de archivos Scripts RigorousColumn.vb y RigorousColumnSolver. vb

dentro del proyecto DWSIM del cédigo fuente 60
Comparacién Temperaturas para Casos de Literatura 64
Comparacién Flujos de Calor para Casos de Literatura 64
Numero de Iteraciones de Casos de Literatura 66

Diagramas de paridad de las fracciones molares de productos del caso lite-
ratura 6 e e e e 68

VI

4.5.

4.6.
4.7.
4.8.

Instantanea fotografica de ventana de configuracion del paquete termodina-

mico CAPE-OPEN TEAen DWSIM 70
Diagramas de Paridad para Caso Operacional 1 Escenario1 72
Diagramas de Paridad para Caso Operacional 1 Escenario2 73
Diagramas de Paridad para Caso Operacional 2 76

VII

Indice de Tablas

1.1.

1.2.
1.3.

1.4.

2.1.
2.2.

3.1.
3.2.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

D.1.
D.2.
D.3.
D.4.

Ventajas y desventajas de los simuladores de procesos globales u orientados
AECUACIONES .« . v v v v v e i e e e e e e e e e e e 6
Ventajas y desventajas de los simuladores de procesos secuenciales modulares 8
Ventajas y desventajas de los simuladores de procesos quimicos bajo licencia

PrIVAtIVA o ot o e 10
Ventajas y desventajas de los simuladores de procesos quimicos bajo licencia

libre e 11
Clasificacion de los Métodos Rigurosos de Resolucién (King, 1980). 28
Funciones Alternaspara Hy y Hy o . o o o o oo Lo 39
Funciones de las clases que interacttian con DistillationColumn 57
Métodos miembro de la clase RUSSELLMETHOD o oot oot 58
Caracteristicas de Casos de Estudio de Literatura 63
Perfiles de flujos de componentes para productos de topey fondo 65
Caracteristicas de Caso de Estudio Operacional 1 71
Porcentajes de desviacion de variables para Caso Operacional 1 74
Caracteristicas de Caso de Estudio Operacional 2 75
Porcentajes de desviacién de variables para Caso Operacional 2 77
Valores de fracciones molares para caso de literatura6 113
Valores de fracciones molares para caso operacional 1 escenario1 114
Valores de fracciones molares para caso operacional 1 escenario 1 115

Valores de fracciones masicas para caso operacional 2. 115

VIII

Capitulo 1

Introduccion

Los procesos quimicos en la industria petrolera, como tecnologias destinadas al procesa-
miento del petréleo y sus derivados, poseen un grado de complejidad alto en comparacion
con los procesos de otras industrias quimicas (Luque & Vega, 2005). Los procesos en la
industria petrolera se han disefiado de acuerdo a las caracteristicas de los crudos dispo-
nibles en el mercado y las especificaciones de calidad de sus productos. En cuanto a las
propiedades de los crudos, es bien conocido el decrecimiento de la disponibilidad mundial
de petréleo convencional, trayendo como consecuencia la necesidad de considerar crudos
con mayor viscosidad, densidad, heterodtomos y compuestos de alto peso molecular. Por
esta razon se hace indispensable la utilizaciéon de nuevos procesos de tratamiento y trans-
formacién para satisfacer la demanda y cumplir con los estdndares de calidad de producto
(PDVSA, 2005; MathPro, 2011).

Debido a los nuevos desafios que se presentan con este tipo de crudo, especialmen-
te en el depdsito, transporte y procesamiento, a causa de sus propiedades fisicoquimicas
(Speight, 2008), la disponibilidad de herramientas que faciliten el disefio, evaluacién y op-
timizacion de estos procesos es imperativa. Una de estas herramientas son los simuladores
de procesos quimicos, los cuales ahorran considerablemente el tiempo en célculos prolon-
gados y repetitivos, considerando asi a la simulacién de procesos una actividad fundamen-
tal en la ingenieria de procesos quimicos (Dimian, 2003). Un caso de estudio concreto y
tipico en la industria petrolera, es el modelado y simulacién de columnas de destilacidn,
teniendo en cuenta a la destilacién como una de las operaciones mds importantes en la
industria petrolera, tanto en el acondicionamiento previo de los crudos como en la separa-
cién de los productos obtenidos en refinerias.

Los simuladores de uso general en ingenieria de procesos, cuentan con las funcionali-
dades y caracteristicas necesarias para el andlisis de columnas de destilacién mediante la

configuracion de diagramas de flujo de proceso y las operaciones unitarias que las con-
* forman (Finlayson, 2006). No obstante, los simuladores utilizados actualmente en la in-

dustria petrolera nacional se adquieren a través de una autorizacién formal con caracter
contractual denominada licencia mediante un pago recurrente, teniendo solo el derecho
a ejecutar el software bajo ciertas condiciones, comunmente fijadas por el proveedor. Este
tipo de licencias establecen por lo general restricciones de uso, estudio, modificacién o de
distribucién (Abella et al., 2003).

En este sentido al presentarse dificultades técnicas en relacion con el modelado y simu-
lacién de columnas de destilacién en funcién de nuevos requerimientos a nivel nacional
e internacional, y dada las restricciones mencionadas, se incurre en la dependencia hacia
fabricante del software a responder por una solucién, lo que constituye un obstaculo a la
industria para profundizar en los aspectos técnicos de la herramienta, limitando la incor-
poracion de funcionalidades o mejoras orientadas a la representacion mds exacta de esta
operacidn unitaria.

En este trabajo se propone desarrollar una herramienta para la simulacién rigurosa de
columnas de destilacion en estado estacionario a partir de un software para la simulacién
de procesos quimicos denominado DWSIM, aprovechando principalmente, su caracteristi-
ca de cédigo abierto bajo la Licencia Publica General de GNU y en segundo lugar, su compa-
tibilidad con los estandares de interfaz CAPE-OPEN, un conjunto disponible de estandares
que permite la comunicacion entre componentes de software de ingenieria quimica.

1.1. La Simulacion en la Ingenieria Quimica

Partiendo del concepto de simulacién desde el punto de vista de la ingenieria quimica,
los sistemas considerados son los procesos fisicoquimicos, en este sentido se define la si-
mulacion como una técnica para evaluar en forma rapida un proceso quimico con base en
una representacién del mismo mediante modelos matemadticos para tener un mejor cono-
cimiento de su comportamiento. La solucién de estos modelos se lleva a cabo por medio de
programas de computadora debido al nimero de variables involucradas y la no linealidad
de estos modelos, las cuales se reflejan en las ecuaciones de balance de materia y energia
(Martinez, 2000; Braunschweig & Gani, 2002).

En los dltimos afios debido a los avances en la tecnologia de la informacion, la simu-
lacién de procesos ha tenido un impacto significativo en la ingenieria quimica, tanto que
ésta ha llegado a ser una técnica de apoyo imprescindible para la solucion adecuada de los
problemas en la ingenieria de procesos. De esta forma se creé un nuevo paradigma donde
la simulacién esta involucrada en todas las etapas del ciclo de vida de un proceso, desde
los experimentos de laboratorio preliminares, durante el escalado a diferentes niveles, has-
ta finalmente el disefio del proceso y operacion de una planta. La Figura 1.1 ilustra este

nuevo enfoque colocando a la simulacién en el centro de las tres actividades principales de
ingenieria de procesos.

Figura 1.1: El nuevo paradigma de la Ingenieria de Procesos: La simulacion como actividad
principal en investigacion y desarrollo, diseno y operacién
Fuente: Dimian (2003)

En el area de la investigacion y desarrollo, en particular en el campo de la termodina-
mica. Los modelos incorporados en paquetes de simulacién sacan partido de la investiga-
cién experimental. Por ejemplo, por un lado se pueden utilizar experimentos de Equilibrio
Vapor-Liquido (EVL) en el laboratorio que proveen datos para la obtencién de valores de
los parametros en formas matematicas para la construccién de un modelo termodinamico.
Asi, los modelos resultantes se pueden usar en diversas aplicaciones, incluyendo cdalculos
de equilibrios quimicos de reacciéon, que son importantes para el disefio de reactor qui-
mico y cdlculos de equilibrio de fases, que se emplean en la destilacién, extracciéon con
disolventes y la cristalizacion (O’Connell & Haile, 2005). Por otra parte, las mediciones
EVL industriales se pueden usar para calibrar los modelos termodindmicos incorporados
en un simulador cuando la informacién experimental es limitada o no se encuentre dispo-
nible(Dimian, 2003).

Dentro del marco de disefio, se presentan los retos de disefiar los procesos con mayor
eficiencia, flexibilidad y capacidad de respuesta a la dindmica del mercado. En este sentido,

la simulacién de procesos trae contribuciones significativas en el el desarrollo de nuevas
tecnologias sostenibles con el objetivo de minimizar el uso de energia, materias primas, asi
como también la minimizacién de residuos y contaminantes y la mejora continua de las tec-
nologias existentes, por renovacién y eliminacién de cuellos de botella a nivel operacional
(Martinez, 2000).

En el ambito operacional, la llegada de la optimizacién en tiempo real y la fabricacién
integrada computarizada en la década de los noventa abrié grandes oportunidades para la
aplicacién de la simulacién directamente en el proceso de fabricacién. Ademas del control
de proceso basado en modelos, podemos mencionar el mantenimiento preventivo de equi-
po de vigilancia sistemadtica del rendimiento del equipo. La integracién de la fabricacion
con la cadena de suministro solo se puede lograr mediante la creaciéon de un sistema in-
formatico complejo, en el que la simulacién juega un papel central (Braunschweig & Gani,
2002; Pernalete, 2013).

Aunado a esto es muy grande la variedad de aplicaciones de los simuladores de pro-
cesos, estos anteriormente estaban destinados a la ingenieria de procesos, ahora son ma-
nejados en ramas de ingenieria ambiental, seguridad industrial y distintos procesos de
manufactura de productos cotidianos. Ademds, se emplean tanto para el estudio de la fac-
tibilidad técnica y econdmica en el desarrollo de un proyecto, asi como también en la toma
critica de decisiones cuando se prueban diferentes opciones de procesos y condiciones de
operacién (Dimian, 2003; Martinez, 2000).

1.2. El Simulador de Procesos

La simulacién de procesos quimicos como técnica requiere de un programa de software
denominado simulador de procesos. El simulador se puede definir como una aplicacién
de computador basadas en diagramas de flujo de proceso, vinculadas al célculo de sus
balances de materia y energia, partiendo de la descripcion sistemadtica de sus corrientes
de materia, energia y operaciones unitarias, con el objetivo de disefiar una nueva planta o
evaluar una ya existente para mejorar su rendimiento (Martinez, 2000).

1.2.1. Resena Historica

Segun Zeigler et al. (2000) el comienzo de los simuladores se encuentra en las univer-
sidades antes de los afios 60. Sin embargo, los simuladores de procesos quimicos surgieron
a mediados de los afios 60 con la comercializacién de un software genérico para simular
columnas de destilacién en estado estacionario por parte de la compaiia estadounidense
Simulation Science el cual usaron para desarrollar PROCESS. Afios mds tarde ChemShare

4

presenté DESIGN 2, un programa para simular procesos de gas y petréleo. En ese momento
la expansion de la industria de refinacién y petroquimica motivé la llegada de los paquetes
de computacion (Dimian, 2003).

La crisis mundial de petrdleo en 1973 estimuld el interés en la simulacién de procesos
con materias primas alternativas, como el carbén y la biomasa. El advenimiento de los
sistemas de computacion de alta velocidad impulsaron el negocio de pequefias empresas
especializadas en el modelado y la simulacién de procesos. En lineas generales, la compu-
tacién cientifica evolucion6 a partir de los programas individuales hacia grandes paquetes
disefiados como productos industriales (Luque & Vega, 2005).

Para los afios 80 el cdlculo cientifico llegd a su edad de oro, ya que se desarrollaron
métodos que forman parte de los algoritmos utilizados en la actualidad. El lenguaje de
programacién FORTRAN se hizo muy popular entre los cientificos y los ingenieros. Las
simulaciones se ejecutaban a través de un terminal remoto en sistemas rapidos pero cos-
toso. Mas tarde, la entrada de datos se hizo posible mediante la ediciéon de un archivo en
una pantalla electronica, en el cual se especificaban las instrucciones para la ejecucién del
trabajo denominado “Keyword File” (Babu, 2004).

La llegada de las estaciones de trabajo (1985), la adopcién de la programacién orien-
tada a objetos y la disponibilidad de un nuevo sistema operativo multitarea, UNIX, dio
origen a la revolucién en la computacién cientifica. Luego el dominio de la computadora
personal (PC) a principios de 1990 y la relativa estabilizacién de los sistemas operativos,
LINUX y Windows , permitieron el desarrollo de la nueva generacion de software de simula-
cién basada en interfaz grafica de usuario. De esta manera se tendria disponible el poder de
los antiguos superordenadores bajo un ambiente mdas manejable para los usuarios (Dimian,
2003). Los nuevos conceptos de ingenieria informatica condujeron a interfaces amigables e
incluso a algoritmos mas potentes. Finalmente, el desarrollo de los ordenadores personales
contribuy6 a la rapida extensién de la simulacion.

Asi, las principales oficinas de ingenieria como algunas empresas y grandes compafiias
de refinacién y petroquimica desarrollaron sus propios simuladores. Adoptando la arquitec-
tura modular secuencial, tales como : Hysys, Chemcad, Aspen Plus y PRO/II . Sin embargo,
algunos se basaron en el enfoque orientado a las ecuaciones, tal como SPEEDUP del Impe-
rial College de Londres (Reino Unido) y TISFLO DSM en los Paises Bajos.

No obstante, hoy en dia la simulacién de procesos quimicos se concentra en muy pocos
sistemas. Dar solucién a esto implica una gran cooperacion entre las empresas de software
especializadas y la comunidad de usuarios aprovechando la tecnologia de Internet (Dimian,
2003).

1.2.2. Clasificacion de los Simuladores

Se han propuesto diferentes enfoques para clasificar los simuladores de proceso como el
propuesto por Martinez (2000) y Torres & Castro (2002). Sin embargo, dichos enfoques en
la literatura incluyen solamente a los simuladores privativos. A continuacion se presenta

una clasificacién generalizada la cual incluye a los simuladores de procesos disponibles
actualmente.

s Segun su filosofia de computo

Los simuladores de procesos actuales se pueden clasificar segun la estructura bajo la cual
se plantea el modelo matemadtico que representa el proceso, dentro de esta clasificacién se
incluyen los siguientes tipos:

= Simuladores globales u orientados a ecuaciones (OE).

Bajo este enfoque, se plantea el modelo matemadtico del proceso construyendo un
gran sistema de ecuaciones diferenciales, por lo general altamente no lineales. De esta
forma el problema se traduce en resolver este gran sistema de ecuaciones algebraicas,
siendo el mas adecuado para la simulacién dindmica (Luque & Vega, 2005). En la
Tabla 1.1 se muestran las ventajas y desventajas de estos simuladores.

Tabla 1.1: Ventajas y desventajas de los simuladores de procesos globales u orientados a
ecuaciones

[

Ventajas

Desventajas

Entorno flexible para las especificaciones,
que pueden ser entradas, salidas o varia-
bles internas de la unidad.

Es posible incorporar facilmente las ex-
presiones de restriccién para definir pro-
blemas de optimizacién en forma directa,
ya que basta solo con plantear las restric-
ciones y la funcién de optimizacién.

Desaparece la distincién entre variables
de proceso y pardmetros operativos, por
lo tanto se simplifican los problemas de
disefio.

Mayor esfuerzo de programacién por lo
que resulta més dificil de desarrollar.

Dificultades en el manejo de grandes sis-
temas de ecuaciones, a mayor compleji-
dad, menor confiabilidad en los resuita-
dos y dificultad de diagndstico por parte
del usuario en caso de error que produzca
la falta de convergencia.

Tanto los modelos matemadticos como las
rutinas para calculo de propiedades ter-
modindmicas deben ser ingresados por el
usuario, resultando esto una tarea com-
pleja y que debe ser llevada a cabo con
sumo cuidado, de manera tal de ingresar
en forma correcta todos los modelos ma-
tematicos.

s Simuladores Secuenciales Modulares (SM).

Los simuladores secuenciales modulares se basan en unidades de simulacién que
siguen consecutivamente como su nombre lo indica la misma secuencia que las ope-
raciones unitarias reales, es decir, cada equipo: bomba, vdlvula, intercambiadores,
columna de destilacion, reactores entre otros; son representados a través de modelos
especificos, coincidiendo ademas el sentido de la informacién con el “flujo fisico” en
la planta o proceso real, llevando a cabo una secuencia de calculo unidad por unidad.
Se puede decir que el elemento basico en un simulador modular es el modelo de la
operacién unitaria (Luque & Vega, 2005; Martinez, 2000; Scenna et al., 1999).

Los simuladores SM, involucran el dibujo del diagrama de flujo del proceso, el cual
consiste en definir las corrientes de entrada y salida de materia y energia, seleccionar
los modelos de operaciones unitarias de la biblioteca de la aplicacién, y conectar
dichas unidades junto a corrientes (materia, energia o informacion) y de esta manera
producir una representacion grafica del problema de la simulacién (Braunschweig &
Gani, 2002).

Asociado con cada modelo de operacidn unitaria o unidad de cémputo, existe un
conjunto de pardmetros requeridos, especificos de cada equipo que representa; por
ejemplo, en un mezclador, seria la proporcién del flujo total en cada corriente de
salida en los intercambiadores de calor, seran los coeficientes de transferencia de calor
y en un reactor catalitico sera la altura del lecho catalitico, entre otros pardmetros que
se deben colocar en orden correcto.

En resumen, una unidad de computo es en general cualquier conjunto de modelos
matematicos para calcular la informacién de salida a partir de la informacion de ali-
mentacioén o de entrada suministrada (Figura 1.2); es decir, una unidad de coémputo
es un modificador de informacion que recibe informacién de las corrientes de entra-
da, las modifica y las transmite a las corrientes de salida (Torres & Castro, 2002). Este
enfoque se utiliza en la mayoria de los programas de simulacién en estado estaciona-
rio. En la Tabla 1.2 se muestran las ventajas y desventajas de estos simuladores.

Especificaciones Geometria

Parametros

Corrientes
de Entrada \
Materia ; Materia
Calor (Q) Calor (Q)
Trabajo (W) Trabajo (W)
Corrientes

de Salida

Dimensionamiento

™
y

Figura 1.2: Esquema general del modelo de unidad de operacién
Fuente: Dimian (2003)

Tabla 1.2: Ventajas y desventajas de los simuladores de procesos secuenciales modulares

] Ventajas | Desventajas |

B Los modelos de operaciones unitarias es-
tén a disposicién del usuario bajo una bi-
blioteca y la informacién ingresada por
el usuario resulta fécil de chequear e in-
terpretar.

8 Dificultad para el tratamiento de secuen-
cias de cdlculo mds complejas, como los
bucles anidados o diagramas de flujo si-
multaneo, en otras palabras, procesos

. i con muchas corrientes de recirculacién.
8 Posee un esquema simple de coémputo, es

decir, se obtienen datos de salidas a par- -

; Los modelos de operaciones unitarias se
tir de datos de entrada.

deben codificar con sus rutinas de solu-
cién. Se requiere de un esfuerzo consi-
derable para afiadir o modificar los mo-
delos, es necesario programar los célcu-
los adicionales segtn las especificaciones
que se requieran.

® Simuladores hibridos o modular secuencial-simultédneo.

La estrategia de solucién es una combinacion de los enfoques secuencial-modular
y orientado a ecuaciones. Los calculos se realizan por niveles o capas, es decir, los
modelos rigurosos se utilizan en un nivel de unidades, que se resuelven de forma
secuencial, mientras que los modelos lineales se utilizan a nivel de diagrama de flujo,
que se resuelve de forma global. Los modelos lineales se actualizan sobre la base de
los resultados obtenidos con los modelos rigurosos.

El enfoque Secuencial-Modular mantiene una posicién dominante en la simulacién en es-
tado estacionario y el enfoque orientado a ecuaciones ha demostrado su potencial en la
simulacién dinamica y optimizacion en tiempo real. La solucién para las futuras generacio-
nes de simuladores parece ser una fusion de estas estrategias.

» Segun su licenciamiento

Una licencia de software es un contrato entre el licenciante (autor/titular de los derechos
de explotacién/distribuidor) y el licenciatario del programa informaético (usuario consu-
midor /usuario profesional o empresa), para utilizar el software cumpliendo una serie de
términos y condiciones establecidas dentro de sus clausulas (Abella et al., 2003).

Las licencias de software pueden establecer entre otras cosas, la cesiéon de determinados
derechos del propietario al usuario final sobre una o varias copias del programa informati-
co, los limites en la responsabilidad por fallos, el plazo de cesién de los derechos, el &mbito
geografico de validez del contrato e incluso pueden establecer determinados compromisos
del usuario final hacia el propietario, tales como la no cesién del programa a terceros o la
no re-instalacién del programa en equipos distintos al que se instalé originalmente.

s Simuladores de Proceso bajo Licencia Privativa

Dentro de esta categoria se encuentran los denominados simuladores comerciales y/o
propietarios. Existe una gran variedad de simuladores de procesos bajo este tipo de li-
cencia, los cuales presentan poderosos motores de calculo con enormes bases de datos
y un fuerte respaldo de bibliotecas para el cédlculo riguroso y modelos termodinami-
cos. Las empresas que desarrollan este tipo de software son por lo general grandes
y dedican muchos recursos, sobretodo econémicos, en su desarrollo e investigacion.
Debido a este esfuerzo, y bajo la justificacién de maximizar ganancias monetarias las
empresas toman la decision de restringir ciertos derechos al licenciatario entre ellos
el mas resaltante, el acceso al cddigo fuente con la razon de proteger sus intereses
(Culebro et al., 2006).

Tabla 1.3: Ventajas y desventajas de los simuladores de procesos quimicos bajo licencia
privativa
) Ventajas Desventajas j
® Las compaiflias productoras de un simula-
dor privativo por lo general poseen depar- ® Cursos de aprendizaje costosos. Es dificil apren-
tamentos de control de calidad que llevan der a utilizar eficientemente el simulador sin ha-
a cabo muchas pruebas sobre el software ber asistido a costosos cursos de capacitacion.
que producen. ® por lo general, no permiten que sea modificado,
® Existen simuladores privativos disefiados desensamblado, copiado o distribuido de formas
para aplicaciones de procesos quimicos no especificadas en la propia licencia. En muchos
muy especificas. Tales como procesos de casos resulta arriesgada la utilizacién de un com-
destilacién reactiva. ponente cuyo funcionamiento se desconoce y cu-
o . -, . yos resultados son impredecibles, esto motiva a
Existen compafiias que destinan una parte que en algunas circunstancias se desconfie del
importante de los recursos a la investiga- software. Ademas de que es imposible encontrar
cion sobre la usabilidad del simulador que la causa de un resultado erréneo, més alla de los
producen. Por lo que usualmente los si- mensajes de advertencia de que pude desplegar el
muladores poseen interfaces gréficas ela- simulador.
boradas que permite al usuario hacer una
simulacién de procesos de manera muy ® El costo de las licencias generalmente es muy ele-
facil y répida. vado y puede oscilar entre los (5000 a 15000 US-
D/afno). El costo usualmente se calcula en funcién
de la cantidad de computadoras en las que e] si-
mulador seré ejecutado, la envergadura de dichas
maquinas (cantidad de procesadores) v la canti-
dad de usuarios que accederdn al mismo.
® Esilegal y/o costosa la adaptacién de un modulo
nativo del simulador a necesidades particulares.
Se requiere permiso expreso del titular del soft-
ware. En caso de que el permiso se conceda, es
necesario pagar una elevada suma de dinero.
® Elsoporte de la aplicacion depende totalmente de
la empresa que distribuye y desarrolla el simula-
dor o de representantes certificados la empresa.
® El usuario se vuelve dependiente de una tecnolo-
gia que no comprende de fondo, ya que estd ha-
bilitado para ejecutar e} simulador, pero no para
inspeccionarlo ni modificarlo, y entonces no pue-
de aprender de él.

s Simuladores bajo Licencia Libre

Denomindndose también simuladores libres o de cddigo abierto. Estan licenciados
de tal manera que los usuarios no tengan ningun tipo de restricciones, respetando
la libertad de los usuarios sobre el simulador y, por tanto, una vez obtenido, puede
ser usado, copiado, estudiado, modificado, y redistribuido libremente (Culebro et al.,
2006).

10

Tabla 1.4: Ventajas y desventajas de los simuladores de procesos quimicos bajo licencia
libre

| Ventajas | Desventajas [

Garantizan una independencia con respecto al
proveedor gracias a la disponibilidad del cédigo ¢ Actualmente no existen compafifas tinicas
fuente. Cualquier empresa o profesional, con los que respalden el desarrollo de la simula-
conocimientos adecuados, puede seguir ofrecien- cién de procesos libre, por lo que su desa-
do desarrollo o servicios para la aplicacién. rrollo apenas estd en maduracién.

El usuario est4 habilitado para ejecutar el progra- ® En algunos simuladores la interfaz grafica
ma, inspeccionarlo y modificarlo, lo que permite suele estar menos desarrollada en cuanto
aprender de él, a través de su c6digo fuente. a usabilidad y, por tanto, limita la inter-
accion entre el simulador y los usuarios

El modelo de desarrollo se basa en compartir su finales debido a la baja estabilidad.

codigo fuente. Esto permite el progreso del soft-
ware a través de la cooperacién comunitaria de ® Algunos simuladores de procesos no ofre-
usuarios finales, desarrolladores y empresas que cen garantia explicitas proveniente de los
pueden trabajar en conjunto para obtener un si- desarrolladores.

mulador de calidad. Ademds permite el desarrollo
de nuevos productos sin la necesidad de crear to-
do el proceso desde cero.

El bajo o nulo costo permiten proporcionar a las
pequefias y medianas empresas desarrolladoras
de software el fomento de la libre competencia al
basar el negocio en servicios y no licencias.

El precio de adquisicién de los simuladores suele
ser mucho menor que sus contrapartidas privati-
vas.

El hecho de que el codigo sea publico hace que
pueda ser observado y estudiado por muchos ex-
pertos proporciona mayor seguridad y fiabilidad.
Esto se ha revelado como la forma mas rapida y
eficaz de encontrar errores que afectan la vulne-
rabilidad del simulador, pudiendo detectar fécil-
mente codigos maliciosos o transacciones de in-
formacién no autorizadas.

1.2.3. Arquitectura general de un simulador de procesos y CAPE-OPEN

Los Simuladores difieren ampliamente en la arquitectura e implementacion, pero todos
tienen una funcionalidad comutn impuesta por las tareas de modelado subyacentes que
abordan. Esta funcionalidad se puede resumir en términos de cuatro tipos de componentes
clave conceptuales:

» El ejecutivo de simulacién: Este componente es el nticleo del simulador, ya que con-
trola la puesta en marcha y la ejecucion de una simulacién. Es responsable de instalar
otros componentes, registrando en un repositorio, la gestién de las interacciones con
los usuarios, el acceso y almacenamiento de datos, la presentacién de informes y el
andlisis de los cdlculos de simulacion.

11

» Las operaciones unitarias: Estos componentes representan operaciones de la unidad
de procesamiento fisico (por ejemplo un mezclador o un intercambiador de calor)
y, posiblemente puede realizar funciones especializadas tales como la realizacién de
célculos adicionales para apoyar a la optimizacién de procesos.

= Los paquetes de propiedades fisicas: estos paquetes incluyen tanto propiedades ter-
modinamicas y de transporte de materiales. Estos paquetes brindan al simulador la
capacidad para modelar las propiedades y el comportamiento de los materiales que
se utilizan o crean por el proceso quimico.

= El solucionador numérico: Esto incluye tanto los métodos matematicos especializados
utilizados para evaluar las ecuaciones que describen un funcionamiento de la unidad
de proceso y los métodos utilizados para evaluar el diagrama de flujo global del
proceso.

A pesar de la existencia de potentes simuladores de proceso, los que se utilizan actualmente
son aplicaciones monoliticas cerradas (Barrett et al., 2007). Estos no brindan flexibilidad
cuando se trata integrar nuevos componentes. Otro inconveniente de esta situacion es que
resulta un gran reto combinar mddulos de diferentes proveedores en un solo simulador.
Debido a estas contrariedades, existe una necesidad de la integracién del proceso de mo-
delado sobre una base mdas amplia. Asi, se introduce un nuevo tipo de arquitectura de
simuladores de procesos basada en estdndares abiertos definidos en términos del disefio
conceptual mencionado anteriormente.

La organizacién CAPE-OPEN Laboratories Network (CO-LaN), industria y asociacién aca-
démica ha promovido desde el 2001 el uso de estdndares en la interfaces de software de
simulacién de procesos denominados CAPE-OPEN, donde se definen un conjunto de reglas
e interfaces libres de uso y sin propiedad que permiten crear componentes de software in-
teroperables con distintas aplicaciones para simulacion de procesos, los cuales permiten
una comunicacion estandarizada entre componentes de los simuladores (Pons, 2005).

La ventaja de los estdndares CAPE-OPEN es que estos no solo son aplicables en mds de
un simulador de procesos, sino que se dirige a todos los simuladores de proceso que sean
compatibles dichos estdndares, creando una interoperatividad entre sistemas, evitando in-
compatibilidades. La definicién de estos estdndares se lleva a cabo mediante la colabora-
cion de algunas empresas operadoras principales, proveedores de software, y universidades
a nivel mundial, con el apoyo de la Unién Europea quienes tienen como visidn final la
de transformar el modelado de procesos en una actividad que consista en compartir un
gran numero de componentes de simulacién. En este sentido los simuladores actualmente,

12

pueden diferenciarse bajo el criterio del cumplimiento con estos estdndares, independien-
temente de la licencia a la cual estén sometidos (Dimian, 2003; CO-LaN, 1999).

Este tipo de arquitectura abierta puede ser beneficiosa para muchos simuladores. El
objetivo especifico del proyecto CAPE-OPEN se ha enfocado en herramientas generales
para el modelado de procesos y, en particular, su utilizacién para la simulacién en estado
estacionario y dindmico (CO-LaN, 1999).

La arquitectura de software es un asunto de la informatica. Sin embargo, como todo
sistema complejo, el usuario debe ser consciente de los elementos principales. La Figura
1.3 presenta de forma gréfica el concepto de CAPE-OPEN. En este esquema se muestran las
fronteras entre los diversos componentes que integran un simulador.

3 PME
Entorno de
Modelado
de procesos

—3= PMC
Componente
de Modelado
de proceso

G Modelos
Termodinamicos

5

== x P TR

Figura 1.3: Enfoque conceptual CAPE-OPEN
Fuente: (Pernalete et al., 2012)

Resumiendo, los estdndares CAPE-OPEN se crearon con la finalidad de que los compo-
nentes de modelado de procesos (PMC) sean utilizados en cualquier entorno de modelado
de procesos (PME) que sea compatible con dichos estdndares. Los PMC son bdsicamen-
te piezas de software que estan definidos para una funcién especifica. La mayoria de sus
aplicaciones son para: propiedades fisicas, modulos de funcionamiento de una operaciéon
unitaria, solucionador numérico y herramientas de anélisis del diagramas de flujo de pro-
ceso.

Por otro lado el PME consta de la interfaz gréfica y la funcionalidad necesaria para crear
la red de modelo de procesos a partir de los PMC, quien se encarga de administrar dicha
red basados en los datos de entrada suministrados por el usuario y de orquestar todas las

13

funciones que desempefian cada uno de los PMC (Barrett & Yang, 2005; Pernalete et al.,
2012).

1.3. Simulacion del Proceso de Destilacion

La destilacién es una operacidén unitaria cuyo objetivo principal es el de separar me-
diante vaporizacion y condensacion los diferentes componentes de una mezcla en dos o
mas fracciones, aprovechando la diferencia de los puntos de ebullicién de cada uno de los
componentes que la conforman (Kister, 1992; Martinez de la Cuesta & Rus, 2004). La des-
tilacién involucra el contacto entre las fases liquido y vapor que fluyen en contracorriente.
Cada contacto, denominado etapa, consiste en una mezcla de fases para promover la rapi-
da particién de las especies mediante transferencia de masa, seguida por una separacion
de fases.

El material que ha de ser separado denominado de alimentacidn, se introduce en uno o
mas puntos a lo largo de un equipo cilindrico vertical denominado columna de destilacion
o columna de fraccionamiento, como se muestra en la Figura 1.4. Debido a la diferencia en
las propiedades entre las fases vapor y liquida, el liquido fluye hacia abajo de la columna,
mientras que el vapor fluye hacia arriba, poniéndose en contacto con liquido en cada etapa.
Este patrén de flujo global en una columna de destilacién proporciona el contacto contra-
corriente de vapor y liquido en todas las etapas a través de la columna (Perry & Green,
2008). El liquido que llega a la parte inferior de la columna pasa a través de un rehervi-
dor, donde se calienta para proveer vapor llamado boilup que se envia de nuevo hasta la
columna, y el resto del liquido se retira como producto de fondo (Seader et al., 2011). El
vapor que llega a la parte superior de la columna, donde se enfria y se condensa parcial o
totalmente en el condensador de tope. Parte de este liquido se devuelve a la columna como
reflujo y El resto de este liquido se retira como destilado, o producto de tope.

Los componentes mas ligeros (de menor punto de ebullicién) tienden a concentrarse en
la fase de vapor, mientras que los componentes mds pesados (més alto punto de ebullicion)
tienden a hacer en la fase liquida (King, 1980). El resultado es una fase de vapor que se
enriquece en componentes mds ligeros y una fase liquida que se concentra mas en compo-
nentes pesados a medida que viajan por la columna de destilacién. La separacién general
entre el destilado y los fondos depende principalmente de las volatilidades relativas de los
componentes, el nimero de etapas de contacto y la relacién de la tasa de flujo de la fase
liquida a la velocidad de flujo en fase vapor.

La energia requerida para separar la especie se afade en forma de calor al rehervidor,
donde la temperatura es mayor. También, se elimina el calor desde el condensador, donde

14

la temperatura es mads baja. Con frecuencia, esto da lugar a una gran demanda de energia
y baja eficiencia global termodinamica (Perry & Green, 2008).

Condensador
i
Acumulador
de Reflujo
Reflujo
L/
Alimentacién " 1 Vapor
> 1
=
- ’T\Ll’quido
—
NS % ’W
AT Boil
(_ w/ Iup
-1
- ‘/‘ ’\
N

Rehervidorl

S ——

Figura 1.4: Figura esquemadtica del proceso de destilacion

La destilacién como operacién unitaria es el proceso de separacién mas importante y
comun en la industria de procesos quimicos, pues por su versatilidad es la tecnologia do-
minante en las industrias quimicas. Dicha operacion se emplea en las industrias donde se
requiere destilar grandes cantidades de fluidos. Entre estas se encuentran: las industrias de
procesamiento de petrdleo, produccion petroquimica, procesamiento de gas natural, pro-
cesamiento de alquitrdn de hulla, elaboracion de cerveza, separacion de aire licuado, y la
produccién de hidrocarburos y solventes industrias similares, pero que encuentra su mayor
aplicacion en refinerias de petréleo (Kister, 1992). La destilacion estd implementada en el
95 % de todos los procesos quimicos en el mundo (por ejemplo mds de 40000 columnas en
USA, con una inversiéon de 8000 MM$ y una energia equivalente a 54 Mton/afio de crudo,
es decir el 15 % del consumo industrial de energia en USA) (Luque & Vega, 2005). Lo que
justifica que la destilacién sea una de las operaciones unitarias mds estudiadas en toda la
historia de la industria quimica.

15

Especificamente en la industria del petréleo nacional, la importancia de la destilacion
se debe en parte al hecho de que afecta directamente la calidad de los productos obtenidos
en refineria, las tasas de produccién y la utilidad de los procesos. Por esta razén, la evalua-
cién, control y optimizacion de estas operaciones es fundamental. Sin embargo, presenta
inconvenientes para su analisis, requiriendo de rigurosos calculos, donde los procedimien-
tos de solucion resultan dificiles y tediosos sin la ayuda de un computador. No obstante,
una vez que éstos calculos se programan para un ordenador digital de alta velocidad las
soluciones son obtenidas rapidamente (Torres & Castro, 2002).

La simulacién de unidades de destilacién implica la solucién del modelo que las re-
presenta. En este sentido, involucra la determinacién de perfiles de temperatura, presion,
flujos y composiciones de las corrientes, y las tasas de transferencia de calor en cada etapa
mediante la resolucion de las ecuaciones de balance de materia, energia, y las relaciones
de equilibrio que modelan el comportamiento de la unidad de destilacién. Una caracteris-
tica fundamental del modelo, es que debe ser capaz de representar los diversos tipos de
esquemas que se puedan presentar para el proceso de destilacién. En este sentido, la dispo-
nibilidad de una herramienta es fundamental. Detalles referente al modelado y simulacion
de estas unidades se daran en el Capitulo 2.

1.4. Objetivos y Alcance de esta tesis

Se propuso el desarrollo de una herramienta libre para la simulacién rigurosa de colum-
nas de destilacion en estado estacionario, a partir de un simulador de procesos desarrollado
bajo licencia libre y estdndares abiertos, aprovechando la gran cantidad de funcionalidades
que ya se encuentran disponibles en €l. En este sentido se selecciond DWSIM, un simulador
de procesos quimicos de codigo abierto compatible con los estandares CAPE-OPEN, y que
cuenta con una interfaz grafica de usuario (GUI), con la capacidad de simular los procesos
de equilibrio vapor-liquido y vapor-liquido-liquido en estado estacionario, con los modelos
termodindmicos y operaciones unitarias mas comunes.

Por el hecho de tratarse de un simulador de procesos quimico de cédigo abierto, per-
mitié su modificacién para que sea adaptado en estos casos particulares de la industria
petrolera nacional, gracias al hecho de que se dispone del cédigo fuente y ninguna de las
restricciones conocidas del software privativo. Este simulador ofrece la posibilidad de su
uso extendido en un periodo de tiempo prolongado, al no requerir el pago de licencias y
las consecuencias del bloqueo de su uso tal como sucede con los simuladores privativos. En
este sentido, a través de este trabajo se pudo modificar una herramienta de simulacién y

16

obtener un software lo suficientemente robusto y adecuado a casos particulares de procesos
de destilacion de Petrdleos de Venezuela S.A (PDVSA).

Las investigaciones para el desarrollo de modelos de columnas de destilacion han avan-
zado con la finalidad de reproducir el comportamiento del proceso real con la mayor exac-
titud posible (Eckert & Vanek, 2001; Grossmann et al., 2005; Higler et al., 2004). Este
trabajo se plantea desarrollar las rutinas de calculo para la simulaciéon de unidades de des-
tilacion multicomponente en estado estacionario basado en modelo de relaciones de etapas
de equilibrio conectados a contracorriente, particularmente adecuado para la mayoria de
las columnas de fraccionamiento.

Su codificacién se realizé tomando en cuenta la arquitectura bajo la cual esta desarro-
llada DWSIM, para luego verificar y validar la herramienta a través del andlisis de dos tipos
de casos de estudio :

1. Para el primero se utilizaron ejemplos de literatura y con estos comprobar la veri-
ficacién del algoritmo implementado. En este caso se configuraron dichos ejemplos
ademads bajo otros dos simuladores y se compararon los resultados obtenidos entre
los distintos simuladores, considerando su reproducibilidad.

2. En el segundo se tomaron datos operacionales de unidades destilaciéon con los cua-
les se realizé su modelado y simulacidén y de esta manera realizar la validacion del
modelo implementado.

1.5. Estructura de la Tesis

El capitulo 2, contiene una descripcion de los métodos de solucién de los modelos
matemadticos para columnas de destilacién en estado estacionario, considerando en detalle
el algoritmo INSIDE-OUT de Russell (1983) como elemento esencial en la simulacién de
procesos de destilacion.

El capitulo 3, trata sobre la arquitectura légica del simulador de procesos DWSIM, aca
se realiza una descripcidn general de su estructura interna, de los elementos que lo forman
y de las interrelaciones entre ellos. Para poder llevar esto a cabo, fue necesario utilizar
técnicas de Ingenieria Inversa, lograndose identificar las clases y métodos involucrados en
la simulacién de columnas de destilacién para asi incluir las modificaciones necesarias en
el cédigo fuente del simulador.

Seguidamente se presenta el capitulo 4 donde se discuten los resultados de los casos
de estudio empleados para la verificacién y depuracion del cédigo implementado, para
comprobar que se han programado adecuadamente las estructuras de datos y algoritmos

17

del modelo que representa al proceso de destilacién en estado estacionario, asi como tam-
bién la validacién del modelo en base a datos operacionales reales del circuito nacional de
refinacién.

Continuando con el capitulo 5 se presentan las conclusiones obtenidas de la ejecuciéon
de este trabajo tanto de la implementacién del algoritmo en DWSIM y también se plantean
las recomendaciones respectivas.

18

Capitulo 2

Modelado y Simulacion del Proceso de
Destilacion

Para calcular o predecir el rendimiento de los sistemas de multiples etapas, se efectia el
planteamiento de modelos y ecuaciones que relacionan las diversas variables que interac-
tian dentro de dicho sistema y, debido a la complejidad de las ecuaciones, la tinica forma
préctica para resolver el modelo de forma rigurosa es por medio de algoritmos de solucién
implementados en programas de computadora (Khoury, 2005).

Este capitulo comienza con el desarrollo del modelo matematico empleado para la si-
mulacion de columnas de destilacién en estado estacionario, basado en etapas de equili-
brio de contacto vapor-liquido donde se incluyen las ecuaciones de balances de masa por
componentes, equilibrio de fases, ecuaciones auxiliares y de balances de energia, comun-
mente conocidas como las ecuaciones M ESH (del inglés Mass, Equilibrium, Summation,
entHalpy). Posteriormente se describen varias estrategias para resolver estas ecuaciones,
que actualmente se encuentran implementadas en el simulador de procesos DWSIM, con-
siderando principalmente el algoritmo Inside-Out para su desarrollo e implementacién en
DWSIM. Este algoritmo se caracteriza por ser el método de resolucién mas flexible y com-
plejo, utilizado ampliamente en los simuladores de procesos comerciales para los casos de
destilacién multicomponente.

2.1. Descripcion del Modelo de Columna

2.1.1. Modelo de Etapa de Equilibrio

El desarrollo y la aplicacién de los modelos basados en el concepto de etapa de equili-
brio para la destilacién, ha sido objeto de estudio durante muchos afios. Hasta hace poco,
los procesos de transferencia de masa y energia en una columna de destilacion real se con-

19

sideraban muy complicados para ser modelados de manera fdcil y directa. Esta dificultad
fue sobrellevada por el modelo de etapa de equilibrio, desarrollado por Sorel (1893). Este
modelo conceptual (Figura 2.1) se fundamenta en suponer que los flujos de vapor y liquido
que salen de cualquier etapa de la columna, se encuentran en equilibrio termodindmico, es
decir que se consideran no tienen tendencia a alejarse de sus actuales condiciones definidas
por su presién, temperatura y composiciones.

Vapor que sale de la etapa Liquido que entra en etapa

con fraccién mol y

Vapor

Perfecto Mezclado
en ambas fases

Liquido

Liquido que sale de la etapa

Vapor que entra en etapa | con fraccién mol x

Figura 2.1: Diagrama conceptual de una etapa de equilibrio.(Wilson et al., 2000)

Basado en el concepto anterior, una seccion de la columna de destilacién se modela
como se muestra en la Figura 2.2a, considerando las siguientes suposiciones:

1. Se logra en cada etapa un equilibrio de fases.
2. No se producen reacciones quimicas.

3. Se desprecia el arrastre de gotas de liquido en el vapor y la oclusién de burbujas de
vapor en el liquido.

Asi, una columna hipotética se define a partir del acople de varias de estas etapas de
equilibrio como de muestra en la Figura 2.2b. Este sistema en cascada en contracorriente
esta disefiado para llevar a cabo la separacién especificada por la columna real, siendo una
descripcion razonable de la fisica real (Wilson et al., 2000). De ser necesario, el numero
de etapas de equilibrio se puede convertir a su equivalente en etapas reales por medio del
concepto eficiencia de etapa, que describe la medida en que el rendimiento de una bandeja
de contacto real al rendimiento de una etapa de equilibrio (Seader et al., 2011).

En este esquema, una o mas corrientes de materia entran en la etapa, y una o mas
corrientes salen de ella. Asi, también se considera una corriente especial que representa
el flujo de energia que se suministra o se retira de la etapa. Tomando como referencia la

Figura 2.2a en a la etapa j, existe una corriente de alimentacion de flujo molar F}, con una

20

composicion global en fracciones mol z; ; del componente i, temperatura Tr;, presion FPr;
y su correspondiente entalpia molar global h;. La presién de la alimentacion es igual o
mayor que la presion de la etapa P;.

También en esta etapa se encuentra el liquido inter-etapa proveniente de la etapa su-
perior j — 1, de flujo molar L;_;, con una composicién en fraccién molar xz; ;_;, entalpia
hy,_,, temperatura T;_; y presién P;_; . La presion del liquido de la etapa j — 1 se incre-

menta de manera adiabdtica por el cabezal hidrostatico de ;_,. De manera similar, desde

la etapa inferior j + 1, entra el vapor inter-etapa de flujo molar V., de igual forma, con
una composicion en fraccién molar y; .1, entalpia hy, . ,, temperatura T}, y presion Pj;.

A

|

Vj Liquido desde etapa
superior
Corriente Lateral de A L
Vapor /- 1
W -
Yij X1
hyj hijg
T i1
Fi Fj-1
Transferencia

Alimentacién de Calor

Yij+1 %ij

PEj hyje1 hij
Tj+ 1 T/
Py Py
1 Corriente Lateral de
Liquido
Vi1 yj
Vapor desde etapa
inferior
L .

7

(a) esquema de una etapa de equilibrio ge- (b) cascada a contracorriente General
neral de N etapas

Figura 2.2: Modelo generalizado para columna multiples etapas (Seader et al., 2011)

Dejando la etapa j, se encuentra también el vapor con propiedades intensivas y; ;, hy,,
T;, y P;. Esta corriente se puede dividir en una corriente lateral de vapor de flujo molar
W; que sale como producto y una corriente inter-etapa de flujo molar V; que bien va hacia
la etapa superior j — 1 o sale como producto al ser j = 1. También, de manera andloga
dejando la etapa j se presenta el liquido con propiedades intensivas z; ;, hr,, 7;, v F;, €l
cual se encuentra en equilibrio con el V; y W;. Este liquido de manera similar que el vapor,
se puede dividir en una corriente lateral de flujo molar U; y una corriente inter-etapa y de

21

flujo molar L, que se dirige hacia la etapa j + 1, y sale como producto si j = N. Por dltimo
se puede transferir energia a una razén (); desde (+) , o hacia (—) la etapa j para simular
intercambios de calor. Las etapas se numeran del tope al fondo de la columna: desde j = 1
en el condensador o la parte superior a la etapa j = N en el rehervidor o la etapa inferior.

2.1.2. Ecuaciones MESH

Segun Wang & Henke (1966) el modelo de etapa de equilibrio de columnas de desti-
lacion, estd representado por un conjunto de ecuaciones comunmente conocidos como las
ecuaciones MESH, las cuales son las que se utilizan para describir la operacién en estado
estacionario de una columna de destilacion. MESH provienen del inglés: Material balan-
ces (Balances de materia), Equilibrium equations (Ecuaciones de Equilibrio), Summation
equations (Ecuaciones de Sumatorias), entHalpy balances (Balances de entalpia) (Trecca-
ni, 2008; Seader et al., 2011). A continuacion se describe con detalles cada una de las
ecuaciones:

1. Las ecuaciones M se emplean para modelar la ley de conservacion de materia alre-
dedor de cada etapa.

]\/]i,j = L(j—lf‘:i,j—l - ‘/‘j+1yi7j+1
+Fjzi— (Li+ Uj)wig — (Vi = Wi)yi; =0 2.1

2. Las ecuaciones Y modelan el equilibrio vapor-liquido, donde ¢ es el niimero de com-

ponentes.

Ei_’j =Yij —]Xqu'uj((fi}j =0 (22)

3. Las ecuaciones S establecen los limites de las sumatorias de fracciones mol de cada

componente.
(Sy)j = Zym‘ —1,0=0 (2.3)
=1
(Sa); =D 1= 1,0=0 2.4)
1=1

4. Las ecuaciones H modelan el balance de energia en cada etapa.

22

H7 = Lj—thj_l + w+lf1/\94-1 + F‘/;;IF7 (25)
- (L, + U}) h/Lj - (V/ + M/]) h\,f,/ - Q/ - O (26)

Es posible emplear una ecuacién balance de materia total en lugar de (2.3) o (2.4). Se

deriva mediante la combinacién de estas dos ecuaciones 'y » z; = 1,0 con (2.1) sumado

J
sobre los componentes ' desde la etapa 1 a j para dar:

j
Lj:‘/j—f-] + Z(Fm - Um - I/Vm) - ‘/1 (27)
m=1

Las ecuaciones anteriores describen totalmente una columna de destilacion las cuales
deben satisfacerse en cualquier estrategia de solucién. Si se modifican las ecuaciones MESH
de forma que en las ecuaciones M se sustituyen los v, ; por K, ; z;; y los L; por suvalor en
funcién de W;, U; y V; dado por el balance global de materia, se puede obtener la siguiente

ecuacion para cada componente y cada etapa a partir de los coeficientesA;, B;, C; y D; :

ijj,.j_.] + Bj./L'j,?j —+ ijC/,;.j_H = Dj (28)
donde:

j=1
A=V + Y (Fr= U — W) = Vi, 2< j < N (2.9)

m=1

j
By == [Vir + D (Fn = U = Win) = Vi + Uy + (Vi + Wj) Koy
m=1

1<j<N (2.10)
C/YJ = ‘/j‘f*]](i:]'*‘l? 1 S] S]\’r -1 (211)
Dj=—-Fjz; 1<j<N (2.12)

Si las ecuaciones A modificadas (2.8) se agrupan por componentes, pueden escribirse
como una serie de c¢ sistemas de ecuaciones, uno para cada componente, en donde las
matrices de coeficientes son matrices tridiagonales y la variable de salida para cada sistema
es la composicién x; para ese componente en toda la cascada en contracorriente de N
etapas:

23

P B, Oy e e e 01 [e 1 T D
Ay By O . . 0 . Dy
143 B3 63 A - 0 Lt;i;g D3
| el | e
0 -+ -~ 0 Anx.y By_o Cn_o - 51':11,N—2 Dy s
0 e e 0 0 AN—I BN-1 CN—] :Li:N—] [)_N_l
0 - 0 0 Av By | L mny |1 Dy

La solucién eficiente de este conjunto de sistemas de ecuaciones se resuelve una para
cada componente, mediante un algoritmo de eliminacién Gaussiana modificado por Lle-
wellyn H. Thomas mostrado con detalle en el apéndice A.1. Si se dispone de los valores de
los coeficientes A;, B;, C; y D; en cada etapa, la resolucién de los ¢ sistemas de ecuaciones
proporcionard el perfil de composicién del liquido en la columna.

Por otra parte, las propiedades de los fluidos, son datos suministrados o predichos por
algiin método termodinamico que correlacionan funciones de la temperatura, la presion, y
la composicién. Expresado matemdticamente, los datos o correlaciones se pueden escribir
de la siguiente manera:

Ki; =K, ;(T}5P), %, y5) (2.14)
hV; = hVi(T5, Py, ;) (2.15)
hl; = hL;(T;, P}, ;) (2.16)

donde z; y y, son vectores de fracciones molares de los componentes en corrientes de
la etapa j.

2.1.3. Grados de Libertad

Los grados de libertad de un sistema son las variables independientes que se deben
especificar con el fin de definir el sistema por completo. El enfoque matemadtico para de-
terminar los grados de libertad de cualquier sistema es reunir todas las variables y restar el
numero de ecuaciones independientes (Zereshki, 2012).

En este sentido, para el modelo de etapa de equilibrio, si las tres propiedades definidas
en las ecuaciones 2.14 a 2.16 no se cuentan como ecuaciones ni como variables, cada etapa
de equilibrio sé6lo se define por un total de 2C' + 3 ecuaciones. El sistema en cascada en
contracorriente de N etapas, como se muestra en la Figura 2.2b, quedaria representado
por N(2C + 3) ecuaciones y [N(3C + 10) + 1] variables.

24

Ahora, si se establecen N y todos los Fj, 2y, Tr;, Pr,, Pj, Uy, Wi, Q; correspondien-
tes a [N(C + 7) + 1] variables de entrada, el modelo generalizado de la columna queda
representado por N(2C' + 3) ecuaciones algebraicas simultdneas no lineales y N(2C + 3)
variables desconocidas (de salida) que comprenden todas las variables z; ;, vi;, Lj, Vj,
T;, considerdndose asi como las variables independientes. En tal caso que se especifiquen
otras variables de entrada, las sustituciones correspondientes se deben de introducir en la
lista de variables de salida. En cualquier caso, el resultado es un conjunto que contiene
las ecuaciones no lineales que deben ser resueltas mediante una técnica iterativa (Seader

et al., 2011; Khoury, 2005).

2.2. Métodos Rigurosos de Columnas de Destilaciéon

Las ecuaciones que conforman el modelo de columna, incluyen muchas relaciones no
lineales, y su nimero se puede encontrar alrededor de las decenas de miles. Por ejemplo,
en una columna de 10 componentes, 30 etapas con dos especificaciones, el nimero de
ecuaciones serfa (3 x 10+ 5) x 30 + 2 = 1052).

Es evidente que la solucién analitica de estas ecuaciones es imposible. La tinica mane-
ra prdctica para resolver estos problemas de manera rigurosa es mediante algoritmos de
solucién numéricos implementados los simuladores de procesos quimicos. (Khoury, 2005).

Histéricamente, antes de la década de los afios 50, los calculos de columna se realizaban
sin la ayuda de un computador. A pesar de que los procedimientos de calculo rigurosos
estaban disponibles, eran dificiles de aplicar para todas las columnas. Los denominados
métodos aproximados o cortos basados el procedimiento clasico de Fenske-Underwood-
Gilliland (FUG), eran por lo tanto la herramienta de diseno primario (Kister, 1992).

Los primeros intentos para la resolver el sistema de ecuaciones MESH fueron los méto-
dos clésicos de célculo etapa a etapa y ecuacién a ecuacién de Lewis-Matheson (1932) y
Thiele-Geddes (1933), aplicables s6lo a columnas simples o para chequear disefios finales.
No obstante, con la introduccion de las computadoras el procedimiento de disefio cambi6
totalmente. Los cdlculos rigurosos, que alguna vez tomaron varios dias, a veces semanas,
incluso para una columna relativamente sencilla, ahora se realizan de forma rdpida y eficaz
mediante un ordenador minimizando las imprecisiones e incertidumbres inherentes a los
procedimientos aproximados (King, 1980; Seader et al., 2011).

La mayor parte de los métodos modernos son métodos que utilizan procedimientos de
separacidn y desacoplamiento del conjunto de ecuaciones MESH que describe a la columna
para calcular las condiciones de su funcionamiento (Seader et al., 2011). En la préactica
moderna de destilacién, estos programas se han vuelto indispensables para la evaluacién

25

del diseno y el rendimiento de los procesos de separacion de etapas multiples (Kister, 1992;
Khoury, 2005).

Los métodos rigurosos para la solucion de columnas siguen una estrategia de solucién
general que se muestra la Figura 2.3.

Solucion

Figura 2.3: Pasos involucrados en un método riguroso (Kister, 1992).

En el primer paso de configuracion del problema se especifican las variables de entrada
y la especificacién de la separacién. King (1980); Kister (1992); Seader et al. (2011);
McCabe et al. (2005) afirman que en un proceso de disefio, una separacion se especifica en
términos de grados de pureza y de los flujos de productos. Para una columna sencilla, por
ejemplo, se deben establecer dos especificaciones y por lo menos una debe ser de pureza de
producto. También afirma que el grado de pureza puede ser sustituido por una propiedad
fisica que es una funcién de la pureza o composiciéon, mientras que un flujo de producto
puede ser sustituido por una especificacién de recuperacion.

En una simulacién, se establece el nimero de etapas y la ubicacion del punto de ali-
mentacién para una solucion determinada. Una vez que estos se fijan, la composicién de
destilado (o del fondo) se convierte en una funcién del reflujo, por lo que el grado de pu-
reza se cumple a través de una especificacidon de relacién de reflujo. Dado que el reflujo es
s6lo uno de los flujos internos de la columna, un argumento similar se aplica a cualquier
otro flujo de fase interna. De ello se desprende que el grado de pureza se puede cumplir
mediante la especificacidn de cualquier flujo de fase interna, ya sea liquida o de vapor.
Del mismo modo, otras variables que se pueden especificar incluyen la relacién de reflujo
a destilado, relacion de boilup del fondo, el calor del intercambiador, y la temperatura de
una etapa especifica (Kister, 1992).

Para una columna con productos laterales, el numero de variables especificadas aumen-
ta con cada producto lateral. En la mayoria de los métodos, la tasa de flujo del producto se

26

especifica para cada producto secundario, pudiéndose especificar la pureza de un producto
lateral. Para las columnas con intercambiadores de calor en las etapas intermedias, el na-
mero de variables especificadas aumenta por el nimero de estos intercambiadores. Por lo
general, para estos se especifican sus respectivos calores, pero en algunos métodos, estos
calores se pueden permitir variar para cumplir una cierta especificacion de producto. Pa-
ra estas columnas complejas, las especificaciones inconsistentes son una de las principales
causas de fallas en el calculo por ello se prefieren especificaciones mas simples.

Antes de que los cdlculos principales comiencen, se debe dar valores iniciales a las
temperaturas de las etapas, 7} y flujos totales, V; y L; . Los flujos por componentes de las
etapas, v;; y l;; no tienen que ser estimados ya que estos se pueden calcular a partir de los
balances de componentes. Pero los balances de componentes dependen de los valores K.
En este sentido para los primeros balances de componentes, se deben utilizar valores K
independientes de la composiciéon (Wilson et al., 2000).

Con cualquier método riguroso es imprescindible establecer criterios para determinar
cuando se alcanza una solucién. Cada método riguroso tiene sus propios criterios, pero
todos ellos deben cumplir con ciertos criterios fisicos. Ademds de cumplir con los balances
de materia y de energia (Kister, 1992; Seader et al., 2011). Existen otros criterios que un
método debe cumplir. Si hay especificaciones, tales como velocidades de flujo de produc-
tos, flujos de calor, o composiciones de productos, éstos se deben establecer dentro de una
cierta tolerancia. En la solucién, los perfiles de la velocidad de flujo y temperatura total no
deberian cambiar entre iteraciones, es decir, el cambio fraccional acumulado en tempera-
turas de etapa y en las tasas de vapores de la fase entre iteraciones continuas &y k+ 1 debe
ser menor a una tolerancia preestablecida ¢, segun el criterio planteado por Wang & Henke

(1966) expresado en la ecuacion 2.17.

T V;
ZI jk+1 ml Z\ 7k+1 Vil <e (2.17)

Los errores en las ecuaciones MESH deben ser pequenos, como por ejemplo hacer que
las funciones tiendan a cero con el método de Newton-Raphson, el cual se describe en el
apéndice A.2.

2.2.1. Clasificacion de Los Métodos Rigurosos

Se han propuesto muchos algoritmos para la resolucién de las ecuaciones, una buena
revision de los cuales se presenta por Wang et al. (1980). Las diferencias entre los métodos
derivan de varias consideraciones, incluyendo la eleccién de las variables independientes,

27

la agrupacién y disposicion de las ecuaciones y la trayectoria de convergencia. Los métodos
rigurosos se pueden dividir en dos clases como se muestra en la Tabla 2.1.

Tabla 2.1: Clasificaciéon de los Métodos Rigurosos de Resoluciéon (King, 1980).

[Métodos Basicos [Método Extendidos }
Los Métodos de Punto de Burbuja (BP) Los Métodos de Relajacion
Los Métodos de Suma de Caudales (SR) Los Métodos Inside-Out
Los Métodos Newton 2N Los Métodos Homotépicos o de Continuacién
Los Métodos de Correcciones Simultdneas (SC) Los Modelos Fuera del Equilibrio

» Los Métodos de Punto de Burbuja (BP)

Los métodos BP reciben su nombre debido a que las temperaturas de las etapas se
determinan resolviendo directamente la ecuacién de punto de burbuja. Los métodos
de BP por lo general funcionan mejor para sistemas con componentes de estrecho
punto de ebullicion, donde la composicion tiene un efecto mayor sobre la tempera-
tura que el calor latente de vaporizacién. Todas las ecuaciones se particionan y se
resuelven de manera secuencial a excepcion de las ecuaciones M, que se resuelven
por separado para cada componente por la técnica de matriz tridiagonal (Seader
et al., 2011).

El primer método de BP propuesto por Wang & Henke (1966) ilustrado en la Fi-
gura 2.4, contempld por primera vez el método matriz tridiagonal para calcular las
tasas de flujo de componentes o composiciones, calculando ademas las nuevas las
temperaturas de las etapas directamente, sin necesidad de iterar con la ecuacién del
punto de burbuja. Aqui las temperaturas son aproximadas pero siempre y cuando las
composiciones internas se corrijan adecuadamente durante cada iteracion, el perfil
de temperatura convergerd hacia la soluciéon (Khoury, 2005; Kister, 1992).

En este método se consideran variables de iteracién a «; ;, v; j, 7}, L;, y V;. Para iniciar
los célculos se asumen valores de las variables de iteracién, V; y 7. En general,
es suficiente establecer un conjunto inicial de valores de V; el reflujo especificado,
destilado, alimentacidn, y los flujos de corriente secundaria. Los valores T iniciales
se pueden estimar mediante el cédlculo de la temperatura del punto de burbuja de un
producto de fondo y la temperatura punto de rocio de un producto destilado asumido,
y luego utilizar interpolacién lineal para determinar otras temperaturas de las etapas
(Seader et al., 2011).

28

Para obtener x; a partir de (2.13) por el método de Thomas (A.1) son necesarios
los valores de Kj;. Por tanto, cuando éstos dependen de la composicién, se necesitan
también suposiciones iniciales para todos los z;; y ¥, a no ser que se utilicen en
la primera iteracion los valores ideales de las K ;. Para cada iteracién, el conjunto
de valores calculados z;; de cada etapa, por lo general, no satisfacen la restriccién

impuesta por las ecuaciones S (2.3 y 2.4) y es aconsejable normalizar el conjunto de
valores calculados x; ; mediante:

Xi,j

) (2.18)
;xi,j 7é 1

(xiJ)normalizado =

Contador de lteracién Iﬁ

Especificar todas Las variables f;, ii,j, TFj, PF,
Pi Uj, Wi, Qj (Excepto Q1:y QN), N; Ly _y.\/1
|

@icializé}r variables de iteracion Tj, VD

CCalcular Xi,] por"'el:método de Thomasﬁ)—{ Método de Matriz Tridiagonallﬁ

Normalizar x;;"

Calcular nuevos valores de T;, a partir de Ia~éguacion
de Punto de Burbuja y.fracciones ;- '

“ Ajustar variables - - |
de iteracion Tj, Vj <
— C

alcular valores de Q, y'Qy a partir de>

la‘ecuacion de balance de energia

Calcular nuevos
valores de V;iy I;

Falso

2Suma de-errores
< toleranciaestablecida?

Verdadero
®

No ha convergido Convergencia Satisfactoria

Figura 2.4: Algoritmo de Método B P por Wang-Henke (Seader et al., 2011)

s Los Métodos de Suma de Caudales (SR)

Son métodos adecuados para el modelado de absorbedores y despojadores donde
las especies poseen una amplia diferencia de puntos de ebullicién, especialmente

29

aquellos con especies no condensables. Los métodos B P fallan en estos casos por-
que los calculos del punto de burbuja de temperatura son demasiado sensibles a la
composicion en fase liquida, y el balance de energia es mucho mds sensible a las
temperaturas de las etapas que a las flujos entre etapas. El primer método SR fue
desarrollado por Burningham & Otto (1967) en conjuncién con la formulacién de de
matriz-tridiagonal para un conjunto de ecuaciones M modificadas.

Las variables se mantienen iguales al método BP y los valores de x;; se obtienen
resolviendo mediante el algoritmo de Thomas. Solo que en este caso los valores z; ; no
se normalizan y se utilizan directamente para calcular nuevos valores de L; mediante

la ecuacién de suma de caudales:

L;k—e—l) _ L‘gk)Z%j (2.19)
i=1

donde los valores de L;m se obtienen a partir de los valores ka) de la ecuacién (2.7),

los valores correspondientes de V;.(kH) se obtienen a partir de un balance de materia
global:
N
.V:i:Lj—l — Ly + Z(Fm = W Um) (2.20)
m=j

Finalmente, el perfil de temperatura para la siguiente iteracion se obtiene por resolu-
cién del balance de entalpia en cada etapa. El método se ilustra en la Figura 2.5.

30

Contador de Iteracion 'ﬁ

Especificar todas Las variables FJ, 'ii,j, Tﬁj;‘\\’;?p,
Pj, Uj, Wj, Q; (Excepto Q1 y QN), N, L1y V4

I

@iciahzar variables de iteracion T, VD

|

‘.C(jalycula’r xi,j por el método de Thomas)—{ Método de Matriz Tridiagoneﬁ

Calcular nuevos valoresde Ly V,

Normalizar x;; y determinar
: las fraccionesy;;

Calcular:nuevos - -)
valores de T,

Ajustar variables
de iteracion

Falso Verdadero

¢Sumade errores
< tolerancia establecida?

No ha convergido Convergencia Satisfactoria

Figura 2.5: Algoritmo del método SR de Burningham & Otto (Seader et al., 2011)

= Los Métodos de Newton 2N

Tanto en los métodos B P como en los SR, el perfil de temperatura y el perfil de cau-
dales de vapor y de liquido se calculan en pasos separados. En los métodos de Newton
2N el nombre 2N significa que hay dos ecuaciones por etapa para un total de 2 x N
funciones y variables por columna que se resuelven simultdneamente por un méto-
do de Newton Raphson. Los métodos de Newton 2N han demostrado que funcionan
bien para las mezclas de amplio punto de ebullicién incluyendo fraccionadores de
refineria, columnas de absorcién-despojamiento y absorbedores con rehervidor. Las
variables de iteracién son L, ;, y; ;, y 7;. Entre los métodos mds conocidos se encuen-
tran el método desarrollado por Tomich (1970).

Este Método difiere de los métodos anteriores, principalmente en que las ecuaciones
sumatoria y los balances de energia se resuelven simultdneamente. Por otra parte
presenta dos importantes beneficios. En primer lugar, es aplicable para resolver co-
lumnas de destilacién, columnas absorbedoras y columnas hibridas de ambos tipos

31

de procesos. En segundo lugar, se pueden incorporar en la solucién simultdnea de
las ecuaciones diferentes tipos de especificaciones de rendimiento de la columna. El
método también es computacionalmente estable y eficiente, ya que utiliza la mo-
dificacién de Broyden de la técnica de Newton-Raphson para la resolucién de las
ecuaciones (Broyden, 1965).

Los Métodos de Correcciones Simultaneas (SC)

Las tres clases anteriores se catalogan como métodos basados en desacoplamiento de
ecuaciones, debido a que las ecuaciones MESH se dividen, se agrupan y se combi-
nan con las variables MESH para ser resueltos en una serie de pasos. Los Métodos
SC denominados también métodos de Newton Globales o métodos N R, son capaces
de resolver muchos problemas de separaciones multicomponente de etapa multiple.
Estdn basados en la resoluciéon conjunta de todas las ecuaciones MESH o de una
combinacion de las mismas por técnicas de correccién simultdnea (Kister, 1992).

En general, los métodos SC' resultan més convenientes que los anteriores ya que en
sistemas altamente no ideales, donde los valores de las relaciones de equilibrio es-
pecialmente los valores de los coeficientes de actividad y de las entalpias dependen
fuertemente de la composicién, no resulta demasiado adecuado calcular las composi-
ciones a partir de valores de constantes de equilibrio v de entalpias procedentes de la
iteracion anterior. Estos métodos son los mads sensibles a la calidad de las estimacio-
nes iniciales, pero también son mas poderosos a la hora de tratar mezclas no ideales,
de forma que en ocasiones se requiere aplicar primero otro método riguroso (BP o
SR) para encontrar aproximaciones a la solucién final que sirvan como estimaciones
iniciales para el método SC (Khoury, 2005). Uno de los métodos SC mas conocidos
es el desarrollado por Naphtali & Sandholm (1971).

El modelo de etapas de las Figuras 2.2a y 2.2b se emplean nuevamente. Sin em-
bargo, en lugar de resolver las N (2C + 3) ecuaciones MESH de manera simultdnea.
Se combinan las ecuaciones (2.3) y (2.4) junto con las otras ecuaciones para elimi-
nar 2N variables y de esta manera reducir el problema a una solucion simultdnea
de N(2C — 1) ecuaciones. Esto se realiza multiplicando (2.3) y (2.4) porV; y L; ,
respectivamente para dar:

Vi=> v (2.21)
i=1

32

C
L=l (2.22)
i=1

donde se usan las siguientes definiciones de fracciones mol:

Ui j
Yij = —= (2.23)
Y
by (2.24)
Tij = , .

Las ecuaciones (2.21) a (2.24) ahora se sustituyen en (2.1), (2.2) y (2.6) para eli-
minar V}, L;, y;; ¥ x; ; e introducir flujos de componentes v, ; y [, ;, obteniéndose las
siguientes ecuaciones, donde s; = U;/L,; y S; = W;/V; son flujos laterales adimen-
sionalesy f;; = Iz ;.

17\{[2'7]‘ - l/l‘__]‘ (1 + 5’]) -+ ’U,;J' (1 -+ S;) -]/Zﬂ,j—l —_ U’lr;j-H - L7 = O (225)
C

Z,Uk?,j
Fij = Kijli k’? —v; =0 (2.26)

>k

k=1
Hy=hi, (14 55) Y Ly +hy, (1485 oy (2.27)
i=1 i=1

C

C
—h/LjA] E li,j*] - h/Vj.Q_J E Ui.j+]
i=1

1=1

“/?er Zfz}j -Q;=0
i=1

Las ecuaciones (2.25), (2.26) y (2.27) se resuelven simultdneamente por el método
de Newton-Raphson en el que los conjuntos sucesivos de las variables de salida se
calculan de manera iterativa hasta que los valores de las funciones M, E, y H son
conducidas hacia los criterios de convergencia o cero. Durante las iteraciones, los
valores distintos de cero de las funciones se llaman discrepancias o errores. Si las
funciones y variables de salida se agrupan por etapas en orden de arriba a abajo,
se forma una estructura de bloque-tridiagonal de la matriz Jacobiana de derivadas

33

parciales de modo que se puede aplicar una forma de la matriz del algoritmo de
Thomas (Seader et al., 2011).

Los métodos extendidos que a continuacidén se explican, son una ampliacién de los primeros
cuatro métodos con el fin de aumentar la gama de aplicaciéon de columnas, para resolver
sistemas dificiles o columnas mas complejas.

s Los Métodos de Relajacion

Un método de relajacion encuentra una solucion de estado estacionario de una co-
lumna como si se tratara de una columna que opera en estado dindmico. La columna
se inicializa utilizando condiciones reales de operacién de puesta en marcha. Se parte
de la suposicién de valores iniciales para los caudales inter-etapa y para las tempera-
turas y composiciones en cada etapa. La columna se lleva a las condiciones de estado
estacionario por aproximaciones sucesivas de las ecuaciones de estado inestable de
destilacion. Estas ecuaciones de estado inestable son modificaciones a las ecuaciones
MESH para incluir cambios en las variables MESH con respecto al tiempo. Este pro-
ceso podria decirse que estd imitando la puesta en marcha fisica de la columna, pero
el objetivo no es conseguir la operacién dinamica sino buscar la solucién en estado
estacionario(Khoury, 2005).

= Los Métodos Homotépicos o de continuacién

Se basan en un procedimiento de resolucidn de sistemas de ecuaciones algebraicas
no lineales. Generalmente requiere calculos algo sofisticados, pero tiene la ventaja de
que permite encontrar soluciones incluso cuando los valores iniciales son deficientes.
Para algunos casos las ecuaciones de las MESH pueden ser dificiles de resolver, ya
sea debido a la naturaleza de la columna (muchas alimentaciones o retiros latera-
les, separadores laterales, operacion cerca de reflujo-minimo, etc.) o debido a las no
idealidades de los valores de K o entalpias.

Los métodos homotdpicos comienzan con una solucién conocida de la columna y
desde alli se sigue un camino a la solucién deseada. La solucién conocida puede ser
en diferentes condiciones o con métodos mucho mds simple de valores K y entalpia
y los cambios escalonados se realizan a partir de ahi, resolviendo la columna en cada
paso, hasta que se alcanza la solucién final (Kister, 1992).

Las métodos homotdpicos se pueden dividir en dos clases generales, los basados en
homotopias matemadticas y en homotopias fisicas o paramétricas. Las homotopias ma-
tematicas no posee relacion fisica con las ecuaciones MESH y esto en ocasiones causa

34

problemas. Las homotopias fisicas tienen una base en las ecuaciones MESH, por lo
que son mas aplicadas. (Wayburn, 1988) presenta una revisién de los métodos ho-
motopicos asi como de sus diferentes aplicaciones.

= Los Modelos de No-Equilibrio

También denominados métodos basados de velocidades de transferencia de masa.
Son métodos que eliminan por completo el concepto de etapa de equilibrio y el uso
del concepto de eficiencia de etapa. Ellos son los mas adecuados para las columnas
donde es dificil de definir una etapa tedrica y las eficiencias resultan dificiles de
predecir o aplicar por cualquier medio. Por ejemplo, en sistemas altamente no ideales
y sistemas reactivos. Aplican un enfoque de fendmenos de transporte para predecir
las tasas de transferencia de masa. Las tasas de transferencia de masa se calculan
continuamente a lo largo de la longitud de la columna y no en etapas de equilibrio
discretas (Kooijman & Taylor, 2000; Krishnamurthy & Taylor, 1985).

Krishnamurthy & Taylor (1985) presentan y colocan a prueba un modelo de no equi-
librio que incluye ecuaciones de velocidad de transferencia de masa con la posibilidad
de incluir reacciones quimicas, entre las ecuaciones MESH tradicionales. Estos inclu-
yen balances de masa y energia en el vapor y el liquido y a través de una interfase.
Existe una ecuacion de equilibrio para la interfase tnica. Los métodos de solucion
para estas ecuaciones es la misma que los métodos globales Newton y el estilo del
método es similar al de Naphtali & Sandholm.

2.3. Método INSIDE-OUT de Russell (1983)

En los métodos de BP, SR, y SC, el principal esfuerzo de cdlculo se consume en el
calculo de valores K y las entalpias cuando se utilizan modelos termodindmicos rigurosos,
ya que los calculos de propiedades termodindmicas se efectian en cada iteracion. Ademads,

en cada iteracion, se necesitan las derivadas de:

1. Todas las propiedades con respecto a la temperatura y las composiciones de ambas
fases en el método Newton-Raphson

2. Los valores K con respecto a la temperatura para el método de BP.

3. Vapor y entalpias de liquidos con respecto a la temperatura para el método de SR.

35

Sp Ry Ry

Ecuaciones | X
(bucle interno)

MESH

pardametros
K h

Ecuaciones

TV Ecuaciones T xy,7,
MESH | |obudle) MESH | |bucle) v
J (bucle externo)
K, Xy T K, L v
hy, by v, L hy, by T
Modelos - - ‘Modelos | Modelos .)
Termodinamicos Termodindmicos Termodindmicos |
Complejos Complejos Complejos)
(a) Métodos BP y SR (b) Método SC (¢) Método Inside-Out

Figura 2.6: Incorporacién de correlaciones termodindmicas en bucles interactivos (Seader
et al., 2011)

El Método Inside-Out se ha desarrollado con tres objetivos primarios: ser flexible en
el manejo de las especificaciones de rendimiento, requerir poca informacion para gene-
rar estimaciones iniciales y poseer alta velocidad de cdlculo. Las técnicas empleadas para
cumplir con estos objetivos estdn incorporadas en un metodo original descrito por Russell
(1983). Este método, basado en el articulo publicado por Boston & Sullivan (1972), estd
formado por un algoritmo de dos bucles, un bucle interno donde las composiciones y flujos
de columna de platos y perfiles de temperatura se calculan sobre la base de un modelo de
valores K y célculos de entalpia simplificado y un bucle externo, donde estas propiedades
se calculan a partir de modelos termodindmicos rigurosos.

El método es rapido debido a que los célculos termodindmicos rigurosos son relegados
al bucle externo, donde no se realizan con frecuencia. El término INSIDE-OUT se aplica
comunmente a este tipo de método debido a la estrategia de limitar los calculos rigurosos
que consumen mucho tiempo termodindmicos en el bucle externo. Cabe sefialar que la
solucion general es rigurosa ya que se considera que el sistema ha convergido cuando
los valores K y entalpias utilizados en el bucle interno estdn en concordancia con los
calculados rigurosamente en el bucle externo (Kister, 1992; Seader et al., 2011).

En cada paso a través del bucle exterior, los valores K y entalpia de los modelos simples
y se actualizan mediante el uso de las variables MESH a partir del bucle interior. Esto
establece la siguiente iteracidn por el bucle interior (Wilson et al., 2000).

36

Otra de las caracteristicas del método Inside-Out es las variables de iteracién que se uti-
lizan. Para este método las variables de iteracion para el bucle externo son los parametros
en las ecuaciones aproximadas para las propiedades termodindmicas. Las variables de ite-
racion del bucle interno estdn relacionadas con los factores de despojamiento S; ; = KiiVi/L;
y Factores de Retiro Lateral R, ; y Ry;.

El método Inside-Out toma ventaja de las siguientes caracteristicas de los cdlculos itera-

tivos:
1. Las volatilidades relativas de componentes varian mucho menos que sus valores K.
2. La entalpia de vaporizacion varia menos que las entalpias de fase.

3. Los factores de despojamiento de componentes combinan efectos de la temperatura
y los flujos de liquido y vapor en cada etapa.

4. El bucle interno del método utiliza volatilidad relativa, la entalpia, y los factores de
despojamiento para mejorar la estabilidad y reducir el tiempo de computo.

2.3.1. Ecuaciones MESH para el método Inside-Out.

Al igual que con los métodos BP, SR,y SC, se emplea el modelo de equilibrio-etapa
de la Figura (2.2). La forma de las ecuaciones es similar al método de SC' en el que se
utilizan velocidades de flujo de los componentes. Sin embargo, adicionalmente se definen
las siguientes variables de iteracién para el Bucle Interno:

Q= Kiifk, (2.28)
Sy = KeaVi/L, (2.29)
Ry, = 14 Ui/1, (2.30)
Ry, = 1+ Wiy, (2.31)

donde K, es el valor K para un componente hipotético base o de referencia, S, ; es
el factor de despojamiento del componente base, Ry, y Ry, son factores de retiro de fase
liquida y vapor respectivamente, asi para las etapas que no posean corrientes laterales,
Ry, y Ry, toman el valor de 1. Las variables previamente definidas (2.21) a (2.24) aun se
aplican, convirtiendo las ecuaciones MESH en:

37

Ecuaciéon M por componente c:

lij—1— (RLJ =+ az‘,ij,j-Rvj) lij + (cijs1Sp5+1) lij+a (2.32)

=—fisi=lac, j=1aN

Ecuacion F:

vy =0 jSpiliy, i=1lac, j=1laN (2.33)

Ecuacién H:

H;=hy, Ry, L;+ hv,Rv;V; — hp,_ Li—1 — hy,, Vi (2.34)
~hp by —Qj=1lac, j=1lalN

Ademads se pueden afadir a estas ecuaciones las funciones de discrepancia. Es conve-
niente especificar variables de etapas superiores e inferiores en lugar de los calores de
condensador y/o rehervidor, que son tan interdependientes que no se recomienda la espe-
cificacién de ambos valores. La especificacion de otras variables se lleva a cabo mediante
la eliminacién de la funcién de balance de energia Hy y/o Hy y reemplazandolos con
funciones discrepancia como se muestran en la Tabla 2.2.

38

Tabla 2.2: Funciones Alternas para H, y Hy

Especificacion Reemplazo por Hq Reemplazo por H n
Condensador Total Condensador Parcial Condensador Reflujo Total Rehervidor Parcial
Vv v,
Ve ~f [P Ve Ar D v
avecfy oLl N9 -
1 U, 1 U, L, B
D= U +Vq L—'Lf
Masica 1= D=0 V)= D=0 Ly —B=0
Flujo de producto
Molar Uy~ D=0 Vy = D=0 Ly —13=0
Fraccién de Masica g 1 = () 1y =0 iy = (V)G p =0 | lin— (LN> @i =0
Componente Molar w1 — (U aiuyy, =0 i~ (V)i p =0 Lionv ~(Ln)xigz =0
Masica Wiy~ dig, =0 i1 ~dip =0 lin—biyg=0
Flujo de componente
Molar wig = digyy =0 vig —dip =0 Lin—bip=0
Fraccion de Mésico .Z‘l'/.'i'-'f—((j1>'i.i-l"l =0 _ijvl.j‘(""l)'!'/mv:“ Zl/‘i_:ﬁ(I,N);i-,_Bzu
1= J= J=
Recuperacion N . X) &
P Molar T Sag=Weg gy =0 L= (Vuy p=0 L= (L N)m =0
i=1 j=1 i=1
Velocidad de Maésica Ly — D=0 Vy —13=0
Reflujo/Boilup Molar Li~ D=0 Vn - B=0
Relacion de Mésica i =(L/D)U =0 iy =(L/D)Vi=0 V= (/i) B=0
Reflujo/Boilup Molar Ly —{(L/ =0 Ly—(L/D)Vy=0 Vi —(V/BY13=0
Temperarura de
Ty —-Tp=0 Tn =Ty =0
Etapa

2.3.2. Modelos aproximados de propiedades termodindmicas

Son los que se utilizan para calcular las constantes de equilibrio y las entalpias en
el bucle interno. Los parametros de estos modelos se determinan en el bucle externo, a
partir de los valores proporcionados por modelos rigurosos. Los modelos aproximados en
el método estan disefiados para facilitar el cdlculo de las temperaturas de la etapa y los
factores de despojamiento.

= Calculo de los valores K

El modelo de valores K aproximado utilizado en el método de Russell (1983), difiere
ligeramente del método original de Boston & Sullivan (1974). Se basa en seleccio-
nar un componente de referencia b, que se va a considerar para el célculo de las
constantes de equilibrio a partir de la expresién:

Ky ; = exp <Aj - %)
J

Se puede seleccionar como referencia b cualquier componente de la alimentacién

(2.35)

u otro componente hipotético, a partir de una ponderacién de vapor-composiciéon
usando las siguientes relaciones:

39

Ky =exp (Zwi-j In K,,;__,-> (2.36)

v = Y (O Ki;/0(1/T))
YT Sy (0 K, /0 (1)T))

i

(2.37)

Para cada etapa j se determina un modelo K}, y valores de «; ; a partir de los valores
K, ; arrojados por los modelos rigurosos. En la etapa de superior, el componente base
representaria un componente cercano a un componente ligero, mientras que en la
etapa de fondo, el componente base representaria a un compuesto cercano a uno
pesado.

Para obtener los valores de Ajy Bj en (2.35), dos temperaturas deben ser selecciona-
das para cada etapa. Por ejemplo, se podrian seleccionar las temperaturas estimadas
o reales, de las dos etapas adyacentes, j — 1y j+ 1, . Llamando a estas 73 y To y
empleando (2.35) en cada etapa j:

_ In (‘K’le / K’bT2>

B, el (2.38)
T T
A, =1In Ky, + B/T, (2.39)

Calculo de entalpias

Russell (1983) emplea el mismo modelo de entalpia de Boston & Sullivan (1972).
Asi, tanto para la fase vapor como para la fase liquida se tiene la expresion:

h=hy+ (h—hy)=hy, — AH (2.40)

donde h;, es la entalpia de mezcla de gases ideales.

Las partes que consumen mucho tiempo de los célculos de entalpia son los dos térmi-
nos de entalpia de particién AH, torndndose complejas cuando se emplea una ecua-
cién de estado. Por lo tanto, en las ecuaciones aproximadas de entalpia, la entalpia
de particién se sustituyen por las funciones lineales simples:

AH\/} =C — dj (71] — T*) (241)

40

AHp, =ej = f; (T; = T7)

(2.42)

donde T es una temperatura de referencia y los pardmetros ¢, d, ¢, y f se evalian a

partir de los modelos rigurosos en cada iteracion de bucle exterior.

dj = (Hy,, — Hy,))/(Tj1 = Tpa)

¢j = Hy,, —d; (Tjy = Tj)

fi=(Hy, — Hp,) /(T — Tja)

ej = Hpy, — fi (T = Tj)

2.3.3. Algoritmo Inside-Out

(2.43)

(2.44)

(2.45)

(2.46)

El algoritmo consiste en un procedimiento de inicializacién, las iteraciones de bucle

interno y las iteraciones del bucle externo. Se muestra en la Figura 2.8 su diagrama de

flujo general.

s Procedimiento de Inicializacion

En primer lugar, es necesario proporcionar estimaciones razonables de las variables P;,

T,,V;,L;, x:; ¥ yi j,para cada etapa

1. Definir el nimero de etapas tedricas N, las condiciones de todas las alimenta-

ciones (I}, z 4, Pr;, Tr;), ubicacién de alimentaciones en la columna, y el perfil

de presion.

2. Establecer la ubicacion para cada corriente lateral en cada etapa y para cada

intercambiador de calor.

3. Proporcionar una especificacion adicional para el producto de tope y fondo y

cada intercambiador de calor intermedio.

4. Sino se especifica, estimar el flujo de cada corriente producto y/o lateral esta-

blecidos, y estimar cada valor de V;. Obtener valores de L, de la ecuacién total

de balance de materiales 2.20.

41

5.

Estimar un perfil de temperatura inicial, 7}, esto se realizando partiendo de un
calculo de punto de burbuja y rocio a la presién promedio de la columna de
una alimentacion compuesta que se obtiene combinando todas las corrientes de
alimentacion. La temperatura de burbuja se establece como la temperatura de
tope T3, mientras que la temperatura de rocio como la temperatura de fondo
T . Luego por interpolacién obtener las temperaturas de las etapas intermedias.
Las temperaturas de referencia 7% adoptan los mismos valores de T; para ser
empleadas en (2.41) y (2.42).

. Realizar un célculo Flash isotérmico a la alimentacién compuesta a la tempera-

tura y presién promedio de la columna. Las composiciones del vapor y liquido
resultantes z; y y; se establecen como las composiciones iniciales de las etapas.

Con los estimados iniciales de los primeros 6 pasos, emplear un modelo termo-
dinamico formal para determinar los valores de los pardmetros K y h que se
emplean para la estimacion de los pardmetros del modelo termodindmico apro-
ximado Aj,Bj, ¢;, d;, €;, f;, Kp; ¥ o ; del bucle interno.

. Determinar los valores iniciales de .S, j, Ry;, y Ry, a partir de (2.29), (2.30) y

(2.31).

m Secuencia de calculo del Bucle Interno

A partir de este paso se da comienzo a la secuencia iterativa de los calculos de bucle

interno, con base a los valores de los parametros enumerados en el paso 7, obtenidos

inicialmente a partir del procedimiento de inicializacion y después de los calculos de

los pardmetros K y h a partir del modelo termodindmico riguroso.

9.

10.
11.

12.

Calcular los flujos de liquido por componentes [, ;, a partir de las /N ecuacio-
nes (2.32) para cada uno de los componentes mediante el algoritmo de matriz
tridiagonal (A.1).

Determinar v, ; a partir de la ecuacion (2.33).

Evaluar nuevos valores de flujo para V; y L;, a partir de los flujos de componen-
tes ya determinados en 9 y 10, utilizando las ecuaciones (2.21) y (2.22).

Para calcular un conjunto revisado de temperaturas etapa, 7}, calcular un con-
junto de valores z; para cada etapa a partir de 2.24. Luego un conjunto revi-
sado de valores K} ; de una combinacién de la ecuacién de punto de burbuja
(O>_zK; = 1) con (2.28), lo que resulta:

i

42

Kpj =1/ ¥ (e 0) (2.47)

A partir de estos nuevos valores de K ; se calcula un grupo de temperatura de
etapas a partir de un rearreglo de (2.35):

B;

T = ——
J Aj —In](b,j

(2.48)

En este punto del bucle interno, existe un conjunto revisado de v; ;, l; ;, y T}, que
satisfacen las ecuaciones de balance de materia por componente y balance de
energia para las propiedades estimadas. No obstante, estos valores no satisfacen
las ecuaciones de balance de energia y especificaciones al menos que los factores
de despojamiento y las velocidades de retiros laterales estén correctas.

13. Seleccionar las variables de iteracién como:

In Sb,j =In (I(bJVY]/L]) (249)
lnRL’j =In (UJ/L]) (250)
In R\,{’j =1In (W//L7) (251)

junto con otras variables de iteracion de ser necesario, como se muestra en la
Figura 2.7. La transformacidén logaritmica se utiliza para mantener positivos los
factores despojamiento y los factores de retiros laterales.

Vs
P v
N4 LnSy,; %
2 L s 2 :
< > LR,
W, W,
F; 'r_....._.’—_.)l.nRV Fi o i] »LnRVi F;
’-nsb,}— -*—-—--LT-——"——'P LnRLl_ ’-nsb,iL'—————Ui——'—-'» lanl. Lnsb,/'L'

N NT®
\) I\/N \ / /Ji,:
4 QR 1 QR
o\ >\
L L
LnSyy LnS, v LnS;,

(a) Condensador parcial (b) Condensador reflujo total (¢) Condensador total

Figura 2.7: Seleccién de variables de iteracidn para distintas configuraciones

43

14.
15.

16.

17.

De la Figura 2.7 se puede observar que para una columna de destilacién simple
solo con productos de tope y fondo, no se necesitarian otras variables de ite-
racién de bucle interno adicionalmente a los factores de despojamiento In Sb;.
Ademads se deben especificar los flujos de calor del condensador y rehervidor
respectivamente. Sin embargo, en tal caso se establezcan otras especificaciones,
por ejemplo, si se especifican la relacién de reflujo (+/p) y velocidad de flujo de
producto (B) en lugar de dos flujos de calor del condensador y el rehervidor
(que es la situacién mas comun), se debe sustituir el Balance de Energia respec-
tivo de la etapa de tope (H1) y fondo (H), determinados a partir de la ecuaciéon
(2.34) por las funciones de discrepancia como se establecié en (2.3.1) segln sea
el caso. Ademas para cada corriente lateral, se seleccionara su factor de retiro
correspondiente (2.50 y/o 2.51) como una variable de iteracién adicional en
el bucle interno junto con una especificacién de pureza u alguna otra variable
asociada con dicha corriente.

Calcular entalpias a partir de las ecuaciones (2.40) a (2.42).
Calcular las funciones de energia H, normalizadas de las ecuaciones de balance
de energia (2.34), recordando cuando serdn sustituidas con sus respectivas fun-
ciones segtin la Tabla (2.2). Para efectuar la normalizacién es necesario dividir
las funciones por un factor de escalamiento (2.52), el cual es aproximadamente
igual al calor latente de vaporizacidn, esto se realiza con la finalidad de mante-
ner los valores de las funciones dentro de un mismo orden de magnitud.
FH; = (AHy, — AHp,) (2.52)
Calcular el Jacobiano de las funciones de energia y/o discrepancias H,, con res-
pecto a las variables de iteracién (2.49, 2.50, 2.51), perturbando cada variable
de iteracion y recalculando los valores de las funciones de energia y/o discre-
pancias desde el paso 9 al 15, mediante diferenciacién numérica.
OH, OH, SH, aH, 8H, OH)
OInSpy 7 OlmSy,ny OlnRy, 7 OlmRL, JdlmRy, 7 OlnRy,
OHo OHo OHo OHo ' OHo> OHo i
']H _ Bln.Sb:] dln tS’M\: 8[11.}?,14 Oln {?‘LN 8ln'Rv1 8111{?,\;1\, (253)
OHy dHy OHy OHN OH OHx
OmSyy; 7 OlnSy,n OlmRy, T i')lnRLN Ol Ry, 7 8lnR\/N
Calcular las correcciones a las variables de iteracién del bucle interno mediante

iteracién Newton-Raphson (A.2).

44

18.

19.

20.

Determinar los nuevos valores de las variables de iteracién a partir de la suma
de los valores anteriores a partir de (A.18), utilizando factor de amortiguamien-
to (A.21) de ser necesario necesario para reducir la suma de cuadrados de las
discrepancias normalizadas (A.19). Para la busqueda del factor de amortigua-
miento optimo es posible emplear el método de minimizacién de Brent.

Verificar si la suma de los cuadrados de las funciones de discrepancia es lo su-
ficientemente pequefia, es decir, menor que una tolerancia ¢ establecida para el
bucle interno. De ser asi, se procede al procedimiento de cdlculo del bucle ex-
terno. Si no, repetir los pasos 15 a 18 utilizando el tltimo valor de la variable de
iteracion.

Después de la convergencia de los pasos 15 a 19, los pasos 8 hasta 12 habran
producido un conjunto mejorado de variables primitivas x; ; , vi; , vi; , lij , T}
, Vi y L;. Estas variables primitivas serdn los datos de entrada a los calculos de
bucle externo. Los valores de estas variables no estaran correctos hasta que las
propiedades termodindmicas aproximados concuerdan con las propiedades de
los modelos rigurosos.

s Secuencia de Calculo del Bucle Externo

Cada bucle externo procede de la siguiente manera:

21.

22.

23.

Utilizando los valores de las variables primitivas del paso 20, calcular las vo-
latilidades relativas y entalpias de las corrientes mediante los métodos termo-
dindmicos rigurosos (MTR). Si la diferencia relativa de «;; determinadas por
el método termodinamico aproximado (MTA) respecto a las calculadas con los
MTR es menor que la tolerancia establecida para el bucle externo ¢; como lo
expresa la ecuacidén 2.54, tanto el bucle interno como el externo se consideran
que han convergido, y el problema esta resuelto. Si no, ir al paso 22.

n

T = Z (i jnra — Cl’q:,jJ\/ITR/Cm,jAnA)Q < € (2.54)

i=]
Determinar los valores de los parametros K y h del bucle iterativo externo a
partir los MTR, tal como como en la etapa de inicializacién 7.

Calcular los valores de S, ; , R;; y Rv; , como en el paso de inicializacién 8 e
iniciar una nueva secuencia de cdlculo de bucle interno en el paso 9.

45

Algunas dificultades de convergencia surgen principalmente debido a pobres estimaciones
iniciales y/o especificaciones de la columna que no se logren alcanzar. Aunado a estas
dificultades se encuentran la gran variacion en la magnitud relativa de las variables, errores
de redondeo, y las matrices dispersas que resultan de las ecuaciones.

Las estimaciones iniciales pobres se traducen en flujos negativos o cero en ciertos luga-
res de la columna. Para contrarrestar esta tendencia, todos los factores de despojamiento
por componentes utilizan un multiplicador escalar, S, llamado factor de despojamiento
base, lo que resulta en:

Si; = Syt ;S ; (2.55)

El valor de S, se elige inicialmente para forzar a los resultados del procedimiento de
inicializacion para establecer una distribucién razonable de los flujos de los componentes
a lo largo de la columna. Boston & Sullivan (1974) recomiendan calcular un nuevo S, para
cada nuevo conjunto de valores de S, ; mientras que Russell (1983) recomienda que S, se
calcule sélo una vez.

Con la precision superior y las capacidades de los métodos modernos, una columna de
destilacion no debe ser disefiada sin ellos. Un cdlculo realizado por un método aproximado
es inferior en cuanto a precision, y en algunos casos puede dar resultados falsos. En trabajos
de disefio de columnas el papel de los célculos cortos se limitan a la eliminacion de las
opciones menos deseables de diseno, proporcionando al disenador una estimacién inicial
para utilizar seguidamente los métodos rigurosos y dar solucién de problemas de disefio
final. Asi, los métodos rigurosos se utilizan como técnica principal en el disefio primario y
optimizacion (Kister, 1992; Seader et al., 2011).

46

Procedimiento de Inicializacion

Actualizar Variables de lteracion
& S

¢Emplear Método

de Newton-Raphson? -
éEsic = 07 Verdadero

Calcular Jacobiario -

>

Verdadero Falso

Falso

Calcular correciones:de variables’

Calcular:correciones de variables:>
de iteracion por Néwton-Raphson i)

deiteracion por. Broyden |

¢Emplear Factor
de Amortiguamiento t?

Verdadero

1 Determinart i
_por. Minimizacién de Brent 5

Falso

Aplicar-ta‘las correciones de -
variables de iteracion

+ Calcular nitevos valores de
Funciones de Discrepancia -

Calcular sumatoria de cuadrados de
Funciones de Discrepancia (sumF)

ésumF < tolerancia establecida Falso
para bucle interno?

Verdadero

- Calcular-pardmetros Ky h a partir
de modelos termodindmicos Rigurosos

" Calcular volatilidades relativas alfa;; partir
de:modelos termodindmicos Rigurosos

Calcular el cuadrado del error relativo de volatilidades relativas alfa;/; partir - e
de modelos termodinamicos rigurosos respecto alos calculados por métodos aproximados(Erroralpha)

R . . Falso
iErroralpha < tolerancia establecida

para bucle externo?
Verdadero

Convergencia Satisfactoria

Figura 2.8: Diagrama de flujo general del algoritmo INSIDE-OUT de RUSSELL (1983)

47

La columna de destilacion es probablemente la unidad mds sofisticada en la simulacién
de procesos quimicos. La disponibilidad de las computadoras ha hecho posible el uso de los
métodos de solucion riguroso para columnas de destilacion basados en el modelo de etapa
de equilibrio para sistemas multicomponentes.

Dentro de la clasificacién de los distintos métodos rigurosos aplicados para la simula-
cién de columnas de destilacién, se mencioné un conjunto de métodos en particular, los
métodos homotdpicos y los métodos basados en velocidades de transferencia de masa o de
No-equilibrio. El modelado de columnas de destilacion basados en estos ultimos pueden
superar en cierta medida las deficiencias de los otros métodos. Por ejemplo, los méto-
dos homotdpicos resultan particularmente eficientes para soluciones liquidas altamente no
ideales y cuando se tienen pobres estimados iniciales, mientras que los métodos de No-
equilibrio, superan las deficiencias del modelo de etapa de equilibrio al incluir pardmetros
de transferencia de masa dentro del conjunto de ecuaciones MESH, con la finalidad de
desarrollar un modelo mas adaptado a la realidad (Perry & Green, 2008; Kister, 1992).

A pesar de las grandes ventajas que estos métodos pueden brindar. Una gran limitacion
de los métodos homotdpicos por ejemplo, es su consumo de computo y de tiempo para
presentar una solucién. Los métodos basados en el modelo de No-equilibrio requieren el
conocimiento de pardmetros criticos, tales como los datos de transferencia de masa, o la
geometria del dispositivo de contacto y que comparado con los modelos de etapa de equili-
brio estos ultimos pueden ser calculados independientemente de datos de la geometria de
la columna o de los pardmetros de transferencia de masa (Kooijman & Taylor, 2000; Kister,
1992).

Esto conduce a que los modelos clasicos de la etapa de equilibrio sean los mas practicos
y los mas utilizados. En particular el método Inside-Out Russell (1983) resulta méas simple
de implementar en comparacién con los modelos homotépicos y de No-equilibrio. Aunque
la convergencia del método Inside-Out no estd garantizada, el método posee una robustez
razonable y funciona adecuadamente con la mayoria columnas fraccionadoras empleadas
en la industria petrolera nacional, ademads de que es computacionalmente eficiente (Seader
et al., 2011; Kister, 1992).

Por estas razones se elige al método Inside-Out de Russell (1983) para su codificacion e
implementacién dentro de DWSIM con base en su arquitectura de software.

48

Capitulo 3

Arquitectura del Simulador de Procesos
DWSIM

En el capitulo 1 se resalté que la simulacién de procesos quimicos estd naturalmente
vinculada al uso de programas de computador denominados simuladores y que éstos difie-
ren ampliamente en su arquitectura e implementacién. Pero a pesar de estas diferencias, la
mayoria de los simuladores que se utilizan actualmente son aplicaciones monoliticas cerra-
das que se basan en arquitecturas de software tradicionales (Barrett et al., 2007; Pernalete
et al., 2012).

A lo largo de los tultimos afios, se han propuesto nuevas arquitecturas para el desa-
rrollo y la implantacién de software complejo asi como el desarrollo de nuevos lenguajes
de programacion, algunos de los cuales han ganado un enorme éxito en los ultimos afos
(Braunschweig & Gani, 2002). De esta manera por un lado se introduce un nuevo tipo de
paradigma de programacién adoptado por la comunidad de desarrolladores denominado
programacion orientada a objetos (POO), el cual implica la creacién de modelos del mundo
real y la construccién de programas informdticos basados en esos modelos. Por otro lado
la introduccién de un nuevo tipo de arquitectura para simuladores de procesos basada en
estdndares abiertos definidos en términos del diseflo conceptual mencionado en la seccién
1.2.3.

Tal es el caso de DWSIM, un simulador de procesos quimicos en estado estacionario
que esta desarrollado bajo este nuevo paradigma de programacién inspirado ademas en
un PME basado en arquitectura CAPE-OPEN planteada por Barrett & Yang (2005) cen-
trada en ofrecer interoperabilidad entre componentes de software de un simulador de
procesos quimicos. Ademds DWSIM es una aplicacién que se destaca por ser el Unico
simulador de procesos quimico a nivel mundial disponible bajo licencia libre y compati-
ble con los estdndares CAPE-OPEN, brindando las ventajas discutidas anteriormente en
la seccién 1.2.2. DWSIM fue creado en 2006 por el Ingeniero Daniel Wagner Oliveira de

49

Medeiros y actualmente siendo desarrollado junto con Gregor Reichert y Gustavo Leén.
Las actividades relacionadas con el desarrollo de DWSIM se actualizan regularmente en
http://dwsim.inforside.com.br/blog/index.php (Wagner, 2006).

El siguiente capitulo tiene como finalidad la descripcién de la arquitectura del simula-
dor de procesos DWSIM junto con una breve descripcién del cédigo fuente, para la cual
fue necesario apoyarse en la ingenieria inversa, mediante el andlisis sintactico de su c6di-
go fuente, extrayendo los aspectos generales importantes del simulador. De esta manera
se logré comprender la organizacion general del simulador e identificar los componentes
especificos involucrados para la simulacién de columnas de destilacién.

De acuerdo al nivel de responsabilidad dentro del desarrollo de software, son muchas
las partes involucradas y de interés en su arquitectura (Kroll & Kruchten, 2003). Una unica
representaciéon de la arquitectura del sistema resultaria demasiado compleja y poco titil,
pues contendria mucha informacidn irrelevante. Es por ello que se plantea la necesidad
de representaciones que contengan unicamente elementos que resultan de importancia
mediante el uso de vistas arquitectonicas.

Buschmann et al. (2007) establece que una vista arquitecténica representa un aspecto
parcial de una arquitectura de software, que muestra propiedades especificas del sistema.
Asi, se puede definir a una vista arquitecténica como una descripcion simplificada o abs-
traccion de un sistema desde una perspectiva especifica, que cubre intereses particulares y
omite entidades no relevantes a esta perspectiva (Kroll & Kruchten, 2003).

En este sentido, se puede representar DWSIM en una vista arquitectonica general, so-
bre la cual es posible identificar los elementos principales del simulador de procesos y
una vista arquitecténica mds especifica donde se identifican las clases y objetos relevante
involucrados en la simulacién del proceso de destilacion.

3.1. Vista Arquitecténica General

Una vista general de la arquitectura del simulador se presenta en la Figura 3.1. La apli-
cacion consta de 3 elementos principales, Ejecutivo del Simulador, Médulo de Serializacidon
y La Interfaz Grafica de Usuario (GUI).

50

Interfaz Grafica
de Usuario
(GUI)

Mddulo
de Serializacion

Figura 3.1: Arquitectura General de DWSIM

s Ejecutivo del Simulador:

Considerado el corazén del sistema. Su funcién es gestionar tanto las tareas de calcu-
lo y de intercambio de datos, como por ejemplo las secuencia de célculo, la recupe-
racion de los pardmetros de propiedades fisicas y termodindmicas, rutinas para las
operaciones unitarias, seguimiento para la convergencia y gestion del sistema de ar-
chivos de datos, asi como las bibliotecas de clases de componentes que implementan
la funcionalidad especificada para las interfaces CAPE-OPEN.

m Moddulo de Serializacién

Forma una unidad légica o biblioteca que permite controlar coémo los objetos y estruc-
turas de datos se traducen en un formato especifico legible para el usuario que puede
ser almacenado en memoria o transmitido por una conexion, proceso que se conoce
como serializaciéon (marshalling en inglés). La serializaciéon es un mecanismo usado
en gran medida para transportar objetos a través de una red, para hacer persistente
un objeto en un archivo o base de datos, o para distribuir objetos a varias aplicaciones
o localizaciones (McMonnies, 2004).

e La Interfaz Gréfica de Usuario (GUI)

Su funcién principal consiste en proporcionar el entorno visual para permitir la comu-
nicacién del usuario con el simulador. DWSIM por seguir una estrategia de solucién
modular secuencial, su GUI, se encarga de ayudar a dibujar el diagrama de flujo de
proceso, proveer al usuario mediante un conjunto de imdgenes y objetos grafico, las
distintas ventanas para introducir las especificaciones para las operaciones unitarias,
asi como la configuracién de paquetes de calculos termodindmicos y rutinas de calcu-
lo para la simulacién.

51

3.2. Arquitectura del Ejecutivo del Simulador

Dentro del ejecutivo del simulador de DWSIM se encuentran los bloques de cédigo que
conforman las partes principales de la aplicacién. A nivel de POO, estos bloques pueden
ser representados como médulos o un conjunto de funciones relacionadas denominados
objetos.

Las tecnologias orientadas a objetos se han convertido en uno de los motores clave de
la industria del software. El desarrollo de programas orientados a objetos es un enfoque
diferente del mundo informdtico que supera y amplian conceptos antiguos de la programa-
cién estructurada tradicional, en la que los datos y los procedimientos estan separados y
sin relacion. Implica la creaciéon de modelos del mundo real y la construcciéon de programas
informaticos basados en esos modelos (Aguilar, 2003).

En este sentido, el ejecutivo de simulacién de DWSIM se divide en objetos auto conte-
nidos que representa una parte diferente de la aplicacién. Sin embargo en la POO, desde
el punto de vista técnico se habla de clases y no de objetos, dado que las clases equivalen
a modelos o plantillas que describen cdmo se construyen dichos objetos. Cada vez que se
construye un objeto a partir de una clase se estd creando lo que se denomina una instancia
de esa clase (McMillan, 2004). Por consiguiente, los objetos no son mas que instancias de
una clase. En un contexto del mundo real, se puede pensar en "Columna" como una clase
y una columna concreta con determinadas dimensiones, numero de etapas y determinadas
especificaciones como una instancia de esta clase “Columna”.

3.2.1. Diagrama de Clases del Ejecutivo del Simulador

Una clase por lo general representa un sustantivo, lugar o cosa. Describe lo que sera
un objeto, pero no es el objeto en si. Es el modelo de un concepto dentro de un programa
de computadora. Fundamentalmente, delimita los posibles estados y define el comporta-
miento del concepto que representa (Aguilar, 2003; McMillan, 2004). Encapsula el estado
a través de espacios de almacenaje de datos llamados atributos o, lo que es lo mismo, sus
propiedades o caracteristicas, y encapsula el comportamiento a través de secciones de c6-
digo llamadas métodos que acceden a los atributos de una manera predefinida (McMillan,
2004).

En la Figura 3.2 se muestra el diagrama de clases general de DWSIM donde describe
la estructura del ejecutivo del simulador mostrando algunas de sus clases principales. El
diagrama de clases es la descripciéon mas importante y mas utilizada de un sistema orien-
tado a objetos. La recuperacion del diagrama de clases a partir del cédigo fuente es una

52

tarea dificil. La decision acerca de cuéles son los elementos para mostrar u ocultar afecta
profundamente a la capacidad de uso del diagrama (Tonella & Potrich, 2005).

53

ssep)

wipuoBivusers
ssep)

wipuoB)vysey
ssep
um:a_«mu.EE_Zmnew

wipLobivusert
ssen
n.ma__va_m:m..w_:-:en_:eauom

winobivusel
ssep)
nmmnno..vaﬁoz

uolpdeay

ssen
{
\.

ﬂ o g mmm_uu_._wz:zm:_a M
ﬁ o abeydeghriadord

wipiobjyusey

aiqrsiwwisdooipajson

ssepy
J1ss5doopaiseN

wiLguoBivyser

ssep)
Imadwig

wepnoblvuser

ssep
uneyad Z~m>>0

P

ssep) Ewgczm z ~

H EEE&E&L

pads "spa{gouonentuig
M ss8(D
asnfpv

“oseg spsfqouonenuis
ssel)
weangibiaug

“aseg spalgouoenwIS
ssep)

H weasgielalen
S

mmmD u:wxczmzz

. : w@.m\.uwmmhic\auwmh bum\neeeaw\:gm

[eis g =

S5O0 WOUULST

4

SB[
am._.&:.n

asiBAuLyL |

ssepd

Jueuiuuaiaq

ssep

N TsPafqouoneIMIS
ssep
onuadgede) i

e..n W

pas——— s,
|
o

sepepmn
ssep) _
s90sapepun |

sapepun |
ssen m
STIONIs3pepin |

sapepin
ssep
1Ssepeplun

TN

ssep
10843AU0D

ssepD
sepepiun

j

SN spslqouoneinuis

UNTSR(gouoReINUIS

ssep
uwnedINHoYs

“un”spRqouoRRINWIS
ssep

1obueyox3esH

“unTspefqouoReNug
=T}
Jossaidwio)

“WNTSPS{ouonRnIg
ssepD 1
aafeA

“un”spalgoucgenuis

SSRD WRYUISOIW
wnjon

N SPB[AOUORRINUIS
ssery

123e9H

W spafgouoneInwis
ssep
-+ edegyuauodwo)

“3unsslqouoReINwS
ssepy
aopuedxy

N salgQuone(nulS

ssepy
dwing

“JUN”SPR(GoUoREINWIS
ssep

o4

N spafgoucnenuig
ssep
onuadpade)

“auNTsalgouoReNWIS
ssepy
huz__nm

“unspafqouonelnuls

ssep)

“uNTSPalqouoneINWIS
ssep
soxipABisug

TINTSIRGOLCHeINUES
ssep
aphloay

“INTR(GOUORBIRWHS
3510
Yuel

“qun"SBqoUoRRINWS

sseD
211410

“IUNTSPI(qouOREINWIS
ssepy
onwosny

WU spalgouoneInuIS

ssep
appArayAbiouz

“IuNTRGOUORRINWS
sse |

103e1edagSpiios

“yun”swalqouonenis

ssep
19Xt

“HUNTSIR(gou0RRINUIS
ssepy

13j00)

S5eD) ILBUUIIS
S A0§I0Y

I*« AU salgouoneInwis

v

L SSRID USSR
mm&%mwﬂ&ghs hum\&bke.amisﬁ

)

e

de Clases Simplificado de DWSIM

iagrama

D

Figura 3.2

54

En este diagrama se observa las clases de los componentes de modelado de proceso
(PMC) para su uso dentro de la interfaz gréfica de usuario, es decir, sobre el diagrama de
flujo dentro de la simulacién. Se muestra las clases especificas tales como las correspon-
dientes a los modelos de propiedades termodindmicas (PropertyPackage, FlashAlgorithm),
las clases de reacciones quimicas (Reaction, ReactionSet), algunas rutinas de célculo ma-
tricial (TRInverse, Determinant, Inverse). También la clase de operacién unitaria que
implementa la funcionalidad especificada para las interfaces CAPE-OPEN (CapeOpenU0).
Existen otras clases que actian como clases auxiliares de los PMC, que por fines prdcticos
no se muestran en el diagrama. No obstante, se muestra un completo diagrama de clases
de DWSIM en el Apéndice C.

Aunado a esto se observa que las clases se organizan en una estructura arbérea siguien-
do una jerarquia. En este sentido, las clases base se dividen en subclases empleando el
concepto de herencia, el cual es una relaciéon que se da entre una clase general y otra clase
maés especifica (McMillan, 2004). Asi, las clases derivadas o de menor jerarquia heredan
las caracteristicas (atributos y métodos) de su clase base o clases superiores.

Cada clase contiene cierto nimero de atributos, cada uno de los cuales tendra, a su
vez, uno o varios valores. En la POO, los atributos corresponden a las cldsicas "variables”
de la programacién estructurada. Son, por lo tanto, datos encapsulados dentro del objeto.
Los atributos de un objeto pueden tener un valor inico o pueden contener un conjunto de
valores mas o menos estructurados (matrices, vectores, listas, etc.), que ademds pueden
ser de un determinado tipo (integer, string, float, char .etc) (Aguilar, 2003; McMonnies,
2004). Junto con los atributos de las clases se encuentran los métodos, que son funciones
que operan sobre los atributos de los objetos, y proporcionan el comportamiento del objeto
(Tonella & Potrich, 2005).

3.2.2. Diagrama de Objetos de Columna de Destilacién

La clase SimulationObjects_UnitOpBaseClass es la que contiene las caracteristicas
comunes a los PMC de operaciones unitarias concretas utilizadas, es una clase de la que
no se puede crear objetos, la utilidad de estas clases estriba en que otras clases here-
den de ésta. Dentro de la categoria de PMC destinados para la simulacién de opera-
ciones unitarias, se encuentra la clase Column, ésta hereda los atributos y métodos de
la clase madre SimulationObjects_UnitOpBaseClass y a su vez se deriva la subclase
DistillationColumn la cual contienen atributos y métodos adicionales para la instancia-
cién e inicializacion de una la columna de destilacién.

55

I

~

o

b ; v
(Column } { Stage InitialEstimates ColumnSpec
MustInherit Class ; Class Class Class
SimulationObjects_UnitOpBaseClass i
\ / Atributos Atributos Atributos
w _eff < _ligcompositions 4 m_compID
w _f s _ligmolfiows % m_compindex
v _k +, _stagetemps + m_stagenumber
(DistillationColumn v ¥ _vapcompositions v m_type
Class , _lin «, _vapmolflows i M_unit
Column « _lout Métodos % m_value
s s = LigCompositions Métodos
Atributos v _name =$ LigMolarFlows £¢ ComponentID
, _Sm v P = StageTemps =& ComponentIndex
Métodos “' —? =& vapCompositions ':?J SpecUnit
¢ SolvingMethod : —v =4 VapMolarFlows :v SpecValue
=& GetProperties - =¢ LoadData =% StageNumber
=% GetPropertyUnit A =% New =§ SType
2% GetPropertyValue o vout =4 SaveData =¢ LoadData
=G New (+ 1 overloa v Vs =% New
=% SetPropertyValue Métodos il ¢ SaveData
=¢; Efficiency C)
=G F : e
- =% Kvalues Parameter
o G| Class | —
StreamInformation EZ E:ut Atributos NaphtaliSandholmMeth
Class =g Lss « maxval Class
= Name % _minval
Atributos =5 P «, M_type Atributos
-1 2% Q Wy M_value N _bx
*_bhv =G T Métodos % _condtype
v flow =GV =4 Maxval v dbx
-1 =4 Vin =& Minval o _eff
e _name =% Vout =¢ ParamType o-F
% _ph =4 Vss =G Value e
. _sideopid =% LoadData =§ LoadData “_HF
w_t =4 New =¢; SaveData “w _Kval
N9 _tag R =% SaveData =& ToString LSS
Métodos e _maxF
=4 AssociatedStage N o s _NC
=$ FlowRate v NS
¢, 1D i ——————— W _P
=¢ Name WangHenkeMethod W Tomich v _Pp
=% SideOpID Class i Class " Q
=4, StreamBehavior s _Spcil
= StreamPhase 1 Métodos ! Métodos < _SpCi2
=§ StreamType L =% Solve ‘& =$ TDMASoIve v _Specs
=& Tag \, Spvall
=¢ LoadData + _Spval2
% New (+ 1 overload) { BurninghamOttoMethod w w _VSS
=% SaveData Class v llextr
“» ndeps
i Métodos } Métodos
‘ ¢, Solve =& FunctionGradient

=% FunctionValue
=¢ MinimizeError
=% New
=4 Solve

Figura 3.3: Clase DistillationColumn

RussellMethod
Class

Atributos
w A
% _alpha
% _Bj
W bx
e
%, _coltype
e _COndtype
< _dbx
v Dj
L _eff
LB
< _el
w _F
w fe
v _Fi
«_HF
+ _Kbj
Ww_lc
\, _lent
(RN |
+_LSS
o _LSSj
w _maxF
S _NC
< _NS
i P

“ _Specs

w T

w T

Ve

w_vent

v _Vj

v, _VSS

A _VSSj

e _XC

e _yC

“_2C

s llextr

“« ndeps

“Vjj
Métodos
& CalcKbjl
CalcKbj2
FunctionGradient
FunctionValue
=& MinimizeError
=% New
=% Solve
| S

La clase DistillationColumn mediante sus métodos es capaz de interactuar con otros
clases que se muestran en la Figura 3.3, descritas brevemente en la Tabla 3.1, los cuales
hacen posible el modelaje y simulacién del proceso de destilacién multicomponente en

56

estado estacionario. Por otra parte, se muestra una descripcion de los métodos miembro de
la clase RussellMethod en la Tabla 3.2.

Tabla 3.1: Funciones de las clases que interactiian con DistillationColumn

| Nombre de la clase | Funcidn

Stage Modelar la etapa de equilibrio que compone la columna de
destilacién. Gestiona la informacion referente a los distintos
pardmetros involucrados en las ecuaciones de Balance de
materia y Energia.

InitialEstimates Gestiona los valores iniciales para flujos de vapor, flujos de
liquido, perfil de temperatura y perfil de presion de la columna
de destilacion.

ColumnSpec Maneja la informacion relacionada con los valores establecidos

por el usuario para las especificaciones de la columna de
destilacidn asi como el conjunto de ecuaciones y funciones de
discrepancias.

Parameter Clase auxiliar que emplea métodos para devolver valores
maximos y minimos de un conjunto de datos.

Tomich Clase auxiliar donde se implementa el método de resolucion
matriz tridiagonal detallado en A.1.

StreamInformation Gestiona la informacion de las distintas corrientes de materia y
energia que se encuentren acopladas con la columna de
destilacion.

WankHenkeMethod Clase en donde se implementa el método riguroso de punto de
burbuja BP desarrollado por Wang & Henke (1966) descrito en la
seccion 2.2.1.

BurninghamQttoMethod Clase en donde se implementa el método riguroso de suma de
caudales SR desarrollado por Burningham & Otto (1967)
descrito en la seccidn 2.2.1.

NaphtaliSandholmMethod | Clase en donde se implementa el método riguroso de correccién
simultanea desarrollado por Naphtali & Sandholm (1971)
descrito en la seccién 2.2.1.

RussellMethod Clase en donde se implementa el método riguroso Inside-Out

desarrollado por Russell (1983) descrito en la seccién 2.3.

57

Tabla 3.2: Métodos miembro de la clase RUSSELLMETHOD

Nombre del método ‘

Funcion

CalcKbj1

Método que se encarga de determinar y devolver los valores de
K, ; discutido en 2.3.2, a partir de un método simplificado.

CalcKbj2

Método que se encarga de determinar y devolver los valores de
K ; discutido en 2.3.2, a partir del modelo de la ecuaciones 2.36
y 2.37.

FunctionValue

Método que se encarga de determinar y devolver los valores de
las funciones de discrepancia H; discutido en la seccién 2.3.3.
abarca el paso 7 hasta 15.

FunctionGradient

Se encarga de determinar y devolver los valores de los elementos
diferenciales del Jacobiano invocando al método FunctionValue
empleando diferencias finitas descrito en el paso 16.

MinimizeError

Se encarga de determinar y devolver el valor del factor de
amortiguamiento ¢ de la ecuacién A.21 empleando el algoritmo
de minimizacién de Brent.

Solve

Método principal que implementa el completo Algoritmo
Inside-Out de Russell (1983) detallado en la seccién 2.3.3. Este
método encapsula los métodos anteriores, invocandolos segtin

cuando sea necesario, excluyendo el procedimiento de
inicializacion.

New

Un método especial reservado del lenguaje de programacion es
una subrutina por defecto cuya funcion es construir el objeto de
la clase RussellMethod. A pesar de quie se trata de un método
sin pardmetros, este sera invocado cada vez que se construya un
objeto sin especificar ningtin argumento, en cuyo caso el objeto
sera iniciado con los valores predeterminados por el sistema.

3.3. Breve Descripcion del Cédigo Fuente de DWSIM

El cédigo fuente completo y actualizado de DWSIM se almacena de forma publica en la
plataforma de desarrollo colaborativo de software GitHub para alojar proyectos utilizando
el sistema de control de versiones Git https://github.com/DanWBR/dwsim3. DWSIM es-
td desarrollado bajo el lenguaje de Visual Basic .NET orientado a objetos (VB.NET), y que
puede ser compilado con el entorno de desarrollo integrado (IDE) Visual Basic 2010 en su
edicion express 6 el IDE bajo licencia libre SharpDevelop 4. El cédigo fuente de DWSIM dis-
pone de contenedores que administran los elementos necesarios para el desarrollo, como
referencias, conexiones de datos, carpetas y archivos. Estos contenedores se denominan

58

soluciones y proyectos. Asi, el archivo de solucién principal de DWSIM contiene propieda-
des que se pueden acceder mediante el explorador de soluciones del IDE que permite ver
y administrar sus proyectos asociados.

En la Figura 3.4 se muestra una instantdnea fotografica del archivo solucion del cédigo
fuente de DWSIM donde se pueden identificar 6 proyectos, asociados a cada componente
de la arquitectura general descrita en la Figura 1.2.3. DWSIM y NaturalGasPlugin, son pro-
yectos asociados al Ejecutivo del Simulador, el proyecto CustomXMLSerializer con el Mo-
dulo de Serializacién de DWSIM y los proyectos restantes DesignSurface, GraphicObjects,

PropertyGridEx estan asociados al la Interfaz Grafica de Usuario (GUI).

S S

: érfﬁwo Editar

¢ 3 TSN
Herramientaz Ventana

Depurar Buscar Analisis

Ver Generar Ayuda

s P =gy po[e 2 ff Predeterminada ~

|

1

|

|

|

% |

? 8 NaturalGasPlugin

1 7% PropertyGridEx

|
|
|
|
|

!

[4 Errores ‘ [Lista de Tareas "~ Salida

IN106 col21 car2]

Figura 3.4: Instantdnea fotografica del explorador de solucién para DWSIM 3 en SharpDe-
velop 4

59

Dentro del proyecto DWSIM se encuentran contenidos los archivos Scripts del Ejecutivo

del Simulador, especificamente los relacionados con las clases descritas en la seccién 3.2.1.

Los archivos Scripts RigorousColumn.vb y RigorousColumnSolver.vb. Estos archivos con-

tienen los codigos de las clases descritas en la seccién 3.2.2 relacionadas con los cdlculos

rigurosos de la columna de destilacidn, los cuales fueron modificados para efectos de este

trabajo (Apéndice E) tomando como referencia los diagramas de actividades desarrollados

en el Apéndice B. En la Figura 3.5 se muestra la localizacidon de ambos archivos dentro del

proyecto DWSIM.

¢ Depurar ~

= EES

" Referencias
, Fermg

. Interfaces
. Languages
My Project

%y Objects

3 Base

i Ciasses

i . FlowPackages

t . PropertyPackages
i, Reactors

i SpecialOps

© . Streams

i UnitOps

@, , Resources

| Solvers
e ~ommandlineProcessonvt
w eetSolye

oo

G, Streams

UnitOps

o CapeOpenUQOnt
. ComponentSeparatoravb
Lo Compresservb

. Coolervt

. CustomUG.vb

. EnergyMixervd
v Filterah

. Heatervt

. Heatbxchangernb
Mixerwb

. OrificePlatevt

. Plpevb

we Pumpab

- H mn.y
SolidsSeparator,vk
Splitter.vb

. Tankwhk

. Turbinevb

. Valvenb

o veszelvb

o Proyectos

%, Herramientas !

In 351

= Proyectos

& Herramientas |

col 14 carld

in 101 ol 4 carid

Figura

Localizaciéon

de archivos

Scripts

RigorousColumn.vb vy

RigorousColumnSolver.vb dentro del proyecto DWSIM del cédigo fuente

De la descripcion de las clases, objetos y cddigo fuente, se puede concluir que DWSIM

es un software de simulacién de procesos sofisticado, y no una coleccién de algoritmos

desorganizados para la resolucién de los balances de materia y energia de las diferentes

operaciones unitarias. El simulador de procesos DWSIM al estar desarrollado bajo una

60

tecnologia basada en objetos, permite dar un tratamiento sobre las clases de interés para
el programador.

Por otra parte DWSIM cuenta con los elementos necesarios para simular columnas de
destilacion rigurosa exhibiendo las ventajas reconocidas del software libre. Esto permite
a los usuarios ver como se realizan realmente los cdlculos durante una simulaciéon del
proceso de destilaciéon mediante el estudio de su cédigo fuente, lo que brinda una mejor
comprension y llevar a cabo adaptaciones con base a requerimientos propios o mejoras
mediante su modificacién. DWSIM por otra parte es compatible con los estandares CAPE-
OPEN lo que habilita la posibilidad de desarrollar, incorporar y utilizar componentes de
simulacién externos compatibles con el estandar.

61

Capitulo 4

Casos de Estudio

Una vez realizado el estudio de la arquitectura general del simulador de procesos
DWSIM, se logro identificar e inspeccionar las distintas clases y métodos involucrados
en el modelado y simulacién de columnas de destilacién. Y de esta manera realizar la
implementacién del algoritmo Inside-Out de Russell (1983) a través de su codificacién y
posterior mejora. En esta seccién de discuten los casos de estudio empleados para la veri-
ficacion y validacién del algoritmo de resolucién de columna de destilacién implementado
en DWSIM.

4.1. Casos de Estudio de Literatura

Los casos descritos en la Tabla 4.1, donde se muestras las especificaciones y configu-
racién de las columnas de destilacion, se efectuaron con la finalidad de demostrar la con-
sistencia interna del cédigo implementado en el simulador de procesos DWSIM, es decir,
comprobar que la implementacién del céddigo corresponde al algoritmo Inside-Out basa-
do en el modelo de etapas de equilibrio. Para ello, se realizé la lectura del cédigo junto
con un proceso de inspeccion en tiempo de ejecucion para evaluar variables y expresiones,
proceso denominado depuracién de cédigo (debugging) (Aguilar, 2003). De esta manera ve-
rificar que se han introducido adecuadamente los datos y la logica del método Inside-Out
de Russell (1983). Los resultados arrojados por la implementacién realizada en DWSIM se
compararon con los resultados arrojados por los modelos Inside-Out de otros dos simula-
dores privativos, en este caso, el simulador de procesos quimicos PRO/II® y el simulador
ChemSep™ en su version gratuita. Los archivos de simulacion estdn disponibles para des-
cargar por medio del siguiente enlace http://bit.1ly/1iBoSnG. (Password: DWSIM).

62

Tabla 4.1: Caracteristicas de Casos de Estudio de Literatura

\ Caso 1 \ Caso 2 ‘ Caso 3 ‘ Caso 4 [Caso 5 } Caso 6
Presién de Columna (psi) 16,17 100,00 400 20 290,08 239,31
Niimero de Etapas de Equilibrio 16 5 13 30 31 16
AP Caida de Presién (psi) 0,00 0,00 0,00 5 0,00 0,00
Total Total Full-Reflux Total Total Parcial
Tipo de Condensador % Y
N V. Vo v V., V. e N ~r
D=4\
Vapor Producto de Tope (Ibmol/h) 530,000 33,071
Liquido Producto de Tope (Ibmol/h) 46,54 50,000 14,08 110,7 11,023
Producto de Fondo (Tbmol/h) 46,69 50,000 270,000 39,94 330.30 88,184
Retiro Lateral Liquido (tbmol/h) 19,53 6,614
Etapa del Retiro de Liquido 10 3
Retiro Lateral Vapor (lbmol/h) 24,78 81,571
Etapa del Retiro de Vapor 24 13
Relacion de Reflujo 2,00 2,00 1,89 20,00 6,00 4,24
Alimentaciones 1 1 1 1 1 1 2
Metano (Ibmol/h) 160,00
Etano (tbmol/h) 370,00 5,51 1,10
Propano (tbmol/h) 30,000 240,00 110,23113 30,86 13,23
N-butano (Ibmol/h) 30,000 25,00 14,08 110,23113 41,89 39,68
Isobutano (Ibmol/h) 110,23113
N-pentano (Ilbmol/h) 40,000 5,00 19,53 110,23113 11,02 66,14
N-hexano (lbmol/k) 24,78 1,102 9,92
N-octano (Ibmol/h) 39,94
Benceno (Ibmol/h) 46,62
Tolueno (Ibmol/h) 46,62
Presion de Alimentacion (psi) 16,17 100,00 400,00 25,00 290,08 239,31
Temperatura de Alimentacion (°F) Temp. de Burbuja Temp. de Burbuja 105,00 150,00 207,77 151,79 235,67
Etapa de Alimentacion 5 3 7 14 13 6 9

en las Figuras 4.1-4.3.

63

Primero se realizé una comparacion global de los distintos casos tomando como referen-
cia los valores obtenidos por el algoritmo. Se establecieron como variables de comparacién
las temperaturas, los flujos de calor tanto del condensador como del rehervidor asi como
el nimero de iteraciones obtenidos por cada uno de los simuladores, los que se muestran

Se confirma claramente la reproducibilidad de los datos arrojados simuladores de proce-
sos. Se muestra concordancia entre los valores de temperaturas y flujos de calor predichos
por cada simulador en las Figuras 4.1 y 4.2. Sin embargo para el caso numero 5 se observan

diferencias significativas en los valores de flujos de calor arrojados por DWSIM en compa-
racién con los reportados por PRO/II® y ChemSep™, especificamente una diferencia de
aproximadamente -0,737 MMBTU/, respecto al valor promedio -3,92 MMBTU/, de flujo de
calor en el condensador y una diferencia de 0,3724 MMBTU/}, respecto al valor promedio de
4,35 MMBTU/, de flujo de calor para el rehervidor. Seguidamente del caso niimero 6 donde
existe una leve diferencia significativa con respecto a los valores arrojados por ChemSep™.

200 r v - — 300 u
DWSIM DWSIM
PRO/NI® PRO/TT®

ChemSep™ 250

150}
200

1004 =150
100}
50
50}
0b—o 3 0 T
N°Caso NCaso
(a) Temperaturas de Condensador (b) Temperaturas de Rehervidor
Figura 4.1: Comparacion Temperaturas para Casos de Literatura
0.0 :
DWSIM
~0.5 PRO/II®
ChemSep™
~1.0} 35
= ~15| = 3.0}
S S
= 20 =25
g 25 § 2.0
= 30 =5l
~35 = Dwain 10
—40 PRO/II ® 0.5
FEE ChemSep™ 4
—45 1 3 3 3 5 3 0.0
N°Caso
(a) Flujos de Calor de condensador (b) Flujos de Calor de Rehervidor

Figura 4.2: Comparacién Flujos de Calor para Casos de Literatura

Estas desviaciones en la practica, por ejemplo en el drea de disefio, pueden llevar a
disefio inadecuado de equipos, por lo que es responsabilidad del disefiador verificar rigu-

rosamente los resultados antes de tomar decisiones finales de disefio (Taylor, 2007). Esta

64

desviacién de los valores de flujos de calor es consecuencia de los perfiles de composicion

del producto de tope y fondo, los que se muestran en la Tabla 4.2, quienes repercuten

directamente en los célculos de balance de energia.. Se evidencia que los resultados arro-

jados por DWSIM para el caso nimero 5 y 6 reflejan una mejor distribucién y separaciéon

de los componentes en términos de sus volatilidades en la columna de destilacién respecto

a PRO/II®.

Propano (bmol/n) | 107,985 | 107,2948 | 107,316
Isobutano(tbmol/n) | 1,95351 | 2,5291 2,51727
Producto de Tope de Col ’) ’
roducto de Tope de Columna - —am oGy 170,29272 | 0,3915 0,39724
N-pentano(lbmol/) | 0,00019 | 0,0003 | 0,000269
Propano (bmoljn) | 2,24635 | 2,9364 | 2,9150421
Tsobutano(bmol/n) | 108,278 | 107,7021 | 107,714
Producto de Fondo d ’ ’ ’
roducto de Fondo de Columna =) (109,038 | 109,8397 | 109.834
N-pentano(/bmol/n) | 110,231 | 110,231 110,231

(a) Caso 5

__

Etano (1bmol/p) R , s
Propano(lbmol/y) 27,034 26,716 26,434
Producto de Tope de Columna (Vapor) | N-butano(!bmel/n) 0,0438 0,674 0,961923
N-pentano(!bmol/n) 0,00 0,0019 0,0012
N-hexano(lbwel/n) | 0,00 0,00 0,00
Etano (Ibmol/n) | 0,56902 | 0,8129 0,8069
Propano(1bmol/n) 10,3927 | 9,6171 9,3701
Producto de Tope de Columna (Liquido) | N-butano(bwol/n) | 0,06111 0,59 0,8437
N-pentano(lbmol/n) | 0,00002 | 0,0033 0,0025
N-hexano(lbmol/y) 0,00 0,00 0,00
Etano (Ibmol/h) 0,00 0,00 0,00
Propano(lbmol/y) 0,00291 0,1214 0,1936
Producto de Fondo de Columna N-butano(ibmol/n) | 16,0804 | 23,2045 23.8928
N-pentano(lbmol/n) | 61,63087 | 54,8643 54.3196
N-hexano(lbmol/k) | 10,47066 | 9,9946 9.77881

Tabla 4.2: Perfiles de flujos de componentes para productos de tope y fondo

(b) Caso 6

Seguidamente dentro de la comparacion global se muestra en la Figura 4.3 el nimero

de iteraciones que les tomé a cada simulador para converger a una solucién satisfactoria.

65

Se observa claramente que PRO/II® resultd ser el simulador con menor ntmero de itera-
ciones, seguido de DWSIM con 3 iteraciones y 4 para los casos 1y 2 respectivamente. Para
el caso 3 se observa un resultado igualado para PRO/II® y ChemSep™ con 4 iteraciones
y DWSIM con 6 iteraciones, mientras que para los casos restantes se observa una igualdad
entre los simuladores exceptuando a ChemSep™ con 7 iteraciones en el caso 4.

8 » , ' ‘
= DWSIM
7 g PRO/IT®
ChemSep™

Iteraciones
H> (@3] (@)Y

&8

Figura 4.3: Numero de Iteraciones de Casos de Literatura

Abhora realizando una comparaciéon mas especifica, se generaron graficas de paridad
de los valores de las fracciones molares de cada componente mostrados en el Apéndice
D.1 para el caso numero 6 con finalidad de comparar las correlaciones entre los datos de
referencia reportados por Monroy-Loperena & Vacahern (2013) y los datos predichos por
DWSIM, PRO/II® y ChemSep™. Estas grdficas se muestran en la Figura 4.4 donde ademas
se indica sus coeficientes de correlacién (R?) y sus pendiente (m) del ajuste lineal. Consi-
derando que los resultados del simulador que mejor corresponda a los datos de referencia
seran aquellos cuyos valores R?, m sean lo mds cercano posible a 1. Al estudiar la grafica
de paridad y comparando en primer lugar a DWSIM con PRO/II® se evidencia que DWSIM
se ajusta mejor a los datos de referencia que el modelo resuelto por el algoritmo Inside-Out
del simulador PRO/II® en las Figuras 4.4a, 4.4b, 4.4c y 4.4d, en el cual se observa para
caso de DWSIM los coeficientes de correlacién R? son mayores y la pendiente m son mas

66

cercanas a 1. Caso contrario en el caso de las fracciones molares del producto de fondo en
la Figura 4.4e. En segundo lugar realizando la comparacién entre DWSIM y ChemSep™ se
evidencia que ChemSep™ se ajusta mejor a los datos de referencia que el modelo Inside-
Out implementado en DWSIM, ya que que en el caso de ChemSep™ los coeficientes de
correlacién R? son mayores y la pendiente m son més cercanas a 1.

67

: : _ : —
osll — Referencia R2 = 0992 LB 08 | — Referencia | : _ e
© - DWSIM “lle e DWSM R? = 0.909 P
«0.7-{@ @ PRO/I® < || ® PRO/L® m=1.102 m\};)
= @ - ChemSep™ E le - ChemSep™
E 0.6 - - o '§ 0.6 i < 1
= n
O0.5¢ S
— — el
S04/ g
= =
203} B &
3 So. = 0322
S02 N
[
0.1t
0.0 01 02 Q.3 04 05 06) 07 08 0.0 0.1 0.2) 0.3 0.4 0.5 . 0.6 0.7
Fraccién mol de Referencia Fraccién mol de Referencia
(a) Producto vapor de tope (b) Producto liquido de tope
, ‘ _ ‘ = - ,
—— Referencia ; // 07 ,: — Referencia
0.8{e @ DWSIM . - fe e “|le - DWSIM
- PRO/NI® R*=0.975 {e - prRO/T®
m=0.89 & 0.6
@ -0 ChemSep™ {@ @ ChemSep™

<}

N
o o
W (6]

=

NS
=]
>

o

N
<
)

o
[}

e ¢
E\\‘,
(=]

o
e

Fraccién mol Calculada
Fraccién mol Calculada

e
i

00 01 02 03 04 05 06 07 00 01 02 03 04 05 06

Fraccién mol de Referencia Fraccién mol de Referencia
(¢) Retiro liquido lateral (d) Retiro vapor lateral
—_ Referencia
0.6f{e @ DWSIM
© -0 PRO/I®

o
wn

@ -@ ChemSep™ |......

Fraccién mol Calculada
<) o) o
= N w 'S

o
o

00 01 02 03 04 05 06
Fraccién mol de Referencia
(e) Producto liquido de fondo

Figura 4.4: Diagramas de paridad de las fracciones molares de productos del caso literatura

6

68

Estos resultados no solo demuestran claramente la consistencia interna del codigo im-
plementado en DWSIM, quedando verificado el modelo Inside-Out de Russell (1983) ba-
sado en el modelo de etapas de equilibrio descrito en la seccién 2.3.3. Si no que ademas
reflejan que el desempeiio del modelo DWSIM es mejor comparado con el modelo imple-
mentado en el simulador de proceso comercial PRO/II®.

4.2. Casos de Estudio Operacionales

Junto con la verificacién del modelo realizada en la seccién 4.1, se encuentra la va-
lidacién del mismo. Es asi como en esta seccién se comprueba la exactitud del modelo
desarrollado. Esto se lleva a cabo comparando las predicciones del modelo con mediciones
realizadas en sistemas reales.

Fueron seleccionados dos casos de estudio operacionales pertenecientes al circuito na-
cional de refinacién de PDVSA. El primero corresponde a una columna separadora de
compuestos aromaticos del Complejo Refinador El Palito. Las especificaciones y configu-
raciéon de la simulacién se detallan en la Tabla 4.3, donde se muestran dos escenarios
de operacion. El segundo caso a una depropanizadora del complejo FCC Cardén per-
teneciente al Centro de Refinacién Paraguana (CRP), los cuales se detallan en la Tabla
4.5, resaltando que para este tltimo caso se empleé como un paquete termodindmico
externo que lleva por nombre Thermodynamics for Engineering Applications (TEA) apro-
vechando la compatibilidad de CAPE-OPEN existente en DWSIM. TEA esta disponible a
través de la instalacion del simulador de procesos privativo de uso gratuito COCO(http:
//www.cocosimulator.org/index_download.html). La configuracién de DWSIM con TEA
se lleva a cabo durante la seleccién del paquete termodindmico al momento de crear la
simulaciéon del proceso en DWSIM. Seleccionando CAPE-OPEN como paquete termodina-
mico en lugar de utilizar los paquetes nativos de DWSIM y posteriormente seleccionando
TEA en las opciones del Property Package Manager. En la Figura 4.5 se muestra una instan-
tanea fotografica de la ventana de configuracién del paquete TEA en DWSIM.

69

Thermo & Properties | Compound/Component Mapping | Phase Mapping |

CAPE-OPEN Yersion
CAPE-OPEN Thermo Interface Version Ty e 1

Provider Selection

Thermo Server / Prop. Package Manager | TEA (CAPE-OPEN1.1) v Edit |
Property Package { alkanes v Edit
Mame: TEA {CAPE-OPEN 1.1)

Wersion: 2.6.0.12

Yendor URL: http: ffvwwew cocosimulator. oraf

Description: COCO Thermodynamics for Engineering spplications

About: CAPE-OPEN 1.1 Property Package Marager - Copyright 2013 cocosimulator, org

R e e e

Figura 4.5: Instantdnea fotogrdfica de ventana de configuracion del paquete termodinami-
co CAPE-OPEN TEA en DWSIM

De manera andloga al caso de literatura numero 6, se construyen diagramas de paridad
para los distintos casos operacionales a partir de los valores tabulados en el apéndice D.2,
con la finalidad de realizar una comparacion y observar la concordancia de los datos arro-
jados por el simulador de procesos y los datos operacionales reales. En las Figuras 4.6 y 4.7
se muestran los diagramas respectivos del caso operacional niumero 1. Al estudiar los dia-
gramas de paridad en ambos escenarios operacionales, se puede comprobar las fracciones
molares de los componentes arrojados por DWSIM tanto del producto de tope como en el
producto de fondo concuerdan muy bien con los datos medidos en operacion, ya que los
coeficientes de correlaciéon R? y la pendiente m obtenidos de la regresién lineal son muy
cercanos a 1.

70

O e e e
i T r Ly s et Lo B o o [0 e Lz e o B

Tabla 4.3: Caracteristicas de Caso de Estudio Operacional 1

Escenario 1 Escenario 2
A PColumna (psi) 7 6
Nimero de Etapas de Equilibrio 40 40
Total Total
Tipo de Condensador
Presion de Condensador (psi) 16,7 19,7
Producto de Fondo (1b/h) 36725,00 31970,00
Relacion de Reflujo 4.4 4,55
Alimentacion 1 1
Benceno (1b/1y) 3343,325 12857,2452
Tolueno (1k:/1) 18766,662 13131,5033
Etilbenceno(1b/1) 2266,253 2219,3958
P-xileno (1b/n) 2314,302 2266,4504
M-xileno (1b/n) 5665,634 5548,4901
O-xileno (1b/n) 2854,839 2795,8115
Cumeno (1b/h) 104,104 129,7262
1,2,3-Trimetilbenceno (1b/6) 1393,386 1736,3359
Nonano (1b/n) 4,004 0,0
N-propilbenceno (1b/h} 152,151 189,5999
O-Edilroluenc (1b/n) 1277.27 1591,6414
indanc (1b/1) 28,028 34,9263
N-butilbenceno (/1) 1009,003 1257,3466
N-pentilbenceno {Ib/1L) 396,394 493,9576
Bifenil (1b/1) 460,458 573,7892
Flujo Total (1b/h) 40035,81 44826,22
Temperatura (°F) 179,3 243,0
Etapa 17 17
Paquete Termodindmico PR PR

71

1.0f7 : *
— Datos Operacionales
@ -@ DWSIM

3 08}

=

=

=

S 0.6

O

E

= 04}

w0

3

Q

N

& 02

0.0 0.2 0.4 0.6 0.8 1.0

Fraccién mol de Referencia
(a) Producto de Tope

~—— Datos Operacionales /ﬁ
0.5t e e DWSIM :

=
= ‘ iy
. R? =0.9981
O 03} [1086 ‘
&
.\g 0.2 ..
S
Q
S 01
i
0.0F ¢ :
0.0 0.1 0.2 0.3 04 0.5

Fraccién mol de Referencia
(b) Producto de Fondo

Figura 4.6: Diagramas de Paridad para Caso Operacional 1 Escenario 1

72

Fraccién mol Calculada

Fraccién mol Calculada

Figura 4.7: Diagramas de Paridad para Caso Operacional 1 Escenario 2

Ademas, para el caso operacional nimero 1 se muestra en la Tabla 4.4 una comparaciéon
entre las temperaturas de tope y fondo predichas por DWSIM vy las medidas en operacidn,
asi como también los flujos mésicos de producto de tope y fondo de la columna de destila-
cién. Para estas variables se observan porcentajes de desviaciones menores a 2 % en ambos

1.0F .]
= Datos Operacionales /
@ -® DWSIM
0.8}
R%Z=1.0
0.6 m=0.999" .
0.4} . / //
v e
//
e
O.OM/‘ Lo e : s
0.0 0.2 04 0.6 0.8 1.0
Fraccién mol de Referencia
(a) Producto de Tope
— Datos Oper‘acionales
0.4 @ ® DWSIM
0.3}
024
014
0.0+ :
0.0 0.1 0.2 0.3 04

Fraccién mol de Referencia
(b) Producto de Fondo

escenarios de operacion.

73

Tabla 4.4: Porcentajes de desviacioén de variables para Caso Operacional 1

(a) Escenario 1

% Desviacion }

Temp. Producto de Tope (°F) 182,58 183,210 0,344
Temp. Producto de Fondo (°F) | 281,596 283.540 0,686
Flujo de Producto de Tope (**/n) | 3352,233 3308,983 1,336
Flujo de Producto de Tope (»/n) | 36683,580 | 36726,859 0,120

(b) Escenario 2

% Desviacion {

Temp. Producto de Tope (°F) 192,315 194,740 1,245
Temp. Producto de Fondo (°F) 300,234 301,284 0,013
Flujo de Producto de Tope ('/n) | 12877,811 | 12856,000 0,153
Flujo de Producto de Tope (**/n) | 31950,595 | 31970,000 0,061

En cuanto al caso operacional ntimero 2, se muestran en la Figura 4.8 los diagramas de
paridad donde se comparan las fracciones masicas de los componentes para los productos
de tope (4.8a) y fondo (4.8b). De manera similar al caso operacional niimero 1, se evi-
dencia una buena concordancia de las fracciones madsicas predichas por DWSIM respecto
a los datos reales, al presentar valores muy cercanos el coeficiente de correlacién R? y la
pendiente m obtenidas de la regresion lineal.

74

Tabla 4.5: Caracteristicas de Caso de Estudio Operacional 2

A PColumna (kPa)

34,47

Niimero de Etapas de

Equilibrio

30

Tipo de Condensador

Presion de Condensador (kPa) 1999,48
Producto de Fondo (kg/b) 10,576
% Recuperacion Propano 96,0
Alimentacién 1
Ha S (kg/s) 0,01946
Etano (kg/s) 0,02199
Etileno (kg/s) 0,00194
Propileno (kg/s) 1,60316
Propano (ku/s) 4,81219
Isobutano (kg/s) 3,553
N-butano (ke/s) 1,01403
1-buteno (kp/s) 1,4392
Isobuteno (ke/s) 1,88237
Trans-2-Buteno (kg/s) 1,44066
Cis-2-Buteno (kg/s) 1,01054
1,3-butadieno (kg/s) 0,07509
S-metilbuteno (kg/s) 0,00576
IsoPentano (ki/s) 0,00597
N-hexano (kg/s) 0,00064
Temperatura (°C) 83
Prestén (kPa) 2068
Etapa 14

Paquete Termodindmico

CAPE-OPEN Peng-Robinson

75

0.7 — Datos Operacionales | L g
@ -@ DWSIM R2 =1.0

0.5}
0.4}
0.3}
0.2}
01
0.0} @ pre et e |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Fraccién mdsica de Referencia
(a) Producto de Tope

Fraccion mdsica Calculada

— Datos Operacionales
|@ - DWSIM

o
w
S

©

o

a1
:

0.20}
015 .
010

0.05f--

Fraccién masica Calculada

0.00} f

000 005 010 015 020 025 030 035
Fraccién mdsica de Referencia
(b) Producto de Fondo

Figura 4.8: Diagramas de Paridad para Caso Operacional 2

Por ultimo se realiza la comparacién de las temperaturas de tope y fondo junto con
los flujos méasicos de los productos de la columna del caso operacional ntimero 2. Esta se
puede observar en la Tabla (4.6). Se muestra un porcentaje de desviacién de 0.45 % para
la temperatura del fondo de la columna seguido de 2,948 % y 2,395 % para los flujos de
producto de tope y fondo respectivamente y finalmente para la temperatura de tope de la
columna con una desviacion significativa del 15,25 %. A pesar de presentar una desviaciéon

76

con una magnitud mayor al 10% para la predicciéon de la temperatura del tope de la
columna, el modelo representa una descripcién razonable de la columna depropanizadora
al predecir con bastante exactitud las demas variables de operacién y las fracciones masicas
correspondiente a los productos.

Tabla 4.6: Porcentajes de desviacién de variables para Caso Operacional 2

| % Desviacion \

Temp. de Tope (°C) 53,750 , 15,254
Temp. de Fondo (°C) 104,475 104,950 0,453
Flujo de Producto de Tope (%¢/s) | 6,310 6,129 2,948
Flujo de Producto de Tope (*&/s) | 10,576 10,329 2,395

En definitiva, estos resultados muestran que el modelo Inside-Out de Russell (1983) ba-
sado en el modelo de etapa de equilibrio implementado en DWSIM es capaz de reproducir
razonablemente los datos de las columnas de fraccionamiento descritas en los casos ope-
racionales. Ademas, se confirma de manera mas contundente la correcta implementacién
del mismo dentro de DWSIM.

77

Capitulo 5

Conclusiones y Recomendaciones

Conclusiones

1. Selogrd identificar los distintos elementos que conforman el cddigo fuente de DWSIM
a través de una metodologia de ingenieria inversa. Esto permitié identificar tanto la
arquitectura general del simulador y las clases especificas involucradas con la simu-
lacién de columnas de destilacién en estado estacionario para ser modificadas.

2. Se construyeron los diagramas de actividades detallados que describen el algoritmo
del método Inside-Out de Russell (1983) para destilacién multicomponente. Estos
favorecieron la comprensién del método y auditoria del cédigo fuente al permitir
identificar los problemas y las oportunidades de mejora.

3. Se realiz6 con éxito la adaptacién de DWSIM para simular columnas de destilacion
reales pertenecientes al circuito nacional de refinacién utilizando Inside-Out. Esto se
comprob¢ al evidenciar su reproducibilidad junto con otros simuladores de procesos
con casos de estudio de referencia y su eficacia en las predicciones obtenidas con las
simulaciones estuvieron concordancia con los datos operacionales.

4. La compatibilidad de DWSIM con los estdndares CAPE-OPEN brindé la posibilidad de
incorporar paquetes termodindmico externo en escenarios donde existia baja calidad
de los calculos de EVL.

5. La adaptacién de DWSIM se llevé a cabo a través de la participacion de la academia,
la industria y la comunidad de software libre, empleando una metodologia de desa-
rrollo de software colaborativo. A través del uso de la plataforma en linea GitHub
empleando el sistema de control de versiones distribuido GIT, lograndose gestionar
los diversos cambios que se realizaron sobre el cédigo fuente de DWSIM.

78

6. El simulador de procesos DWSIM posibilita su uso como herramienta de aprendizaje
para los estudiantes de ingenieria quimica e ingenieros quimicos, de manera que
permite comprender mejor la metodologia de célculos riguroso no solo del proceso de
destilacidn, sino de otra operacién unitaria disponible sin costo alguno fomentando
el desarrollo de tecnologias propias.

Recomendaciones

1. Estudiar los métodos termodindmicos nativos de DWSIM, ya que presentan un desem-
peflo no satisfactorio en algunos cdlculos de EVL.

2. Adaptar el método Inside-Out para el soporte de reflujos circulantes (pumparounds),
ya que son de suma importancia en el modelaje y simulacién para muchos tipos de
columnas de destilacién en el circuito nacional de refinacién de PDVSA.

3. Mejorar la herramienta para la creacién de pseudocomponentes de DWSIM, ya que se
considera herramienta util para la simulacién de procesos de refinacién para modelar
las corrientes de procesos.

4. En la implementacion realizada se pueden presentar limites erréneos en las variables
de iteracién, que a su vez puede dar lugar a divergencias, especialmente para pro-
blemas de columnas de destilacion complejas o problemas con estimaciones iniciales
deficientes. Por esta razon se recomienda realizar un estudio de optimizacién para
robustecer el algoritmo con técnicas que proporcionen garantias tanto matemadticas y
computacionales més rigurosas.

5. Es importante resaltar que nuevas investigaciones deben ser orientadas hacia el me-
joramiento de DWSIM, por lo que se recomienda incentivar este tipo de proyecto de
investigacién a través de la colaboracion entre la academia, la industria y la comuni-
dad del software libre. En este sentido, las universidades y cualquier otra entidad con
capacidad de investigacién y desarrollo pueden realizar grandes aportes enfocados
en la mejora del simulador, fomentando la cooperacién entre los sectores productivos
y educacion a nivel nacional e internacional.

79

Referencias Bibliograficas

Abella, A., Sanchez, J., Santos, R., & Segovia, M. (2003). Libro Blanco del Software Libre en
Esparia. Espafia: Documentacion Libre GNU.

Aguilar, L. J. (2003). Fundamentos de Programacion: Algoritmos, Estructuras de Datos y
Objetos. McGraw-Hill.

Babu, B. V. (2004). Process Plant Simulation. New Delhi, India; New York: Oxford Univer-
sity Press.

Barrett, J. & Yang, J. (2005). Development of a chemical process modeling environment
based on cape-open interface standards and the microsoft .net framework. Computers &
Chemical Engineering, 30(2), 191-201.

Barrett, W. M., Pons, M., von Wedel, L., & Braunschweig, B. (2007). An overview of the
interoperability roadmap for COM/.NET-based CAPE-OPEN.

Boston, J. F. & Sullivan, S. L. (1972). An improved algorithm for solving the mass ba-
lance equations in multistage separation processes. The Canadian Journal of Chemical
Engineering, 50, 663-669.

Boston, J. F. & Sullivan, S. L. (1974). A new class of solution methods for multicomponent,
multistage separation processes. The Canadian Journal of Chemical Engineering, 52(1),
52-63.

Braunschweig, B. & Gani, R. (2002). Computer-Aided Chemical Engineering: Software Archi-
tectures and Tools for Computer Aided Process Engineering, volume 11. Amsterdam, The
Netherlands: ELSEVIER SCIENCE B.V.

Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous equations.
Mathematics of Computation, 19(92), 577-593.

Burningham, D. & Otto, F. (1967). Which computer design for absorbers? Hydrocarbon
Process, 46(10), 163-170.

80

Buschmann, F., Henney, K., & Schmidt, D. C. (2007). A Pattern language for Distributed
Computing. Pattern-oriented software architecture / Frank Buschmann ..., Vol. 4.; Wiley
series in software design patterns.; Wiley software patterns series. Wiley.

CO-LaN (1999). CAPE-OPEN Next Generation Computer Aided Process Engineering Open
Simulation Environment. Technical report, CAPE-OPEN Consortium.

Culebro, M., Gémez, W., & Torres, S. (2006). Software Libre vs Software Propietario Ventajas
y Desventajas. México: Creative Commons.

Dimian, A. C. (2003). Integrated Design and Simulation of Chemical Processes. Amsterdam;
Boston: Elsevier.

Eckert, E. & Vanék, T. (2001). Some aspects of rate-based modelling and simulation of
three-phase distillation columns. Computers & Chemical Engineering, 25(4-6), 603-612.

Finlayson, B. A. (2006). Introduction to Chemical Engineering Computing. Hoboken, N.J.:
Wiley-Interscience.

Grossmann, I. E., Aguirre, P. A., & Barttfeld, M. (2005). Optimal synthesis of complex
distillation columns using rigorous models. Computers & Chemical Engineering, 29(6),
1203-1215.

Higler, A., Chande, R., Taylor, R., Baur, R., & Krishna, R. (2004). Nonequilibrium modeling
of three-phase distillation. Computers & Chemical Engineering, 28(10), 2021-2036.

Khoury, F. M. (2005). Multistage Separation Processes. Boca Raton: CRC Press.
King, C. J. (1980). Separation processes. New York: McGraw-Hill.
Kister, H. Z. (1992). Distillation Design. New York: McGraw-Hill.

Kooijman, H. A. & Taylor, R. (2000). The ChemSep Book. Germany: Printed by Books on
Demand, 2 edition.

Krishnamurthy, R. & Taylor, R. (1985). A nonequilibrium stage model of multicomponent
separation processes. part i: Model description and method of solution. AIChE Journal,
31(3), 449-456.

Kroll, P. & Kruchten, P. (2003). The Rational Unified Process Made Easy : A Practitioner’s
Guide to the Rup. Addison-Wesley object technology series. Addison-Wesley.

81

Luque, S. & Vega, A. B. (2005). Simulacién y optimizacion avanzadas en la industria quimica
y de procesos. Oviedo: Departamento de Ingenieria Quimica y Tecnolog{a del Medio
Ambiente, Universidad de Oviedo.

Martinez, V. H. (2000). Simulacidn de Procesos en Ingenieria Quimica. Plaza y Valdes.

Martinez de la Cuesta, P. J. & Rus, E. (2004). Operaciones de separacion en ingenieria
quimica. Madrid: Prentice Hall.

MathPro (2011). Introduccién a la refinacién del petréleo y produccién de gasolina y diesel
con contenido ultra bajo de azufre. http://goo.gl/VoA8qt.

McCabe, W. L., Smith, J. C., & Harriott, P. (2005). Unit Operations of Chemical Engineering.
Boston: McGraw-Hill.

McMillan, M. (2004). Object-oriented Programming with Visual Basic.NET.

McMonnies, A. (2004). Object-oriented Programming in Visual Basic .net. Harlow, England;
New York: Pearson Addison-Wesley.

Monroy-Loperena, R. & Vacahern, M. (2013). A simple, reliable and fast algorithm for the
simulation of multicomponent distillation columns. Chemical Engineering Research and
Design, 91(3), 389 — 395.

Naphtali, L. M. & Sandholm, D. P. (1971). Multicomponent separation calculations by
linearization. AIChE Journal, 17, 148-153.

O’Connell, J. & Haile, J. (2005). Thermodynamics: Fundamentals for Applications. Cam-
bridge Series in Chemical Engineering. Cambridge University Press.

PDVSA (2005). Sitio web pdvsa. http://g00.g1/j09zD.

Pernalete, C. (2013). Un agente inteligente para la optimizacién en 1Anea del proceso de
mezclas de gasolina. Master’s thesis, Universidad de los Andes.

Pernalete, C., Torres, B., & Moreno, A. (2012). Reactores de la tecnologia HDHPLUS® como

componentes de simulacion interoperables. Ciencia e Ingenieria.

Perry, R. H. & Green, D. W. (2008). Perry’s chemical engineers’ handbook. New York:
McGraw-Hill, 7 edition.

Pons, M. (2005). What is the cape-open laboratories network (CO-LaN).

82

Russell, R. A. (1983). A flexible and reliable method solves single-tower and crude
distillation-column problems. Chemical Engineering, 90(1), 53-59.

Scenna, N. J., Aguirre, P. A., Benz, S. J., & Chiotti, O. J. (1999). Modelado, Simulacion y
Optimizacion de Procesos Quimicos.

Seader, J. D., Henley, E. J., & Roper, D. K. (2011). Separation Process Principles : Chemical
and Biochemical Operations. Hoboken, NJ: Wiley.

Sorel, E. (1893). La rectification de I'alcool. In Encyclopedie Scientifique Des Aide-memoire.
Gauthier-Villars et fils.

Speight, J. G. (2008). Synthetic fuels handbook properties, process, and performance. New
York: McGraw-Hill.

Taylor, J. R. (2007). Understanding and combating design error in process plant design.
Safety Science, 45(1-2), 75 — 105. Safety by Design Based on a workshop of the New
Technology and Work Network.

Tomich, J. F. (1970). A new simulation method for equilibrium stage processes. AIChE
Journal, 16(2), 229-232.

Tonella, P. & Potrich, A. (2005). Reverse Engineering of Object Oriented Code. Monographs
in computer science. Springer Science+ Business Media.

Torres, R. & Castro, J. (2002). Andlisis y Simulacién de Procesos de Refinacion del Petrdleo.
México: Alfaomega.

Treccani, P. (2008). Encyclopaedia of Hydrocarbons: VOLUME II - REFINING AND PETRO-
CHEMICALS, volume 2. Istituto della Enciclopedia Italiana Iondata da Giovanni Treccani
S.p.A.

Wagner, D. (2006). Dwsim development blog: Notes and discussions about dwsim deve-
lopment. http://g00.gl/8sN4A4.

Wang, J. C. & Henke, G. E. (1966). Tridiagonal matrix for distillation. Hydrocarbon Process,
45, 155-163.

Wayburn, T. L. (1988). A review of continuation methods and their application to separa-
tion problems. Comp. and Sys. Tech. Div. Commun., 11(1), —.

83

Wilson, 1. D., Adlard, E. R., Cooke, M., & Poole, C. F. (2000). Encyclopedia of Separation
Science. San Diego: Academic Press.

Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of Modeling and Simulation.
Orlando, FL, USA: Academic Press, Inc., 2nd edition.

Zereshki, S. (2012). Distillation - Advances from Modeling to Applications. InTech.

84

Apéndice A

Meétodos Numeéricos

A.1. Método de Matriz Tridiagonal

El algoritmo de la matriz Tridiagonal (TDMA), también conocido como el algoritmo de
Thomas, es una forma simplificada de la eliminacién gaussiana que puede utilizarse para
resolver un sistema tridiagonal de ecuaciones.

Apxp_ + Brrg + Chapy = 1, k=1,..n, (A1)
o, en forma de ecuacién matricial Mz = D donde .1, =0y (', =0 (A.2).
, 9 N o)
Ay Bs (4 0 - 15
% I = B e
0 o oo 0 A, By oy e Tp—2 {i 9
o --- . 0 0 Ay By O, Ln—1 f ff,: i
0 - --- 0 0 A, B, Tn 1

La Matriz principal es una matriz cuyos unicos elementos distintos de cero se encuen-
tran en la diagonal principal y en las diagonales adyacentes por arriba y por debajo de
esta.

El TDMA constan de dos partes: una fase de eliminacién hacia delante y una fase de
sustitucién hacia atrds, con la finalidad de resolver o determinar los valores de ;.

1. Fase de Eliminacion

85

a) Es esta primera fase la ecuacién A.2 se convierte a la forma Ux = p. Asi el primer
paso es dividir la fila 1 por B, para obtener z; en funcién de z,:

Bixy+ Cizg = 1),

n 5 i
T — X9 = —
B4 By
Reescribiendo
4 (@ D,
T T = f Ty = e
? B]) i —L—),1
Ty =/ — 1l (A.3)

1| Yy 0 I
t],3_) Coo oo 0 ‘12 &
Ay By Oy 0 XT3 f!f)::
X PPN = e
0 . R O .“ pieets]3”_‘) (\‘I"[-"".Z PR CEn—Q j);r -2
0 i i 0 0 A By, (. Tp-1 1;! i
0 v o 0 0 A, B, Tn o

(A4)

b) Luego la ecuacién A.1 se combina con A.3 para despejar z, resultando en:

I, — '
Ty = —- = T
]J)_) - By — ‘w" 1) s
reescribiendo
(@
Y=
By — Ay
quedando:
To = o — Tl (A.5)

Asi, se reemplazan los valores de los coeficientes A,, By,Cy 'y Do

1’ ~ 0 21 m
0O 1 ~y e e 0 ‘
. B. T2 I
.. _@3 B;g , . e 0 s f);,;
>< .« .. =
0 - - 0 Ay By o T Tn—2 {) -
0 -« -« 0 0 A, B, (,_, T
0 0 0 A B, Ln 1y
(A.6)
¢) Siguiendo esta secuencia, en general se puede decir:
Cy
= —— A7
* = B = v (A7
Dy — Appr—
S A8
= B — Avve (A8)
T = Vg — PrTht) (A.9)

En este punto, con los valores sustituidos Ay < 0, B < 1,Cy < vy Dr + pi la

matriz se ha reducido una forma diagonal superior, por lo que las ecuaciones quedan
en la forma Uz = p (A.10)

1| “ O T
0 1 - 0 I, ’
0 1 -y 0 s o
S T (A.10)
0 -+ -+ 0 0 1 A0 - Ln-2 e
0 - - 0 0 0 1 =~ - \ P
0 e e 0 0 0 1 Tn .
2. Fase de Sustitucion Hacia atras
a) A partir de A.10 para la fila n, (A.9) queda:
Tp = Pn (A.11)

87

b) Los valores sucesivos de z;, se calculan recursivamente mediante sustitucion haca
atras a partir de (A.9), desde la fila n — 1 hasta 1, asi para la fila n — 1:

Ipn—1 = Tn-1 — Pn—1Tn (A.12)

El algoritmo de Thomas evita la acumulacion de errores de truncamiento porque ninguno
de los pasos que implica la sustraccién de cantidades casi iguales. Ademas, los valores cal-
culados de z; son casi siempre positivos. El algoritmo es superior a las rutinas alternativas
de inversion de matrices. Aunque es raro, el algoritmo puede ser inestable si el término
By — Agve_1 es cero o numéricamente cero para cualquier k. Esto ocurrird si la matriz
tridiagonal es singular, pero en casos muy especificos puede ocurrir si es no singular. La
condicion para el algoritmo sea estable es que la matriz sea diagonalmente dominante,
esto es:

IBill = 14 + NIl (A.13)

A.2. Método de Newton-Raphson

En andlisis numérico, el método de Newton-Raphson es un algoritmo eficiente para
encontrar aproximaciones de las raices de una funcion real. Se puede utilizar el método de
Newton para resolver sistemas de n ecuaciones no lineales, lo que equivale a la busqueda
de los ceros de funciones continuamente diferenciables.

Este tipo de sistemas se pueden representar como F'(X) = 0 donde O es el vector nulo de
n componentes, X es un vector de Ry F' es la funcién vectorial dependiente de n variables
reales dada por:

F :R*—>R"

X = (1}1751,'2, o 7.’L‘n>T - F(X> = e (A14)

La iteracion de Newton-Raphson se lleva a cabo mediante la resolucién de correcciones
de la ecuacién matricial para el valor AX de las variables de salida de la forma :

88

<g§> CAXWK —) (A.15)

oF o .
donde —— es el siguiente Jacobiano (n x n):

0X
Oh oh ... oL
dx1 (312 dxp
OF of, 0fz .. ?fz
oy = Jr = b G O (A.16)
Oy Ofy ... O
dzy Oan Oxn
(k)
OF\ ™
AXK) = — , F) A.17
X ()

Las correcciones A X se utilizan para calcular la siguiente aproximacién para el conjunto
de variables de salida a partir de:

XD = x () A X) (A.18)

En este sentido el conjunto de funciones F'(X) se resuelven simultdneamente de forma
iterativa mediante el calculo de un conjunto de valores X sucesivos hasta que los valores de
F(X) se dirigan hacia un criterio de convergencia o valores cero. Durante las iteraciones,
los valores distintos de cero de las funciones se denominan discrepancias o errores.

El procedimiento de Newton-Raphson requiere estimaciones iniciales para los valores
de las variables de iteracion. Basados en estos valores iniciales, se compara la suma de los
cuadrados de las discrepancias o errores de las funciones con el criterio de convergencia 7
para una tolerancia e:

3

T = (]77;)2 < e (A.19)

1

n

7

e=n|>Y (F)]107° (A.20)
=1

Alternativamente, es posible emplear un factor escalar no negativo ¢ denominado factor
de amortiguamiento, que se puede aplicar a los valores de las variables en cada iteracién.

X(k+1) —)((k) + [A)((k> (A.21)

Haciendo que t varie entre valores ligeramente mayores a 0 hasta 2, se puede amorti-
guar o acelerar la convergencia, segiin se requiera para cada iteracién. Lo que se requiere
es un valor de ¢t que minimice la suma de los cuadrados dado por (A.19). Para encontrar ¢

89

en cada iteracién se emplea un procedimiento de optimizacion como busqueda de Fibon-
nacci o minimizacion de Brent. De no existir un valor optimo de ¢, este puede tomar un
valor de 1

90

Apéndice B

Diagramas de Actividades del Método
Inside-Out Russell (1983)

B.1. Diagramas de Actividades Capa-A

91

Determinar los valores

,http://goo.g1/369qu de variables de Iteracién

v

http://goo.gl/wBVG8z

http://goo.gl/j@9qwp [Calcular Funciones de Discrepancia }‘

CEmplear Método de Newton-Raphson?

[Calcular el Jacobiano

http://goo.gl/j03qwp

Verdadero

A

4
Calcular el Jacobiano]

http://goo.gl/j09qwp

{ Determinar Correcién por Newton

Determinar Correcién por Broyden]

. Emplear factor de amortiguamiento t?
¢EmP 9 Verdadero

- Determinar t optimo

http://goo.gl/cvIr7R

por Minimizacion de Brent

!

Calcular valores
de las Funciones de Discrepancia

v

http://goo.gl/j@9gwp

Aplicar Damping Factor
a las variables de iteracién

Calcular sumatoria de los cuadrados de

http://goo.gl/fcBSyy Funciones de Discrepancia (ErrorBI)

¢Es ErrorBi< toleranciaBi?

http://goo.gl/szIpH4

Falso

http://goo.gl/tlryR1l

Verdadero

Calcular parametros K y h a partir
de modelos termodindmicos rigurosos

http://goo.gl/cS1VP2

v

por modelos termodinamicos rigurosos

Calcular los valores de las volatilidades relativas alphai,j

v

http://goo.gl/Urzlivl

Calcular el cuadrado del error relativo entre alphai,j
del método riguroso respecto al del método aproximado (ErrorBE)

¢LEs ErrorBE < toleranciaBE?
http://goo.gl/d8M50m

" Falso

Verdadero

http://goo.gl/YrfL9P { Devolver Resultados]

Apéndice B.1

Diagrama Capa-A-Russell

B.2. Diagramas de Actividades Capa-B

93

MD1AXQ/T8 003/ /:d11y

bCtAow/18°-003//:d33y _

fay ‘(14 ‘[qS uoTdeudlT 9p S@)1qeTJeAn ap
S®)1PIDTUT SOJO01BA JeUTWId18Q

A

sopewtxoldde so}apow 8p iariJed e
y A) soijsweued zende)

4

o
m
Yz
(@}
- O
S ¥
‘@ mm
Q
<

mumnwneou mqumwszﬂw<,m
0>TWI830SI ysel4 Jejndjed

icializacionRI-0

-1nlc

Capa-B

4

29990>/18°008//:d13y

{ 1eTOTUI eanesadws)l ap 1T4od Lmsﬁvmwu

1e30] @dueleg 8p uOTdENI3 Jod
s9jueisuod [7 ap sausojena 8p Jatided e
A 9p souoien A sojonpoud ap soln)y aewrysy

0Japeplap

¢opinbiq A sjodep ap solnj4 ap sauoldewsa uauan 8g?

[p “sdads ‘In ‘sul

‘Im ‘fn ‘1z ‘[4 ‘[d4 ‘dOu ‘su aedTjTO0dSy

.

¢i<ns-1?

Falso Verdadero

¢Es i=0 y Condensador Total?

Verdadero
fesvent > 07?) 4 Y
[xvar[i]:tnsbj[i]] [xvar[i]: Ianj[i]]
Falso Verdadero
L

¢Es i< vent +(ns-1)?

\ 4
["] Falso Verdadero
_J”
¢Es lent >07? ¢Es j< ns-1?
Falso Verdadero Verdadero

LEs Rvj[jj1=17

Falso

i=vent+ns+l |

¢Esi<vent+icnt + (ns-1)?

Verdadero

‘L] Falso Verdadero , —
EJ‘ > xvar[i]=lnRvj[i]
A
L
j=m2+1 l
¢Esj<ns-1? Y
Falso Verdadero
¢Es Rijfj] =17
—»bvar[i]:lanj [m2-1]
N

Apéndice B.2

Diagrama
Capa-B-ActualVarIte

[0btener Especificaciones de Column;l

ti<ns1?

Falso Verdadero

http://goo.gl/mo2Khl

¢ i= 0y Condensador es Total?

{

¢ Es vent>0?

Falso Verdadero

Falso

1 _RIj{i] = math.Exp(xvar([i])]

&j<nc1?

Verdadero

¢ Esi<vent+ {ns+1)?

Falso

Verdadero_(~——
=
g Sl
¢(Esj<nsA?

Falso

Verdadero

[_S[i,j]=Exp(x{i])* _alphali,j]* _sb]

¢ Es Rj[] =17

Verdadero

ml = j+l1

{Rvj (n1-1)=nath, exp(xvar(i]) |

i+t

¢ Es lcnt > 07

vent + ns -1

Icalcular flujos de Liquido) Falso

por Hetodo de Thomas \ Verdadero

Determinar nuevas fracciones de liquido,
flujos de Liguido y vapor ¢ Esj<ns4?

l Falso

¢ Esi<vent+lent+ (ns-1)?

¢ Es RIj[) =1 7

Verdadero

y factores de retiros

v

Calcular Nuevas temperaturas a partir
de las relaciones Kb-Temperatura

!

Determinar Nuevos flujos 1ateralesl

Verdadero l_:
+1

[Calcular las Entalpias de f'lujosl

»{ RUj[m2-1] = math.Exp(xvar(il) |

] i+L+.|

Calcular Q de Condensador y Rehervidor

l Manejo de Especificaciones de Columna]

[Balance Entalpicos en Columna]

!

Sustituir Especificaciones en
balances entalpicos de Columna

v

[Errores{i} = entalp|i]]

v

L Devolver valores de errores J

Apéndice B.2

Diagrama
Capa-B-FuncionValor

B.3. Diagramas de Actividades Capa-C

97

Falso

Falso

http://goo.gl/Moyqu

¢Esi<ns-1?

Verdadero

(s

b = PShj~(1 /(Mss)ﬂ

[e)

!

T e

Lize]

Verdadero

»{ Sb1i1=Kb[i}*V[i)/L1i]]

¢Esj<nc1?

Fatso

L

{atphari1iji=kiji1j1/kolil }

Verdadero

1 ' b++ 1]‘

¢Es i =0y Condensador Totai?

Verdadero

L PSbj*=sb[i] }

¢Esi<ns1?

Falso

Verdaders

¢Esi<ns-1?

Falso

Verdadero

¢InRvj[i]1=0 y InRvj[i){=Infinito?

vent++

&i>1?

Verdadero

SINRY[i]1=0 y InRij[i]=Infinito?

Verdadero

Verdadero

:Es Sbli]=0?

Verdadero

Rvj[i]=1+W[i]/V[i]

Verdadero

bnkvj [i]=math.Log(Rvj[i])J(——-——

¢Es L[i}=0?

Rij[i}=

Verdadero

1+ U[i)/L[4]

bnmj [i]=math.Log(Rtj[i]) }4—-—-—

¢Esj<nc1?

S1i}13)=Sbj[i]*alphali] [11*5 |

Verdadero

Apéndice B.3

Diagrama
Capa-C-estimacionvarlIt

http://goo.gl/OxvLCW

¢i<ns?

Verdadero

Falso

{ sunEtapali) += FIj] - ULj] -

sumColate +=U[i] + W[i]

£Se tiene relacion de Reflujo rr?

Verdadero

¢ Se tiene flujo de productos de Fondo L[ns-1]? ¢Condensador Parcial Reflujo Total?

{ vapratessumFG-L{ns-1] -sumCoLateJ

Verdadero Verdadero

Faiso

Condensador Parcial?

distratessunFG-L[ns-1]-sunCoLate-v[0] }—-———{:]

Verdadero

¢ Condensador Parcial Reflujo Total?

vaprate=sumfFG / 2 - sum(oLatel

Falso

l distrate=sumFG-L[ns-1] -sumColLate l

ii<ns-1?

Falso Verdadero

sumEtapalil+=F[j1-U[j]-W[j]J

o

¢ i<ns-1? $i=07
Falso

¢ Condensador Parcial Reflujo Total?

Verdadero

‘{V[i]:[rr+l}*distrate-F[0] }

Falso

Verdadero

¢Condensador Parcial?

V{i)=[rr+1}*V[8]-F[0]

¢ Condensador Parcial Reflujo Total?

Vii}=vaprate }—-—b{ Llil=vaprate*rr ‘-———

Verdadero

Falso

¢Condensador Parcial? [vid1=(rrea) aistrate-Flo]+vie]]

V[i)=vaprate]———»l Lli]=distrate*rr j

¢i<nsA1?
Verdadero

V[i]=6.8065
L{i)=distrate*rr

L{i)=V[i]+sumEtapa[i} —\I[O]]

Apéndice B.3

Diagrama
Capa-C-EstimadoFlujos

4
&
4

NN N A AR AR .-

L4

-

.
1y

AN

- " o
- ~

~ i 0

http://goo.gl/cUellM

P bl il el 7

-~
-

Capa-C-perfilTempini®
http://goo.gl/cOBebz

[Combinar Fj de la columna}

v

[Calcular presién promedio}

»

Y
[Calcular temperatura de Rocio y Burbuja con nuevas composiciones

i
«

de alimentacion y presion prom de la columna

v

[Establecer T[0]=TBurbuja y T[ns-l]:TRocio]

v

Temperaturas de etapas intermedias mediante]

interpolacion lineal entre T1 y TN

v

[Devolver perfil de temperatura de columna, Tj}

~
% i S e

hZS

O i . O O o s 00

Capa-C-FlashIAlimcomb
http://goo.gl/izRyui

-

¢Esi<ns-1?

Verdadero

Calcular Equilibrio
(presionProm, tempProm, zicomb)

e o o o O o

~

[Calcular parametros de matriz tridiagonal |

Y
[Resolver matriz tridiagonal

Y

[

Devolver valores de flujos de liquido por componente}

h

P L] memmemm——

ttp://goo.gl/qbMvH1

Apéndice B.3
Diagramas:
Capa-C-perfilTempini
Capa-C-FlashIAlimcomb
Capa-C-metodothomas

http://goo.gl/twNvTR

¢Esi<ns-1?

Verdadero

[Tj2[i]LT[i]+1 }

[Tirefril=ril-1]
| KbjTLli]=calckbj (x[i],y[i],P[il, Tillil |
| KbjT2[1]=caleKb(x[i],y[4],PLil, TiLli] |
v

[Hv1[i]=Ca1cEntha1pyD(y[i],leli].P[il.Vapor)k

v

[Hv2[i]=Ca1cEnthalpyD(y[i],Tj2[i],P[i],Vapor}

v

[Hll[i]=CalcEntha1pyD(x[i],le[i],P[i],LiquidglJ

v v

[Li=e] |HL2[i]=CalcEnthalpyD(x[i],Th2[i] P[], Liquido) |

¢Esi<ns-1?

Verdadero

y
(B3 141=nath. Log (KbjLI11/Kbj2[11)/(1/T32[41-1/Ti1[iD) |

v

[Aj[i]:math.log(ijl[i])+Bj[i]*(1/Tj1[i])J

v

[0 til=(Wvilil-Hv21il)/(TiLd1-Tj204D) |

(citil=walil-pj L1+ (TiLli]-T_1iD) |

(Frili=(HLLidI ML)/ (T35 -Ti204D) |

v

(E3 [i1=HULLi]-FFiLE](Tj1L4] -TirefLdD)

it e Apéndice B.3

Diagrama
Capa-C-calcparamKyh

Falso

Verdadero

[Lj [il=sum(lcj[i])]

(vitil=sum(vej[il) }

Verdadero

Falso

http://goo.gl/eTF8Kk

¢Esi<ns-1?

¢Esj<nc-1?

Lejlil [j1=te[§]Li] |

Verdadero

Y

(3++ fe—{ veitirtir=teiringiest

11131 |

¢Esj<nc1?

Verdadero

¢Ljlilt=0?

xc[il[j1=1cli]1[j1/Lj[i] |

Verdadero

Falso

XC[i][j]=1cj[i][j]}

Diagrama

Apéndice B.3

Capa-C-calculofraccionesmol

http://goo.gl/Sufbel

¢Esi<ns-1? ¢Esi> 07

Y

sumU+=Uj [1]

Verdadero * Verdadero

Falso

L i+ J(-——[sumF += F(1i) }(———-{ sumwr+=wj[i] J(———-—-

¢Condensador Total?

Uj[0] = sumF - sumU - sumW - Lj[ns-1] }—-——

Verdadero

Falso

¢Condensador Parcial?

{Uj[0] = sunF - sunl - sumd - Vj[0] - Lj[ns-11]

" Verdadero

A

[Ruter =1+ ujte1 / Lile] Je—

¢Esi<ns-1? ¢Esi>07?

Uilil = (RUj[4] - 1) * Ljli) |

Verdadero Verdadero

L, i+ 4J<——{ Wili] = (Rvj[i] - 1) * Vj[il 4}4—————————

éEsi<ns-1?

Verdadero

¢Esj<nc-1? &Vilil 1= 0?

Verdadero
yelil[3)=veli1[j1/Vj 1]]

Verdadero

yelil[jl=velillj]

omte—— rr————

2c[i][j1=Leli][j1+vei i1 [51/(Li[L1+Vi[i])

Apéndice B.3
Diagrama
Capa-C-calculoNretiros

T O R gy
~

e Capa-C-calcNuevasTemp ™
{ http://goo.gl/RIEcAz
E ¢ i<ns1? E
E \ Verdadero E
é ¢ i<ns1? 4¢;j<nc—1? 5
i Falso Verdadero Falso Verdadero E
i [‘sumaxi[i]+=alpha[i]‘[j]*xc[i] i1 ‘ §

e Capa-C-calcEntalFL

http://goo.gl/b8wwNx |

ci<ns1? g

-

Falso

Verdadero

|Hidv[i]=pp.enta11aea1v(298.1s. Tifil, yCIi])}

v

Hidl[i)=pp.entalldeall(298.15, Tj[i}, xc[i])}

(oHvI11=C51d] » DjLEI*(TjTd] - T(iD)]

{owiii) = Ejrite Firire (Tjtd) - TeiD |

[HI[i] = (Hidl[i]+ DHl[i]ﬂ

DR 2N

. i+ Hv[i] = (Hidv[i] + DHv[il) J
~~~~ - v - - e __','
,”_,._- e e L L L EL L P P PP L e e L L L L e L L L T
’ S
Ay
/s Capa-C-calcDuty .
4 \‘
1
[ iNose i6 Q como del ? ‘l
i
H Falso . / / / H
] T http://goo.gl/YHvhmz |
' '
] ¥
]
: [0[0]= KIIBI‘RU[D!‘LJ'[e]+Hv[D]'Rvj[e]*vj[o]-nvu)‘vj(l)-uf[o)*F[u] 1
- H
: :
1 1
1
: Q[0)= -0[0] H
) ]
' )
4 ]
H ]
1 1
1
: ¢ No se establecié Q como especificacion del rehervidor? 1
' 3
] Falso Verdadero ]
' ]
s ]
1
i i
1 1
' '
' ]
[} |0[ns-1]= Hl[ns-l]‘le[ns-l]'Lj[ns—1]+Hvlns-1]"Rvjlns-l]*\lj[ns-l]-Hi[ns-l]‘Lj[ns—l]—HF[ns-l]'F[ns—l]] !
] 1
H 1
5 1
H 1
1 (j 1
1 Q[ns-1]= -0[ns-1]| M
1 g ]
H 1
1 1
4 ]
H . 1
H ]
' 1
' ]
L) ll
\‘ 'l
.,
b s
s~ '}

-~
O i D e e O 2 o o

Apéndice B.3
Diagramas:
Capa-C-calcNuevasTemp
Capa-C-calcEntalFL
Capa-C-calcDuty




B.4. Diagramas de Actividades Capa-D

105



http://goo.gl/E1C25a

¢Esi<ns-1?
Falso

Kwl{i]=CalcKvalue(x[il,y[i],P[i],TI[1i]) ]

Verdadero

y
K2 (i]=Calckvalue(x[i],y[i],P[il,T[i]+0.1) ]

Verdadero ¢Esj<nc-1?

Falso

dKijT=y[il1[j1*(math.log(Kw2[i]l[j]) k
-math.log(Kwl[il[j]) / (1 / T[i]+0.1)-1/T[i])

Verdadero

Y
& {sudeijT+=abs(dKijT)}

¢Esi<ns-1?

Vi r
erdadero ¢Esj<nc-1?

Falso

Wij[i][j]=abs (dKijTIi1[§])/sundKijTL4] |

Verdadero

¢Esi<ns-1?

Falso /

Verdadero

¢Esj<nc-1?

Kbj{i]+=wij[i][j]*abs(math.log(kij[i][j])
Verdadero

[Devolver Valores Kbj }

Apéndice B.4
Diagrama
Capa-D-calcKbijs




S M G R A o e ay

pemEm———

-~

Capa-D-combFj A

http://goo.gl/iwzkec ¢Esi<ns-1?

http://goo.gl/dxo9f2

Falso Verdadero

combFj+=F[i]

(Esi<ns-1?

Falso

Verdadero Falso

¥

[devolver combFj y zicomb]

®

X
[zicomb[i]=combfij/comej J

Nt o " - 0 8 " " -

A Y

‘

\\ O'
5~~ 'I'

'/" -------------------------------------------------------- . .~“s\
/ Capa-D-interpolTiTn
] \
1
i [
: http://goo.gl/uw3Xah
13 1]
H T[0]=T1 H
: T :
; ;
L] 1]
1
: i
i [Pende:(T[ns-l ;
5 s
: 4 :
] 1
] 3
] ]
: :
] L]
1 1]
E ¢Esi<ns1? E
1 1
] ]
E [TemptempProm:sum(Tj )/len(Tj) ]i‘f Faio Verdadero Tj[i1=T[0]1+PendTj*(i) ] E
i i
1 1
] I
] ]
' I
i @ ’
| /
‘\“ "I

Apéndice B.4
Diagramas:
Capa-D-combFj
Capa-D-interpolT1Tn




T 08 O e e B B o e e e e B e e e e B O o O P
.

td ~
4 -
K4 .
’ : A
! Capa-D-presionProm 3%
1
|‘ ¢ Se tiene el pefil de presiones? :
’ :
H Verdadero -
H :{ presionProm=sum(Pj)/len(Pj q H
[}
i ;
] 1
1] 1
1
H Falso H
1 L3
1 ¢ Se tiene la presion de Tope y fondo? :
) 1]
: Verdadero :
! P[61=Presion Tope | !
i Y i
! [P[ns-l]:Presion 1‘ondo]i H
] L]
: Y :
! [presionProm:(P[ns-1]+P[0])/(2)] H
; :
1} 1
‘ ;
N < ’
‘\ |G S
~..-----—-----------—----------—----—---------—--------.—--------------”'
e e e e e o mmm s m oo
I" “\
; Capa-D-resolverMTD .
{ :
1
1 1
1 . 1
; http://goo.gl/gbMvH1 E
1
: :
L]
= a
: ¢Esi<ne1? 1
H Falso :
1
E U= '
" Verdadero :
]
: ¢Esj<ns-1? :
1 Falso :
1
: isr) >{ deli)[§)=-24j 1) [)*F[i] :
: Verdadeto ¢Es j =0y Condensador Total? E
’ ;
i cBsi<nca? belil 1= (R SEG]] 1
E i Verdadero :
: ) ‘
] Verdadero be[il{jl=-RL{]] f_ﬁ‘ :
i i
' og>0? i
¥ Fatso :
L}
: acli][j)=6 ac[il[j]=1 :
1 i - - [
rdlad
H [‘Lc(i]:TDHAsolve(ac[i],hc[i],cc[i],dc[iﬁﬂ-——— ~ Verdadero E
]
i :
: i< (ns-1)? :
i ;
H cc[i][§1=5[i41, 5] :
: Verdader;) o - :
] ]
1 1
] ]
[ ] 1
' :
1
13 3
[ ™ ]
\ ) !
A ’
Ay 4
\\ I'
’
~~~'-------_-----_-.-----------------------------------------------------------------------------—’—
e
. “\
4 .
4 \)

P LY L L L L P

Cd

.,

[TBurbuja=Ca1cBucT(zicomb, presionProm)l

Y

‘TRocio=Ca1cDewT(zicomb,presionProm

http://goo.gl/iksTev

Apéndice B.4
Diagramas:
Capa-D-presionProm
Capa-D-resolverMTD
Capa-D-tempRocioyBurb

R o -

Capa-D-tempRocioyBurb

’
.’

h2S

O O T o S 5 S5 00 A R R O YR Y U o n o e o

B.5. Diagramas de Actividades Capa-E

109

[n = length(di) ’

v

| citer/=bife1 |

[di[0])=bi[0] Aﬁ

(Esi<n1?

Falso Verdadero
v \ »
[1[n-1] = d[n-1] f [temp:bi[l]-ai[i]*ci[i-l]{1
Y y
i=n-2| l ci[il/=temp '

A
| dilil=(dilil-aili]*dili-1])/temp |

¢Esi>0?

Verdadero —
i++

Falso

&y

y y

pevolver 1 | [ditil-citiiiog)

e |

Apéndice B.5
Diagrama
Capa-E-TDMASolver

Apéndice C
Diagrama de Clases de DWSIM 3

111

www.bdigital.ula.ve

Reconocimiento-No comercial-Compartir igual

Apéndice D

Tablas de Valores para Graficas de
Paridad de Simulaciones

D.1. Caso de Literatura 6
Etano 0,1812 0,1644 0,1715 0,1098
Propano 0,8175 0,5923 0,7994 0,8518
Producto vapor de tope N-Butano | 0,001324 0,2310 0,02909 0,0383
N-Pentano 1E-07 0,0123 3,604E-05 0,0001
N-Hexane 0,00000 2,667E-05 2,377E-08 0,0000
Etano 0,05162 0,05628 0,07320 0,25760
Propano 0,9428 0,4725 0,85004 0,73020
Producto liquido de tope | N-Butano | 0,005542 0,4270 0,07653 0,01220
N-Pentano | 0,005542 0,04390 2,276E-04 0,00000
N-Hexane 0,000 0,00028 3,492E-07 0,00000
Etano 0,007996 0,03425 0,01879 0,020667
Propano 0,9328728 0,3502 0,693 0,7763
Retiro Lateral Liquido N-Butano | 0,0589407 0,5088 0,285 0,2010
N-Pentano | 0,0001898 0,1040 0,00416 0,0020
N-Hexane 0,0000 0,0027 3,0754E-05 0,0000
Etano 1,9E-06 0,003992 1,3334E-04 8,1081E-05
Propano 0,0060455 0,19153 0,04312 0,0321
Retiro Lateral Vapor N-Butano | 0,7967989 0,50933 0,6618 0,6836
N-Pentano | 0,190381 0,2777 0,2796 0,2709
N-Hexane | 0,0067727 0,01742 0,01525 0,0133
Etano 0,00 3,99998E-05 | 7,2438E-07 0,00
Propano | 3,3E-05 0,01540 0,002195 0,001375
Producto liquido de fondo | N-Butano 0,1824 0,2757 0,2709 0,261700
N-Pentano 0,6989 0,6002 0,61598 0,624250
N-Hexane 0,1187 0,1086 0,1109 0,112675

Tabla D.1: Valores de fracciones molares para caso de literatura 6

113

D.2. Casos Operacionales

Benceno 0,9791 0,9994
Tolueno 0,021 0,00060
Erilbenceno 0,000 0,000
Pxileno 0,000 0,000
M-xileno 0,000 0,000
O-xileno 0,000 0,000
Cumeno 0,000 0,000
1,23 Trimetibenceno | 0,000 0,000
Nonano 0,000 0,000
N-propilbenceno 0,000 0,000
O-Etiltohueno 0,000 0,000
Indano 0,000 0,000
N-burilbenceno 0,000 0,000
N-pentilbenceno 0,000 0,000
Bifenil 0,000 0,000
(a) Producto de Tope
Benceno 0,00254
Tolueno 0,5557
Etilbenceno 0,05848
Pxileno 0,05974
M-xileno 0,1463
O-xileno 0,07369
Cumeno 0,0023736
1,23 Trimeilbenceno | O ,03 17694
Nonano 8,56E-05
Npropibencene | 0,0034691
0-Eriltolueno 0,0291224
Indano 0,0006499
N-butilbenceno 0,0206012
N-pentilbenceno 0,0073275
Bifenil 0,0081827

(b) Producto de Fondo

114

Tabla D.2: Valores de fracciones molares para caso operacional 1 escenario 1

Benceno , Benceno s ,
Tolueno 0,001210 0,000 Toluero 0,458749 0,4108
Exilbenceno 0,000 0,000 Frilbenceno 0,0673856 | 0,06941
Poxileno 0,000 0,000 Pxileno 0,0688143 | 0,07088
M-xileno 0,000 0,000 M-xileno 0,168464 0,1735
O-xileno 0,000 0,000 O-xileno 0,0848868 0,08746
Cumeno 0,000 0,000 Cumeno 0,0034791 | 0,004066
1,23 Trimetilbenceno 0,000 0,000 123 Trimeibencene | 0,0465664 0,0543
Nonano 0,000 0,000 Nonano 0,000 0,000
N-propilbenceno 0,000 0,000 Npropibenceno | 0,0050848 1 0,005943
0-Eciliolueno 0,000 0,000 0-riltolueno 0,0426866 0,0498
Indano 0,000 0,000 Indano 0,0009527 | 0,00109,5
N-butilbenceno 0,000 0,000 N-butilbenceno 0,0301965 | 0,0393,2
N-pentilbenceno 0,000 0,000 N-pentilbenceno 0,0107405 | 0,0154,5
Bifenil 0,000 0,000 Bifenil 0,0119939 | 0,01795

(a) Producto de Tope

(b) Producto de Fondo

Tabla D.3: Valores de fracciones molares para caso operacional 1 escenario 1

5 T

& gencens 0,00308 0,00262 Berceno O,bOO ‘ 0,000

Tolueno 0,00349 0,00352 Tolueno 0,000 0,000

Etilbenceno 0,00031 0,00031 Erilbencenc 0,000 0,000

Pxileno 0,25169 0,24520 Pxileno 0,00142 0,000
M-xileno 0,73135 0,73942 Mxileno 0,01868 0,00668
O-xileno 0,00714 0,00637 O-xileno 0,33168 0,33630
Cumeno 0,00014 0,00005 Cumeno 0,09579 0,09704
12,3 vimetibenceno | 0,00098 0,00055 123 Trimetibenceno | 0,13549 0,13744
Nonano 0,00150 0,00096 Nonano 0,17709 0,17961
N-propitbenceno | 0,00020 0,00005 N-propitbenceno | 0,13610 0,13788
0-Etiltolueno 0,00007 0,00002 O-Etiltolueno 0,09550 0,09672
Tndano 0,00004 0,00004 Indano 0,00707 | 0,00716
N-butilbenceno 0,00000 0,00000 N-butilbenceno 0,00054 | 0,00055
N-pentilbenceno 0,00000 0,00000 N-pentilbenceno 0,00056 0,00057
Bifenil 0,00000 0,00090 Bifenil 0,00006 0,00004

(a) Producto de Tope

(b) Producto de Fondo

Tabla D.4: Valores de fracciones mdsicas para caso operacional 2

115

3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141

3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157

Apéndice E

Archivos de Cddigo Fuente Modificados
de DWSIM

E.1. Archivo Script parcial RigorousColumn.vb

Publiic Overrides Fu ion Calculate(Optional ByVal args As Object = Nothing) As Integer

Dim objargs As New DWSIM.Outros.StatusChangeEventArgs

’Validate unitop status.
Me.Validate()

’Check connectors’ positions
Me . CheckConnPos ()

’prepare variables

m llextractor As Boolean = False
I myabs As AbsorptionColumn = TryCast(Me, AbsorptionColumn)
if myabs IsNot Nothing Then
17 CType(Me, AbsorptionColumn).OperationMode = AbsorptionColumn.OpMode.Absorber

llextractor = False
Else
llextractor = True

Dim pp As PropertyPackages.PropertyPackage = Me.PropertyPackage

Dim nc, ns, maxits, i, j As Integer

firstF As Integer = -1

lastF As Integer = -1
Me.FlowSheet.Options.SelectedComponents.Count

nc
ns = Me.Stages.Count - 1
maxits = Me.MaxIterations

Dim tol(4) As Double

116

3158
3159
3160
3161

3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188

3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200

3201
3202

tol(0) = Me.InternalLoopTolerance
tol(1) = Me.ExternalloopTolerance

2ix F(ns), Q(uns), V(ns), L(ns), VSS(ns), LSS(ns), HF(ns), T(ns), FT(as), P(ns), fracv(
ns), eff(ns), _
distrate, rr, vaprate As Double

im x(ns) () As Double, y(ns) () As Double, z(ns)() As Double, fc(ms)() As Double
» idealK(ns) (), Kval(ns) (), Pvap(ns) () As Double

For 1= 0 To ns

v.Resize(x(i), nc)
Resize(y (i), nc)
.Resize(fc(i), nc)
v.Resize(z (i), nc)

.Resize(idealK(i), nc)

Resize(Kval(i), nc)
=7 .Resize(Pvap(i), nc)

Dim osumef(ne - 1), sumF, zm(nc - 1) As Double

im stream As New SimulationObjects.Streams.MaterialStream("'", "'")

o ms As StreamInformation In Me.MaterialStreams.Values

Czge ms.StreamBehavior

> StreamInformation.Behavior.Feed

stream = FlowSheet.Collections.CLCS_MaterialStreamCollection(ms.Name)

pp.CurrentMaterialStream = stream

F(StageIndex(ms.AssociatedStage)) = stream.Fases(0).SPMProperties.molarflow
.GetValueOrDefault

HF (StageIndex (ms.AssociatedStage)) = stream.Fases(0).SPMProperties.enthalpy
.GetValueQrDefault * _

stream.Fases(0) .SPMProperties.
molecularWeight.GetValueOrDefault
FT(StageIndex(ms.AssociatedStage)) = stream.Fases(0).SPMProperties.
temperature.GetValueOrDefault
sumF += F(StageIndex(ms.AssociatedStage))
j=0

Fsch comp As ClassesBasicasTermodinamica.Substancia In stream.Fases(0).

Componentes.Values

fc(Stagelndex (ms.AssociatedStage)) (j) = comp.FracaoMolar.
GetValueOrDefault

z(StageIndex (ms.AssociatedStage)) (j) = comp.FracaoMolar.
GetValueOrDefault

sumcf (j) += comp.FracaoMolar.GetValueOrDefault * F(StageIndex (ms.
AssociatedStage))

j=3+1

firstF = -1 n firstF = StageIndex(ms.AssociatedStage)
Czse StreamInformation.Behavior.Sidedraw
1Y ms.StreamPhase = StreamInformation.Phase.L Then

117

3203 LSS(StageIndex (ms.AssociatedStage)) = ms.FlowRate.Value
3204 Eise

3205 VSS(Stagelndex (ms.AssociatedStage)) = ms.FlowRate.Value
3206 End If

3207 Uzse StreamInformation.Behavior.InterExchanger

3208 Q(StageIndex(ms.AssociatedStage)) = -FlowSheet.Collections.

CLCS_EnergyStreamCollection(ms.Name) .Energia.GetValueOrDefault
3209 End Select

3210 i+=1

3211 Next

3212

3213 Dim cv As New SistemasDeUnidades.Conversor

3214

3215 vaprate = cv.ConverterParaSI(Me.VaporFlowRateUnit, Me.VaporFlowRate)

3216

3217 Dim suml(ns), sumO_ As Double

3218 sumO_ = 0

3219 For i = 0 To ms

3220 suml(i) = 0

3221 For j =0 To i

3222 suml (1) += F(j) - LSS(j) - VSS(j)

3223 Hext

3224 sumO_ += LSS(i) + VSS(i)

3225 Hext

3226

3227 7f Me.Specs("C").SType = ColumnSpec.SpecType.Stream_Ratio Then

3228 rr = Me.Specs("C").SpecValue

3229 REise

3230 rr = 2.5

3231 i) if

3232 1f Me.Specs("R").SType = ColumnSpec.SpecType.Product_Molar_Flow_Rate Th

3233 1f Me.CondenserType = condtype.Full_Reflux Then

3234 vaprate = sumF - cv.ConverterParaSI(Me.Specs("R").SpecUnit, Me.Specs('R").
SpecValue) - sumO_

3235 distrate = 0.0

3236 Elself Me.CondenserType = condtype.Partial_Condenser Then

3237 If Me.Specs("C").SType = ColumnSpec.SpecType.Product_Molar_Flow_Rate Then

3238 distrate = cv.ConverterParaSI(Me.Specs("C").SpecUnit, Me.Specs("C").

SpecValue)
3239 Plse
3240 distrate = sumF - cv.ConverterParaSI(Me.Specs("R").SpecUnit, Me.Specs("R").
SpecValue) - sumO_ - vaprate

3241 Frd If

3242

3243 Flse

3244 distrate = sumF - cv.ConverterParaSI(Me.Specs("R").SpecUnit, Me.Specs("R").
SpecValue) - sum0_

3245 vaprate = 0.0

3246 End 1f

3247 E

3248 if Me.CondenserType = condtype.Full_Reflux Then

3249 vaprate = sumF / 2 - sumO_

3250 Else

3251 distrate = sumF / 2 - sum0_ - vaprate

118

3252
3253
3254
3255
3256
3257

3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304

compids = New Arraylist
compids.Ciezr()

Fer Bach comp As ClassesBasicasTermodinamica.Substancia In stream.Fases(0).Componentes

.Values
compids. ¢ (comp. Nome)

Feor l = ns TO O Step -1
iF F(i) <> 0 Ther
lastF = i

For 1= 0 Tonc - 1
zm(i) = sumcf(i) / sumF

i T1, T2 As Double

e Me.ColumnType

¢e ColType.DistillationColumn
LSS(0) = distrate

Czse ColType.RefluxedAbsorber
LSS(0) = distrate

Seiegth

P(ns) = Me.ReboilerPressure
P(0) = Me.CondenserPressure

cese Me.ColumnType
:z¢ ColType.AbsorptionColumn

T1 = MathEx.Common.Max (FT)
T2 = T1

lzze ColType.ReboiledAbsorber
T1 = MathEx.Common.Max (FT)
T2 = T1

Cage ColType.RefluxedAbsorber
T1 = MathEx.Common.Max (FT)
T2 = T1

Zzse ColType.DistillationColumn
Try

T1 = pp.DW_CalcBubT(zm, P(0))(4) >* 1.01
Catch ex As Exception

T1 = MathEx.Common.Min(FT)
Erc Try

T2 = pp.DW_CalcDewT(zm, P(ns))(4) ’* 0.99
Catch ex As Exception

T2 = MathEx.Common.Max(FT)
na Try

119

3305 End Select

3306

3307 For 1 = 0 To ns
3308 sumi(i) = 0
3309 For j =0 To i
3310 suml (1) += F(j) - LSS(j) - VSS(j)

3311 Hext

3312

3313

3314 T(0) = T1

3315 T(ns) = T2

3316

3317 ’Dim pv(nc - 1) As Double

3318 ’For i = 0 To nc - 1

3319 > pv(i) = pp.AUX_PVAPi(i, (T1 + T2) / 2)

3320 ’Next

3321

3322 ’Dim vapfrac As Double = Me.CalcIdealVapFrac(zm, pv, (P(0) + P(ns)) / 2)
3323

3324 i=0
3325 Fer Zach st As Stage In Me.Stages
3326 P(i) = st.P

3327 eff (i) = st.Efficiency

3328 11 Me.UseTemperatureEstimates Then
3329 T(i) = Me.InitialEstimates.StageTemps(i).Value
3330 Flice

3331 T(i) = (T2 - T1) * (i) / ns + T1

3332 Bug if

3333 1f Me.UseVaporFlowEstimates Then

3334 V(i) = Me.InitialEstimates.VapMolarFlows (i) .Value
3335 Zlse
3336 ifi |
3337 5 & Me.ColumnType

3338 Case ColType.DistillationColumn

3339 1f Me.CondenserType = condtype.Total_Condenser Thexn
3340 V(0) = 0.0005

3341 Eise

3342 V(0) = vaprate

3343 End If

3344 “zse ColType.RefluxedAbsorber

3345 17 Me.CondenserType = condtype.Total_Condenser Then
3346 v(0) = 0.0005

3347 Eise

3348 V(0) = vaprate
3349 End If

3350 Ca :
3351 V(0) = F(lastF)

3352 X GCt

3353 Els

3354 Select Case Me.ColumnType

3355 ¢ ColType.DistillationColumn

3356 if Me.CondenserType = condtype.Partial_Condenser Then
3357 V(i) = (rr + 1) * (distrate + vaprate) - F(0)
3358 ElseIf Me.CondenserType = condtype.Full_Reflux Then

i

w2l e80T

120

3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399

3400
3401

3402
3403
3404
3405
3406
3407
3408
3409
3410

V(i) (rr + 1) * V(0) - F(0)

Elg

va(i)

i

(rr + 1) * distrate - F(0)
:¢ ColType.RefluxedAbsorber
V(i) = (rr + 1) * distrate - F(0) + V(0)
Case ColType.AbsorptionColumn
V(i) = F(lastF)
Czse ColType.ReboiledAbsorber
V(i) = F(lastF)

¥ Me.UseLiquidFlowEstimates Then
L(i) = Me.InitialEstimates.LigqMolarFlows(i).Value

B e

zee Me.ColumnType
ColType.DistillationColumn

:# Me.CondenserType = condtype.Partial_Condenser Then

L(0) = (distrate + vaprate) * rr

ElseIf Me.CondenserType = condtype.Full_Reflux TI

L(0) = vaprate * rr
L(0) = distrate * rr

R

ColType.RefluxedAbsorber

17 Me.CondenserType = condtype.Partial_Condenser ilen

L(0) = distrate * rr

Elself Me.CondenserType = condtype.Full_Reflux Then

L(0) = distrate * rr

L(O§\= F(firstF)
7f L(0) = 0 Then L(i) = 0.00001

s= Me.ColumnType
ColType.DistillationColumn

1f i < ms Then L(1) = V(i) + suml(i) - V(0) Eise
(0)
ColType.RefluxedAbsorber
¥ 1 < ms Then L(i) = V(i) + sum1(i) - V(0) Fise
0

Case ColType.AbsorptionColumn
L(i) = F(firstF)

Czze ColType.ReboiledAbsorber
L(i) = F(firstF)

£

© L(1) = 0 Then L(i) = 0.00001

¥ Me.UseCompositionEstimates Then

121

e

L(i)

L(1)

]

sum1(i) - V

suml1(i) - V

3411 j=0

3412 For Each par As Parameter In Me.InitialEstimates.LiqCompositions(i).Values
3413 x(1)(j) = par.Value

3414 j=3+1

3415 Kext

3416 0

3417 For Each par As Parameter In Me.InitialEstimates.VapCompositions(i).Values
3418 y(i)(j) = par.Value

3419 j=3j+1

3420 Kert

3421 For j = 0 To nc - 1

3422 Kval(i) (3) = y()G) / x@) ()

3423 z(1)(j) = zm(j)

3424 Next

3425 Flise

3426 x(i) = pp.FlashBase.Flash_PT(zm, P(i), T(i), PropertyPackage) (2)
3427 y(i) = pp.FlashBase.Flash_PT(zm, P(i), T(i), PropertyPackage) (3)
3428 z(i) = zm

3429 Fer 3 =0 To nc - 1

3430 Kval(i) (j) = y()(G) /7 @) (P

3431 Rext

3432 ’Dim tmp As Object = pp.DW_CalcKvalue(zm, (T1 + T2) / 2, (P(0) + P(ns)) / 2)
3433 ’For j = 0 To nc - 1

3434 > fracv(i) = Me.CalcIdealVapFrac(zm, Pvap(i), P(i))

3435 » If fracv(i) < O Then fracv(i) = 0.000001

3436 > If fracv(i) > 1 Then fracv(i) = 0.999999

3437 » y(1)(§) = zm(j) * idealK(i)(j) / ((idealkK(i)(j) - 1) * fracv(i) + 1)
3438 > x(1)(G) = y(i)(3) / idealK(i)(j)

3439 »z(D) () = zm(j)

3440 ‘Next

3441 ’Dim sumx, sumy As Double

3442 >sumx = 0

3443 >sumy = 0

3444 ’For j = 0 To nc - 1

3445 » sumx += x (i) ()

3446 > sumy += y(i)(j)

3447 ‘Next

3448 ’For j = 0 To nc - 1

3449 > x(1)(j) = x(1)(§) / sumx

3450 >y (D) (G) = y()(j) / sumy

3451 ’Next

3452 ’For j = 0 To nc - 1

3453 ? Kval(i)(j) = idealK(i) (j)

3454 ’Next

3455 Eng 1t

3456 i+ 1

3457

3458 sese Me.ColumnType

3459 ; ColType.DistillationColumn

3460 Qo) =0

3461 Qns) =0

3462 (ase ColType.ReboiledAbsorber

3463 Q(ns) =0

3464 Case ColType.RefluxedAbsorber

122

3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492

3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516

TO =T
PO =P
VO =V
LO =L
VSS0 =
LSS0 =

‘process specifications
For Eschn sp As Auxiliary.SepOps.ColumnSpec In Me.Specs.Values
17 sp.SType = ColumnSpec.SpecType.Component_Fraction {ir _
sp.SType = ColumnSpec.SpecType.Component_Mass_Flow_Rate Ur

sp.SType = ColumnSpec.SpecType.Component_Molar_Flow_Rate Ux _
sp.SType = ColumnSpec.SpecType.Component_Recovery Thern

i=20
for Tach comp As DWSIM.ClassesBasicasTermodinamica.Substancia In stream.Fases
(0) .Componentes.Values

17 sp.ComponentID = comp.Nome Then sp.ComponentIndex = i

i=1+1

= -1 iud sp.SpecValue = Me.DistillateFlowRate 7

sumLSS As Double
sumVSS As Double
w1 =0 To ns
sumF += F(1)
sumLSS += LSS(i)
sumVSS += VSS(i)
Rext
sp.SpecValue = sumF - sumLSS - sumVSS - V(0)
sp.StageNumber = 0

non
o O

Dim result As Object

& Me.SolvingMethod

0 ’I0

Dim rm As New SolvingMethods.RussellMethod

result = rm.Solve(nc, ns, maxits, tol, F, V, Q, L, VSS, LSS, Kval, x, y, z, fc,
HF, T, P, Me.CondenserType, eff, Me.UseDampingFactor, Me.UseNewtonUpdate,

123

3517
3518
3519
3520

3521
3522
3523

3524
3525
3526
3527

3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546

3547
3548
3549
3550
3551
3552
3553
3554
3555

Me.AdjustSb, Me.UseldentityAsJacobianInverse, Me.ColumnType, Me.
KbjWeightedAverage, pp, Me.Specs, Me.StoreAndReuseJacobian, Me.
JacobianMatrix, Me.IO_NumericalDerivativeStep, Me.IO_MaxVarChgFac, Me.
I0_DampingFactorMin, Me.IO_DampingFactorMax, Me.IO_ExtLoop_DeltaT,
llextractor)
ic = result(9)
ec = result(l1l)
=1 ’BP
result = SolvingMethods.WangHenkeMethod.Solve(nc, ns, maxits, tol, F, V, Q, L,
vSS, LSS, Kval, x, y, z, fc, HF, T, P, Me.CondenserType, Me.
StopAtIterationNumber, eff, Me.ColumnType, pp, Me.Specs)
ic = result(9)
Cese 2 ’SR
result = SolvingMethods.BurninghamOttoMethod.Solve(nc, ns, maxits, tol, F, V, Q
, L, VSS, LSS, Kval, x, y, z, fc, HF, T, P, Me.StopAtIterationNumber, eff,
pp, Me.Specs, llextractor)
ic = result(9)
¢ 3 ’SC
im scm As New SolvingMethods.NaphtaliSandholmMethod
result = scm.Solve(nc, ns, maxits, tol, F, V, Q, L, VSS, LSS, Kval, x, y, z, fc
, HF, T, P, Me.CondenserType, eff, Me.UseDampingFactor, Me.UseNewtonUpdate,
Me.UseldentityAsJacobianInverse, Me.ColumnType, pp, Me.Specs, Me.
StoreAndReuseJacobian, Me.JacobianMatrix, Me.SC_DampingFactor, Me.
SC_MaximumTemperatureChange, Me.SC_NumericalDerivativeStep, Me.
SC_MaxVarChgFac, llextractor)
ec = result(11)

result = Nothing

’{Tj, Vj, Lj, VSSj, LSSj, yc, xc, K, Q, ic, t_error}

Me.CondenserDuty = result(8) (0)
Me.ReboilerDuty = result(8) (ns)

’store final values

:cc (result (6) (1))
1f Me.SolvingMethod = SolvingMethods.DistColSolvingMethod.Russell_InsideQOut Ux
Me.SolvingMethod = SolvingMethods.DistColSolvingMethod.
NaphtaliSandholm_SimultaneousCorrection Then
Dim obj(nec - 1) As Double
For j = 0 To nc - 1
ObJ(J) = result(7) (i, j)

Kf LCJ(obJ)
Me.JacobianMatrix = result(13)

Kf. sdd(result (7) (i))
End 1f

124

3556 Kent

3557 Tf = result(0)
3558 Vf = result(1)
3559 Lf = result(2)
3560 VSSf = result(3)
3561 LSSf = result(4)
3562 Q = result(8)

E.2. Archivo Script parcial RigorousColumnSolver.vb

52 <Svsten.Serializable()> Publ:ic Class Tomich

53

54 ubiic Shared Functicn TDMASolve(ByVal a As Double(), ByVal b As Double(), ByVal c As
Double(), ByVal d As Double()) As Double()

55

56 > Warning: will modify c and d!

57

58 Uiz n As Integer = d.Length

59 > A1l arrays should be the same length

60 Zim x As Double() = New Double(n - 1) {}

61 Dir id As Double

62

63 ’ Modify the coefficients.

64

65 c(0) /= b(0)

66 > Division by zero risk.

67 d(0) /= b(0)

68 ’ Division by zero would imply a singular matrix.

69 ¥or 1 As Integer = 1 Ton - 1

70 id = b(1) - c(@ - 1) * a(1)

71 c(i) /= id

72 > This calculation during the last iteration is redundant.

73 d(i) = (@@@) - d@E - 1) * a(i)) / id

74 Hent

75

76 > Now back substitute.

77

78 x(n - 1) =d@m - 1D

79 For 1 As Integer = n - 2 To O Step -1

80 x(1) = d(i) - c(@) * x(i + 1)

81 Hext

82

83 Return x

84 End Function

85

86 tn¢ Class

87

88 <Svysten.Serializable()> Fubiic Class RussellMethod

89

90 “ut New()

91

92 Fnd Sut

93

125

94

95 ate ¥ n CalcKbjl(ByVal ns As Integer, ByVal nc As Integer, ByVal K(,) As
Object, _
96 ByVal z() () As Double, ByVal y()() As Double, ByVal T()
As Double, _
97 ByVal P() As Double, ByRef pp As PropertyPackages.
PropertyPackage) As Object
98
99 Dim i, j As Integer
100
101 Dim Kbjl(ns) As Object
102
103 Fer 1 = 0 To mns
104 Kbj1(i) = K(i, 0)
105 For j =1 Tonec - 1
106 1t sbe (K(i, §) - 1) < £be(Kbj1(i) - 1) ind z(i)(§) <> O Then Kbji1(i) = K(i,
3
107 Next
108 Hext
109
110 Return Kbji
111
112 End Funct
113
114 Frivate Function CalcKbj2(ByVal ns As Integer, ByVal nc As Integer, ByVal K(,) As
115 ByVal z() () As Double, ByVal y() () As Double, ByVal T() As
Double, _
116 ByVal P() As Double, ByRef pp As PropertyPackages.
PropertyPackage) As Object
117
118 Dim 1, j As Integer
119
120 x Kbjl(ns) As Object
121 Kw11l(ns) (), Kw21(ns) () As Double
122 wi(ns, nc - 1), ti(ns, nc - 1), sumwi(ns), sumti(ns) As Double
123 i =0 To ns
124 .Resize(Kw11(i), nc)
125 v.Resize(Kw21(i), nc)
126
127
128 For 1 = 0 To ns
129 Kw11(i) = pp.DW_CalcKvalue(z(i), T(i), P(i))
130 Kw21(i) = pp.DW_CalcKvalue(z(i), T(i) + 0.1, P(1))
131 CheckCalculatorStatus()
132 Next
133
134 For 1 = 0 To ns
135 sumti(i) = O
136 Fer 3 =0 Tonc - 1
137 ti(i, j) = y@)(G) * Ceg®w2l(1) () - Lez&wil(i)(3))) / (1 / (T() +
0.1) -1/ TEN
138 sumti(i) += £bs (ti(i, j))
139 Hext

126

18]

Fzr 1 = 0 To ns
TF sumti(i) <> 0 Then
For j = 0 To nc - 1

wi(i, j) = Avs(ti(i, 1)) / sumti(i)

nc - 1

= z(1) ()P

=0
j =0 Tonc -1
Kbji(i) += wi(i, j) * Log(K(i, i)

Kbj1(i) = Zxp(Kbj1(i))

1f Kbj1(i) < O Then
Kbj1(i) = K(i, 0)
For 3 =1 Tonc -1

15 hvne (K(i,) - 1) < Lbe(Kbj1(i) - 1) Then Kbji(i) = K(i,)

Return Kbjl

[iim ndeps As Double = 0.01

ns, _nc, _el As Integer

vim _Bj, _Aj, _Cj, _Dj, _Ej, _Fj, _eff, _T_, _Tj, _Lj, _Vj, _LSSj, _VSSj,
—lei _RVj, _Fa _P, _HF, _Q, VJJ As Double()
im _S, _alpha As Double(,)

_fc, _xc, _yc, _lc, _vc, _zc As Double() ()

_Kbj As Object()

_rr, _Sb, _maxF As Double

-Pp As PropertyPackages.PropertyPackage

_coltype As Column.ColType

_condtype As Column.condtype

_bx, _dbx As Double()

-vent, _lcnt As Integer

_specs As Dictionerv(0f String, SepOps.ColumnSpec)

1 llextr As Boolean = False

ic Functicn FunctionValue(ByVal x() As Double) As Double()

3im errors(x.Length - 1) As Double

127

_Lss, _VSs,

193 Uim cv As New SistemasDeUnidades.Conversor

194 spvall, spval2, spfvall, spfval2 As Double

195 spcil, spci2 As Integer

196

197 spvall = cv.ConverterParaSI(_specs("C").SpecUnit, _specs("C").SpecValue)
198 spcil = _specs("C") .ComponentIndex

199 spval2 = cv.ConverterParaSI(_specs("R").SpecUnit, _specs("R").SpecValue)
200 spci2 = _specs("R").ComponentIndex

201

202 Dim suml(_ns) As Double

203 im 1, j As Integer

204

205 For i = 0 To _ns
206 it 1 ind _condtype <> Column.condtype.Full_Reflux Tk
207 I

208
209
210
211
212
213
214
215 Iix ml, m2 As Integer

216 ml =0

217 m2 =0

218

219 1f _vent > 0 Ther

220 Fer 1= _ns + 1 To _vent + _ns
221 For j = ml To _ns

222 4 _Rvj(3) <> 1 Then
223 mi=j+ 1

224 v For
225 fne
226 Next
227 _Rvj(ml - 1) = Exp(x(i))
228 fex

229
230
231 If _lent > 0 Thes

232 For 1= _vent + _ns + 1 To _vent + _lent + _ns
233 Fer j = m2 + 1 To _ns

234 if _R1j(j) <> 1 Thexn

235 m2 =3j +1

236 + Fer

237 -
238 Hext
239 _R1j(m2 - 1) = Exp(x(1))
240 Hext

241 k5%
242 1f _condtype = Column.condtype.Partial_Condenser Thern
243 For 3 = 0 To _nc - 1

244 _S(0, j) = Exp(x(_el)) * _alpha(0, j) * _Sb
245 Hext

246

0 To _nc - 1
i, j) = Exp(x(i)) * _alpha(i, j) * _Sb

128

247 'stepd

248

249 ’find component liquid flows by the tridiagonal matrix method

250

251 >wm Bs(_ns, _nc - 1), Cs(_ns, _nc - 1) As Double

252 m at(_nc - 1)), bt(_nc - 1), ct(_nc - 1), dt(_nc - 1), xt(_nc - 1)) As
Double

253

254 For 1 = 0 To _nc - 1

255 i v.Resize(at(i), _ns + 1)

256 : .Resize(bt(i), _ns + 1)

257 Resize(ct(i), _ns + 1)

258 Resize(dt(i), _ns + 1)

259 v.Resize(xt(i), _ns + 1)

260 Hent

261

262 Zim icO As Integer = 0

263

264 For 1= 0 To _ns

265 Fer 3 =0 To _nc - 1

266 if 1 = 0 izd _condtype = Column.condtype.Total_Condenser

267 Bs(i, j) = -(_RLj@GE)N

268 Tise

269 Bs(i, j) = -(_R1j(i) + _S(i, j) * _Rvj(i))

270 End Tf

271 if i < _ns Then Cs(i, j) = _S(1 + 1, j)

272 Beyt

273 i

274

275 Tor 1 =0 To _nc - 1

276 Fer j = 0 To _ns

277 dt(i)(§) = -_fc(§) (1) * _F(j)

278 bt(i1)(j) = Bs(j, 1)

279 ¥ j < _ns Then ct(1) () = Cs(j, 1)

280 TE 3> 0 Tren at(i) () =1

281 Wext

282

283

284 >solve matrices

285

286 >tomich

287 For 1= 0 To _nc - 1

288 xt (i) = Tomich.TDMASolve(at(i), bt(i), ct(i), dt(i))

289 Hent

290

291 i =0 To _ns

292 v.Resize(_xc(i), _nc)

293 :.Resize(_yc(i), _nc)

294 +.Resize(_1lc(i), _nc)

205 Resize(_vc(i), _nc)

296 a7 .Resize(_zc(i), _nc)

297

208

299 ’steph

129

300

301 For 1 = 0 To _ns

302 _Lj(i) = 0

303 For j =0 To _nc -1

304 _le(i)(§) = xt(3) (D)

305 _Lja) += _1c() ()

306 Next

307 *If _Lj(i) < O Then

308 » _Lj(i) = 1.0E-20

309 ’End If

310 Next

311

312 For i = 0 To _ns

313 Fer 3 =0 To _nc - 1

314 _xc(1) () = _le(@)(G) / _Ljd)

315 Next

316 Rext

317

318 For 1 = _ns To O Step -1

319 _Vj) =0

320 For j = 0 To _nc - 1

321 1f 1 < _ns Then

322 1f _eff(i) <> 1.0 Then

323 _ve(i)(§) = _eff(i) * (LS(i, j) * _1lc(1)(F) - _ve(d + 1D(G) * _Vj(d)
/o VG o+ 1)) + ve(d + 1)) x Vi) / Vid o+ 1)

324 Flse

325 _ve(i)(§) = _s({i, j) * _lc(i)(j)

326 End If

327 Plse

328 _ve(i)(§) = _8(i, j) * _1lc(1)(y)

329 End If

330 _Vi(d) += _ve(1)(G)

331 Hext

332 'If _Vj(i) < O Then

333 '’ _V§(i) = 1.0E-20

334 ’End If

335 Next

336

337 >departures from product flows

338

339 iim sumlSS As Double = O

340 sumVSS As Double = 0

341 sumF As Double = 0

342 For 1 = 0 To _ns

343 i1 > 0 Tnen sumlSS += _LSSj(i)

344 sumVSS += _VSSj(i)

345 sumF += _F(i)

346 Wext

347 17 _condtype = Column.condtype.Total_Condenser Then

348 _LSSj(0) = sumF - sumlLSS - sumVSS - _Lj(_ns)

349 _R1j(0) = 1 + _LSSj(0) / _Lj(0)

350 Elself _condtype = Column.condtype.Partial_Condenser Then

351 _LSSj(0) = sumF - sumLSS - sumVSS - _Vj(0) - _Lj(_ns)

352 _R1j(0) =1 + _LSSj(0) / _Lj(0)

130

353 Eise

354 _LSSj(0) = 0.0

355 _R1j(0) = 1

356 Emdg If

357 ’If _Lj(0) <> O Or Not Double.IsNaN(_Lj(0)) Or Not Double.IsInfinity(_Lj(0)) Then

358 '’ _R1j(0) = 1 + _LSSj(0) / _Lj(O)

359 ’Else

360 '’ _R1j(0) = 1

361 ’End If

362

363 For 1 = 0 To _ns

364 _VSSj(i) = (LRvj(i) - 1) * _Vj(i)

365 12 i > 0 Tren _LSSj(i) = (LR1j(i) - 1) * _Lj(i)

366 Hes

367

368 ’For 1 = 0 To _ns

369 ? sumi(i) = 0

370 > For j = 0 To i

371 »suml(i) += _F(3) - _LSSj(j) - _VSSj(j)

372 ’ Next

373 ’Next

374

375 7PLis

376 ’For 1 = 0 To _ns

377 » If i < _ns Then _Lj(i) = _Vj(i + 1) + sumi(i) - _Vj(0) Else _Lj(i) = suml(i) -
Vi)

378 » If _Lj(i) < O Then

379 > _Lj(i) = 0.0000000001

380 ’ End If

381 "Next

382

383 For 1 = 0 To _ns

384 ¥er j = 0 To _nc - 1

385 1F _Vj(i) <> 0 Then

386 _ye(@(G) = _ve@)(G) / Vi)

387 Plice

388 _ye(1) () = _ve(D) ()

389 Eng If

390 _ze(1) () = (L1c(1)(§) + _ve(D)(§)) / (LLj(1) + _Vj(i))

391 Hexnt

392 e e

393

394 Iim sum_axi(_ns) As Double

395

396 ¥or i = 0 To _ns

397 sum_axi(i) = 0

398 Fer 3 =0 To _nc - 1

399 sum_axi(i) += _alpha(i, j) * _xc(i)(j)

400 Keyt

401 Next

402

403 ’step6

404

405 ’calculate new temperatures

131

406
407
408
409
410
411
412
413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

436
437

438
439

440
441
442
443
444
445
446
447

448
449
450
451

452
453

Dim _Tj_ant(_ns) As Double

Fer 1 =0 To _ns

_Kbj(i) =1 / sum_axi(i)

_Tj_ant(i) = _Tj(i)

_Tj(E) = _Bj@E) / (LAJ(E) - Leg(LKbj(i)))

Tf hpe(LTj(1) - _Tj_ant(i)) > 100 &r Double.IsNaN(_Tj(i)) 0r Double.IsInfinity(
_Tj(i)) Then
’switch to a bubble point temperature calculation...
Dim tmp = _pp.DW_CalcBubT(_xc(i), _P(i), _Tj{(i), Nothing, False)
_Tj(i) = tmp(4)
CheckCalculatorStatus()

’step?
’calculate enthalpies
Dim Hv(_ns), H1(_ns), Hidv(_ns), Hidl(_ns), DHv(_ns), DH1{_ns) As Double

For 1 = 0 To _ns

Hidv(i) = _pp.RET_Hid(298.15, _Tj(i), _yc(i))

Hidl1(i) = _pp.RET_Hid(298.15, _Tj(i), _xc(i))

DHv(i) = _Cj(i) + _Dj(i) » (_Tj(i) - _T_(i))

DH1(i) = _Ej(i) + _Fj(i) = (LTj(i) - _T_(i)

Hv(i) = (Hidv(i) + DHv(i)) * _pp. AUX_MMM(_yc(i)) / 1000

H1(i) = (Hidl(i) + DHL(i)) * _pp.AUX_MMM(_xc(i)) / 1000

7If l1llextr Then

> Hv(i) = _pp.DW_CalcEnthalpy(_yc(i), _Tj(i), _P(i), PropertyPackages.State.
Liquid) * _pp.AUX_MMM(_yc(i)) / 1000

’Else

> Hv(i) = _pp.DW_CalcEnthalpy(_yc(i), _Tj(i), _P(i), PropertyPackages.State.
Vapor) * _pp.AUX_MMM(_yc(i)) / 1000

’End If

’H1(i) = _pp.DW_CalcEnthalpy(_xc(i), _Tj(i), _P(i), PropertyPackages.State.
Liquid) * _pp.AUX_MMM(_xc(i)) / 1000

CheckCalculatorStatus()

’reb011er and condenser heat duties
ct (zse _coltype
Column.ColType.DistillationColumn
17 Eot _specs("C").SType = ColumnSpec.SpecType.Heat_Duty Then
_QC0) = H1(0) * _R1j(0) * _Lj(0) + Hv(0) * _Rvj(0) * _Vj(0) - Hv(1) *
_Vj(1) - _HF(0) * _F(0)
-QC0) = -.Q(0)

Not _specs("R").SType = ColumnSpec.SpecType.Heat_Duty Then

_Q(ns) = H1(_ns) * _R1j(_ns) * _Lj(_ns) + Hv(_ns) * _Rvj(_ns) * _Vj(
_ns) - Hi(_ns - 1) * _Lj(_ns - 1) - _HF(_ns) * _F(_ns)

-Q(ns) = -_Q(_ns)

o

132

454 Czse Column.ColType.AbsorptionColumn
455 ’use provided values

456 Case Column.ColType.RefluxedAbsorber

457 If ot _specs("C").SType = ColumnSpec.SpecType.Heat_Duty Then

458 _QC0) = H1(0) * _R1j(0) * _Lj(0) + Hv(0) * _Rvj(0) * _Vj(0) - Hv(1l) x
_Vj(1) - _HF(0) * _F(0)

459 _Q(O) = -_Q(0)

460 End

461 Ca

Column ColType.ReboiledAbsorber

462 If ot _specs("R").SType = ColumnSpec.SpecType.Heat_Duty Then
463 _Q(_ns) = H1(_ns) * _R1j(_ms) * _Lj(_ns) + Hv(_ns) * _Rvj(_ns) * _Vj(
_ns) - Hl(_ns - 1) * _Lj(.ns - 1) - _HF(_ns) * _F(_ns)
464 _Q(_ns) = -_Q(_ns)
465 Eng 1f
466 Fnd Se
467
468 ’handle user specs
469
470 ’Condenser Specs
471 Select Cage _specs("C").SType
472 ColumnSpec.SpecType.Component_Fraction
473 If _condtype = Column.condtype.Total_Condenser Jr _condtype = Column.
condtype.Partial_Condenser Thern
474 i _specs("C").SpecUnit = "M" Ther
475 spfvall = _xc(0)(spcil) - spvalil
476 Else W
477 spfvall = _pp.AUX_CONVERT_MOL_TO_MASS(_xc(0)) (spcil) - spvall
478 Eng 1f
479 Hlige
480 it _specs("C").SpecUnit = "M" Then
481 spfvall = _yc(0)(spcil) - spvall
482 Biee W
483 spfvall = _pp.AUX_CONVERT_MOL_TO_MASS(_yc(0)) (spcil) - spvall
484 Enc It
485 B :
486 “zze ColumnSpec.SpecType.Component_Mass_Flow_Rate
487 1{ _condtype = Column.condtype.Total_Condenser Jr _condtype = Column.
condtype.Partial_Condenser Then
488 spfvall = _LSSj(0) * _xc(0)(spcil) - spvall / _pp.RET_VMM() (spcil) *
1000 / _maxF
489 Llse
490 spfvall = _Vj(0) * _yc(0)(spcil) - spvall / _pp.RET_VMM() (spcil) * 1000
/ _maxF
491 G I
492 . ColumnSpec.SpecType.Component_Molar_ Flow_Rate
493 1 _condtype = Column.condtype.Total_Condenser [r _condtype = Column.
condtype.Partial_Condenser Then
494 spfvall = _LSSj(0) * _xc(0)(spcil) - spvall / _maxF
495 Else
496 spfvall = _Vj(0) * _yc(0)(spcil) - spvall / _maxF
497 End 11
498 ColumnSpec.SpecType.Component_Recovery
499 rec As Double = spvall / 100
500 sumc As Double = 0

133

501 For j = 0 To _ns

502 sumc += _fc(3) (spcil)

503 Hext

504 sumc *= rec

505 if _condtype = Column.condtype.Total_Condenser {r _condtype = Column.
condtype.Partial_Condenser Then

506 11 _specs("C").SpecUnit = "% M/M" Then

507 spfvall = _xc(0) (spcil) * _LSSj(0) - sumc

508 Eige 7% W/W

509 spfvall = _pp.RET_VMM() (spcil) * 1000 * (_xc(0) (spcil) * _LSSj(0) -

sumc)

510

511 E

512 i _specs("C").SpecUnit = " Y M/M" Then

513 spfvall = _yc(0)(spcil) * _Vj(0) - sumc

514 Eise 2% W/W

515 spfvall = _pp.RET_VMM() (spcil) * 1000 * (_yc(0) (spcil) * _Vj(0) -

sumc)

516

517 End If

518 Casze ColumnSpec.SpecType.Heat_Duty

519 _QC0) = spvall / _maxF

520 Czse ColumnSpec.SpecType.Product_Mass_Flow_Rate

521 1# _condtype = Column.condtype.Total_Condenser {r _condtype = Column.
condtype.Partial_Condenser Then

522 spfvall = _LSSj(0) - spvall / _pp.AUX_MMM(_xc(0)) * 1000 / _maxF

523 Else

524 spfvall = _Vj(0) - spvall / _pp.AUX_MMM(_yc(0)) # 1000 / _maxF

525 Endl\

526 = ColumnSpec.SpecType.Product_Molar_Flow_Rate

527 1f _condtype = Column.condtype.Total_Condenser {r _condtype = Column.
condtype.Partial_Condenser Then

528 spfvall = _LSSj(0) - spvall / _maxF

529 Flse

530 spfvall = _Vj(0) - spvall / _maxF

531 End I

532 Case ColumnSpec.SpecType.Stream_Ratio

533 1f _condtype = Column.condtype.Total_Condenser Then

534 spfvall = _Lj(0) - spvall * _LSSj(0)

535 ElseIf _condtype = Column.condtype.Partial_Condenser Then

536 spfvall = _Lj(0) - spvall * (_LSSj(0) + _Vj(0))

537 Elze

538 spfvall = _Lj(0) - spvall * _Vj(0)

539 Enc If

540 Czse ColumnSpec.SpecType.Temperature

541 spfvall = _Tj(0) - spvall

542 End Select

543

544 'Reboiler Specs

545 Sel Czse _specs("R").SType

546 s ColumnSpec.SpecType.Component_Fraction

547 ¢ _specs("R").SpecUnit = "M" Then

548 spfval2 = _xc(_ns)(spci2) - spval2

549 Eise W

134

550 spfval2 = _pp.AUX_CONVERT_MOL_TO_MASS(_xc(_ns)) (spci2) - spval2
551 r T4

552 {zse ColumnSpec.SpecType.Component_Mass_Flow_Rate

553 spfval2 = _Lj(_ns) * _xc(_ns)(spci2) - spval2 / _pp.RET_VMMQ) (spci2) * 1000
/ _maxF

554 Czze ColumnSpec.SpecType.Component_Molar_Flow_Rate

555 spfval2 = _Lj(_ns) * _xc(_ns)(spci2) - spval2 / _maxF

556 Czze ColumnSpec.SpecType.Component_Recovery

557 rec As Double = spval2 / 100

558 sumc As Double = 0

559 Fer j = 0 To _ns

560 sume += _fc(j) (spei2)

561 Hewt

562 sumc *= rec

563 If _specs("R").SpecUnit = " M/M" Then

564 spfval2 = _lc(_ns)(spci2) - sumc

565 Fies 2% W/W

566 spfval2 = _pp.RET_VMM() (spci2) * 1000 * (_lc(_ns)(spci2) - sumc)

567 End If

568 Czse ColumnSpec.SpecType.Heat_Duty

569 _Q(_ns) = spval2 / _maxF

570 {zze ColumnSpec.SpecType.Product_Mass_Flow_Rate

571 spfval2 = _Lj(_ns) - spval2 / _pp.AUX_MMM(_xc(_ns)) * 1000 / _maxF

572 Czse ColumnSpec.SpecType.Product_Molar_Flow_Rate

573 spfval2 = _Lj(_ns) - spval2 / _maxF

574 Cese ColumnSpec.SpecType.Stream_Ratio

575 spfval2 = _Vj(_ns) - spval2 * _Lj(_ns)

576 Cese ColumnSpec.SpecType.Temperature

577 spfval2 = _Tj(_ms) - spval2

578 Eng Select

579

580 ’enthalpy balances

581

582 Dix entbal(_ns) As Double

583

584 Feor 1 =0 To _ns

585 ifi= 0 Then

586 entbal(i) = (H1(i) * _R1j(i) * _Lj(i) + Hv(i) * _Rvj(i) = _Vj(i) - Hv(i +
1) * _Vj(i + 1) - _HF(1) * _F(i) - _Q()

587 Elself i = _ns "hen

588 entbal(i) = (H1(i) * _R1j(i) * _Lj(i) + Hv(i) * _Rvj(i) * _Vj(i) - H1L(i -
1) * _Lj(d - 1) - _HF(i1) * _F(i) - _Q{)

589 fise

590 entbal(i) = (H1(i) * _R1j(i) * _Lj(i) + Hv(i) * _Rvj(i) * _Vj(i) - HL(-
1) % Lj(i - 1) - Hv(i + 1) * _Vj(i + 1) - _HF(i) * _F(i) - _Q()

591 Eng I

592 entbal(i) /= (Hv(i) - H1(i))

594

595 Sel se _coltype

596 : Column.ColType.DistillationColumn

597 entbal (0) = spfvall

598 entbal(_ns) = spfval2

599 Caze Column.ColType.AbsorptionColumn

135

600 ’do nothing

601 Case Column.ColType.ReboiledAbsorber

602 entbal(_ns) = spfval2

603 Case Column.ColType.RefluxedAbsorber

604 entbal(0) = spfvall

605 End Select

606

607 For 1 = 0 To x.Length - 1

608 1f 1 <= _ns Then

609 errors(i) = entbal(i)

610 ElseIf i > _ns ind i <= _vent + _ns Then

611 For j = 0 To _ns

612 It _Rvj(j) <> 1 Thexn

613 errors(i) = (_VSS(j) - _VSSj(j)) ’/ _VSS(j)

614 i+=1

615 End If

616

617

618 If 1 > _vent + _ns ind i1 <= _vent + _lent + _ns Then

619 For j =1 To _ns

620 If _R1j(3) <> 1 Then

621 errors(i) = (_LSS(j) - _LSSj(j)) °/ _LSS(j)

622 i+=1

623 End If

624

625

626 lext

627 If _condtype = Column.condtype.Partial_Condenser Tren errors(_el) = (_Vj(0) - Vjj
(0))

628 Return errors

629

630 End Function

631

632 Frivate Functicon FunctionGradient(ByVal x() As Double) As Double(,)

633

634 epsilon As Double = ndeps

635 hs As Double

636 £1(), £2() As Double

637 g(x.Length - 1, x.Length - 1), x1(x.Length - 1), x2(x.Length - 1) As Double

638 vim i, j, k As Integer

639

640 f1 = FunctionValue(x)

641 For 1 = 0 To x.Length - 1

642 For j = 0 To x.Length - 1

643 If 1 <> j Then

644 'x1(3) = x(3)

645 x2(3) = x(j)

646 Else

647 'x1(3) = x(3)

648 ’x2(j) = x(j) * (1 + epsilon) + (epsilon / 2) ~ 2

649 x2(j) = x(j) + epsilon

650 Endg If

651 Next

652 f2 = FunctionValue(x2)

136

653 For k = 0 To x.Length - 1

654 hs = epsilon

655 gk, 1) = (£2(k) - £1(k)) / hs
656 Hext

657
658
659 Return g

660

661 End Function

662

663 Public Function MinimizeError(ByVal t As Double) As Double
664
665
666
667
668
669 spvall = cv.ConverterParaSI(_specs("C").SpecUnit, _specs("C").SpecValue)
670 spcil = _specs("C").ComponentIndex

671 spval2 = cv.ConverterParaSI(_specs("R").SpecUnit, _specs("R").SpecValue)
672 spci2 = _specs("R").ComponentIndex

673

674 Uiz suml(_ns) As Double

675 Dim i, j As Integer

676

677 For 1= 0 To _ns

678 if 1 = 0 £n¢ _condtype <> Column.condtype.Full Reflux Then

679 _R1j(i) = Eyp(_bx(i) + _dbx(i) * t)

680 Bick

681 Fer j =0 To _nc - 1

682 _S@i, §) = Bxp(Cbx(d) + _dbx(i) * t) * _alpha(i, j) * _Sb
683 Hent

684

685

686 Next

687

688 Dim ml, m2 As Integer

689

690 ml =0

691 m2 = 0

692

693 If _vent > 0 Then

694 ¥or i = _ns + 1 To _vent + _ns

695 For j = ml To _ns

696 ¥ _Rvji(j) <> 1 Ther

697 ml =3 +1

698 Exiv For
699

700 Hent

701 _Rvj(ml - 1) = sxp(Cbx(i) + _dbx(i) * t)
702 7T

703
704
705 if _lent > O Then

706 Fer 1 = _vent + _ns + 1 To _vent + _lcnt + _ns

: cv As New SistemasDeUnidades.Conversor
spvall, spval2, spfvall, spfval2 As Double
Uim spcil, spci2 As Integer

1]

137

707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759

¢y j =m2 + 1 To _ns
£ _RLj(j) <> 1 Then
m2=3+1

POY

B2 - 1) = Ero(bx(i) + _dbx(i) * ©)

Hext

W

if _condtype = Column.condtype.Partial_Condenser Then
For J =0 To _nc -1
S0, j) = Exp(_bx(_el) + _dbx(_el) * t) * _alpha(0, j) * _Sb

’step4
’find component liquid flows by the tridiagonal matrix method
Bs(_ns, _nc - 1), Cs(_ns, _nc - 1) As Double

at(_nc - 1), bt(_nc - 1Y, ct(_nc - 1), dt(_nc - 1), xt(_nc - 1)) As
Double

1)
1
1)
1)
1)

+ + 4+ + +

Dim icO As Integer = 0

1 = 0 To _ns
For 3 = 0To _nc - 1
I+ 1 =0 Eind _condtype = Column.condtype.Total_Condenser Thern
Bs(i, j) = -(_R1j(i))

i < _ns Then Cs(i, j) = S + 1, j)

For 1 =0 To _nc - 1
v j = 0 To _ns
dt (1) () = -_fc(I) () * _FG)
bt(i)(j) = Bs(j, i)
Tt § < _ns Then ct(i)(j) = Cs(j, 1)
15§ > 0 Then at(i)(§) = 1

’solve matrices

138

760

761 >tomich

762 For 1 =0 To _nc - 1

763 xt(i) = Tomich.TDMASolve(at(i), bt(i), ct(i), dt(i))

764 CheckCalculatorStatus()

765 Rext

766

767 Yer 1= 0 To _ns

768 v, Resize(_xc(i), _nc)

769 ;.Resize(_yc(i), _nc)

770 ‘.Resize(_lc(i), _nc)

771 ;.Resize(_vc(i), _nc)

772 zv.Resize(_zc(i), _nc)

773

774

775 ’stepb

776

777 For 1= 0 To _ns

778 _Liji)y =0

779 For j =0 To _nc - 1

780 ’1e(i)(3) = m(3) (4, 0)

781 _le(D) () = xt () (1)

782 "Tf _1c(i)(j) < 0 Then _1c(i)(j) = 0

783 _Li(d) += _1c(i)(j)

784 Nent

785 ’If _Lj(i) < 0 Then _Lj(i) = 0.0000000001

787

788 Yer 1= 0 To _ns

789 Vi) =0

790 #or j =0 To _nc - 1

791 _xe(L)(G) = _1c()(G) / _Lji(d)

792 >If Double.IsNaN(_xc(i)(j)) Then _xc(i){(j) = 0

793 Hent

794

795

796 ¥or i = _ns To O Step -1

797 _Vji) =0

798 For j =0 To _nc - 1

799 Y i < _ns Then

800 it _eff(i) <> 1.0 Then

801 _ve{i) (j) = _eff(d) * (_S(i, j) * _lc(i)(§) - _ve(d + 1)(F) * _Vj(i)
/ Vil + 1) + _ve(d + 1)(G) * Vi) / Vi@ + 1)

802 Else

803 _ve(d)(G) = _8(1, j) * _1lc(D)({)

804 Endg If

805 Fise

806 _ve() () = _S@, j) * _lc(@) (P

807 Erd If

808 PIf _ve(i) (j) < 0 Or Double.IsNaN(_vc(i)(j)) Then _vc(i)(j) =0

809 Vi) += _ve() ()

810 Hext

811 "If _Vj(i) < 0 Then _Vj(i) = 0.0000000001

812 Ny

139

813

814 >departures from product flows

815

816 sumLSS As Double = 0

817 sumVSS As Double = 0

818 sumF As Double = 0

819 For 1 = 0 To _ns

820 If 1 > 0 Then sumlSS += _LSSj(i)

821 sumVSS += _VSSj(i)

822 sumF += _F(i)

823 Nert

824 17 _condtype = Column.condtype.Total_Condenser Then

825 _LSSj(0) = sumF - sumLSS - sumVSS - _Lj(_ns)

826 _R1j(0) = 1 + _LSSj(0) / _Lj(0)

827 ElseIf _condtype = Column.condtype.Partial_Condenser Then

828 _LSSj(0) = sumF - sumLSS - sumVSS - _Vj(0) - _Lj(_ns)

829 _R1j(0) = 1 + _LSSj(0) / _Lj(0)

830 Else

831 _LSSj(0) = 0.0

832 _R1j(0) =1

833 End If

834 *If _Lj(0) <> 0 Or Not Double.IsNaN(_Lj(0)) Or Not Double.IsInfinity(_Lj(0)) Then

835 » _R1j(0) = 1 + _LSS3j(0) / _Lj(0)

836 'Else

837 '’ _R1j(0) = 1

838 ’End If

839

840 For i'= 0 To _mns

841 _VSSj(i) = (LRvj(i) - 1) * _Vj(d)

842 T 1> 0 Then _ISSJM) = (LRIjG) =) * _Ij()

843 Met

844

845 ’For i = 0 To _ns

846 > sumi(i) = 0

847 > For j =0 To i

848 > sumi (i) += _F(j) - _LSS3j(j) - _VSSj(j)

849 > Next

850 "Next

851

852 »ILjs

853 ’For i = 0 To _ns

854 > If i < _ns Then _Lj(i) = _Vj(i + 1) + sumi(i) - _Vj(0) Else _Lj(i) = suml(i) -
_Vj(0)

855 ’Next

856

857 For 1= 0 To _ns

858 For 3 =0 To _nc - 1

859 it _Vji(i) <> 0 Then

860 _ye()(G) = _ve@(G) / Vi)

861 Else

862 ye) () = _ve(1)(3)

863 End If

864 _ze() () = (1) () + _ve(D)(3)) /7 (LLj(1) + _Vj(i))

865 Rext

140

866 Went

867

868 Mirm sum_axi(_ns) As Double

869

870 For 1 = 0 To _ns

871 sum_axi(i) = 0O

872 For 3 =0 To _nc - 1

873 sum_axi(i) += _alpha(i, j) * _xc(i)(j)

874 RHext

875 Kext

876

877 ’stepb

878

879 ’calculate new temperatures

880

881 Dim _TjO(_ns) As Double

882

883 For 1= 0 To _ns

884 _Kbj(i) =1 / sum_axi(i)

885 _Tjo(i) = _Tj(L)

886 _Tj(i) = _Bj(1) / (_AjJ() - nLez(Kbj(i)))

887 77 Double.IsNaN(_Tj(i)) Tr _Tj(i) = 0 Then _Tj(i) = _T_(1)

888 Hent

889

890 >step?

891

892 "calculate enthalpies

893

894 “im Hv(_ns), H1(_ns), Hidv(_ns), Hidl(_ns), DHv(_ns), DH1(_ns) As Double

895

896 For 1= 0 To _ns

897 Hidv(i) = _pp.RET_Hid(298.15, _Tj(i), _yc(i))

898 Hidl(i) = _pp.RET_Hid(298.15, _Tj(i), _xc(i))

899 DHv(i) = _Cj(i) + _Dj(i) * (_Tj(i) - _T_(1))

900 DH1(i) = _Ej(i) + _Fj(i) * (_Tj(i) - _T_(i))

9201 Hv(i) = (Hidv(i) + DHv(i)) * _pp.AUX_MMM(_yc(i)) / 1000

902 H1(i) = (Hid1(i) + DH1(i)) * _pp.AUX_MMM(_xc(i)) / 1000

903 ’If llextr Then

904 > Hv(i) = _pp.DW_CalcEnthalpy(_yc(i), _Tj(i), _P(i), PropertyPackages.State.
Liquid) * _pp.AUX_MMM(_yc(i)) / 1000

905 ’Else

906 > Hv(i) = _pp.DW_CalcEnthalpy(_yc(i), _Tj(i), _P(i), PropertyPackages.State.
Vapor) * _pp.AUX_MMM(_yc(i)) / 1000

907 'End If

908 "H1(i) = _pp.DW_CalcEnthalpy(_xc(i), _Tj(i), _P(i), PropertyPackages.State.
Liquid) * _pp.AUX_MMM(_xc(i)) / 1000

909 CheckCalculatorStatus()

910 Hert

911

912 ’reboiler and condenser heat duties

913 Seisct Case _coltype

914 Column.ColType.DistillationColumn

915 1% Neov _specs("C").SType = ColumnSpec.SpecType.Heat_Duty Then

916 _QC0) = H1(0) * _R1j(0) * _Lj(0) + Hv(0) * _Rvj(0) * _Vj(0) - Hv(1) =

141

917
918
919
920

921
922
923
924
925
926
927

928
929
930
931
932

933
934
935
936
937
938
939
940
941
942
943
944
945
946

947
948
949
950
951
952
953
954
955
956
957
958
959
960

961

962
963

’Condenser Specs

_Vj(1) - _HF(0) * _F(0)
Q) = -_Q(0)

¢ _specs("R").SType = ColumnSpec.SpecType.Heat_Duty Then
_Q(_ns) = H1(_ns) * _R1j(_ns) * _Lj(_ms) + Hv(_ns) * _Rvj(_ms) * _Vj(
_ns) - Hl(_ns - 1) * _Lj(_.ns - 1) - _HF(_ns) * _F(_ns)
-QCns) = -_Q(_ns)

Case Column.ColType.AbsorptionColumn

>use provided values

Case Column.ColType.RefluxedAbsorber

BT oot

if Wot _specs("C").SType = ColumnSpec.SpecType.Heat_Duty Then
_QC0) = H1(0) * _R1j(0) * _Lj(0) + Hv(0) * _Rvj(0) * _Vj(0) - Hv(1) =
Vi) - _HF(0) * _F(0)
_Q(O) -_Q(0)

Column ColType.ReboiledAbsorber
f Not _specs("R").SType = ColumnSpec.SpecType.Heat_Duty Then
_Q(_ns) = H1(_ns) * _R1j(_ns) * _Lj(_ns) + Hv(_ns) * _Rvj(_ns) * _Vj(
ns) - Hl(.ns - 1) * _Lj(_.ns - 1) - _HF(_ns) * _F(_ns)
_Q(_ns) = -_Q(_ns)

’enthalpy balances
Dim entbal(_ns) As Double

’handle user specs

se _specs("C").SType
ColumnSpec. SpecType.Component_Fraction
_condtype = Column.condtype.Total_Condenser {r _condtype = Column.
condtype.Partial_Condenser T
If _specs("C").SpecUnit = "M" Tk
spfvall = _xc(0) (spcil) - spvall
Else W
spfvall = _pp.AUX_CONVERT_MOL_TO_MASS(_xc(0)) (spcil) - spvall

T

e

1i _specs("C").SpecUnit = "M" Thexn
spfvall = _yc(0) (spcil) - spvall

spfvall = _pp.AUX_CONVERT_MOL_TO_MASS(_yc(0)) (spcil) - spvall

ColumnSpec.SpecType.Component_Mass_Flow_Rate

1f _condtype = Column.condtype.Total_Condenser {r _condtype = Column.
condtype.Partial_Condenser Then
spfvall = _LSSj(0) * _xc(0)(spcil) - spvall / _pp.RET_VMM() (spcil) *
1000 / _maxF

Else

spfvall = _Vj(0) * _yc(0)(spcil) - spvall / _pp.RET_VMM(Q) (spcil) * 1000

142

/ _maxF

964 GoLd

965 ColumnSpec.SpecType.Component_Molar_Flow_Rate

966 if _condtype = Column.condtype.Total_Condenser (r _condtype = Column.
condtype.Partial_Condenser Then

967 spfvall = _LSSj(0) * _xc(0)(spcil) - spvall / _maxF

968 Else

969 spfvall = _Vj(0) * _yc(0)(spcil) - spvall / _maxF

970 ing

971 Cas ColumnSpec SpecType.Component_Recovery

972 Zim rec As Double = spvall / 100

973 sumc As Double = 0

974 For j = 0 To _ns

975 sumc += _fc(j) (spcil)

976 Hext

977 sumc *= rec

978 1% _condtype = Column.condtype.Total_Condenser Ir _condtype = Column.
condtype.Partial_Condenser T%

979 11 _specs("C").SpecUnit = "%uM/M” Then

980 spfvall = _xc(0)(spcil) * _LSSj(0) - sumc

981 Elee 2 W/W

982 spfvall = _pp.RET_VMMQ) (spcil) * 1000 * (_xc(0)(spcil) * _LSSj(0) -

sumc)

983

984 Zlze

985 if _specs("C").SpecUnit = " Y M/M" Then

986 spfvall = _yc(0) (spcil) * _Vj(0) - sumc

987 Eise Y9 W/W

988 spfvall = _pp.RET_VMM() (spcil) * 1000 * (_yc(0)(spcil) * _Vj(0) -

sumc)

089 Tyl T4

990 =nd 11

991 Czse ColumnSpec.SpecType.Heat_Duty

992 _Q(0) = spvall / _maxF

993 C ColumnSpec.SpecType.Product_Mass_Flow_Rate

994 _condtype = Column.condtype.Total_Condenser Jr _condtype = Column.
condtype.Partial_Condenser Thzn

995 spfvall = _LSSj(0) - spvall / _pp.AUX_MMM(_xc(0)) * 1000 / _maxF

996 Flige

997 spfvall = _Vj(0) - spvall / _pp.AUX_MMM(_yc(0)) * 1000 / _maxF

998 ; ey ,i

999 Case ColumnSpec SpecType.Product_Molar_Flow_Rate

1000 1# _condtype = Column.condtype.Total_Condenser r _condtype = Column.
condtype.Partial_Condenser Then

1001 spfvall = _LSSj(0) - spvall / _maxF

1002 Lise

1003 spfvall = _Vj(0) - spvall / _maxF

1004 Eng IF

1005 ¢ ColumnSpec.SpecType.Stream_Ratio

1006 I# _condtype = Column.condtype.Total_Condenser Then

1007 spfvall = _Lj(0) - spvall * _LSSj(0)

1008 ElseIf _condtype = Column.condtype.Partial_Condenser T;

1009 spfvall = _Lj(0) - spvall * (_LSSj(0) + _Vj(0))

1010 Eise

143

1011 spfvall = _Lj(0) - spvall x _Vj(0)

1012 Ena If

1013 Cage ColumnSpec.SpecType.Temperature

1014 spfvall = _Tj(0) - spvall

1015 Ind Select

1016

1017 ’Reboiler Specs

1018 Select Case _specs("R").SType

1019 Case ColumnSpec.SpecType.Component_Fraction

1020 if _specs("R").SpecUnit = "M" Then

1021 spfval2 = _xc(_ns) (spci2) - spval2

1022 Else W

1023 spfval2 = _pp.AUX_CONVERT_MOL_TO_MASS(_xc(_ns))(spci2) - spval2

1024 Eng I

1025 Case ColumnSpec.SpecType.Component_Mass_Flow_Rate

1026 spfval2 = _Lj(_ns) * _xc(_ns)(spci2) - spval2 / _pp.RET_VMMQ) (spci2) * 1000
/ _maxF

1027 Case ColumnSpec.SpecType.Component_Molar_Flow_Rate

1028 spfval2 = _Lj(_ns) * _xc(_ns)(spci2) - spval2 / _maxF

1029 Case ColumnSpec.SpecType.Component_Recovery

1030 Dim rec As Double = spval2 / 100

1031 sumc As Double = 0

1032 For j = 0 To _ns

1033 sume += _fc(j) (spci2)

1034 Rext

1035 sSumc *= rec

1036 17 _specs("R").SpecUnit = "% M/M" Then

1037 spfval2 = _1c(_ns)(spci2) - sumc

1038 Fige 2% W/W

1039 spfval2 = _pp.RET_VMM() (spci2) * 1000 * (_lc(_ns)(spci2) - sumc)

1040 End 1f

1041 {ase ColumnSpec.SpecType.Heat_Duty

1042 _Q(_ns) = spval2 / _maxF

1043 Cese ColumnSpec.SpecType.Product_Mass_Flow_Rate

1044 spfval2 = _Lj(_ns) - spval2 / _pp.AUX_MMM(_xc(_ns)) * 1000 / _maxF

1045 Czge ColumnSpec.SpecType.Product_Molar_Flow_Rate

1046 spfval2 = _Lj(_ns) - spval2 / _maxF

1047 Caze ColumnSpec.SpecType.Stream_Ratio

1048 spfval2 = _Vj(_ns) - spval2 * _Lj(_ns)

1049 Case ColumnSpec.SpecType.Temperature

1050 spfval2 = _Tj(_ns) - spval2

1051 End Select

1052

1053 For 1 = 0 To _ns

1054 71 =0 Then

1055 entbal(i) = (HL(i) * _R1j(i) * _Lj(i) + Hv(i) * _Rvj(i) * _Vj(i) - Hv(i +
1) * _Vj(i + 1) - _HF(i) * _F(i) - _Q(i)

1056 Elself i = _ns Then

1057 entbal(i) = (H1(i) * _R1j(i) * _Lj(i) + Hv(i) * _Rvj(i) * _Vj(i) - H1(i -
1) * _Ljd - 1) - _HF(1) * _F(1) - _Q(i)

1058 Else

1059 entbal(i) = (H1(i) * _R1j(i) * _Lj(i) + Hv(i) * _Rvj(i) * _Vj(i) - H1(-
1) *» Ljd - 1) - Hv(d + 1) * Vj(i + 1) - _HF() * _F(@i) - _Q(i))

1060 tnd If

144

1061 entbal(i) = entbal(i) / (Hv(i) - H1(i))

1062 Se Czse _coltype

1063 Czse Column.ColType.DistillationColumn

1064 entbal(0) = spfvall

1065 entbal(_ns) = spfval2

1066 {zse Column.ColType.AbsorptionColumn

1067 ’do nothing

1068 {zz¢ Column.ColType.ReboiledAbsorber

1069 entbal (_ns) = spfval2

1070 Czsge Column.ColType.RefluxedAbsorber

1071 entbal(0) = spfvall

1072 ind Select

1073 Hext

1074

1075 Fer i = 0 To _ns

1076 _Tj(1) = _Tj0(1)

1077 Newt

1078 Zim errors(_bx.Length - 1) As Double

1079

1080 For 1 = 0 To _bx.Length - 1

1081 7 i <= _ns Then

1082 errors(i) = entbal(i)

1083 Elself i > _ns ind i <= _vecnt + _ns Then

1084 Fer j = 0 To _ns

1085 7 _Rvj(§) <> 1 Then

1086 errors(i) = (_VSS(j) - _VSSj(3)) ’/ _VSS(j)

1087 i+=1

1088 Engl T

1089

1090 i

1091 It 1> _vent + _ns ind 1 <= _vent + _lent + _ns Then

1092 Fer j =1 To _ms

1093 TP _R13(§) <> 1 Then

1094 errors(i) = (_LSS(j) - _LSSj(j)) ’/ _LSS(j)

1095 i+=1

1096 Pnd i

1097 Hext

1098 Fnd 1f

1099 Hevt

1100 If _condtype = Column.condtype.Partial_Condenser 7hen errors(_el) = (_Vj(0) - Vjj

(0))

1101

1102 iz il_err As Double = 0

1103 Fer 1= 0 To _el

1104 il_err += errors(i) ~ 2

1105 Hext

1106

1107 Return il_err

1108

1109

1110

1111 Public Punction Solve(ByVal nc As Integer, ByVal ns As Integer, ByVal maxits As
Integer, _

1112 ByVal tol As irray, ByVal F As irrzy, ByVal V As frray, _

145

1113
1114

1115

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

ByVal Q As Array,
ByVal VSS As Lr:

ByVal L As frray
ay, ByVal LSS As Ar

zv, ByVal Kval()() As Double

-

ByVal x() () As Double, ByVal y() () As Double, ByVal z()() As
Double, _

Byval £c() () As Double, _

ByVal HF As irray, ByVal T As 4y , ByVal P As L

ByVal condt As DistillationColumn.condtype, _

ByVal eff() As Double, _

ByVal UseDampingFactor As Boolean, _

ByVal UseNewtonUpdate As Boolean, _

ByVal AdjustSb As Boolean, ByVal UselJ As Boolean, _

ByVal coltype As Column.ColType, ByVal KbjWA As Boolean, _

ByVal pp As PropertyPackages.PropertyPackage, _

ByVal specs As Dictionary(0f Suring, SepOps.ColumnSpec), _

ByVal reuseJ As Boolean, ByVal jacO As Object, _

ByVal epsilon As Double, _

ByVal maxvarchgfac As Integer, _

ByVal dfmin As Double, ByVal dfmax As Double, _

ByVal deltat_el As Double, _

Optional ByVal llex As Boolean = False) As Object

Ay

Dim doparallel As Boolean = My.Settings.EnableParallelProcessing
ir poptions As New ParallelOptions() With {.MaxDegreeQfParallelism = My.Settings.
MaxDegreeOfParallelism}

llextr = 1llex ’lig-liq extractor
ndeps = epsilon

Uim brentsolver As New BrentOpt.BrentMinimize
brentsolver.DefineFuncDelegate (Address0f MinimizeError)

m cv As New SistemasDeUnidades.Conversor
» spvall, spval2 As Double
Jim spcil, spci2 As Integer

spvall = cv.ConverterParaSI(specs("C").SpecUnit, specs("C").SpecValue)
spcil = specs("C").ComponentIndex
spval2 = cv.ConverterParaSI(specs("R").SpecUnit, specs("R").SpecValue)
spci2 = specs("R").ComponentIndex

ns = ns
nc¢ = nc

m ic, ec, iic As Integer

» Tj(ns), Tj_ant(ms), T_(ns) As Double

Lj(ns), Vi(ns), xc(ns)), yc(ns) (), lclns) (), vc(ns) (), zc(ns)() As Double
sumi (ns) As Double

21, j, w, ml, m2 As Integer

’step0
’normalize initial estimates

146

1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

sim maxF As Double = Common.Max (F)

¥For 1= 0 To ns

F(i) = F(i) / maxF

HF (i) = HF(i) / 1000
L(i) = L(i) / maxF
V(i) = V(i) / maxF
L8S(i) = LSS(i) / maxF
VSS(i) = VSS(i) / maxF
Q(1) = Q1) / maxF

Tstepl
. sumF As Double = O
sumLSS As Double = 0
sumVSS As Double = 0

i =0 To ns

sumF += F(i)

If 1> 0 Thern sumLSS += LSS(i)
sumVSS += VSS(i)

bim B As Double

i7 condt = Column.condtype.Total_Condenser Thexn
B = sumF - sumLSS - sumVSS - LSS(0)

ElselIf condt = Column.condtype.Partial_Condenser Thern
B = sumF -~ sumLSS - sumVSS - V(0) - LSS(0)

B = sumF - sumLSS - sumVSS - V(0)

’step2

Dim 1si, vsi As New Arraylist
siw el As Integer

’size jacoblan

el = ns
For 1= 0 To ns
1¥ VSS(i) <> 0 Thexn
el += 1
vsi.iaa (1)

1f LSS(i) <> 0 &nd 1 > 0 Then
el += 1
1si.kda(d)

1f condt = Column.condtype.Partial_Condenser 7%

Tim hes(el, el) As Double

147

1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266

1267
1268
1269

Tim bx(el), bxb(el), bf(el), bfb(el), bp(el), bp_ant(el) As Double

Dim f1(el), f2(el), £3(el), f4(el) As Double
Dim u As Integer = 0

>find Kbref

Dim Kbj(ns), Kbj_ant(ns) As Object
Dim K(ms, nc - 1), K_ant(ns, nc - 1), K2j(ns, nc - 1) As Object

sim Kwil(ns) (O, Kw2(ns) () As Object

wi(ns, nc - 1), ti(ns, nc - 1), sumwi(ns), sumti(ns) As Double
i =0 To ns

v .Resize(Kwl(i), nc)

:v.Resize(Kw2(i), nc)

Din tmpO As Object = Nothing

For 1 = 0 To ms
f Not llextr Ther tmpO = pp.DW_CalcKvalue(z(i), T(i), P(i))
Fer j = 0 To nc - 1

If Not 1llextr Then K(i, j) = tmp0(j) Zise= K(i, j) = Kval(i)(j)
37 Double.IsNaN(K(i, j)) Ur Double.IsInfinity(K(i, j)) Tr K(i, j) = 0 Thexn
K(i, j) = pp.AUX_PVAPi(j, T(i)) / P(i)

Rext
CheckCalculatorStatus ()

¥ KbjWA = False Then
Kbj = CalcKbjil(ms, nc, K, z, y, T, P, pp)
ise

Kbj = CalcKbj2(us, nc, K, z, y, T, P, pp)

’relative volatilities
Uiz alpha(ns, nc - 1), alpha_ant(ns, nc - 1) As Double
v 1 =0 To ns

v j =0Tonc -1
alpha(i, j) = K(i, j) / Kbj(i)

’initialize A/B/C/D/E/F

Dim Kbji(ns), Kbj2(ns) As Object

Tji(ns), Tj2(ns), Aj(ns), Bj(ns), Cj(ns), Dj(ns), Ej(ns), Fj(ns) As Double

im Aj_ant(ns), Bj_ant(ns), Cj_ant(ns), Dj_ant(ns), Ej_ant(ns), Fj_ant(ns) As
Double

im Hli(ns), Hl2(ns), Hvi(ns), Hv2(ns) As Double

K2(ns) () As Double

Hv(ns), Hl(ns), DHv(ns), DHl(ns), Hidv(ns), Hidl(ns) As Double

148

1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282

1283
1284
1285

1286

1287
1288

1289

1290
1291
1292

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316

For 1= 0 To ns
T_(i) = T(H) -1

Tj(i) = T(1)
’Kbjs, Ts

Tj1(i) = T(D)
Tj2(i) = T(1) + 1
Kbj1(i) = Kbj (i)
'new Ks

i llextr Then

K2(i) = pp.DW_CalcKvalue(x(i), y(i), Tj2(i), P(i), “LL")

Hv1(i) = pp.DW_CalcEnthalpyDeparture(y(i), Tj1(i), P(i), PropertyPackages.
State.Liquid)

Hv2(i) = pp.DW_CalcEnthalpyDeparture(y(i), Tj2(i), P(i), PropertyPackages.
State.Liquid)

K2(i) = pp.DW_CalcKvalue(x(i), y(i), Tj2(i), P(i))

Hv1(i) = pp.DW_CalcEnthalpyDeparture(y(i), Tj1(i), P(i), PropertyPackages.
State.Vapor)

Hv2(i) = pp.DW_CalcEnthalpyDeparture(y(i), Tj2(i), P(i), PropertyPackages.
State.Vapor)

H11(i) = pp.DW_CalcEnthalpyDeparture(x(i), Tj1(i), P(i), PropertyPackages.State
.Liquid)

H12(i) = pp.DW_CalcEnthalpyDeparture(x(i), Tj2(i), P(i), PropertyPackages.State
.Liquid)

“or j =0 Tonc -1
K2j(i, j) = K2(i)(j)
1 Double.IsNaN(K2(i)(j)) Or Double.IsInfinity(K2(i)(j)) Then K2(i)(j) = pp

CAUX_PVAPi(j, T(1)) / P(1)

1t KbjWA = False Thern
Kbj2 = CalcKbjl(ns, nc, K2j, z, y, Tj2, P, pp)

Kbj2 = CalcKbj2(ns, nc, K2j, z, y, Tj2, P, pp)

or 1= 0 To ns
Bj(i) = Log(Kbj1(i) / Kbj2(i)) / (1 / Tj2(i) - 1 / Tj1(i))
Aj(i) = Loz (Kbj1(i)) + Bj(i) = (1 / Tj1(i))
Dj(i) = (Hvi(i) - Hv2(i)) / (Tj1(i) - Tj2(i))
Cj(i) = Hvi(i) - Dj(i) * (Tj1(i) - T_(i))
Fj(i) = (H11(i) - H12(i)) / (Tj1(i) - Tj2(i))
Ej(i) = H11(i) - Fj(i) * (Tj1(d) - T_(1))
Next

’external loop

. Sb, sbf, sbf_ant, sbf_ant2, sbx, sbx_ant, sbx_ant2, fval As Double
: SbOK As Boolean = True
Dim BuildingJacobian As Boolean = False

149

1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

£ AdjustSb Then

SbOK =

False

vim el_err As Double = 0.0#

n el_err_ant As Double =
il_err As Double = 0.0#
v 11l_err_ant As Double =

0.0#

0.0#

’independent variables -> stripping and withdrawal factors

im Sbj(ns),

1nSbj0(ns),
Rlj(ns),
LSSj(ns),

Rvj(ms),
VSSj(ns),

1nSbj(ns),

1nRvj(ns), 1nRlj(ms),
PSbj As Double

: Nss As Integer = ns + 1

’Calculo de Sbj, Rl1j y Rvj del Lazo Externo

For 1 = 0 To ns

Sbj(i) = Kbj(i) * V(i)

AdjustSb Then

SbOK = False
PSbj =1
¥or 1 = 0 To ns
¥ 1 =0 £inc condt
Nes -= 1

PSbj *= Sbj(i)

Sbm; PSbj ~ (1 / (Nss))

“ov 1 = 0 To ns

1 spi(i) =

Dim vent,

1nSbj(i) = L
T V() <> 0
InRvj(i) =t
I L) <> 0
lanJ(l) = Log(R1j (1))
For J =0 Tomnc -1

S(i, j)

(8bj (1))

(Rvi(3))

lcnt As Integer

vent = 0

1 =0 To ns
If 1nRvj(i) <> 0 inc o

vent += 1

tng If

212 Rvj (1)

R1j (i)

/ L(1)

ten Sbj(i) = 1.0E-20

]

= Sbj(i) * alpha(i, j) * Sb

% Double.IsInfinity(1lnRvj(i)) T

150

1+ VSS(@i) / V(@) #ie

1 + LSS(i) / L(i) i

S(ns, nc - 1) As Double
1nRvjO(ns),

e Rvj(i)

se R1j(1)

1nR1j0(ns) As Double

= Column.condtype.Total_Condenser Then

1371

1372

1373 lent = 0

1374 ¥or 1 =1 To ns

1375 1 1nR1j(1) <> 0 4nd ot Double.IsInfinity(lnR1j(i)) Then
1376 lcnt += 1

1377 Eng IF

1379

1380 ’internal loop

1381

1382 Dim checkl As Boolean = False

1383 Dix num, denom, x0, fxO As New ArrayList
1384

1385 w=20

1386

1387 1: Ui icO As Integer = 0

1388

1389

1390

1391 If Weot SbOK Thern

1392

1393 sbf_ant2 = sbf_ant

1394 sbf_ant = sbf

1395

1396 sumF =
1397 sumLSS
1398 sumVSS
1399 For 3 = 0 To _ns

1400 sumF += F(3)

1401 if j > 0 Then sumLSS += LSS(j)

1402 sumVSS += VSS(j)

1403 Hext

1404

1405 sbf = sumF - sumLSS - sumVSS - V(0) - L(ms) - LSS(0)
1406

1407 sbx_ant2 = sbx_ant

1408 sbx_ant = sbx

1409

1410 74 1c0 > 1 Then

I <o

0
0

1411 it kb ((-sbf * (sbx - sbx_ant2) / (sbf - sbf_ant2)) / sbx) > 1 Thexn

1412 sbx = sbx_ant2 * 1.01
1413 Else

1414 sbx = sbx - sbf * (sbx - sbx_ant2) / (sbf - sbf_ant2)
1415 fng 1t

1416 Elee

1417 sbx = Sb * 1.01

1418 B 0F

1419

1420 i1 sbx < 0 Then sbx = ine(sbx)
1421

1422 Sb = sbx

1423

1424 For 1 = 0 To ns

151

1425 Sbj(i) = Kbj(i) * V(i) / L(1)

1426 it Sbj(i) = 0 Thexn Sbj(i) = 1.0E-20

1427 1nSbj (i) = Log(Sbj(i))

1428 T VE) <0 n Rvj(1)

1429 1nRvj(i) = Log(Rvj(i))

1430 £ L(i) <> 0 n R1j(i)

1431 1InR1j(i) = Leg(R1j(1))

1432 for 3 = 0 Tone - 1

1433 S(i, j) = Sbj(i) * alpha(i, j) * Sb

1434 New

1435

1436

1437

1438 If SbOK Then

1439

1440 17 sbx > 10 Then Sb = sbx_ant?2

1441

1442 icO += 1

1443

1444 CheckCalculatorStatus ()

1445

1446 11 Double.IsNaN(sbf) Then Throw New Exception(DWSIM.App.GetLocalString("
DCSbError"))

1t
=
+
<3
wn
wnn
~
(R
~
~
<
~
[N
~s
o
0
=}
<
=
~
]
~—
[}
[y

1+ LSS(i) / L(i) Hise R1j(1)

]
-

x
1

i

o

1447

1448 Loop Until ibe(sbf) < 0.001

1449

1450 SbOK = True

1451

1452 Dim fx(el), dfdx(el, el), dfdx_ant(el, el), dx(el), xvar(el), xvar_ant(el), itol
As Double

1453 Dim jac As New Mapack.Matrix(el + 1, el + 1), hesm As New Mapack.Matrix(el + 1, el
+ 1)

1454 Dix perturb As Boolean = False, bypass As Boolean = False

1455

1456 ec =0

1457 ic =0

1458 T

1459

1460 iic =0

1461

1462 ‘step3

1463

1464

1465 Fer 1 = 0 To ns

1466 ’store initial values

1467 1nSbj0(i) = 1nSbj(i)

1468 1nRvj0(i) = 1nRvj(i)

1469 1nR1j0(1) 1nR1j (1)

1470 Next

1471

1472 ’update inner loop parameters

1473

1474 Dim 1nSbj_ant(ns), 1nRvj_ant(ns), 1nRlj_ant(ns), df, df_ant, xlowbound As

Double

i

152

1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

df _ant = df

_Bj = Bj.Clone
_Aj = Aj.Clone
_Cj = Cj.Clone
_Dj = Dj.Clone
_Ej = Ej.Clone
_Fj = Fj.Clone
_eff = eff.Clone
_Tj = Tj.Clone
T = T_.Clone
_Lj = Lj.Clone
_Vj = Vj.Clone
Vjj = V.Clone
_LSSj = LSS.Clone
_VSSj = VSS.Clone
_LSS = LSS.Clone
_VSS = VSS.Clone
_R1j = R1j.Clomne
-Rvj = Rvj.Clone
_F = F.Clone

_P = P.Clone

_HF = HF.Clone

.Q = Q.Clone

_S = S.Clone
_condtype = condt
_alpha = alpha.Clone
_fc = fc.Clone
_xc = xc.Clone
_yc = yc.Clone
_lc = 1lc.Clone
_vc = vc.Clone

zc = zc.Clone

_Kbj = Kbj.Clone

-PP =

pp

_coltype
_bx = bx.Clone

_dbx = bp.Clone

= coltype

_Sb = Sb

_vcnt = vent
_lcnt = lcnt
_specs = specs

_maxF = maxF

_el =

’solve using newton’s method

Fsr 1= 0 To ns

el

T4 i =0 Ans
xvar (i)

r%var(i)

H

&

condt <> Column.condtype.Full_Reflux Then

InR1j (i)

1nSbj (i)

153

1529 Kext

1530

1531 ml = 0

1532

1533 if vent > 0 Then

1534 For 1 = ns + 1 To vent + ns

1535 For j = ml To ns

1536 I Rvj(j) <> 1 Than

1537 mi= 3+ 1

1538 T For

1539 End

1540 Hext

1541 xvar(i) = InRvj(ml - 1)

1542 Next

1543 End

1544

1545 m2 = 0

1546

1547 if lent > 0 Then

1548 For 1 = vent + ns + 1 To vent + lcnt + ns
1549 For j =m2 + 1 To ns

1550 Tf R13(§) <> 1 Then

1551 m2=j+1

1552 Exit For

1553 I £

1554 Kext

1555 xvar(i) = 1nR1j(m2 - 1)

1556 Hext

1557 i

1558 if condt = Column.condtype.Partial_Condenser Thexn xvar(el) = 1nSbj(0)
1559

1560 icO = 0

1561

1562 ’first run (to initialize variables)
1563 'fx = Me.FunctionValue(xvar)

1564

1565 Do

1566

1567 restart: fx = Me.FunctionValue(xvar)

1568 7% UseNewtonUpdate Then

1569 dfdx_ant = dfdx

1570 dfdx = Me.FunctionGradient (xvar)
1571 Dim success As Boolean

1572 success = MathEx.SysLin.rsolve.rmatrixsolve(dfdx, fx, el + 1, dx)
1573 If Kot success Then

1574 dfdx = dfdx_ant

1575 success = MathEx.SyslLin.rsolve.rmatrixsolve(dfdx, fx, el + 1, dx)
1576 Eng If

1577 2 i =0 To el

1578 dx(i) = -dx(i)

1579 Next

1580 _bx = xvar.Clone

1581 _dbx = dx.Clone

1582 Else

154

1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618

1619
1620
1621

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

dfdx = Me.FunctionGradient (xvar)
Foer 1 =0 To el

For 3 =0 To el

jac(i, j) = dfdx(i, J)

hesm = jac.Inverse
For 1 =0 To el
“or jJ =0 To el
hes(i, j) = hesm(i, j)

W

bx = xvar

bf = fx
Broyden.broydn(el, bx, bf, bp, bxb, bfb, hes, 0)

dx = bp

bx = xvar

bf = fx
Broyden.broydn(el, bx, bf, bp, bxb, bfb, hes, 1)
dx = bp

Neve BN

_bx = xvar.Clone
_dbx = bp.Clone

i

’this call to the brent solver calculates the damping factor which

minimizes the error {(fval).

itol = tol(0) * ns

df

=1

1# UseDampingFactor Then fval = brentsolver.brentoptimize(dfmin, dfmax, tol

(0), df)

perturb = False
bypass = False
xlowbound = 0.1
cr 1 =0 To el

ey

xvar_ant (i) = xvar(i)
xvar(i) += dx(i) * df

*If Abs((dx(i) * df) / xvar_ant(i)) > 10 Then

> ’perturb = True

? xvar(i) = xvar_ant(i) - df * (xvar_ant(i) - xlowbound) * 0.5
’End If

’TIf Double.IsNaN(dx(i)) Or Double.IsInfinity(dx(i)) Then

155

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664

1665

1666

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685

> bypass = True
’End Tf

’If perturb Then

> For i = 0 To el

> xvar(i) = xvar_ant(i) * (1 + 0.3 * Math.Sign(dx(i)))
> Next

’End If

’1f bypass Then

> For i = 0 To el

> xvar(i) = xvar_ant(i) * 0.95
’ Next

’End If

il_err_ant = il_err

For 1= 0 To el
il_err += fx(i) =~ 2

Next

ic += 1
icO += 1

’If bypass Then GoTo restart

1% 1c0 >= maxits Then Throw New Exception(DWSIM.App.GetLocalString("
DCMaxIterationsReached"))

17 Double.IsNaN(il_err) Then Throw New Exception(DWSIM.App.GetLocalString("
DCGeneralError"))

Tf MathEx.Common.AbsSum(dx) = 0.0# 0r ibs((il_err - il_err_ant) / il_err) <

itol Then Exit Do

CheckCalculatorStatus()

Loop Until il_err < itol

v 1 =0 To ns

if 1 = 0 ind _condtype = Column.condtype.Total_Condenser Then
1nR1j_ant(i) = 1nR1j (i)
1nR1j(i) = xvar(i)
R1j(i) = £xp(1nR1j (1))

InSbj_ant (i) = 1nSbj(i)

1nSbj(i) = xvar(i)

Sbj(i) = Exp(1nSbj(i))

Fer j =0 Tonc -1

S(i, 3) = Sbj(i) * alpha(i, j) * Sb

156

1686

1687

1688 ml =0

1689

1690 if vent > 0 Then

1691 ¥or 1 = ns To vent + ns

1692 For j = ml To ns

1693 ¢ Rvj(j) <> 1 Then

1694 mi =3 +1

1695 Exit For

1696 Ernd 14

1697 Hext

1698 InRvj_ant(ml - 1) = InRvj(ml - 1)
1699 InRvj(ml - 1) = xvar(i)

1700 Rvj(ml - 1) = fxp(InRvj(ml - 1))
1701 Fext

1702 End 1

1703

1704 m2 =0

1705

1706 % lent > 0 Then

1707 Fsr 1 = vent + ns + 1 To vent + lent + ns
1708 Fer j =m2 + 1 To ns

1709 If R1j(3) <> 1 Then

1710 m2 = j + 1

1711 B For

1712 7

1713 Newt

1714 InRlj_ant(m2 - 1) = InR1j(m2 - 1)
1715 1nR1j(m2 - 1) = xvar(i)

1716 Rl1j(m2 - 1) = £xp(1nR1j(m2 - 1))
1717 Next

1718 Eng 11

1719 1f condt = Column.condtype.Partial_Condenser Thexn
1720 1nSbj_ant(0) = 1nSbj(0)

1721 1nSbj(0) = xvar(el)

1722 Sbj(0) = Ex1:(1nSbj(0))

1723 For j =0 Tonc - 1

1724 S(0, j) = Sbj(0) * alpha(0, j) * Sb
1725 et

1726 End 17

1727 ic +=1

1728 iic += 1

1729

1730 ’step9 (external loop)

1731

1732 Tj_ant = Tj.Clone

1733 Tj = _Tj.Clone

1734 T_ = _T_.Clone

1735 Lj = _Lj.Clone

1736 Vj = _Vj.Clone

1737 Q = _Q.Clone

1738 LSSj = _LSSj.Clone

1739 VSSj = _VSSj.Clone

157

1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767

1768
1769
1770

1771
1772

1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788

xc
yc
1lc
vcC
zc

Kb

ISR N

= _xc.Clone
= _yc.Clone
= _lc.Clone
= _vc.Clone

= _zc.Clone

= _Kbj.Clone
i =0 To ns
T_(1) = Tj(1)

Tji(1) = Tj(1)
Tj2(1) = Tj(i) + deltat_el x (i + 1)

’update external loop variables using rigorous models

el_
el_

err_ant = el_err
err = 0

Dim tmp(ns) As Object

14 doparallel Then

If My.Settings.EnableGPUProcessing Then
My.MyApplication.gpu.EnableMultithreading()
My.MyApplication.IsRunningParallelTasks = True
Dirm taskl As Task = Task.Factory.StartNew(sun() Parallel.ror(0, ns + 1,
poptions,
Suk (ipar)
11 1lextr Then
tmp(ipar) = pp.DW_CalcKvalue(xc
(ipar), yc(ipar), Tj(ipar),
P(ipar), "LL")

tmp(ipar) = pp.DW_CalcKvalue(xc
(ipar), yc(ipar), Tj(ipar),
P(ipar))

nil ot taskl.IsCompleted
Application.DoEvents()

e

0 To ns

For j = 0 Tonc - 1
K_ant(i, j) = K(i, j)
K(i, j) = tmp(i)(j)

Kbj_ant (i) = Kbj(i)

KNext

My.MyApplication.IsRunningParallelTasks = False

1f My.Settings.EnableGPUProcessing Then
My.MyApplication.gpu.DisableMultithreading()
My.MyApplication.gpu.FreeAll()

158

1789

1790

1791 For 1 = 0 To ns

1792 1% llextr Then

1793 tmp(i) = pp.DW_CalcKvalue(xc(i), yc(i), Tj(i), P(i), "LL"™)
1794 Flse

1795 tmp(i) = pp.DW_CalcKvalue(xc(i), yc(i), Tj(i), P(i))
1796 Eng If

1797 Foy j = 0 To nc - 1

1798 K_ant(i, j) = K@, j)

1799 K@i, j) = tmp(i)(j)

1800 Hent

1801 Kbj_ant(i) = Kbj(i)

1802 Hesnt

1803 End 1%

1804

1805 17 KbjWA = False Then

1806 Kbjl = CalcKbjl(us, nc, K, zc, yc, Tjl, P, pp)
1807 Elise

1808 Kbj1 = CalcKbj2(ns, nc, K, zc, yc, Tjl, P, pp)
1809 Eng IF

1810 'Kbjl = Kbj

1811 Kbj = Kbjt

1812

1813 ‘update relative volatilities

1814

1815 Fer 1= 0 To ns

1816 For j =0 To nc - 1

1817 alpha_ant(i, j) = alpha(i, j)

1818 alpha(i, j) = K(i, j) / Kbj(i)

1819 el_err += ibs((alpha(i, j) - alpha_ant(i, j)) / alpha_ant(i, j)) = 2
1820 Kext

1821

1822

1823 For i = 0 To ms

1824 Sbj(i) = Kbj(i) * Vj(i) / Lj(i)

1825 7t Sbj(i) = 0.0# Then Sbj(i) = 1.0E-20

1826 1nSbj(i) = Lep(Sbj(i))

1827 T4 V(i) <> 0 Ther Rvj(i) = 1 + VSSj(i) / Vj(i) Zlse Rvj(i) = 1
1828 1nRvj (i) = Log(Rvi(i))

1829 74 Lj(i) <> 0 Then R1j(i) = 1 + LSSj(i) / Lj(i) ©ise R1j(i) = 1
1830 1nR1j(1i) = 1og(R1j (1))

1831 For 3 =0 Tonc - 1

1832 S(i, j) = Sbj(i) * alpha(i, j) * Sb

1833 Hext

1834 Hext

1835

1836 >update A/B/C/D/E/F

1837

1838 1% doparallel Thexn

1839 My.MyApplication.IsRunningParallelTasks = True
1840 14 My.Settings.EnableGPUProcessing 7hen

1841 My.MyApplication.gpu.EnableMultithreading()
1842 Eng If

159

1843

1844
1845
1846

1847
1848
1849
1850
1851
1852
1853
1854

1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881

1882
1883
1884
1885

1886

-

poptions,

While Net taskl.IsCompleted

Application.DoEvents()

nd While

e

M

For j = 0 Tonc -1
K2j(i, j) = K2(1) ()

Dim taskl As Task = Task.Factory.StartNew(Su:() Parallel.For(0, ns + 1,

Sek(ipar)
‘new Ks
K2(ipar) = pp.DW_CalcKvalue(xc(ipar
), yc(ipar), Tj2(ipar), P(ipar)
)
End Sub))

7f Double.IsNaN(X2(i)(j)) 0Or Double.IsInfinity(K2(i)(j)) Ther K2(i)(
j) = pp-AUX_PVAPi(j, Tj(i)) / P(i)

Kext

y.MyApplication.IsRunningParallelTasks = False

If My.Settings.EnableGPUProcessing Then
My.MyApplication.gpu.DisableMultithreading()

My .MyApplication.gpu.FreeAll()

>r 1 = 0 To ns

‘new Ks

K2(1) = pp.DW_CalcKvalue(xc(i), yc(i), Tj2(i), P(i))

Fer j = 0Tomnc -1
K2j(i, j) = K2(i)(3)

17 Double.IsNaN(K2(i)(j)) Or

Double.IsInfinity(K2(1i) (j)) Then K2(i)(

j) = pp.AUX_PVAPi(j, Tj(i)) / P(i)

NEXT

{f doparallel Then

My .MyApplication.IsRunningParallelTasks = True

My.MyApplication.gpu.EnableMultithreading()

poptions,

160

If My.Settings.EnableGPUProcessing Thexn

taskl As Task = Task.Factory.StartNew(Sun() Parallel.For(0, ns + 1,

Sub(ipar)
’enthalpies
if 1llextr Then
Hv1(ipar) = pp.
DW_CalcEnthalpyDeparture(
yc(ipar), Tj1(ipar), P(
ipar), PropertyPackages.
State.Liquid)
Hv2(ipar) = pp.

1887
1888

1889

1890
1891

1892

1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907

1908

1909
1910

1911

1912
1913

1914

1915
1916

My .M

hile Het taskl.IsCompleted

Application.DoEvents()

While

If My.Settings.EnableGPUProcessing <
My.MyApplication.gpu.DisableMultithreading()
My .MyApplication.gpu.FreeAl1()

T

v 1 =0 To ns

’enthalpies
i llextr Then

DW_CalcEnthalpyDeparture(
yc(ipar), Tj2(ipar), P(
ipar), PropertyPackages.
State.Liquid)

Hv1(ipar) = pp.
DW_CalcEnthalpyDeparture(
yc(ipar), Tji(ipar), P(
ipar), PropertyPackages.
State.Vapor)

Hv2(ipar) = pp.
DW_CalcEnthalpyDeparture(
yc(ipar), Tj2(ipar), P(
ipar), PropertyPackages.
State.Vapor)

Hl1(ipar) = pp.
DW_CalcEnthalpyDeparture (xc(
ipar), Tji(ipar), P(ipar),
PropertyPackages.State.Liquid)

H12(ipar) = pp.
DW_CalcEnthalpyDeparture (xc(
ipar), Tj2(ipar), P(ipar),
PropertyPackages.State.Liquid)

Tnd Sub))

yApplication.IsRunningParallelTasks = False

Hvi(i) = pp.DW_CalcEnthalpyDeparture(yc(i), Tj1(i), P(i),

PropertyPackages.State.Liquid)

Hv2(i) = pp.DW_CalcEnthalpyDeparture(yc(i), Tj2(i), P(i),

PropertyPackages.State.Liquid)

Fize

Hvi(i) = pp.DW_CalcEnthalpyDeparture(yc(i), Tji(i), P(i),
PropertyPackages.State.Vapor)

Hv2(i) = pp.DW_CalcEnthalpyDeparture(yc(i), Tj2(i), P(i),

PropertyPackages.State.Vapor)

H11(i) = pp.DW_CalcEnthalpyDeparture(xc(i), Tj1(i), P(i),
PropertyPackages.State.Liquid)
H12(i) = pp.DW_CalcEnthalpyDeparture(xc(i), Tj2(i), P(i),
PropertyPackages.State.Liquid)

161

1917
1918
1919
1920
1921

11922

© 1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948
1949
1950
1951
1952
1953
1954
1955
1956
1957

1958
1959
1960
1961
1962
1963
1964
1965
1966

if kbe(il_err) > tol(0) * ns 7

End If
if KbjWA = False Then
Kbj2 = CalcKbjl(ms, nc, K2j, zc, yc, Tj2, P, pp)

Kbj2 = CalcKbj2(us, nc, K2j, zc, yc, Tj2, P, pp)
End T

Dim Aerr(ms), Berr(ms) As Double
For 1 =0 To ns

Bj_ant(i) = Bj(i)

Bj(i) = Leg(Kbj1(i) / Kbj2(i)) / (1 / Tj2(i) - 1/ Tj1(i))

Berr(i) = Bj(i) - Bj_ant(i)

Aj_ant (i) = Aj(1)

Aj(i) = Log(Kbj1(i)) + Bj(i) = (1 / Tji1(i))

Aerr(i) = Aj(i) - Aj_ant(i)

Dj_ant(i) = Dj(i)

Dj(i) = (Hvi(i) - Hv2(i)) / (Tji(i) - Tj2(i))

Cj_ant(i) = Cj(i)

Cj(i) = Hvi(i) - Dj(i) *= (Tj1(i) - T_(i))

Fj_ant(i) = Fj(i)

Fi(i) = (H11(i) - H12(i)) / (Tj1(i) - Tj2(i))

Ej_ant(i) = Ej(1)

Ej(i) = HL1(i) - Fj(i) * (Tj1(i) - T_(i))

mNen

ec += 1

1% ec >= maxits Then Throw New Exception(DWSIM.App.GetLocalString("
DCMaxIterationsReached"))

14 Double.IsNaN(el_err) 7
DCGeneralError"))

Throw New Exception(DWSIM.App.GetLocalString("

It AdjustSb Thern SbOK = False
Sb =1
CheckCalculatorStatus()

Until ibs(el_err) < tol(l) * el

My.Application.ActiveSimulation.WriteToLog("The_ sum of,,squared absolute errorsy
(internalloop) isn’t changing, anymore. Finalvalueyisy," & il_err & ".",
Color.Green, FormClasses.TipoAviso.Aviso)

> finished, de-normalize and return arrays

FOX

i =20 To ns

Lj(i) = Lj(i) * maxF
Vj(i) = Vj(i) * maxF
LSSj(i) = LSSj(i) * maxF
VSSj(i) = VSSj(i) * maxF

162

F(i) = F(i) * maxF
L(i) = L(i) * maxF
V(i) = V(i) * maxF
L38S(i) = LSS(i) * maxF
VSS(i) = VSS(i) * maxF
Q@) = Q(1) * maxF

ict UseNewtonUpdate Then
v i =0 To el
For j = 0 To el
hesm(i, j) = hes(i, j)

jac = hesm.Inverse
For 1= 0 To el
For j = 0 To el
dfdx(i, j) = jac(i, j)

Return New Object() {Tj, Vj, Lj, VSSj, LSSj, yc, xc, K, Q, ic, il_err, ec, el_err,

dfdx}

163

