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Capitulo 1

Introducccion

Preguntarse en qué forma evoluciona el conocimiento de un agente a la luz de
nuevas informaciones ha conllevado al desarrollo de todo una teoria que intersecta
diversas disciplinas, inteligencia artificial, psicologia, bases de datos son sélo alguna
de ellas. Esta teoria se conoce como la Dinamica del conocimiento.

Desde el punto de vista 16gico matematico uno de los marcos predominantes en el
estudio de la dindmica del conocimiento es el propuesto por Alchourrén, Ganderfors
v Makinson, conocido como el marco de la revision de creencias AGM 6 marco
AGM. Los operadores de revision AGM se vigen por una serie de postulados que
se fundamentan en tres principios: el principio de coherencia, que pide mantener la
consistencia hasta la tltimas consecuencias, el principio de cambio minimal, que pide
conservar la mayor cantidad de la vieja informacién como sea posible y el principio de
prioridad de la informacion que pide que la nueva informacidn sea aceptada después
de la revision de las creencias por medio del bien conocido postulado de éxito.

Con el fin de adherirse mas rigurosamente a estos tres principios, el marco AGM
ha sido extendido consecuentemente. En 1997 Darwiche y Pearl demostraron que el
enfoque AGM de las bases de conocimiento como férmulas logicas produce inconve-
nientes (especificamente con ¢l principio del cambio minimal) a la hora de iterar la
revisién debido a su falta de poder expresivo. Propusieron entonces cambiar las bases
de creencias logicas por estructuras mas complejas llamadas estados epistémicos, las
cuales proporcionan mas informacién sobre el conocimiento del agente. Tradujeron
entonces los postulados AGM en términos de estados espistémicos y a estos agregaron
nuevos postulados que controlan de manera mas precisa el cambio de conocimiento
durante la iteracion, este nuevo marco se conoce como ¢l Marco DP.

Recientemente Booth y Meyer y, de manera independiente, Jin y Thielscher, han
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propuesto mejoras al marco DP.

El trabajo que presentamos a continunacion nace de reflexionar sobre la relacién
entre el principio del cambio minimal y el principio de la prioridad de la nueva infor-
macién en la revision de creencias. ; Qué tan “minimal” es el cambio si es obligatorio
incluir a nuestro conjunto de creencias, sea cual sea, la nueva informacién?. ;Es ab-
solutamente necesario el postulado de éxito?.

Esta claro que este requerimiento es adecuado en una gran cantidad de situa-
ciones, pero hay otras tantas en que quisiérarmos considerar la nueva informacion
de una manera mas cautelosa. Quizds porque tenemos cierta confianza en la fuente
de donde viene esta informacion, pero no suficiente para aceptarla incondicional-
mente en nuestras creencias. Esto puede ser visto como una especie de proceso de
aprendizaje en aumento de la informacién: cada vez que el agente recibe una nueva
informacién «, ésta formula mejora su plausibilidad en el estado epistémico de dicho
agente. Y sl éste recibe la misma informacion muchas veces, entonces finalmente la
creerd y la aceptard en sus creencias.

En este trabajo proponemos una generalizacion de los operadores de revision
iterada del marco DP, y los llamamos operadores de mejoramiento. Esta nueva clase
de operadores renuncian a la necesidad del postulado de éxito en la busqueda del
verdadero cambio minimal, comportandose de una manera mucho menos drastica que
los va bien conocidos operadores de revision iterada DP, y basandose en mejorar poco
a poco la nueva informacién-para luego de un niumero determinado de-iteraciones,
finalmente aceptarla.

Daremos una representacién precisa de los operadores de mejoramiento, clasi-
ficaremos las distintas subclases de operadores de mejoramiento y ademds explo-
raremos aquellos operadores que proporcionan el cambio minimal absoluto en las
creencias de un agente a la luz de nueva informacion.



Capitulo 2

Revision de Creencias

2.1. Marco AGM

El estudio formal de la revision de creencias comienza en los anios 80. Se considera
como fundador el trabajo de Alchourrén, Gardenfors y Makinson (AGM) en el afio
1985 [1]. El marco AGM estudia un modelo matematico idealizado de la revisién de
creencias. Dado un lenguaje 1ogico, las creencias de un agente son representadas por
conjuntos de formulas cerradas bajo implicacion 1égica (Teor{as légicas); son llamadas
conjuntos de creencias. La nueva informacion es una formula del lenguaje dado. Un
operador de revision esuna funcion que incorpora-la nueva informacién-al conjunto
de creencias del agente para obtener un nuevo conjunto de creencias revisado.

Definicion 2.1 Una funcion x . Teorias x Formulas — Teorias que toma una
teoria logica y una formula u vy las envia a una nueva teoria denotada K * p es
Hamada operador de revision.

Los autores del marco AGM original desarrollaron su teoria guidndose por fres
principios fundamentales:

v La prioridad de la nueva informacion. La nueva informacién se considera mas
plausible y necesaria en la creencias del individuo (sin importar si estd o no
en contradiccion con las creencias existentes).

s Cambio minimal o cconomia de informacion. Durante la revision de creencias
no se debe renunciar a creencias existentes en el individuo antes de la revisién
0 generar nuevas creencias a menos que sea necesario.
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w No contradiccion. El resultado debe ser coherente cuando la nueva informacion
es coherente (incluso si la nueva informacién estd en contradiccién con las
creencias viejas).

El trio AGM propuso 8 postulados que deben ser satisfechos por cualquier op-
erador de revisién razonable. Ellos son los siguientes:

Postulados AGM:

En lo que sigue usaremos la letra K (eventualmente con subindices) para denotar
una teoria logica. Las letras griegas mintusculas (eventualmente con subindices) de-
notaran formulas de la légica proposicional. La teoria contradictoria serd denotada
K ;. Usaremos el operador +, para la expansion, definido por

K+ p=Cn(KU{u})
El primer postulado simplemente requiere que el resultado de una revision sea un
conjunto de creencias.

(K*1) K % p1 es un conjunto de creencias.

El segundo postulado garantiza que la nueva mmformacion sea adquirida por el
conjunto de creencias tras ¢l proceso de revision,

(K*2) p e K * p.

El caso mds interesante en un proceso de revisién se da cuando la nueva infor-
macion g es inconsistente con el conjunto de creencias K. Sin embargo, para una
completa definicién del operador de revisién, se cubre al caso cuando . no es con-
tradictoria con K identificindolo con una expansién de K por u. El tercer y cuarto
postulado nos dicen que la expansion es un caso particular de la revisién salvo en el
casoen que K + = K.

(K*3) K pp C K + p.
(K*4) Si =p ¢ K, entonces K + p C K * p.

Los conjuntos de creencias inconsistentes son indeseables. El quinto postulado
asume que K * g es consistente a menos que 4 sea una contradiccion.
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(K*5) K * = K si, y sdlo si, u es inconsistente.

El sexto postulado requicre que la revision de creencias sea independiente de la
sintaxis.

(K*6) Si ¢ = p, entonces K * ¢ = K x .

Los postulados 7 y 8 implican que el cambio minimal de K al incluir dos nuevas
informaciones 1 y ¢ es ¢l mismo de la expansion de K x ¢ por j siempre y cuando,
1 no contradiga a las creencias en K % ¢.

(K*7) K« (pAp) C (K *¢)+ p.

(K*8) Si —~pu & K * ¢, entonces (K )+ 0 C K * (¢ A pu).

Estos postulados de racionalidad (como son conocidos) fueron propuestos sobre
bases filoséficas. Mds ain, cualquier preocupacion computacional estaba completa-
mente ausente de de los autores del marco AGM.

En 1991 Katsuno y Mendelzon - [6] estudiaron una forma de representar mds
concretamente a los conjuntos de creencias en el caso “finito” (un nimero finito de
variables proposicionales). En particular, para automatizar y computarizar estos
procesos es bueno tener una representacién compacta del conjunto de creencias. Por
lo tanto decidieron reformular el marco AGM. A esta reformulacion la llamaremos

marco KM.

2.2. Marco KM

Katsuno y Mendelzon [6] consideraron un lenguaje proposicional finito L, y rep-
resentaron al conjunto de creencias por medio de una férmula en L. De esta manera
redefinieron a un operador de revision de la forma siguiente:

Definicién 2.2 Una funcidn o : Formulas x Formules — Formulas que toma una
formula 2 que representa a un conjunto de creencias y a otra formula p que repre-
senta la nueva informacion y las envie a una nueva formula proposicional denotada
como o es llamado operador de revision KM.



9 CAPITULO 2. REVISION DE CREENCIAS

Un operador de revision KM debe cumplir con las siguientes propiedades:

(KM1) o pu b .

(KM2) Si 9 A p es consistente, entonces ¢ oy = 1 A p.

(KM3) Si j es consistente, entonces ¢ o ;1 es también consistente.

(KM4) Si 9y = g y i1 = g, entonces iy o pig = 15 0 fis.

(KM5) (Yop)Adtvo(uhd).

(KM6) Si (1o 1) A ¢ es consistente, entonces 1o (A )& (o p) A .

En el caso finito, la definicién de revisién KM es cquivalente a la de AGM.

Valiéndose de esta reformulacion Katsuno y Mendelzon mostraron un teorema
de representacién para los operadores de revisidn.

Definicién 2.3 Consideremos una funcion que asigna a cada férmula proposicional
Y un preorden total' <, sobre W. Decimos que esta asignacidn es fiel siy sdlo si

1. Siwy =, entonces wy <, wo para cualquier wy
2. Siwy = ywa B ap, entonces wy <y wa; Yy
3. Sip = ¢, entonces <y=<,.

Aqui, wy <y wo estd definido como wy <y wy Y wo Ly wi; wi =y wo cstd definido
como wy S?p wo Y Wa S'{/) Wi -

Teorema 2.1 Un operador de revision o satisface los postulados (KM1)-(KM6) siy

sdlo si existe una asignacion fiel que envia  cada formula ) a un preorden total <y
tal que

[[M) o IJH = /m,i’n,([[/.ll]], §z,5>

La siguiente figura ilustra el teorema de representacion.

YUn preorden total es una relacién total y transitiva.
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Sd}

] ® [¢ou

[0

Los modelos de i estén dentro del dvalo. los modelos de ¢ o o estan indicados por la
linea negra mds gruesa: los minimales de los modelos de p con respecto al preorden <y,
indicado por las rayas horizontales. Los modelos en las rayas mds bajas son los modelos
mas plausibles para .

2.3. Problemas con la Iteracion de creencias

Usando el teorema de representacion de Katsuno y Mendelzon, Adnan Darwiche
y Judea Pearl mostraron en 1997 [3] que la revision KM (equivalente a la revision
AGM en el caso finito) tiene problemas al iterar el proceso de revisién. Argumentando
que estos problemas venian del hecho de que lo tnico conocido sobre el ordenamiento
de los mundos luego de la revision por la nueva informacién g es que los mundos
més plausibles (en el primer nivel) son los modelos minimales de i segun el preorden
total asignado al conjunto de creencias inicial. Veamos, por medio de los siguientes
ejemplos, que ésta falta de relacion estructural entre el preorden inicial <,, asignado
fielmente a 1, y el preorden de la revision <., asignado fielmente a 1/ o p implica
cambios contraintuitivos en un conjunto de creencias 1.

Este ejemplo nos muestra que existen operadores de revision KM que renuncian a
creencias sin justificacion alguna. El ejemplo a continuacién propuesto por Darwiche
Pearl (DP), muestra que también existen operadores de revisiéon KM que generan

creencias sin justificacién alguna.

Ejemplo 2.1 Se nos presenta una senorita llamada Brenda que parece ser lista y
luce adinerada, por lo tanto, creemos que Brenda es lista y que Brenda es adinerada.
Claramente, sequiremos creyendo que Brenda es lista atinque nos enteremos que es
pobre y sequiremos creyendo que Brenda es adinerada aunqgue mos enteremos que
no es lista. Entonces, llega a nosotros una informacion que dice que Brenda no es
lista, y por lo tanto, sequimos convencidos de que Brenda es adinerada. Pero otra
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nueva informacion nos es dada, y nos dice que Brenda si es lista después de todo.
Como el hecho de que Brenda sea o no lista no afecta en absoluto el hecho de que
sea adinerada lo razonaeble es que después de toda la confusion sobre la inteligencia
de Brenda sigamos creyendo que Brenda es adinerada.

Veamos un operador de revision compatible con KM que permite dejar de creer
que Brenda es adinerada e incluso adquirir la creencia de que Brenda no es adinerada.

mundo lista adinerada <, <y,

11 Vv v 0 2
(1,0) V F 11
(0,1) F \% 10
0,0) F F 2 1

Tomando ¥ = lista A adinerada, = —lista y « = lista. Veamos la grafica de la
tabla anterior.

S'z;‘; <

Sthop

1,0
——
(1,0) (0,0)
S 2
o,
©

Notemos que min({af], <you) = {(1,0)}. Luego por el teorema de representacion
obtenemos que (¢ o p) o = lista A —adinerada y obtenemos que o satisface (KM1)-
(KM6). Posicién no deseada por un agente razonable.

Esto nos hace citar la siguiente frase de Hans Rott:

“Que los principios de cambio minimal sean las bases de las teorias exis-
tentes de revision de creencias es sélo un mito, al menos en lo que a la
tradicion AGM se refiere.”
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2.4. Estados Epistémicos

Un estado espistémico etimoldgicamente quicre decir estado de conocimiento. Las
creencias de un agente se basan en los conocimientos del mismo en un determinado
momento. En el marco AGM las creencias y los estados epistémicos de un agente son
exactamente lo mismo, a saber, conjuntos de formulas cerradas bajo implicacion 10gi-
ca. Ellos los llaman conjuntos de creencias (“belief sets” ). Para Katsuno y Mendelzon
un estado epistémico es una férmula proposicional de un lenguaje proposicional fini-
to que codifica un conjunto de creencias. Sin embargo ambos enfoques definen al
proceso de revisién de creencias, como un operador que afecta sélo a los conjuntos de
creencias, y se basan en postulados que hablan exclusivamente de un paso de revision.

Percatandose de esto, Darwiche y Pearl en 1997 [3] se dieron cuenta que hacfa
falta mas que conjuntos de creencias para poder dar cuenta de manera coherente del
proceso de iteracion en la revision. Intuitivamente, un estado epistémico debia tener
ademas de los conjuntos de creencias de AGM o KM toda la informacién necesaria
para un razonamiento coherente, incluyendo en particular, la estrategia para la re-
vision de creencias que el agente deseara emplear en un determinado momento. De
esta manera consideraron a los estados espistémicos como entidades abstractas pero
no dieron una representacién formal inica de éstos.

Denotaremos a los estados epistémicos con letras griegas mayisculas ¥, @ even-
tualmente con subindices.

En el marco propuesto por Darwiche y Pearl (que llamaremos marco DP) es posi-
ble hablar de dos estados epistémicos ¥, y ¥y iguales (denotado como W, = WUy),
pero aun asi, pudiendo ser sintacticamente diferentes.

En el marco DP cada estado espistémico W tiene un conjunto de creencias aso-
ciado. Ese conjunto serd codificado por una férmula proposicional denotada B(W).
Como es usual en la literatura confundiremos a la Grmula B(W) con el conjunto
de creencias que ella codifica a saber Cn(B(V)). Es muy importante notar que el
conjunto de creencias de ¥ no caracteriza al estado epistémico W. Es posible tener
dos estados epistémicos distintos con conjuntos de creencias asociados equivalentes.
Mis precisamente, la funcién B no es, en general, inyectiva.
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2.5. Reformulacién de KM
Los postulados KM modificados por Darwiche y Pearl sou los siguientes:
(R*1) B(¥opu)k pu.
(R*2) Si B(W) A p es consistente, entonces B(W o ) = B(¥) A pu.
(R*3) Si p es consistente, entonces B(W o ) es también consistente.
(R*4) Si Wy = Wy y pug = o, entonces B(Wy o py) = B(Uy 0 pug).
(R*5) B(Wom)Adt B(To ().
(R*6) Si B(¥ opu) A ¢ es consistente, entonces B(W o (uA @)+ B(Uou) A .

La diferencia entre estos postulados y (KM1)-(KM6) reside esencialmente en la
naturaleza de los estados epistémicos y en la funcién 1. Ya no se revisa a un conjunto
de creencias 1) ante una nueva informacion p. Al contrario, la revisién por u se aplica
sobre un estado epistémico W.

Podria decirse que que los postulados nuevos son una traduccion inmediata de los
postulados KM a nivel de las creencias. El inico postulado que no tiene traduccién
inmediata es (KM4). Ellos adoptan la condicion (R*4) que es un debilitamiento
de (KM4). Recordemos que (KM4),-en términos. de estados epistémicos, dice que
dos estados epistémicos ¥y y Wy con sus respectivos conjuntos de creencias asociados
equivalentes, al ser revisados por informacién equivalente, siguen teniendo respectivos
conjuntos de creencias asociados equivalentes. El postulado (R*4) es mas débil
pues exige hipotesis mdas fuertes: pide la igualdad de los estados epistémicos (en el
antecedente de la implicacién) en vez de la equivalencia de sus creencias.

Es importante resaltar una diferencia en la notacion que hemos adoptado. Dar-
wiche y Pearl utilizan una notacién que puede inducir al lector inadvertido en error.
Por ejemplo el postulado (R*1) lo enuncian asi: ¥ oy = p. Su significado siendo,
por supuesto, B(W o 1) = p. Nosotros preferimos hacer explicita la funcién B (las
creencias) en la formulacién de los postulados.

De ahora en adelante nos referiremos a (R*1)-(R*6) como los postulados AGM-
DP.

El siguiente ejemplo propuesto por Goldszmidt y Pearl (con otros nombres), ilus-
tra las consecuencias contraintuitivas que se pueden obtener siguiendo una traduc-
cion literal de la condicién (KM4) que seria: B(Vy) = B(Vy) v puy = po implica
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B(Wy 0o py) = B(¥, 0 o), Postulado que llamaremos (R*4”)

Ejemplo 2.2 Dos jueces en un caso de asesinato poseen diferentes estados epistémi-
cos el primer juez cree que “Franklin es el asesino, Amilcar es sospechoso pero no
hay pruebas suficientes en su conlra, mientras que Camacho es definitivamente in-
ocente”. Bl sequndo Juez cree que “Franklin es el asesino, Camacho es sospechoso
pero no hay pruebas suficientes en su contra, mientras que Amilcar es definitiva-
mente inocente”. Los dos jueces tienen el mismo conjunto de creencias mds ar-
raigadas B(¥y) = B(Wy) = “Franklin es el asesino”. Pero una evidencia sorpren-
dente llega a los jueces p = “Franklin no es el asesino”. Claramente, cualquier re-
wision de creencias racional, hard que estos jueces difieran en sus conjuntos de creen-
cias mds arraigadas resultantes lucgo de revisar por la nucva evidencia. Sin embargo
para cualquier operador de revision que satisfaga el postulado (R*}’) resultard que
B(Uy op) = B(Vyo0u), lo cual es una posicidn insostenible en este caso (ver la
explicacion mas abajo).

El siguiente diagrama ilustra los estados epistémicos de los dos jueces como pref-
erencias sobre los mundos posibles.

Amilcar

Camacho )
Inocente ®
Amilcar . Camacho
Sospechoso &
Franklin . Franklin
Asesino
Juez 1 Juez 2

En ese caso, lo razonable es que el primer juez, después de la revision, piense
que el asesino es Daniel y que el segundo juez piense, después de la revision, que el
asesino es Camacho. Asi las creencias sobre el asesino seran distintas.

2.5.1. Teorema de representacion AGM-DP

Una vez establecido el nuevo marco para la revision de estados epistémicos, Dar-
wiche y Pearl mostraron un teorema de representacion paralelo al teorema de repre-
sentacion de Katsuno y Mendelzon.
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Definicion 2.4 Sea W el conjunio de todas las valuaciones de un lenguaje proposi-
cional finito L y suponga que el conjunto de creencias asociado a cualquier estado
epistémico pertenece a L. Una  funcion que envie cada estado epistémico U a un
preorden total <g sobre W se llama asignacion fiel si, y sélo si se cumplen:

1. Siwy = B(WV) |, entonces wy <y wq para cualquier ws.
2. Siwy = B(V) ywy ¥ B(W), entonces wy <g wa.
3. S5iWV =, entonces <g=<g.

Teorema 2.2 Sea o una funcion con dominio Estados-epistémicos x Férmulas y
codominio Estados-epistémicos. Entonces o satisface los postulados (R*1)-(R*6) si,
y solo si, cwiste una asignacion ficl que envia  cada estado espistémico W en un
preorden total <y tal que

(B o p)] = min({[p]], <w)

Observacion 2.1 Una diferencia esencial entre el teorema 2.1 y el teorema 2.2 es
que en el caso del marco KM (teorema 2.1) una asignacion fiel permite de reconstruir
el operador o (salvo equivalencia logica) mientras que en el marco AGM-DP (teorema
2.2) la asignacion fiel no permite reconstruir al operador o. En este caso debemos
tener definido al operador, pues, como ya dijimos antes, conocer B(WV o 1) no nos
permite conocer W o .

2.6. Postulados para la revision iterada

En la secciéon anterior pudimos ver que el teorema de representacion AGM-DP es
paralelo al teorema de representacion KM. Vimos también que hay ciertas diferencias.
Una de ellas es la formulacién de (R*4). Otra es la tercera condicién de asignacion fiel
que exige la igualdad de dos estados epistémicos para asegurar la igualdad entre los
preordenes totales correspondientes. Los postulados AGM-DP, sélo nos dicen quiénes
van a ser los mundos méds plausibles para el preorden asociado al estado espistémico
revisado por una nueva informacién. Asi, los postulados DP no hacen restricciones
respecto al reordenamiento de los mundos que no son minimales después de la re-
vision.



16 CAPITULO 2. REVISION DE CREENCIAS

En el ano 1997 Boutilier comenzo a indagar sobre los problemas en la revision ite-
rada. Para solucionar estos problemas propuso agregar un nuevo postulado al marco
KM existente. Se trata del postulado siguiente

(CB) Si ¢ opu b —a, entonces (Yo p)oa =)o

Este postulado impone restricciones sobre conjuntos de creencias por lo tanto
puede ser llevado a la notaciéon de DP:

(CB) Si B(V o p) F —ea, entonces B{(Wopu)oa)= B(Voa)

El siguiente teorema nos muestra la contraparte semantica del postulado de
Boutilier para estados epistémicos.

Teorema 2.3 Supongamos que un operador de revision salisface los postulados (R*1)-
(R*6). El operador satisface el postulado (CB), siy sdlo si, el operador y su corres-
pondiente asignacion fiel satisfacen:

(CBR) Siwy,wy = =B(V o), entonces wy <y wy $i1 wy <oy Wo

Los operadores de revision AGM-DP (aquellos que satisfacen los postulados
(R*1)-(R*6)) que cumplen con el postulado (CB), fueron bautizados por Boutili-
er operadores de revision natural.

El postulado de Boutilier desde un punto de vista semantico nos dice que <y,
se obtiene de <y simplemente poniendo los minimales de p en el nivel mas bajo
y los demds no cambian. Asi no sélo impone restricciones sobre el preorden total
correspondiente al estado espistémico revisado, (CB) lo define completamente. La
siguiente figura explica exactamente este hecho.

<v <wo n
Revision
[#)  Natural [14]
- N/
(] — Y]
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La revision natural pareciera ser la solucion mds apropiada para los problemas
de la revisién iterada en cuanto al cambio minimal en las creencias se refiere, sin
embargo, Darwiche y Pearl mostraron que era en cierta forma exagerada y por esta
razén llevaba a resultados contraintuitivos. En el siguiente capitulo veremos ejemplos
concretos donde la revisién natural implica comportamientos no razonables. Por esta
razon Darwiche y Pearl, propusicron sustituir al postulado (CB) por 4 postulados
menos restrictivos.

El primer postulado que Darwiche y Pearl propusieron agregar a (R*1)-(IR*6)
expresa la siguiente idea: cuando dos nuevas informaciones llegan, la segunda siendo
mas fuerte que la primera, la primera es redundante ya que la segunda informacion
sola, podria implicar el mismo conjunto de creencias que se obtendria al revisar por
ambas consecutivamente. Més formalmente el postulado es el siguiente:

(C1) Si aF p, entonces B((Vopu)oa)= B(Voa).

El segundo postulado expresa que si dos informaciones sucesivas son contradicto-
rias, la ultima prevalece, es decir, la segunda informacién sola, implicarfa el mismo
conjunto de creencias. Mas formalmente el postulado es el siguiente:

(C2) Si ok —p, entonces B((¥opu)o «) = B(V.oa).

El tercer postulado expresa la siguiente idea: si revisamos nuestras creencias por
una informacién p, y luego revisamos el conjunto de creencias obtenido de la revision
por u por una nueva informacién «. Entonces o deberia ser retenido en el conjunto
de creencias final, en el caso de que si hubiesemos revisado inicialmente por «, el
conjunto de creencias obtenido implique a . Més formalmente el postulado es el
siguiente:

(C3) Si B(V o «) F p, entonces B((V o p) o) - p

El cuarto postulado expresa que ninguna informacién deberia contribuir a su
propio olvido. Por lo tanto si revisamos nuestras creencias por una informacion pu, y
después por una informacién o, el conjunto de creencias vesultante no deberia im-
plicar a la negaciéon de pu, cuando nuestras creencias iniciales revisadas solo por la
informacion « no implican a —u. Mas formalmente el postulado es el siguiente:
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(C4) Si B(V o o) If =, entonces B((V o p) o ) I —p.

A los postulados (C1) hasta (C4) los llamaremos postulados de la iteracion DP.

Analizando los 4 nuevos postulados de la iteracion DP, podemos notar que ninguno
de éstos conlleva a olvido innecesario de informacién. El postulado (C1), no olvida
la primera informacion g, ya que la segunda informacion « prevalece e implica a p.
En cambio (C2) si permite el olvido de la primera informacién p cuando interviene
la segunda informacién «, pero justificadamente, ya que légicamente son contradic-
torias. En cuanto a los postulados (C3) y (C4), ellos estédn basados precisamente en
no olvidar la informacion que es lo que queremos hacer notar.

Asi como el postulado (CBR), la contraparte seméntica de (CB), impone rela-
ciones entre los predrdenes asociados a los estados espistémicos antes y despies de
la revisién por la nueva informacion, los postulados (C1) a (C4) deben tener contra-
partes semanticas que también impongan relaciones entre los predrdenes asociados a
los estados espistémicos antes y despues de la revision por la nueva informacion.

Y esto es precisamente lo que establece el siguiente teorema.

Teorema 2.4 Supongamos que un operador de revision satisface los postulados (R*1)-
(R*6). El operador satisface los postulados (C1)-(C4) si, y sdlo si, ¢l operador y su
asignacion fiel correspondiente satisfacen:

(CR1) Siwy =y ws = p, entonces wy <g wy < wy <goy Wo.
(CR2) Siwy = =y wy =, entonces wy <y wy & wy <goy wWo.
(CR3) Siwy = py we =, entonces wy <y wa = wy <wop Wo.
(CR4) Siwi = 1y wy = o, entonces wy <y wo = wy <wop Wa.
Mas precisamente
(Ci) & (CRi) para i€ {1,2,3 4}

Al examinar con detalle el teorema anterior, nos damos cuenta que los postulados
(CR1)-(CR4), no imponen restricciones a <y, cuando un modelo de —p es més
plausible seguin <y que un modelo de pu.
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2.6.1. Ejemplos

Ejemplo 2.3 Tengo incorporados en un circuito un sumador y un multiplicador. Yo
creo que tanto el sumador como el mulliplicador estan funcionando, por lo tanto, to-
do el circuito estd funcionando. Si alguien me dijera que el circuito estd fallando, yo
culparia al multiplicador y no al sumador (ya que los multiplicadores tienden a dar
mas problemas). Sin embargo, si alguicn me dice que el sumador estd danado, yo
creeria que el multiplicador esta bien (porque las fallas son independientes, entonces,
dos fallas simultaneas son menos deseadas que una sola). Ahora me dicen que el cir-
cuito esta fallando, ¢ inmediatamente despucés, que el sumador esta fallando. Deberia
entonces creer que el multiplicador estd malo también?. Un argumento tonto seria:
"Después de enterarme de la falla en el circuito yo culpo al multiplicador. Sabiendo
que el sumador estd malo es perfectamente consistente con mis creencias actuales
que el multiplicador esté dafiado, de esta manera, yo no tengo razones para cambiar
de parecer con respecto a multiplicador danado”. Un razonamiento mds en acuerdo
con la realidad dice que yo debo cambiar de parecer ya que la dnica razon por la que
pueda culpar a multiplicador es que el circuito esté fallando. En otro caso, por mi
propia experiencia, presumiré que el multiplicador estd bueno. Incluso aceptaré que
los dos componentes no son afectados entre si. Por lo tanto, saber que el sumador
esta malo despeja cualquier razon para que culpe al multiplicador; debo regresar a mi
creencia tnictal que el multiplicador estd bueno.

La situacion siguiente es perfectamente compatible con AGM:

mundo sumador_.ok multiplicador_.ok <, <y

(1.1) v v 0 1
(1,0) \Y F 10
0,1) F s 2 2
(0,0) F P 3 1

Tomando B(W) = sumador_ok A multiplicador ok, = =(sumador-ok N\ multiplicador_ok)
y a = —sumador_ok. Veamos la siguiente grafica que ilustra este comportamiento
indeseable y también el comportamiento més racional que impone (CR1) en una
situacion asi.
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Notemos que min({[o]], <wo,) = {(0,0)}. Esto implicarfa por el teorema de repre-
sentacién que B((V o u) o a) = —sumador_ok A —multilplicador_ok. Pero en la
grifica podemos ver que (0,1) <g (0,0) y que (0,0) <y, (0,1) rompiendo con
la condicién (CR1) va que (0,1) y (0,0) son modelos de u. Sin embargo podemos
ver que min([laf], <.,) = {(0,1)} ya-que <4, satisface (CR1). Y de esta manera
B((W o 1) o ) = =swmador _ok A multilplicador .ok: Que cs la posicion razonable de
la que hablaramos antes.

Ejemplo 2.4 Retomemos el ejemplo 2.1 de la seriorita Brenda.

La siguiente situacion, compatible con AGM, resume el ejemplo anterior

mundo lista adinerada <, <y,
(1,1) 'V \Y% 0 2
(1,0) V F 11
(0,1) F \% 1 0
(0,00 F F 2 1

Tomando B(WV) = lista A adinerada, p = —lista y o« = lista. Veamos los proble-
mas y la solucion que impone (CR2) ilustrados en la grafica siguiente:
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Notemos que min([[a]), <wou) = {(1,0)}. Esto implicaria por el teorema de repre-
sentacion que B((Wop)oa) = listaA—adinerada. Pero en la grafica podemos ver que
(1,1) <g (1,0) y que (1,0) <go, (1,1) rompiendo con la condicién (CR2) ya que (1,1)

y (1,0) son modelos de =y Sin embargo podemos ver que man({of, <4,,) = {(1,1)}
Yd que <, satisface (CR2). Y de esta manera B((\W o) o ) = lista A adinerada.
Que es una posicion razonable.

Ejemplo 2.5 Un fildsofo cscocés se levanta en la manana y dice: “El sol estd radian-
te. jQué bueno! No tengo razones para creer que tendré un din desagradable”. La
esposa le dice: “De hecho antes de que te levantaras dijeron en la radio que va ser un
dia agradable”. El filésofo dijo: “;Fon verdad lo dijeron? Los de la radio normalmente
estan en lo cierto, voy a tener que retractarme. Hoy wva ser un dia desagradable
después de todo”

Vamos a ver que AGM permite ese razonamiento extrano mientras que (CR4) lo
prohibe. La situacion inicial es que en general no hay mucho sol en Escocia. Pero
en cualquier caso los dias pueden ser tanto agradables como desagradables. La tabla
siguiente, que es compatible con AGM, ilustra porqué ese razonamiento extrano es
posible:
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mundo sol_radiante dia_agradable <y <y,
(1,1) \% Vv 1 2
(1,0) \% F L1
(0,1) F \Y% 0 0
(0,0) F F 0 1

Tomando B(V) = —sol_radiante, i = dia_agradable y o = sol_radiante, vamos
a ver en la grafica siguiente de manera mas precisa el comportamiento extrano del
filésofo y cémo (CR4) prohibe ese comportamiento.

Sq,{JO/l,
(Ln
< 4
= i (0,0 (1,0)
KM] ' ”
(0,1)
T o
N 1,0
(fon \ a0 .
(0,0) wor
— @
(0,1) [[Il]] \ (|’|) (I,O)
— e —o—
KM+CR4 (0.0) :
o,n
@

Notemos que min([a]], <go,) = {(1,0)}. Esto implicarfa por el teorema de repre-
sentacién que B((V o p) o @) = dia-soleado N ~dia_agradable. Pero en la grifica
podemos ver que (1,1) =, (1,0) y que (1,0) <o, (1,1) rompiendo con la condi-
cion (CR4) ya que (1,1) € [[uf] v (1,0) € [-p]. Sin embargo podemos ver que
min({[of], <y.,) = {(1,1),(1,0)} ya que <i,, satisface (CR4). Y de esta manera
B((\Vou)ow) = solradiante. Que es una posicién razonable.

2.7. Operadores de Revision DP

Veamos ahora ejemplos concretos de operadores que satisfagan los postulados

(R¥1)-(R*6) v (C1)-(C4).
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2.7.1. Revision natural

La Revisién Natural se definié para aquellos operadores que cumplieran con
los postulados (R*1)-(R*6) y la condicién (CB) de Boutilier. Por lo tanto bas-
tard mostrar que (CB) implica (C1)-(C4) para incluir a la Revisién Natural en la
lista de operados compatibles con la revisién de Darwiche y Pearl.

Proposicién 2.1 Sea o un operador de revision que satisface (R*1)-(R*6). Si el
operador satisface (CBR) entonces satisface (CR1)-(CRY).

Esta proposicion junto con el Teorema 2.3 y el Teorema 2.4 nos aseguran que la
revisién natural es un operador de revisién de Darwiche Pearl. Mds ain, este resul-
tado muestra que los postulados (C1)-(C4) son un debilitamiento de (CB). Que no
son equivalentes, es decir que (C1)-(C4) no implican (CB), sera visto en la siguiente
seccion.

2.7.2. Revisién Lexicografica

Contemporaneamente con Boutilier, Nayak [9] introdujo el operador de revision
lexicografica buscando la solucién para el problema de la revision iterada de AGM.
Semanticamente la revision natural impone restriceiones sobre el ordenamiento de
las valuaciones después.de efectuada la-revisién pornueva informacion. La propiedad
(Lex) muestra como Nayak define el preorden <y, para una informacién .

(Lex)

Wi Sypop w2 & (Wi = ) A(we = )]V [[(w1, w2 b= p) V (w1, w2 = )] Afwr Su ws]]

La siguiente grafica ilustra la revision lexicografica.

S G S Toy

[ Leicopraea

=

[B(W)] —— [B(Y)]
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Como veremos mds adelante, en presencia de (R*1)-(R*6), la condicién (Lex)
sera equivalente a (C1), (C2) mas una condicién que Nayak Namé Recalcitrancia:
cuando llegan dos nuevas informaciones no contradictorias entre si se tiene que al
revisar las creencias por la primera informacién y luego revisar nuevamente por la
segunda informacién el conjunto de creencias resultante debe implicar la primera in-
formacion. Esta condicion serd denotada (Rec). En términos de estados epistémicos
recalcitrancia dice:

(Rec) Si f 1/ —a, entonces B((Voa)o ) F a.

El siguiente Teorema nos muestra la contraparte semantica de la recalcitrancia.

Teorema 2.5 Supongamos que un operador o satisface (R*1)-(R*6). Entonces o
satisface (Rec), si y sdlo si, o y su correspondiente asignacion. fiel satisfacen:
(R) Siw; € o] yws € [na], entonces wi <goq wo.

Teorema 2.6 Sea o un operador que satisface (R*1)-(R*6). Entonces o y su corres-
pondiente asignacion fiel satisfacen (CR1), (CR2) y (R) si, y sdlo si, o y su corre-
spondiente asignacion fiel satisfacen (Lez).

Como corolario del teorema anterior y de los teoremas 2.4 y 2.5 obtenemos el
siguiente teorema.

Teorema 2.7 Sea o un operador que satisface los postulados (R*1)-(R*6). Entonces
o es un operador de Revision Lexicogrifica si, y sdlo st, o satisface (C1), (C2) y (Rec).

Proposicion 2.2 Sea o un operador de revision que satisface (R*1)-(R*6).
S1 0y su correspondiente asignacion fiel cumplen (R) entonces o y su correspondiente

asignacion fiel satisfacen (CR8) y (CR4).

Demostraciéon: Supongamos que (R) se cumple.

(CR3) Tomemos wy k= 1y wy k= —y. Supongamos que wy <g we. Queremos ver que
w1 <wop wa2, lo cual se deduce directamente de la hipdtesis y de (R).

(CR4) Tomemos wy = p1y wy = —ji. Supongamos que wy <y ws. Queremos ver que
wi Zgou wo. Por (R) y la hipétesis tenemos wi <go, wo. Luego wi <gop wo.
Como queriamos. .
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Finalmente tenemos el siguiente teorema:

Teorema 2.8 Sea o un operador que satisface (R*1)-(R*6). Si o es de revision
lexicogrifica entonces es un operador de Darwiche y Pearl ¢s decir satisface (C1)-

(C4).

Demostraciéon: Del teorema 2.7 tenemos que todo operador lexicogrifico que satis-
face (R*1)-(R*6) también satisface (C1), (C2) y (Rec). Pero por la proposicién 2.2,
el teorema 2.5 y el teorema 2.4 tenemos que la condicién (Rec) implica a (C3)-(C4).
Hecho que concluye la prueba. B

2.7.3. Funciones ordinales condicionales de Spohn

En 1987 Spohn [11] introdujo a las funciones ordinales condicionales como repre-
sentantes de estados epistémicos. De acuerdo a Spohn una funcién ordinal condi-
cional, es una funcién s también llamada funcion de ranking desde el conjunto dado
de valuaciones W a la clase de los ordinales. Intuitivamente s representa un orden
de los mundos (valuaciones) por su grado de plausibilidad: los mundos con ordinales
mas pequenos son mas plausibles. Asi, los mundos que son la pre-imagen del 0 son
los mds plausibles de acuerdo a las creencias del agente.

El ordenamiento por plausibilidad de las valuaciones posibles puede ser extendido a
un ordenamiento de las proposiciones (conjuntos de mundos posibles), definiendo a
el valor bajo  de una proposicién p como el valor del mundo con el menor ordinal
asignado entre los modelos de p. Esto es, k() = min{x(w) : w = p}. Diremos
que las creencias de una funcién denotadas como B(k) se caracterizan por ser las
proposiciones que tienen como modelos las pre-imagenes bajo « del ordinal 0. Esto
es, [B(R)] = {w : £lw) = 0}2.

Ademas de proponer a las funciones ordinales condicionales como representacion de
estados epistémicos. Spohn propuso un método para cambiar un ranking frente a
nueva informacion. La evidencia la representé como un par (u,m), donde p es una
proposicion representante de la nueva informacién y m es el grado de plausibilidad
de p después de la revisidn, es decir m es el rango minimo en donde se encuentran
puden encontrarse modelos de —y. Segiin Spohn, un ranking s es actualizado frente
a una nueva evidenciade la siguiente manera:

2A diferencia, dC S pohn y Darwiche y Pearl nosotros no suponemos que K ! 0 @, ast puede
suceder que B(K;) = 1.
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. () = r(w) = k), siw
V(pe,m) T\ k(w) — k() +m, siow B

Spohn llamé a la funcién k. (w) la (@, m)-condicionalizacion de .

Haciendo variar m es posible definir una gran cantidad de funciones de ranking.
Darwiche y Pearl construyeron un operador de revisién de creencias denotado por e
inspirados en las ideas de Spohn.

Es una especie de funcién de ranking que fortaleciera las creenciag en la nueva
informacion luego de revisar por ella. Especificamente, tomaron m el grado de plau-
sibilidad post-revisién de g un grado mayor que el valor - bajo k:

a9
—

e () = { rlw) = k(p), st wl=u;

(ko) (W) = Fiun(=m+1) KW)+1, s wh o

La siguiente figura da un ejemplo que ilustra al operador e.

g g S Yoy

El siguiente teorema muestra que la propuesta para revision de creencias de
Spohn, satisface el marco Darwiche-Pearl.

Teorema 2.9 El operador de revision e satisface los postulados (R*1)-(R*6) y (C1)-
(C4).

De esta manera tenemos que el operador e es un operador de Darwiche Pearl. A
partir de ahora al operador e definido por Darwiche y Pearl lo llamaremos operador

SDP.
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2.8. Revision Admisible

2.8.1. Problemas en el marco DP

Darwiche y Pearl mostraron que la condicion (CB) es muy fuerte, y que la revision
natural no es del todo tan natural ya que puede llevar a resultados contraintuitivos.
Veamos el siguiente ejemplo:

Ejemplo 2.6 Obscrvamos un extrano animal y éste parece ser un  pdjaro; por lo
tanto creemos que lo es. Cuando éste se acerca, vemos claramente que el animal
es rojo. Asi, creemos que es un pdjaro rojo. Para solir de dudas consultamos a un
experto en aves que lo examana y concluye que no es un pajaro sino otra clase de
animal. ;Deberiamos sequir creyendo que el animal es rojo?;(CB) nos dice que no!
Como st nunca hubiesemos sabido el color del pdjaro.

Este resultado poco satisfactorio puede ser visto mas precisamente si ponemos

| 00 01
=¥ 10 11

en donde la primera coordenada se refiere a pajaro y la segunda a rojo. Ast B(W) =
pajaro. La revision natural por 7ojo nos lleva a

00 01
< Vorojo — 10
11

y de nuevo revisando por —pajaro la revision natural nos da

10
< Worojoo—pajaro — 11

00 01
Asi, es claro que B(W o rojo o mpajaro) = —pajaro.

Como la revision de Boutilier es un caso particular de la revisién de Darwiche-
Pearl, se desprende que hay debilidades en el Marco DP. Lo curioso del trabajo de
Darwiche y Pearl es que a pesar de que se dieron cuenta del problema de la revisién
natural, no la rechazaron de los operadores compatibles con DP, si no que a partir del
postulado de Boutilier propusieron los postulados (C1)-(C4) mas débiles que (CB).
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Por lo tanto no dieron una solucién definitiva para esto.

Este hecho motivd a los investigadores Richard Booth y Thomas Meyerpor un
lado [2] y a Yi Jin y Michael Thielscher por otro [5], a estudiar estos problemas
recientemente. Ellos proponen varios cambios en el marco DI como solucién.

2.8.2. Marco RAGM

Booth y Meyer comienzan su nuevo marco considerando operadores de revision
con estados epistémicos (el marco DP sin los axiomas de la iteracion). Ellos, por co-
modidad en el tratamiento, s6lo consideran estados epistémicos W tales que B(V) sea
consistente. También suponen que las formulas por las cuales se revisa serdn siempre
consistentes. Esto es necesario para que el postulado (R*1) sea consistente con la
hipétesis que lag creencias de los estados epistémicos son siempre consistentes. Note
que bajo estas suposiciones el postulado (R*3) es redundante.

Recordemos que Darwiche y Pearl mostraron que una traduccién literal del pos-
tulado de irrelevancia de sintaxis (KM4) a estados epistémicos en términos de la
funcién B era demasiado fuerte (ver ejemplo 2.2 que le precede) v debia ser sustitui-
do por el postulado (R*4) en el marco de estados epistémicos. Sin embargo, Booth y
Meyer argumentan que (R*4) es muy débil. Ya que no proporciona una formulacion
adecuada de la irrelevancia de sintdxis para la revisién iterada. (R*4) especifica que
la revision por dos informaciones equivalentes debe producir estados espistémicos con
bases de creencias asociadas equivalentes. Pero de alli no se deduce, que estos estados
epistémicos revisados resultantes, después de ser a su vez revisados por informaciones
equivalentes también produzcan estados espistémicos con bases de creencias asocia-
das equivalentes.

Como veremos a continuacion, es posible entonces satisfacer la revision de Darwiche-
Pearl y tener B((Wo«a)ovy) # B((Vo ) od) aiun cuando o = J y v = §. Esto, por
supuesto, no parece ser muy racional.
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Ejemplo 2.7 Consideremos un lenguaje proposicional generado por § formulas ato-
micas p,q y . Fijemos cualquier operador o de revision de Darwiche-Pearl (La re-
vision lexicografica por ejemplo). Por los teoremas 2.2 y 2.4 existe una asignacion
fiel que envia cada estado epistémico W a un preorden total <y cumpliendo que
W o u]) = min([[p], <v) y las condiciones (CR1),(CR2),(CR3) y (CR4). Si tomamos
esta misma asignacion para todo los estados epistémicos salvo en los casos de O, Pop
y Po—=p a los cuales son asignados respectivamente los preordenes totales <qg, <aop
Y <go--p COMO se muestran abajo. Es facil verificar que estos tres preordenes siguen
cumpliendo las condiciones de la asignacion fiel de los leoremas 3.1 y 8.3 y por lo tan-
to que la asignacion fiel considerada con los pequenos cambios realizados corresponde
a un operador de revision de Darwiche y Pearl.

(,z,g,()) (0,‘,1)
(7,‘,0)
(0’371)
(1,1,1) (0,0,0)
® 2

(Lgyl) (0:‘;0)

<&
[
(1,0,0) ©,1,1) (1%0)
® ° (1,1,0)
(L1,0) (0,0, e
¢ ¢ 0,0,1)
(0,0,0) g
¢ (,1,1) 0,0,0)
(1,1,1) (0,1,0) °o— e
® o 0,1,0)
%N (1,0, ®
® e
S‘]’Op S(I?O—l-\p

Pero observemos que B((®Po p)oq)={(1,1,1),(0,1,0)}, mientras que
B((®o-—p)ogq) = {(0,1,0)}. De esta manera hemos consequido un operador de
Darwiche y Pearl que se comporta de la forma poco intuitiva que habldramos justo
antes.

Como consecuencia de este hecho, Booth y Meyer proponen que el postulado
(R*4) sea reemplazado® por el postulado siguiente:

“Nosotros simplemente reforzaremos (R*4). Pensamos que (R*4) no se puede obtener de
(R*4)(mddulo (R*1), (R*2), (R*3), (R*5) y (R*6)) como Booth y Meyer lo sobrentienden.
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(R*¥4) Si Wy, =Wy, a= By §=ventonces B((Voa)ovy)=B(Vof)od)

Proposicion 2.3 Sea o un operador de revision que satisface (R*1)-(R*6). Entonces
o (R*}’) si, y solo si o y su correspondiente asignacion fiel satisfacen

(RR*)’) Si W, =Wy y a= [ entonces <y, oa=<w,05-

Proposiciéon 2.4 La revision lexicogrdfica, natural y SDP satisfacen (R*]’).

Booth y Meyer conjeturan que la intencion de Darwiche y Pearl era reemplazar
(KM4) con (R*4") en lugar de (R*4). en todo caso parece una propiedad muy natural
y como acabamos de ver satisfecha por los operadores mas conocidos.

Definicién 2.5 El conjunto de postulados del marco AGM-DP al cual se le anade
(R*]’) se define como el marco RAGM. Precisamente los postulados del marco RAGM
se pueden enunciar asi:

(R*1) B(Wou) k- p
(R*2) Si B(W) A es consistente, entonces B(W o) = B(V) A pu.
(R*3) Si j es consistente, entonces B(W o 1) ¢s también consistente.

(R*4”) Si Uy = Uy, gy = pa y p1 = po, entonces B(Vy o) = B(Wy 0 pa) y
B(Wy 0 0p)= B(Uy0pu0 pa).

(R*5) B(Wou)ANopk B(To(uAd)).
(R*6) Si B(Wopu) A ¢ es consistente, entonces B(W o (u A ¢p)) = B(V o pu) A ¢.
Note que (R*4”) es equivalente a la conjuncion de (R*4) y (R*47).

Definicion 2.6 Sea W el conjunto de todos las valuaciones de un lenguaje proposi-
cional finito L y suponga que el conjunto de creencias asociado a cualquier estado
epistémico es una formula de L. Una funcion que envia cada estado epistémico V a
un preorden total <y sobre W se llama asignacion fiel B-M si, y solo si:

1. Siwy = B(W) , entonces wy <y we para cualquier ws.
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2. Siw = B(Y) ywy ¥ B(V), entonces wy <y we.
35V =0ya=pcona,feL, entonces <o=<g ¥ <voa=<dop-
Aqur, wy <g wsy esta definido como wy <y wy Y Wo g\p Wy .

Teorema 2.10 Un operador de revision o satisface los postulados (RAGM), si y
solo si, existe una asignacion fiel B-M que envia a cada estado espistémico ¥ a un
preorden total <y tal que

(BT o )] = min(([u], <o)

Anadir (R*47) es el primer cambio® propuesto por Booth y Meyer. Ellos proponen
un segundo cambio. Para verlo recordemos el ejemplo 2.6. Vimos alli que la revision
natural no podia retener la informacién del color del animal luego de la Gltima infor-
macion que el animal no era pajaro. El argumento de retener la creencia en el color
rojo del animal se basa en el hecho de que la informacién del color del animal no
entra en conflicto con la informacién del tipo de animal (en este caso particular). En
otras palabras, conocer que el animal no es un pdjaro no impide que pueda ser de
color rojo, es razonable entonces retener la informacion de que es rojo.

De esta manera Booth y Meyer generalizaron esta situacion: cuando una infor-
macion « es consistente con una revisién por una informacién @, deberia ser retenida
si una revision por « se realiza justo antes que la revisién por . Formalmente esto es,

(P) Si B(W o ) I/ =« entonces B((Voa)o ) a.

Aplicando (P) al ejemplo 3.1 vemos que si rojo es consistente con B(¥o-pajaro),
tenemos que B((W orojo) o —pajaro) b rojo. En cierta forma (P) enfoca la indepen-
dencia entre nuevas informaciones. La proposicién siguiente nos da la caracterizacién
seméantica de (P).

Proposicion 2.5 Supongamos que un operador de revision satisface los postulados
(R*1)-(R*6). El operador satisface el postulado (P), si y sdlo si, el operador y su
correspondiente asignacion fiel satisfacen:

(PR) Siwy € [[a] yws € [, entonces wy <y wa = w1 <you Wa

“En realidad como ya lo schialdramos, Booth y Meyer proponen simplemente reemplazar (R*4)
por (R*4’) pero nosotros guardamos (R*4) para poder obtener el teorema 4.1 de una manera
g I
bastante simple.
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Esta condicién propuesta por Boooth-Meyer asegura que la nueva informacién
« sea incluida en las creencias con el arraigamiento minimo suficiente para que sea
retenido en la revision que sigue.

Proposicién 2.6 La revision lexicogrifica y la revision SDP satisfacen el postulado

P.

Acabamos de ver que la condicién (P) es una propiedad que ya tenian tanto el
operador e como el operador lexicografico. No pasa lo mismo para la revisién natu-
ral que claramente no cumple esta condicion. Asi, adoptando la condicion () se
excluye la revision natural como un operador de revisién permitido. Por lo tanto,
Booth-Meyer incluyeron en sus cambios para el marco (DP) a (P) como postula-
do, argumentando que era importante no descartar innecesariamente informacion
obtenida previamente a la ltima informacién incluida.

Definicién 2.7 Un operador de revision es Admisible si, y solo si, satisface RAGM,

(C1), (C2), y (P).

Asi como el marco DP puede ser visto, en cuanto a los asignamientos fieles se
refiere, como un marco en cual la revisién por una informacion «, produce que los
modelos de la informacion « se deslicen hacia abajo o no se muevan con respecto a
los modelos de —ar que estdn al mismo nivel, la revisiéon admisible asegura via (PR)
que este deslizamiento hacia abajo sea estricto.

Como el operador SDP es un operador de revision Darwiche y Pearl, satisface
(R*4") v (P) respectivamente. Asi, e es un operador de revisién admisible. De la
misma mancra por la proposicion 2.4 tenemos que la revision lexicografica es un
operador admisible.

Anteriormente vimos que el postulado (P) bajo RAGM produce un deslizamiento
estricto hacia abajo de los modelos de la nueva informacién por la que se esta re-
visando en el preorden total asociado al estado espistémico revisado. Sin embargo
(P) no nos dice cndnto van a mejorar o deslizar hacia abajo dichos modelos. De-
pendiendo de este deslizamiento obtendremos un operador de revisién distinto. Ya
vimos por ejemplo, que si deslizamos hacia abajo los modelos de la nueva informa-
cion tanto como nos permita RAGM obtendremos la revision lexicografica. Por esta
razén Booth-Meyer incluyen otro postulado que compensa este problema determi-
nando exactamente el mejoramiento de la nueva informacién en el preorden asociado
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a la revision.
Para ello, introdujeron la terminologia y la notacién siguiente:

Definicién 2.8 Dos formulas proposicionales o y 3 son contradictorias respecto a
un estado epistémico W, denotado como « e~y 3, si, y sdlo si, B(Voa) - Fy
B(Wo ) F —a. En tal caso diremos que « y 3 son V-contradictorias.

Que « «~g O significa que, bajo WV, o y 0§ tienden a excluirse una con otra. Esta
relacion propuesta por Booth y Meyer tiene ciertas propiedades importantes. Primero
notemos que «~y depende solo del preorden total asignado a W. En cfecto, del
teorema de representacién tenemos que «a ey 3 si, y sélo si, min([o]), <¢) C [-06])
y man([[f]}, <v) C [[a]. Esto puede reformularse de la siguiente manera, que nos

dard una ayuda 1itil para visualizar la relacion de W-contradiccién.

Proposicién 2.7 o «~y f si, y sdlo si, existe ' € [a]] y " € [F] tales que
W <y w yw” <y w para todo w € min([la A J], <v).

Ya conociendo la relacién e~y podemos introducir una nueva condicién pro-
puesta por Booth y Meyer.

(D) Si @ evy 3, entonces B((Vo«)o )k —a.

Esta nueva condicion requiere que cuando a y 3 son W-contradictorias, —a resulta
de una revision por « seguida de una revision por . Esto es, cuando se realiza la
revisién por § del estado epistémico W o «r; la informacién que se tenia en ¥ (que
dado 8 implicaba —a) toma precedencia sobre la informacién obtenida en W o o

Esa condicion tiene una contraparte semdantica como lo establece el teorema
siguiente:

Teorema 2.11 Supongamos que un operador de revision o satisface los postulados
RAGM. Entonces o satisface el postulado (D), si y sélo si, o y su correspondiente
asignacion fiel satisfacen:

(DR) Siwy € [~a], wq € [[a]] yws & [B(V oqf], entonces, wi <y wy = wi <woq W2

La condicion (DR) reduce el aumento de plausibilidad de los modelos de a des-
pués de una revision por a. Asegura que, a excepcion de los modelos mas plausibles
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de a, el ordenamiento relativo entre los modelos de = méas plausibles que los mode-
los de o no cambie.

Booth y Meyer decidieron reforzar los requerimientos de la revisién admisible
(aquellos operadores que satisfacen RAGM, (C1), (C2) y (P)) insistiendo que la

condicién (D) debe ser también satisfecha. De esta manera introdujeron una nueva
clase de operadores llamados operadores de Rewvision Restringida.

Definicién 2.9 Un operador de revision que satisface RAGM, (C1), (C2), (P) vy
(D) serd llamado de revision restringida.

Proposiciéon 2.8 Sea o un operador de revision que satisface RAGM. Entonces el
operador y su correspondiente asignacion fiel satisfacen (CR1), (CR2), (PR) y (DR)
si, y solo s1, o satisface (C1), (C2), (P)y (D).

La siguiente grafica ilustra el comportamiento de un operador de revisién res-
tringida. Los modelos estan representados con los puntos negros dentro del 6valo y
los puntos blancos son los no modelos de la nueva informacion.:

) O
o= = =
.—.—_
Q d .o
— o\ Revision ~—0— —C

~ { ¢ \ [[,,,ﬂo— Restringida

—o!e!o——__»_o o




Capitulo 3

Operadores de Mejoramiento

El convencimiento de un agente racional para que acepte en sus creencias una
nueva informacion que le es trasmitida es un tipo de cambio de conocimiento muy
comin. Muchas veces, a la luz de una nueva informacién, no quisiéramos incluirla
impulsivamente en nuestras creencias, sin embargo, pudieramos empezar un proceso
de convencimiento respecto a ésta, de manera tal que si nos repiten esta misma
informacién varias veces quisiéramos que fuese ganando plausibilidad en nuestras
creencias hasta finalmente convencernos totalmente de la misma y aceptarla.

Relatemos un ejemplo de la situacion antes planteada:

Ejemplo 3.1 Gianluca siempre ha comprado automouviles europeos de bajo costo y
estd pensando en cambiar de carro. Se dirige hacia una nuevae agencia de carros
cercana a su trabajo y pregunta entre las opciones de carros europeos de bajo costo,
y el vendedor le ofrece una camioneta americana a un muy bajo costo que resulto ser
el modelo mds comprado del anio anterior a nivel mundial. Gianluca no conoce a este
vendedor pero de todas maneras se sorprende con esta informacion, asi que decide ir a
una agencia cercana o su casa donde ha comprado todos sus carros anteriormente y el
vendedor de siempre alli le dice que iltimamente los carros que tienen menos quejas
de averias y que ademds siempre tienen repuestos disponibles son las camionetas
americanas unas mas costosas que otras pero le dice que por experiencia de trabajo
con automoviles "lo barato sale caro”. A los pocos dias y luego de reflevionar sobre
suauto europeo y las que le ha hecho pasar y ver que también las revistas mds
reconocidas de automaouviles ponen a las camionetas americanas en lo mdas alto de los
conteos, Gianluca estd viendo la television y nota de 5 propagandas de automoviles
que pasan por television, 4 son de autorndviles americanos, donde aparecen propieta-
ri0s de estos carros certificando su calidad, su comodidad y su fidelidad y nota que los
modelos mds vistosos son los de las camionetas. Gianluca ya empieza a convencerse

35



36 CAPITULO 3. OPERADORES DE MEJORAMIENTO

de comprar un carro americano, en paticular una camioneta. Esa misma tarde llega
un companero de trabajo contando que se hizo un pozo en plena carretera y que gracias
a su camioneta americana pudo pasar sin problemas y que observo como olros carros
pequenos se quedaban trancados en el pozo uno a uno. Gianluca no lo duda mds va
hacia la agencia mds cercana y compra una camioneta americana de precio standard.

Notemos que si este caso hubiese sido modelado usando la revisién de creencias
(0 bien en el marco AGM-DP, o en el marco RAGM), Gianluca hubiese tenido que
renunciar a su fidelidad a los carros europeos de bajo costo y comprar de un momen-
to a otro un automdvil totamente opuesto a lo que tenia en mente sélo porque un
vendedor desconocido de una agencia que nunca antes habia visitado (la que esta cer-
cana a su trabajo) le dijo que era la mejor opcidn. Esto debido a que el postulado de
éxito debe ser satisfecho, es decir, la nueva informacién una vez recibida debe tener
prioridad absoluta sobre cualquier creencia existente.

En el ano 2008 Pino y Konieczny [10] propusieron una reestructuracion de los
operadores de revision en el marco AGM-DP standard que se ajustaran mejor a estas
situaciones de convencimiento de un agente respecto a cierta informacion que recibe
iteradamente. La idea fué definir operadores de cambio sobre estados epistémicos que
no (necesariamente) satisfacen el postulado de éxito, pero que sin embargo mejoran
la plausibilidad de la nueva informacién en cada iteraciéon hasta que después de
un numero suficiente de veces sea finalmente aceptada en el conjunto de creencias.
Llamaron a estos operadores Operadores de Mejoramiento de creencias.

Antes de introducir a los operadores de mejoramiento estudiemos el caso mads
general sobre operador de cambio de creencias.

3.1. Operadores de Cambio de conocimiento y Mo-
dularidad

Ast como lo hicieran Booth y Meyer en su marco RAGM, PPino y Konieczny con-
sideran estados epistémicos consistentes para representar las creencias de un agente y
formulas consistentes para representar la nueva informacién. Cada estado epistémico
U tiene asociada una férmula consistente B(W) que representa la base de conocimien-
to del agente en W.

Notemos que hasta el marco DP, cualquier funcién que enviara estados epistémi-
cos por formulas en nuevos estados epistémicos era considerada como un operador de
revision que debia satisfacer cierta cantidad de postulados. Pino y Konieczny pro-
pusieron que este tipo de funciones no sélo sirven para representar a la revisién de
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creencias, sino que dependiendo de los postulados que satisfacieran pudieran repre-
sentar otros tipo de operadores de cambio en el conocimiento de un agente. Los
operadores de Contraccion de creencias, Operadores de Actualizacion de creencias,
Operadores de Credibilidad Limitada [4] todos sobre estados epistémicos serian ejem-
plo particulares de operadores de cambio.

Definicién 3.1 Una funcion o : Estados Epistémicos x Férmulas — Estados Epistémicos
que toma un estado epistémico W consistente y una formula consistente o y las envia
a un nucvo estado epistémico denotado W o «v es llamado operador de cambio.

Se denotara:
e U o™ oy definido como:  Uola = Yoo
U ontl g = (¥ o™ a) ow

e Uxa=Uo"wa, donde n es el primer entero tal que B(W o™ o) F a.

Como vimos en el capitulo anterior, una manera muy natural de definir a un esta-
do epistémico ¥ es identificindolo con un predrden total <y sobre W (posiblemente
sin una caraterizacion sinfactica). Donde los modelos de B(W) estardn ubicados en el
primer nivel de dicho preorden i.e. B(V) = min(<y) y dénde una férmula serd més
arraigada que ofra si sus modelos estan ubicados mas abajo que los modelos de la
otra en el preorden.

Restrigiéndose a los estados epistémicos como preordenes totales Pino y Konieczny
dividen a los operadores de cambio en dos grandes clases de manera muy natural.
La de los operadores de cambio que puede ser definidos localmente, es decir, basta
mirar al comportamiento del operador solamente entre informacién de plausibilidad
similar (mirar dos niveles del estado epistémico) para poder definir ¢l comportamien-
to general, y la clase de los operadores de cambio cuyo comportamiento es global, es
decir, hace falta mirar el estado epistémico completo para saber cémo se comporta
el operador. Esta propiedad de localidad la llamaron modularidad.

Sea [ una funcién booleana, es decir, f : {0,1}" — {0, 1}, entones las expre-
siones usadas como entradas del vector de tamano n deben ser entendidas como
condiciones booleanas (es decir, z < y arroja 1 si la relacion es verdadera y 0 si es
falsa).

Definicién 3.2 Sea o un operador de cambio de creencias. Supongamos que los es-
tados epistémicos son predrdenes totales sobre W tales que los minimales de dichos
predrdenes son las creencias de los mismos.

Sea <y un estado epistémico y sea N, = {w': v >~y w} y Ny = {1 w <y W'}
Decimos que el operador o es modular ssi existe una funcion booleana f : {0,1}% —
{0,1} tal que:
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e Para cualquier w, si W', w" € N, U N .1 entonces

W Lgoa W’ = [ <g " W <g o] ONL =0, [ N Noyr =0, a0 E a)

Donde <gon €s ¢l estado epistémico resultante de operar mediante o una formula o
sobre <y .

De esta manera la propiedad de modularidad establece que para conocer la
relacién de plausibilidad después de aplicado el operador de cambio sobre el estado
epistémico visto como preorden total entre dos modelos que se encuentran entre dos
niveles consecutivos basta conocer (los datos de una funcién booleana): la relacién
entre las dos interpretaciones antes del mejoramiento (las dos primeras entradas de
la funcién); el hecho de que hay (6 no) modelos de la nueva informacién en los dos
niveles considerados (los consecutivos) (la tercerca y cuarta entrada de la funcién); y
el hecho de que los modelos considerados sean o no modelos de la nueva informacién
(las tltimas dos entradas).

Como dijimos antes, intuitivamente esta propiedad expresa el hecho de que para
conocer el cambio de plausibilidad entre los modelos después de aplicado el operador
de cambio (modular) basta mirar a dos niveles consecutivos.

Observacion 3.2 Luisten 9 situactones posibles para la disposicion de modelos y no
modelos de una formula en dos niveles consecutivos de un preorden total represen-
tando a un estado epistémaco.

Si los modelos de la formula en cuestion estan representados por las lineas negras
continuas y los no modelos estdn representados por las lineas punteadas, la figuras a
continuacion muestran los 9 casos posibles antes mencionados:
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Caso 1 Caso 2
R
G5 Tans
'C"ag; "c'a'sg
"Caso 9

Uno podria pensar entonces que un operador de cambio serd modular st al aplicar
el operador sobre cada uno de los 9 casos posibles se obtiene la disposicion de los
modelos y los no modelos en el estado epistémico resultante en cada uno de estos
casos. Ya que asi, estariamos diciendo que existe la funcion booleana de la definicion
3.2. Sin_embargo esto no es siempre cierto. Veamos el siguiente ejemplo:

Ejemplo 3.3 Supongamos que o es un operador que se comporta en el caso 6 y en
el caso § de la Observacion 3.2 como se mueslra en la figura a continuacion (los

modelos y los no modelos de la nueva informacion estdn ilustrados como en la Ob-
servacion 3.2:

o

Caso 6 - E—
e v e —— O

Caso8 = w— —_—

De esta manera si consideramos un estado epistémico comno el preorden total <y
siguiente (con la ilustracidn como antes):

<y
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Podemos notar que hay un problema de compatibilidad con la definicion de o.
Por lo tanto es importante imponer condiciones de compatibilidad sobre los opera-
dores para que la modularidad tenga sentido.

Ejemplo 3.4 FEl operador de revision lezicogrifica es un operador de cambio modular
ya que por el Teorema 2.7 el operador de revision lexicogrdfica satisface la propiedad
(R). Esta propiedad nos dice que en cualquiera que sea la relacidn en el preorden
asociado al estado epistemico inicial entre un modelo y un no modelo de la nueva
informacion (inluidos los 9 casos de la Observacidn 3.2), después de la revision lexi-
cogrifica, el modelo va a estar estrictamente por debajo del no modelo en el preorden
asociado al estado epistémico resultante.

Esto nos dice directamente que la funcidén booleana de la definicion 3.2 existe.
Grificamente, estamos diciendo que para cada uno de los 9 casos mostrados en la
observacion 3.2 la revision lexicografica define precisamente la disposicion resultante
de los modelos y no modelos de la nueva informacion en el preorden asociado al es-
tado epistémico revisado. Veamos:
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Caso 1

Caso 2

Caso 3

Caso 4

Caso 5

Caso 6

Caso 8

Caso 9

3.2. Operadores de Mejoramiento

Los operadores de mejoramiento son una subclase de los operadores de cambio
que como es de esperarse se rige por una serie de postulados que los determinan y
enmarcan su naturaleza.

Es importante resaltar que Konieczny y Pino [8] imponen que el operador x sea
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total para cualquier operador de cambio, es decir, para cualquier par ¥, o exisitird un
n tal que B(¥ o™ «) F «. Notemos que es claro que hablar de x no tiene sentido si
no existe n tal que B(W o™ o) F «, por esta razon los autores dan por satisfecha la
buena definicién de x para cualquier operador de cambio que consideran. Este hecho
importante lo discutiremos en capitulos posteriores.

Las propiedades logicas basicas que fueron requeridas para que un operador sea
de mejoramiento.

Definicién 3.3 Un operador o se dice que es un operador de mejoramiento débil si
satisface los siguientes postulados:

(I1) Euziste n tal que B(¥ o™ o) F «

(I2) Si B(V)Aat/L, entonces B(W xa) = B(U)Aa

(I3) Sialt/L, entonces B(V xa) b/ L

(I4) Para todo entero positivo n si o; = [3; para todo i < n y v = p entonces

B((Voajo-oa,)xv)=B(Vobio - 0f,)*pu)

(I5) BT +a)AGE BE+(aAf))

(I6) Si B(V ) A GH/L, entonces B(W x (a A F)) = B(¥xa)A B

Estos postulados se nos hacen muy familiares por su similaridad con los postu-
lados de la reformulacion de KM en el marco de Darwiche y Pearl. Sin embargo las
diferencias principales las vemos en los postulados (I1), (I4) y en la presencia del
operador *.

Entre ¢stas diferencias la mas importante es que el postulado de éxito no se
impone sobre los mejoramientos, es decir la propiedad (R * 1) donde B(¥ o «) F
« es sutituida por la propiedad mas débil (I1) que nos dice que después de una
sucesion determinada de mejoramicntos por la nueva informacion, esta finalmente
serd implicada. De esta manera, el operador * representa un operador de revision
bien definido por una sucesion finita de mejoramientos o.

Para el postulado de irrelevancia de sintéxis (14), Pino y Konieczny realizaron
un andlisis del postulado (R x 4”) propuesto por Booth y Meyer. Como vimos en el
capitulo anterior el postulado (R *4") corrige el mal comportamiento en la iteracion
que tenfa el postulado correspondiente (R 4) del marco DP.

Recordemos estos postulados:
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(R*4) Si («a=0), entonces B(V o o) = B(V o )
(R*4") Si (a=0& y=0), entoncesB(Voaoy)=B(VoFob)

Si nos dirigimos al ejemplo 2.7, vemos como Booth y Meyer muestran que (R *4)
tiene problemas en la segunda iteracién. Pino y Konieczny extendieron facilmente este
ejemplo para mostrar que de la misma manera el postulado (R x4") tiene problemas
en la tercera iteracion.

Ejemplo 3.5 Consideremnos el lenguaje proposicional generado por las formulas atoé-
micas p,q y r. Fijemos cualquier operador de revision de Darwiche y Pearl. De esta
manera existe una asignacion fiel que envia a cada estado epistémico ¥ a un preorden
total <y cumpliendo que [V o y)| = min([u]), <v) v las condiciones (CR1)-(CR4).
Si tomamos esta misma asignacion para todos los estados epistémicos salvo en los
casos de ®, G o (rV —r), o (pV -p), Po(rV-w)op, ®o(pV -p)o-—palos
cuales son asignados respectivamente los predrdenes totales <g, <do(rv-r)s Sdo(pv-p)
Lpo(rvar)ops Sdo(pv—plon—p COMO s muestran abajo. Es fdcil verificar que estos 5
preordencs siqguen cumpliendo con las condiciones de asignacion fiel y por lo tan-
to la asignacion fiel considerada con los pequenios cambios realizados corresponde a
un operador de revision Darwiche Pearl.

1,0,0 0,1,1
( g ) r )

1,1,0
(1.L0)

0,0,1
(0, F)

(1’171) (070:0)
L 2 \ 4

(11) (0.0

<o
1,0,0 0,1,1 0,1,1
(‘) (.) (1,%0) (.)
1,1,0 1,1,
( ') ( '0)
0,0,1
(,', ) (0,10,1)
(11,1 0,0,0) (L1, 0,0,0)
& L4 & — &
(1,0,1) (0,1,0) (1,0,1) (0,1,0)
o -3 S rA

S@o(rv—lr) <<I>o(pv-1p)
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1,1
'
0
(1,0,0) ©,1,0) (1,',0)
° ° (1,1,0)
(1,1,0) ~ (0,0,1) .
® ® 0,0,1)
(0,0,0) %
* (l,l.,l) (0,%0)
. 7]',1) (O,kO) (0,1,0)
e (1,0,1) ¢
¢ ®
S(T)O("'V—“")Of' S(IJO(}U\/—»IJ)Oﬂ‘*I‘)

Pero observemos que B((($ o (rV —r))op)oq) = {(1,1,1).(0,1,0)}, mientras
que B(((® o (pV —p)) o ==p) o q) = {(0,1,0)}.

De esta manera Pino y Konieczny se dieron cuenta que para evitar problemas en
cada iteracién hay que especificar la propiedad para cualquier nimero de iteraciones
que es precisamente lo que expresa (I14). Incluso los operadores de revisién iterada
ya conocidos como el de la revision natural, revisién lexicografica y revision SDP
satisfacen (I4). Esto se puede comprobar gracias a que en particular estos operadores
satisfacen la siguiente propiedad

Sia=L0y <y=<o entonces <yon=<yos

En presencia de los postulados RAGM, la propiedad anterior implica (R * 4”).
Pero la reciproca no es cierta como pudimos ver en el ejemplo anterior.

Pino y Konieczny introducen los operadores de mejoramiento débil como opera-
dores de cambio casi iguales a los operadores de revision KM para estados epistémicos
con la gran diferencia de que el postulado de éxito no es satisfecho por el mejoramien-
to débil. Sin embargo, estos operadores en ningin momento aseguran que la nueva
informacion “mejora” su plausibilidad bajo sus efectos.

Por esta razdn Pino y Konieczny deciden anadir nuevos postulados mas especificos
para la iteracién a los ya satisfechos por los mejoramiento débil, y llaman a estos
operadores, operadores de mejoramiento.

Definicion 3.4 Un operador de mejoramiento débil es llamado operador de mejo-
ramiento si sastisface los siguientes postulados:

(I7) Siat u, entonces B((Vopu)xa) = B(¥oa)

N

(I8) St oot =y, entonces B((V o pu) *a) = B(V * )
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(19) Si B(V * «) ¥ =, entonces B((Vopu)xa) b p s

Notemos que los postulados (I7) e (I8) corresponden a los postulados (Cl) y
(C2) del marco DP y el postulado (I9) corresponde al postulado (P) propuesto por
Jin, Thielscher,Booth y Meyer. La diferencia entre estos sigue siendo que ahora estdn
definidos para sucesiones de mejoramientos. Podemos observar que estos postulados
se expresan en términos tanto de o como de %. Esto sucede ya que el operador
representa un operador de revisién que asegura las buenas propiedades de o. Ya
con la inclusién de estos postulados, los operadores ahora cada vez que es posible
“mejoran” en cierta forma la nueva informacion (gracias a (19)) de una manera mas
uniforme gracias a la rigidez entre modelos y no modelos (que proporcionan (17) e
(18)).

En vias de probar un teorema de representacion para los operadores de mejo-
ramiento débil, Pino y Konieczny definieron los asignamientos fuertes y fieles.

Definicién 3.5 Una funcion ¥ —<y que envia a cada estado epistémico ¥ a un
preorden total <y sobre los modelos, es llamado una asignacion fuerte y fiel si, y
sdlo si:

1. Siwk B(U) yuo' = B(V), entonces w 2y '
2. Siw = B(V) gy £ B(W), entonces w <g o'

3. Para cualquier entero positivo n si o = [3; para todo i < n entonces
S\l/ouqO-<-Otv,,,:§\1/o/i]o--~o[jn

Notemos que las condiciones 1y 2 son suficientes y necesarias para que [B(V)]] =
min(W, <y ), v son las mismas que las primeras condiciones satisfechas por una asig-
nacién fiel del marco DP. La condicién 3 es muy natural ya que relaciona preérdenes
asociados con iteracion de mejoramientos: de dos sucesiones de mejoramientos de un
mismo preorden por férmulas equivalentes resulta un mismo preorden.

De esta manera, el teorema de representacién para operadores de mejoramientos
débil propuesto por Pino y Konieczny es el siguiente:

Teorema 3.6 Un operador de cambio o es un operador de mejoramiento débil si,

solo si, existe una asignacion fuerte y fiel que envia a cada estado epistémico W a un
preorden total <y sobre los mundos tal que

(B x a)] = min((a]]), <v)
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Demostracion: (=) Sea o un operador de mejoramiento débil. Definimos una
asignacion ¥ —<y de la siguiente manera:

w <y W sl ysolosi, wE BW @, .)

Por (I4) la relacién <y estd bien definida, i.e. no depende de la eleccion de la férmula
Y- Demostraremos ahora que <y es un preorden total.

Totalidad: Sean ww' dos interpretaciones cualesquiera (eventualmente w = w’).
Por (11), [V * ¢, ] € {w,w'} v por definicién [[¥ x @] # 0, asi w € [V x @, ]
6w €[V xp, ] (0 ambos), e w <y w 6w <y w.

Transitividad: Supongamos que w <g ' y que w' <y w”. Queremos ver que
w <y w", es decir, queremos mostrar que w € [B(V % ¢, o )]
Bastara entonces demostrar que w € [[B(V * ¢, o o) va que asit B(W % @, 0 wr) A
o sera consistente y de (I14), (I5) e (16) se obtendra que [B(V * ©p, wwi) A P o] =
[B(Y * ¢ )], vy asi w € [B(¥ * ¢, )] como querfamos.

Supongamos por reduccién al absurdo que w & [B(W * ¢y, o o)]]. Entonces afir-
mamos que w' & [B(Y % @, w)]. En efecto, si este no fuera el caso tendriamos
que B(W x @, o ) A o €s consistente v asi por (I4), (I5) e (I6) se obtendria que
(BU* g, ) = {w'}, vasi ' <y w lo cual contradice nuestra hipétesis principal
en que w <y w'.

De esta manera por (I3) tenemos que [[B(V % ¢, . )] = {«”} por lo tanto B(¥ *
o ) NPy o €8 consistente, luego por (14), (I5) e (I6) se tiene que [[B(W * @ )] =
{w"}, 1e. w” <y W' lo cual contradice la hipdtesis principal en que w’ <g w”.

Probaremos ahora que [B(¥ x «)]] = min([[o], <g).

Primero demostraremos que [[B(V * )] € min([[a]}, <¢).
Tomemos w en [B(¥ x «)]]. Asi, B(U*«) A, # L para todo w’ € [[«]]. Entonces,
por (I5), (I6) e (I4), B(V* &) Ay = B(V*py, ). Porlo tanto w € [B(V % @y w0 )]l
esto es w <y w’ para todo w' € [[a]] que implica exactamente que w € min([a]], <v).

Ahora probaremos la inclusién contraria, es decir, min([[a]], <¢) C [B(¥ * a)]}.
Supongamos que w € min([o]], <y). Queremos ver que w € [B(V x «)]]. Supon-
gamos por reduccion al absurdo que w & [B(V % «0)]]. Sea w’ un modelo de B(W¥ x «).
Entonces, por (I5), (16) e (14), B(¥ * @) A @ = B(V * ). Estamos suponiendo
que w & [B(Y x a)] asi [B(V + ¢,.0)] = {w'}. Luego w' <y w, contradiciendo la
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minimalidad de w en [[a] respecto a <y.

Demostremos ahora las condiciones de la asignacion fuerte y fiel. Para demostrar
las condiciones 1 y 2 es equivalente demostrar que [B(¥)]] = min(W, <y ).
Suponga que w = B(¥). Queremos ver que w <y w' para cualquier interpretacién
w'. Para esto consideremos w’ una interpretacion. Notemos que w = B(W) A 040,
asi B(W) A @y 7 L. Entonces, por (12), B(¥ * @, w) = B(V) A @y . Por lo tanto,
w k= BV % @), t.e. w <y w'. Esto demuestra que [B(¥)]] € min(W, <y).
Para la inclusién inversa tomemos w € min(W, <g). Supongamos por reduccion al
absurdo que w ¢ [[B(V)]. Sea w' un modelo de B(¥). Entonces, [B(¥) A @y =
{w'}. Asi, por (12), B(V % @y, ) = B(U) A, y de esta manera [B(W * @, . )] =
{w'}, i.e. w' <y w, contradiciendo la minimalidad de w respecto a <g.

Para la condicién 3 supongamos que a; = 3; para todo i < n queremos mostrar
que S\Poal‘o..,oanzg‘l/oﬁ]o,__oﬂn-

Demostraremos esto por induccién en k =0, ...
Para k = 0 es trivial ya que <g=<y.

Para simiplificar notacion hagamos Oy = Vo o.. . oqy 'y = VofBio...00.
De esta manera nuestra hipétesis inductiva es la sigulenter <g,= <, .
Queremos mostrar que <e,on,,, = <o/, - Para esto mostraremos que cada nivel de
<Oj0ars, 5 igual al nivel correspondiente de <r o4, ,. Esto lo haremos usando induc-
cién sobre el nimero de niveles de <g, oq,,- Daremos un bosquejo de la prueba. Para
el nivel 0: queremos ver que min(W, <e,on,,,) = Min(W, <p,op,.,). Como sabemos
que [B(¥ x )] = min({[a]], <), tenemos que min(W, <g,oay,,) = [B(L'x © cgy1)] y
min(W, <ryop,,,) = [B(Ts o fesn)]. Por 14, [B(O) 0 agy)] = [B(T o fs)]. Por
lo tanto, min(W, <e,oa,.,) = min(W, <r,ep,,,). Ahora bien, supongamos que los
primeros 4 niveleves de <g,cq,,, corresponden exactamente a los primeros ¢ niveles
de <r,op,.,- Demostraremos que el nivel 7 + 1 de <g,cq,,, esta contenido en el nivel
i+ 1 de <r.op,,, (v con un argumento simétrico probaremos la inclucién inversa,).
Supongamos por reduccion al absurdo que w estd en el nivel 7+ 1 de <g,0a,,, ¥y que
w no esta en el nivel 7 + 1 de <r,.p,,,. Tomemos w’ en el nivel i + 1 de <p,.,, -
Como los primeros i niveles de <¢,on,,, and <p, og,,, son iguales, w’ estd en algin
nivel j, con j >4 para el preorden <g,cq, - Consideremos ahora la formula ¢y, . Es
claro que w € min([[Yuw .l <opoae) ¥ W & Min([@uww], <ryop,.,)- De lo anterior
y de la ecuacion [B(V x )] = min([[af], <), se sigue que [B(Ok © @py1 © Qoo )| #
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[B(T') © Brs1 © @uur)]], contradiciendo 147,

(<) Supongamos que tenemos una asignacién fuerte y fiel ¥ —<g tal que se
cumple [B(¥ x «)]] = min([[e]], <g). Queremos ver que I1-16 se satisfacen.

(I1) Se sigue directamente del hecho que [B(¥ x )] = min([[a], <¢).

(I2) Mostraremos primero que B(W) A a b B(¥ x o). Si w = B(¥) A a, esto
es, w € min(W, <y). Asi, para cualquier w' € W, se tiene que w <y w'. Esto
es en particular cierto para todos los modelos de «, luego w € min(a, <y), y esto
es por definicién w = B(¥ * ). Probemos ahora que B(V * o) = B(V) A a. Por
definicion w = B(¥ * ) nos dice que w € min([[of], <g¢). Asi w = «. Mostremos
que w E B(¥). Supongamos que no es cierto. En este caso, y como por hipdtesis
B(U) A a ¥ L podemos elegir w' € [[B(¥) A «f]. Pero sabemos que w' € [B(V)]
y w ¢ [B()], asi w' <g w. Y como w',w = a, tenemos que w ¢ min([a]], <)
Contradiccién.

(I3) Trivial de la hipdtesis.

(I4) Supongamos que «; = 3; para todo i < n_gueremos mostrar que
B(Wowmo...oa,)=B(Wofio...00,)

- Por la ccuacién [[B(¥ + «)]] = min([[a]], <g) esto es equivalente a mostrar que
min{[om]), <wearo oan_s) = MAN([[Fn]l; Swopyo..0p,_, ). Pero esto claro por el hecho de
que por S6 tenemos que <yonjo. oan_ =<wopo. o, , ¥ Por hipétesis [[a,]] = [5.]-

(I5 e 16) Por la ecunacién [B(¥ x )] = min([[a]], <¢) tenemos que [B(¥ x (a A 3))] =
min({e A J], <o) v [B(E*x a) A )] = min([[o]], <y) N [B]]. Asi, es suficiente ver que

min({[o], <¢) O8] = min({a A B, <e)

bajo la hipétesis min([[o], <¢)N[F] # 0. Es bastante claro que min([[o]], <¢)N[[F] €
min([[a A f]], <¢). Para la otra inclusién tomemos w € min([[a A F]], <g). Como w
esta en [[]] nos que por ver que w € min([[af], <y). Sabemos que w € [[a]]. Afirmamos
que ademas cs el minimal para [[o] respecto a <y. Supongamos por reduccién al ab-
surdo que esto no se cumple. Como <y es un preorden total existe w’ € min([a]], <v)
tal que w’ <y w. Por hipdtesis, existe w” € min([[o]], <¢) N [[F]]. Y de nuevo como
<y es un preorden total, w’ ~g w”, por lo tanto, w” <y w contradiciendo la mini-
malidad de w en [[oe A 3] respecto a <y. .
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Notemos que el postulado (R * 1) de la revision AGM-DP o RAGM es un caso
particular del postulado (/1) donde n = 1 esto nos lleva al siguiente corolario.

Corolario 3.1 Sio es un operador de mejoramiento débil entonces x es un operador
de revision AGM/DP, es decir, satisface (R* 1) — (R 6) de Darwiche y Pearl.

Como consccucncia del teorema anterior se demostrd la siguiente propiedad de
tricotomia.

Proposicion 3.1 Sea o un operador de mejoramiento débil. Entonces,

BV *«) ¢
B(Ux(anp)) = B(U*p)d
B(U % a) A B(Y % §)

Demostracién: Si min([a]], <g¢) and min([[F]], <¢) estdn en el mismo nivel con re-
specto a <y entonces min([[a V G], <v) = min([[o]], <¢)Umin([[5]], <y ). Por lo tanto,
por el Teorema 3.6, [B(V x (aV )] = [B(¥*a)]] U [B(V«F)]]. De otra mane-
ra, min([[a]], <¢) estd en un nivel mds bajo que min([[J], <¢) o bien min([[5]}, <¢)
estd en un nivel mds bajo que min([af}, <y ). En el primer caso, min([[a vV 3], <y) =
min([[o]}, <¢). Asi, por el Teorema 3.6, [B(W « (o V 8))]| = [ B(V * «)]. En el segun-
do caso, min([Jow vV G|, <¢) = min([F]l; <v). Asi, por el Teorema 3.6, [B(¥+ (aV )] =
[B(¥«B)]. ]

Definicion 3.6 Sea o un operador de mejoramiento débil y ¥ — <y su correspon-
diente asignacion fuerte y fiel. La asignacion serd llamada asignacion gradual si las
siguentes propiedades son satisfechas:

(S1) Siw,w = a entonces w <y W < w <yoy W
(S2) Siw,w = —a entonces w <y W < w <goq W
(S3) Siwk a, Wk —a, entonces w <y W' = W <gou W

Las propiedades (S1) vy (S2) corresponden a las propiedades usuales (CR1) y
(C'R2), las cuales aseguran respectivamente la rigidez del orden entre modelos de la
nueva, informacién y la rigidez del orden entre no modelos de la nueva informacién
después del mejoramiento. La propiedad (S3) es la correspondiente a la propiedad
(P R) del marco de Booth y Meyer y Jin y Thielscher la cual obliga a incrementar la
plausibilidad de los modelos de la nueva informacion.

A continuacion el teorema de representacion los operadores de mejoramiento.
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Teorema 3.7 Un operador de cambio o es un operador de mejoramiento, si y solo
st, existe una asignacion gradual tal que

[B(Y « @) = min([a]], <o)

Demostracién: (=) Por el Teorema 3.6 sabemos que existe una asignacién fuerte
y fiel U —<y tal que [B(V % )] = min([ef, <¢) se cumple. De esta manera nos
queda demostrar que la asignacién es ademads una asignacion gradual i.e. satisface
S1, S2 y S3.
(S1) Supongamos que w,w’ € [[a]. Asi, @y F a. By (I7), B((W 0o &) * py ) =
B(W * ¢y ). Entonces como [B(V * «)]] = min([[a]], <¢) tenemos que
W <yoq W & w € min({w, w'}, <gon)

& we [B(Yoa)+ puw)]

& w € [B(Y* @uw)

& wemn({w,w'}, <g)

& ow <gw'

(52) La prueba es andloga a la de (S1) pero usando (I8) en lugar de (I7).

(S3) Supongamos que w € [of], v’ € [~af and w <y w'. Queremos ver que
W <yoq w'. Como w <y w', necesariamente w € min({w,w’}, <y) lo cual por le
hecho de que [[B(V « )] = min([[a], <v), significa que w € [B(¥ * ©,.)]. En-
tonces B(W x @, ) I/ 7av, asi por (19), B((V oar) % ¢y, ) b a. Entonces, por (I1)
e (I3), [B((Woa)* wyw)] = {w}. De este hecho y de la ecuacion [[B(¥ x a)] =
min([[a]], <), obtenemos que w <o, w'.

(«<=) Por el Teorema 3.6 sabemos que o es un operador de mejoramiento débil.
Por lo tanto, falta por demostrar que (17), (I8) e (19) se satisfacen.
(I7) Supongamos que « b pu, i.e. [[a]] C [1]]. Queremos ver que B((Wop)xa) = B(Uxa).
Como [B(V x a)]] = min([a], <) es equivalente demostrar que min([[af, <gon) =
min([la]l, <y). Pero esto es una consecuencia directa de S1 (ya que [[of C [p]]) de
donde se sigue que Vw, w' = a,w <g w' iff w <g,, W'

(I8) Supongamos que a b =y, i.e. [[of] C [-pu]). Queremos ver que B((Vou)xa) =
B(W*a). Como [B(V % )] = min([[«]], <g) es equivalente probar que min([[a], <o,
) = min([[af], <y). Asi como para (I7), esta es una consecuencia directa que se sigue
de S2 (ya que [[o] C [[—u]]) Yw,w' E a,w <y w' iff w <y, @'

(I9) Notemos que del hecho de que <y y <yo, son preérdenes totales, se obtiene
que el postulado S3 es equivalente al siguiente postulado:
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(S3”) Siw e [u],w € [~p] entonces w' <yop, w = W <y w

Supongamos ahora que B(Wxa) I/ —u. Queremos ver que B((Wopu)*a) = p. Suponga-
mos por reduccién al absurdo que B((Wopu)*a) I/ p, i.e. existe w € [[B((V o ) * )]
tal que w ¢ [[u]]. Por la ecuacién [B(¥ % «)]] = min([[a]], <v), w € min([a]], <gop),
as{ para todo w’ € [[(JJa), w <go, w'. Por hip6tesis, existe w” € [B(¥ xa)] N {[u].
En particualar, por (I1), w” € [af. Asi, w <y, w”. Por otro lado, de la ecuacién
[B(V* a)]] = min([[o]], <g) se tiene que w” € min([[af], <¢).

Como w € [~y y w" € [uf], y w <wop w”, por S3’, w <y w”. Ademéas w € [af, y
esto contradice la minimalidad de w” en [[a] respecto a <g. "

Es claro que el postulado (R * 1) de la revision AGM/DP vy la revision BM/JT
es un caso particular del postulado (I1) donde n = 1.

Proposicion 3.2 Sio es un operador de mejoramiento (es decir, satisface (11—19))
que satisface (R+1), entonces es un operador de revision admisible (es decir, satisface

(R+x1—Rx*6) y (C1—C4) del marco DP y la (P) de Booth y Meyer y Jin Thielscher).

3.3. Mejoramiento Suave

Como vimos en las secciones anteriores los operadores de revision son una subclase
bien conocida de los operadores de mejoramiento débil, claramente un operador de
revisién es un operador de mejoramiento completamente drdstico ya que se satisface
el postulado de éxito. Veremos a continuacién que el espectro de los operadores de
mejoramiento débil es muy grande y variado, en el sentido de que existen operadores
que tratan de distintas formas el grado de mejoramiento de la nueva informacion.
Pino y Konieczny empezaron definiendo una subclase de operadores de mejoramiento
débil llamados operadores de mejoramiento suave agregando postulados adicionales
y demostrando sus correspondientes teoremas de representacion.

Definicién 3.7 Un operador de mejoramiento es llamado operador de mejoramiento
suave si satisface el siguiente postulado

(I10) Si B(V x &) F =, entonces B((W o p) * o)
Este postulado dice literalmente que si una férmula i es rechazada por el agente

después de varios mejoramientos (suaves) por a, no puede ser aceptada después de
un mejoramiento por u seguido de varios mejoramientos por cv.
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De hecho, el tinico cambio de estatus admitido es que la férmula 1 que es rechazada
por el agente después de varios mejoramientos por o puede volverse indeterminada
después de un mejoramiento débil por gy varios mejoramientos por a. Serd nece-
sario al menos otro paso de mejoramiento por p para que el agente acepte esta
férmula luego de varios mejoramientos por . Esto es lo que motivd al nombre de
mejoramiento “suave”.

Veamos a continuacion el teorema de representacion para los operadores de mejo-
ramiento suaves:

Definicion 3.8 Sea o un operador de mejorarmiento débil y W —<g su correspon-
diente asignacion fuerte y fiel. La asignacion serd llamada asignacion gradualmente
suave st €s una asignacion gradual y se cumple la siguiente propiedad:

(S4) Siw = a, W = -, entonces W' <y w = W <yoq W

La propiedad (54) nos muestra que el incremento de la plausibilidad de los mode-
los de la nueva informacién es limitado por los operadores de mejoramiento suaves.

Teorema 3.8 Un operador de cambio o es un operador de mejoramiento suave si,
y solo s, existe una asignacion gradualmente suave tal que

[B(V x a)]] = min([[a], <v)

Demostracién: (=) Por el Teorema 3.7 sabemos que existe una asignacién gradual
¥ =<y tal que [B(¥ x a)]] = min([[a], <¢) se cumple. De esta manera nos queda
demostrar que la asignacion es ademds una asignacion gradualmente suave i.e. satis-

face (S4).

(S4) Supongamos que w € [of, w' € [~ y w' <y w. Queremos mostrar que
w' <goo w. De la hipdtesis w' <y w obtencmos que min({w,w'}, <y) = {w'}.
Entonces, como [B(¥ *a)]] = min([[o]], <v), tenemos que [B(V x ¢y,.)] = {w'}.
Por lo tanto B(W x ¢,,./) F —a. Asi, por (I110), B((V o «) * @,,.) I/ «. Entonces
w € [BI(Woa)* g, y por la ccuacion [B(V x )] = min([[«]], <g), se tiene
que w' € min({w, w'}, <poa), 1.6 W <yon W.

(<) Por el Teorema 3.7 sabemos que o es un operador de mejoramiento. Por lo
tanto, falta por demostrar que (I10) se satisface.

(I10) Notemos que el hecho de que <y y <yo, sean predrdenes totales implica
que el postulado (S4) es equivalente al siguiente postulado:
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(S4’) Siw € [[p]),w € [~p], entonces w <yo, w' = w <y W

Supongamos que B(¥ x a) F —pu. Queremos mostrar que B((W o p) x o) ' p.
Supongamos por reduccion al absurdo que B((W o pu) * ) F p. Sean w, w' tales que
wlE= B((Pop)xa)y w = B(¥*a). Como estamos suponiendo que w € [[u] y w' €
[=u]. Por la ecuacién [B(W * )] = min([[af], <g), se tiene que w € min([|a]), <wop)
y w' € min([[a]], <y).

Estamos suponiendo que w %y, w' y w %y w', ya que si no w' € min([ja]], <wop)
o w € min([[a]], <g¢). Pero esto es imposible ya que en el primer caso w’' € [[u],
una contradiccién y en el segundo caso w € [[—p], también una contradiccién. De
esta manera, necesariamente w <y, w' y w’ <y w. Y como tenemos que w € [[u],
w €[]l y w <go, w', por (S47), w <g w’, lo cual es una contradiccion. 2

Teniendo la representacion de los operadores de mejoramiento podemos explicar
més claramente su funcionamiento. Por ejemplo, viendo a la informacién (o los
conocimientos del agente) en un estado epistémico clasificada en grados de arraigamien-
to en una escala discreta, el grado de arraigamiento de ;o después de un mejoramiento
suave del estado epistémico por u puede a lo sumo alcanzar el grado inmediatamente
inferior (més plausible)-al que tenia p-en dicho-estado epistémico . Esta propiedad
de suavidad es muy deseada, ya que se busca siempre incrementar paulatinamente
el arraigamiento de una nueva informaciéon no muy drasticamente y de una manera
uniforme, en este caso, en un rango que no supere un grado completo al grado in-
mediatemente inferior.

Pino y Konieczny resaltan la importancia de los operadores de mejoramiento
suaves y modulares ya que la “suavidad” permite que la modularidad defina com-
pletamente al operador. De hecho redefinen modularidad ahora sobre las asignacion
fuerte y fiel del operador de mejoramiento basico.

Definicion 3.9 Sea o un operador de mejoramiento débil. Sea W — <y su correspon-
diente asignacion fuerte y fiel. Sea N, = {w': W' 2~y w} y Nyoy = {0 1w <<y '}
Decimos que la asignacion ¥ —<g es modular ssi existe una funcion booleana

f:{0,1}° — {0,1} tal que:
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e Para cualquier w, si W', w" € N,U N,.1 entonces

W Syoq W' = flw <y W <y W] NNy =0, [w] N Nypt1 = 0,0 = a,0” = )

o <yo estd completamente determinado por la igualdad previa y la trasitividad de
la relacion.
Un operador de mejoramiento débil es modular sii su asignacion fuerte y fiel
asociada es modular.

En el caso de los operadores de mejoramiento suave la modularidad si es una
condicién que define completamente al operador mediante la igualdad y la relacidon
de transitividad, de hecho existen solo dos operadores de cambio con esas carateristi-
cas como veremos mas adelante (estos operadores estan bien caraterizados sintacti-
camente).

Definicién 3.10 Un operador de mejoramiento suave es modular si su asignacion
gradualmente suave asociada es modular.

3.4. Operadores Suaves Modulares

Konieczny y Pino demostraron que el conjunto delos operadores de mejoramiento
suave y modular no es grande. De hechio sélo existen dos operadores de este tipo, el
uno-mejoramiento y el medio-mejoramiento.

A continuacion veremos algunas notaciones introducidas por Konieczny y Pino esen-
clales para definir éstos operadores v dar un teorema de representacién para cada
uno de ellos.

Definicién 3.11 Sea o un operador de cambio que satisface (I1). Sea o, § y ¥ dos
formulas y un estado epistémico respectivamente. Decimos que o estd por debagjo
de 8 con respecto o U, dado o, denotado o <y, [ (0 simplemente o <g B st no
hay ambiguedad sobre o) si, y sélo si, o L, B YL, B(¥ xa) - B(¥x(aVf)y
B(YxB) B(Y*(«V [3)). El par («, 8) es VU-consecutivo, denotado como o <<, [
(0 simplemente o <<y 3 si no hay ambiguedad sobre o) si, y sdlo si, « <y B y no
existe una formula vy tal que oo <y v <y .

La idea de estas nuevas definiciones es que « <3, [ denota que o es una creencia
mas arraigada (mas plausible) que  en el estado epistémico ¥. Y o <<§, 3 denota
el hecho que a es una férmula inmediatamente mds arraigada (més plausible) que £.
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Con esta nueva notacién y usando la proposicién 3.1 Pino y Konieczny de-
mostraron los siguientes corolarios ttiles para entender mejor las definiciones de
’<\[/ Y *«\11.

Corolario 3.2 Sea o un operador de mejoramiento débil. Entonces o <g 3, si ¥y
sdlo si, existen w, w' tales que w € [B(V * a)], w' € [B(Y¥ xB)] yw <y .

Demostracién: (=) Asumamos que « <y 3, esto es B(Ux ) = B(Vx (aV 0)) y
B(¥ )t/ B(¥x(«aV3)). Por la proposicién 3.1 y su demostracion, necesariamente
min({a]], <) estdn es un nivel més abajo que min([[f]], <v). Asi, por el teorema
3.6, es suficiente tomar w € min([[(Ja), <g) y @' € min([|5]], <g¢) para obtener que
w € [B(Y*a)]], w € [[BY*F)], w<g w'

(<) Asumamos que existen w, w' tal que w € [B(V )], w' € [B(V* 3)],
w <y w'. Entonces, por el Teorema 3.6, min([[a]], <y) estd en un nivel mas bajo
que min([[4]), <v). Entonces, por la proposicién 3.1 y su demostracién tenemos que
B(¥x(aVF)) = B(V+«). Por otro lado sabemos que B(V « ) / B(¥ x (aV 3)) ya
que min([[of], <¢) and min([[F]], <y ) no estan en el mismo nivel. Por lo tanto a <y .
B

Corolario 3.3 Sea o un operador de mejoramiento débil. Enlonces o <<g 3, si y
solo s1, existen w, w' tales que w € [B(Vxa)ll, v € [B(¥x0)] yw <¢ v y no
existe w” tal que w <y W" <y W'.

Demostracién: (=) Asumamos o <<y . Por el corolario 3.2, tenemos que w,
w talque w € [B(¥ * )], w' € [B(Vx )], w <y w'. Supongamos por el absur-
do que existe w” tal que w <y w” <g w'. Pero es claro por el corolario 3.2 que
a <y Py <g [ contradiciendo el hecho de que o <y .

(<) Asumamos que existen w, w' tales que w € [B(V x a)]}, w' € [B(¥ * g)],
w <g w' 'y que no existe w” tal que w <y w” <g w'. Por el corolario 3.2 tenemos
que o <y . Asi, la unica posibilidad para « 4<y 3, es la existencia de una férmula
v tal que o <g v <g B. Y de nuevo por el corolario 3.2, tomando w” € [B(V % v)]|
tenemos que w <g w” <y w', lo cual es una contradiccion. M

Ahora estamos en condiciones de definir a los operadores de uno-mejoramiento.
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3.4.1. Operadores de uno-mejoramiento

Definiciéon 3.12 Un operador de mejoramiento suave es llamado uno-mejoramiento
st satisface el siguiente postulado

(I11) Si B(Vx o) F—p y o g a A, entonces B((W o p) *a) f —p

El postulado (I11) bésicamente nos dice que si = es aceptado al revisar por «,
pero p es muy plausible dado «, entonces serd suficiente un mejoramiento por p antes
de empezar la sucesién de mejoramientos necesaria para revisar por « para asegurar
que el resultado serd consistente con .

Daremos a continuacién el teorema de representacién para los operadores de uno-
mejoramiento.

Definicion 3.13 Sea o un operador de mejoramiento suave y W — <y su correspon-
diente asignacion gradual suave. La asignacion serd llamada asignacion uno-gradual
s1 la siguiente propiedad es satisfecha:

(SO) SiwkE—a, v Eayw<y W, entonces w Lyoq w

Teorema 3.9 Un operador de cambio o es un operador de uno-mejoramiento, si y
solo si, existe una asignacion uno-gradual tal que

[B(Y x a)]l = min([o], <v)

Demostracion:

(=) Por el Teorema 3.8 sabemos que existe una asignacién gradualmente suave
U =<y tal que [B(¥ * «)]] = min([af], <y) se cumple. De esta manera nos queda
demostrar que la asignacion es ademas una asignacién uno-gradual 4. e. satisface (SO).

(SO) Supongamos que w € [[af, w' € [-a], w’ <y wy que no existe w” tal que
w <y w’ <g w. Queremos mostrar que w <goo w'. Del hecho w' <y w tenemos que
min{{w,w'}, <y) = {w'}, luego del teorema 3.8 tenemos que [[B(V * ¢, ./)] = {w'}.
Ast, B(V % ¢, ) I —a. Por otro lado, de la hipdtesis y del corolario 3.3 se obtiene
QUE Py <R Pupr A . Entonces, por (I11), B((V o @) % @) I —cv, y esto por el
teorema 3.8 siginifica que w <gon w'.

(<) Por el Teorema 3.8 sabemos que o es un operador de mejoramiento suave.
Por lo tanto, falta por demostrar que (I11) se satisface.
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(I11) Asumamos que B(¥xa) b =, aApl Ly a <y aAp. Queremos ver que
B((¥ o p)*a) I/ =pu. Por reduccién al absurdo supongamos que B((W o ) x a) = =y
Sean w,w’ tales que w' € [B(V )]} y w € [B(V * (e A p))]]. De lo que asumimos
tenemos que w’ € [-u]] and w € [[u]). Por el corolario 3.3, se tiene que w' <g w y que
no existe w” tal que w' <g w” <g w. Por (S5), w <y, w'y por (S4), w' <go, w.
Por lo tanto, w ~y., w'. Esto significa que [B(Vx ol v [B(¥ * a A p)]) estdn en el
mismo nivel respecto a <y.,,.

Afirmamos que este nivel es el nivel de min([arf], <go,). Lo cual es una contradiccién
ya que tenemos que w € min(min([[of], <go,)) y por lo tanto w = -y que contradice
el hecho que w = .

Demostremos entonces nuestra afirmacién. Supongamos por reduccion al absurdo que
dicha afirmacion no es cierta. Entonces, necesariamente exite w” € min([[a], <gou)
tal que w” <y, w. Consideramos dos casos: w” € [[u]] and w” € [-u]]. En el caso
en que w” € [[u]], no se tiene que w” <y w ya que w € min(fa A uj), <y). Por lo
tanto, w <y w”. Entonces, por (S1), w <y, w”, lo cual es una contradicciéon. En ¢l
caso en que w” € [[-u], no tenemos que w” <y w' ya que w’ € min([[af}, <¢). Por lo
tanto, w' <¢ w”. Entonces, por (52), w' <., w”, esto es w <y,, w”’, lo cual es una
contradiceion. "

Este teorema de representacion nos dice que los operadores de uno-mejoramiento
mejoran la plausibilidad de la nueva informacién exactamente un nivel respecto al
nivel que tenfan en el estade epistémico inicial (de-esto su nombre).

Pino y Konieczny demostraron usando este teorema que la relacién entre <y y
<yoe Impuesta por la asignacion uno-gradual es bastante fuerte. Efectivamente, el
preorden total <y., estd completamente determinado por <g y «.

Para demostrar este hecho Pino y Konieczny se valieron del siguiente lema:

Lema 3.1 Sea o un operador de uno-mejoramiento y W —<y, su asignacion uno-
gradual. Siw <y ', w € [-a]], W € o] yw Ko ', entonces w <goq W'

Demostracion:

Definamos A = {w” € W : w <y w” <y w'}. Por hipdtesis w <g w' y w &y ',
asi el conjunto A es no vacio. Asi AN[[-a] # § 6 AN|[a] # 0. Consideremos primero
el caso en que AN [-a] # 0. Tomemos w” € max(AN [~a]), <y). Por definicién de
A, se tiene que w <g w” y w” <y w'. Consideremos dos subcasos:

o W' <y w. En esta situacién, concluimos por (S4) y (SO) que w” ~yo, w'. Por
(52), w <goq w". Por lo tanto, por transitividad w <y w'.
e w £y w'. En esta situacién tomamos w” tal que w” <y w”. Es claro que

w" <y w'y como w” € max(AN [-a], <), entonces necesariamente w” € {a].
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Por (S4) y (SO), w” ~geq w” y como w,w” € [[-a] y w <y " de (S2) se tiene que
W <wop, W', asl por transitividad, w <y., w”. Por otra parte de (S1) se obtiene que
w" <gon W', luego, por transitividad, w <geo w'.

Para el segundo caso, AN [[a] # 0, procedemos con un razonamiento andlogo, pero

esta vez tomando w” € min(A N o], <v). ,

Este lema es interesante ya que nos dice la relacion faltante entre <gon v <w.
Todas las demas relaciones las da la asignacién uno-gradual.

Proposicién 3.3 Sea o un operador de uno-mejoramiento y W <y, su asignacion
uno-gradual. Entonces, para toda formula o, el preorden <gon cstd complelamente
definido por <y y [[a].

Demostracién: Supongamos por reduccion al absurdo que tenemos que <k, #<%..
y que ambos predrdenes satisfacen (S1-SH). Sean w, w' testigos de esta desigualdad.
Asi, sin pérdida de generalidad, podemos suponer que w <y, v’y w' <%, w. Por
(S1), no se cumple en este caso que w,w’ € [[af], como de cualquier manera por el
hecho de que w <j,,, w' obtenemos que w <y w' y como w' <% w obtenemos que
w' <y w lo cual es una contradiccién.

De manera similar por (S2), no se cumple en este caso que w,w’ € [-a]. Asi, las
unicas posibilidades son w € [[a]] y w" € [[-¢]| 0 bien w € [-a] and w' € [a].
Consideremos el primer caso, i.e. w € [[af vy w' € [-a]. Como w' <% w, por
(593), w Ly W, i.e. w' <y w. Si w' £y w entonces, por el Lema 3.1 se tiene que
W' <o W, una contradiccion. Si w' <y w, por (S4) y (S5), w' ~i., w, de nuevo
una contradiceion.

Consideremos ahora el segundo caso, i.e. w € [l and w’ € [[a]. Como w <}, W,
por (S3), w' £y w, i.e. w <y w'. Supongamos que w Ky w'. Entonces, por (S5),
w' <Y, w lo cnal es una contradiccién. Luego w &y w', y por el Lema 3.1, se tiene

2 / . L
que w <y, W, lo cual es una contradiccion. I

Esta proposicion es muy importante ya que dice, en cierta forma, que existe un
unico operador de uno-mejoramiento. Ya que es posible definir distintos operadores
de uno-mejoramiento asignando diferentes predrdenes al estado epistémico inicial
que va a ser uno-mejorado iteradas veces por una misma nueva informacién, sin
embargo, una vez que este predrden es fijado, la proposicién 3.3 nos dice que no
hay mas libertades respecto a la eleccion de los predrdenes que se asignan en cada
iteracion subsiguiente.

De esta. manera es claro que si se considera a los predrdenes sobre las valua-
ciones como estados epistémicos, tendremos que existe un Unico operador de uno-
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mejoramiento.
Pino y Konieczny denotaron al operador de uno-mejoramiento como ©.

Ejemplo 3.10 Veamos como funciona el operador de uno-mejoramiento sobre el es-
tado epistémico correspondiente a Gianluca en el ejemplo 5. 1.

Para Gianluca son tres las caracteristicas en un automduwil: el precio (barato o
caro), el tamano (sedan o camioneta), su procedencia (europeo o americano).

De esta manera el lenguaje de Gianluca respeclo a los automduviles estd definido
por tres variables atdmicas proposicionales p,q, v que denotardn:
p = carro — baralo
q := carro — sedan
T = Carro — europeo
Convenimos que —p := carro — caro, —q = carro — camioneta y =1 := carro —
americano.

De esta manera siV es el estado epistémico de Gianluca, entonces

B) = (pAg Ar)V(pA=gAT)

En el ejemplo Gianluca va al primer consesionario y recibe la informacidn de que
las camionetas americanas fueron el carro del ano.
Llamemos entonces oo = carro — camioncta A carro — americano.

Supongamos entonces que el preorden <y, asociado donde los puntos negros repre-
sentan los modelos de « luce de la siguiente manera:

(0,0,0)
®
(1,00) (0,0,1) (0,1,0) —
O ® O
O.1L0  (1,1,0)
O

O

(1,0,1) (LLD
o o
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Aplicando operador de uno-mejoramiento sobre W a la luz de a obtenemos; por
el teorema de representacion, que el preorden <yee 0sociado a W O a luce de la
siguiente manera:

(1,0,0) (0,000 (0,1,0)
O e O

0,1,1) (0,0,) (1,1,0)
O ® O

(1,0, (LI
0] O

Por lo tanto, notamos como los modelos de o en <go, mejoran su plausibilidad
en exactamente un nivel respecto a <y. De esta manera, las camionetas americanas
ganaron preferencia en el estado epistémico de Gianluca, sin embargo, necesitard que
la informacion « le sea repetida otras veces para poder convencerce por las camionetas
americanas mejorando su plausibilidad de un piso en un piso hasta ser aceptade
totalmente.

3.4.2. Operadores de medio-mejoramiento

La caracteristica mas importante del operador de uno-mejoramiento, es que es un
operador de mejoramiento suave (mostraremos que también es modular al final de
este seccion) que incrementa la plausibilidad de cada modelo de la nieva informacion
exactamente un nivel respecto al estado epistémico inicial. Inspirados en este com-
portamiento del uno-mejoramiento, Pino y Konieczny buscaron definir un operador
incluso mas cauteloso que el operador @), e intentando capturar esta idea, propusieron
los siguientes postulados sintacticos.

(H1) Si B(Uxa) F ~p, o Kg e Apy =308 F ~py a <y 3), entonces B((¥ o
) * ) =

(H2) Si B(Uxa) b -, o0 g aApy IB(BF —py a <y ), entonces B((Wo ) *
o) b —p

El postulado (H1) se refiere a que cuando la revisién por « (sucesion de mejo-
ramientos por o hasta el éxito) implica la negacién de p, si p es apenas menos
plausible que su negacién a la luz de «, entonces un mejoramiento por u serd sufi-
ciente para eliminar su negacién de las creencias del agente.
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Note que este postulado en un debilitamiento de (I11), dejando clara la bisqueda
por parte de los autores de un operador mas suave que ©.

El postulado (H2) estd muy cercano a (H1), y habla del caso en el cual la revisién
por a (sucesiéon de mejoramientos por a hasta el éxito) implica la negaciéon de p,
pero ambos p y =i son apenas menos plausibles que -y, entonces un mejoramiento
por u no serd suficiente para eliminar su negacion de las creencias del agente.

Agregando estos dos postulado en lugar de (I11) a los operadores de mejoramiento
suave Pino y Konieczny definieron los operadores de medio-mejoramiento.

Definicion 3.14 Un operador de mejoramiento suave que satisface (H1) y (H2) es
llamado operador de medio mejoramiento.

Las contrapartes seménticas de (H1) y (H2) definen a lo que llamaron asignacién
medio-gradual.

Definicion 3.15 Sea o un operador de mejoramiento suave y ¥ — <y su asignacion
gradualmente suave correspondiente. La asignacion serd llamada asignacion medio-
gradual si las siguientes propiedades (SH1) y (SH2) son satisfechas:

(SH1) Siw k= p, ' B op, o <y wy AV E —p tal que 0"~y w, entonces
W S\T/olt, wl-

(SH2) Siw = p, o' | —p, ' €y wy 3" = —p tal que 0" ~y w, entonces
W' <oy W.

Notemos que tanto (SH1) como (SH2) usan solamente informaciéon de la nueva
férmula, la relacién vieja <y entre las dos valuaciones en cuestién, y las valuaciones
que estaban en el mismo nivel que el modelo w de la nueva informacién. Esto a grosso
modo nos dice que la asignacion medio-gradual es una asignacién modular.

Ahora ya podemos enunciar un teorema de representacién para operadores de
medio-mejoramiento.

Teorema 3.11 Un operador de cambio o es un operador de medio mejoramiento si,
y solo si, existe una asignacion gradual media tal que

[B(¥ + )] = min([a]), <u)
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Demostracién: (=) Por el Teorema 3.8 sabemos que existe una asignacién gradual-
mente suave W — <y tal que [B(¥ % «)] = min([[«]], <¢) se cumple. De esta manera
nos queda demostrar que la asignacion es ademds una asignacion medio-gradual <.e.
satisface (SH1) y (SH2).

(SH1) Sea w € [[ji], v’ € [[-4] tal que o’ <y w. Y supongamos que no existe
w” € [[-p]] tal que w” ~y w. Consideremos o = @, ¥ p = @,. Como ' <y w,
min([Jaf], <¢) = {w'}. Asi, por el Teorema 3.6 se tiene que B(¥ % «) F —p. Y como
aAplt Ly {w}=min([aA p], <g) del Corolario 3.3, se obtiene que o Ky a A pi.

Supongamos por reduccién al absurdo que existe § tal que 0 F —uy a <y 8.
Por el Corolario 3.3, 3w"” € [[B(Uxa)]] y " € [B(¥ o f)] tal que w” <y w".
Como w" ~y W', necesariamente w’ <y w”. De la hipdtesis sabemos que ' <y w, y
asi necesariamente w >~y w”, pero w” = = lo cual es una contradiccién. Asi, no exis-
te una férmula 3 tal que S+ —py o <<y . Entonces, por (H1), B((Vou)xa) t/ —p.
Asi, por el Teorema 3.6, min([[a], <go.) € [~p], i-e. min([afl, <wo,) N 1] # 0.
Entonces, min([[er]], <wo,) N [[u] = {w} y por lo tanto, w <ge, w'.

(SH2) Sean w € [[p]], " € [-u]], tales que v’ <y w y supongamos que existe
w" € [[-p] tales que w ~y w”. Consideremos « = ¢, y p = .. Entonces, por el
Corolario 3.3, tenemos que o <<q o A . Ademds, {w'} = [B(Vxa)]] y aAplf L.
Cousideremos la férmula f = @0, y notemos que f F —py o' <g w”. Como
w" € [[B(W  B)]]; por-el Corolario 3.3, & <<y (5. Entonces, por el postulado (H2),
B((¥op)*a) F ~p. Asi, min([[of], <ws,) € [-p]]. Entonces, min({[a]], <wo.) = {w'}
y por lo tanto w’ <y, w.

(<) Por el Teorema 3.8 sabemos que o es un operador de mejoramiento suave.
Por lo tanto, falta por demostrar que (H1) y (H2) se satisfacen.

(H1) Supongamos que B(W % «) F —p, o g a A p 'y que no existe J tal que
B -py a <<y 3. Queremos ver que B((W o) xa)l/ —p

Como av <<y aApu, por el Corolario 3.3, existen w y w' tales que w € [B(¥ * (a A )],
W e [[B(Txa)] y <y w. Esto, junto a la hipdtesis, implica que w € 1] v
W€ [p].
Supongamos por reduccién al absurdo, que existe w” € [[-p] tal que w” ~y w. Con-
sideremos la formula ¢, Entonces p,» = —py w” € [B(Y * @ 0)]]. Como w' <y w
y w' <y w” por el Corolario 3.3, obtenemos que o <<y ¢, lo cual es una contradic-
cién. Asf, fw” € [-p] tal que w” ~y w. Entonces, de (SH1) se sigue que w <gyop, w'-
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Como * satisface la propiedad (I10), por el Teorema 3.6, x también satisface (54).
Por lo tanto, w’ <y, w. Asi, W' >y, w.

Para demostrar B((Wou)xa) b =, demostraremos que [B((W o p)) * o] )N{[u] # 0.
Afirmamos que w € min([Jaf], <yo,) ¥y como w = i obtenemos la desigualdad previa.
Supongamos por reduccion al absurdo que nuestra afirmacién es falsa, i.e. existe un
modelo w; € min([[a]], <o) tal que wy <go, w.

Tenemos dos casos: wy = p o wy = —p.

Cas0 1: wy = i En este caso tenemos que wy = a A pr. Como w € [B(W * (o A )],
por el Teorema 3.6, necesariamente w € min(ffa A pf|, <g). En particular, w <g w.
Asi, por (S1), w <wo, w1, lo cual es una contradiccion.

Caso 2: wy = . En este caso tenemos que wy = o A = Como ' € [B(V * )],
por el Teorema 3.6, necesariamente «’ € min([Jal], <y). En particular, o’ <y ws.
Pero w',w; = —p, entonces (S2) nos dice que w’ <y, wy. Como hemos visto antes,
w g, w'. Asi) por transitividad, w <wop Wi, lo cual es una contradiccion.

(H2): Supongamos que B(Uxa) F -, o g oAy que existe 3 tal que §F -
y a <y . Por el corolario 3.3, existen w € [[B(¥ % (a A p))]), ', 0" € [B(V* ] y
w" e [B(Y + 3)] tales que v <y wy " <y w"”. Asi, por hipétesis, tenemos que
w }: Wy w/’w//’w/// ’: -
Como w' ~g ", en este caso se tiene que w ~g w"”. Asi, tenemos un modelo de
-t que estd en el mismo nivel que w; luego .por (SH2) se tiene que w' <o, W.
Si suponemos ahora que existe un modelo wy € [B((V o u)x a)]] N 1], entonces
wi <yop w. Pero w <y wy como wy = a A p. Entonces, por (S2) y el hecho de que
w,wi = p, w <y wa. Asl, W go, wa PEro W <yo, w, entonces w' <o, w4, CON-
tradiciendo a la minimalidad de wy. B

Mediante un procedimiento andlogo al seguido para demostrar que el uno-mejora-
miento es nico, Pino y Konieczny mostraron que también existe un unico operador
de medio mejoramiento. Es decir la asignacion medio-gradual define completamente
al preorden resultante después del medio-mejoramiento.

Proposicién 3.4 Una vez que el preorden asociado al primer estado epistémico es
fijado, existe un inico operador de medio mejoramiento. Denotemos este operador
como Q.

Ejemplo 3.12 Retomando de nuevo el ejemplo 3.1 y considerando p,q,r,a, ¥ y <y
como en el ejemplo 3.7 tenemos que si aplicamos el operador de medio-mejoramiento
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sobre U a la luz de o obtendremos que el preorden total <ype asociado a ¥ @ «
lucird de la siguiente manera:

(1,0,00 (0,000 (0,1,0)
o ® O
(0,0,1)
®

0,11y (1,1,0)
o o]

(1.0, (1L,LL)
o o

En este caso la plausibilidad de los modelos de « (las camionetas americanas) au-
menta ezactamente medio nivel en el preorden <y, respecto a <y. De esta manera,
las camionetas americanas comienzan a ganar preferencia en las creencias de Gian-
luca luego del medio-mejoramiento. A medida que Gianluca reciba la informacion «
repetidas veces, esta ird disminuyendo de medio nivel en medio nivel hasta finalmente
ser aceptada.

Para culminar esta seccién demostraremos que el operador de uno-mejoramientos
y el operador de medio-mejoramiento son en efecto operadores de mejoramiento
suaves modulares y ademads son los tnicos operadores que conforman esta clase.

Teorema 3.13 El operador de uno-mejoramiento y el operador de medio-mejoramien-
to son operadores de mejoramiento suaves modulares. La clase de los operadores de
mejoramiento suave modulares es ezactamente el conjunto {©, O},

Prueba: La siguiente tabla muestra (en su primera columna) todas las situaciones
posibles en dos niveles de un estado epistémico donde las lineas negras representan
los modelos de una férmula o y las lineas punteadas representan sus 1o modelos.
Y muestra ademéds (en la segunda y tercerca columna respectivamente) el compor-
tamiento del operador de uno-mejoramiento v medio-mejoramiento a la luz de «
sobre cada uno de estos casos posibles.
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Ahora bien, si consideramos la funciéon booleana fg : {0,1}% — {0,1} definida
como:

Jolw' <g " w" <y o] NNy = 0, [al N Nowy = 0,0 € [[of " € [o]) =
W <yoa W

donde, w',w” € N, U N .1, w € W v <y es el preorden asociado a un estado
epistemico W por la asignacion uno-gradual correspondiente al operador ©.

Mirando la Tabla obtenemos que:

[o(1,1,1,1,1,1) = X
Jo(1,1,1,1,1,0) = X
[o(1,1,1,1,0,1) = X
fo(1,1,1,0,1,1) = 1
fo(1,1,0,1,1,1) = 1
fo(1,0,1,1,1,1) = X
[o(0,1,1,1,1,1) = X
/6(0,0,1,1,1,1) = X
[5(0,1,0,1,1,1) = X
[0(0,1,1,0,1,1) = X
[5(0,1,1,1,0,1) = X
fo(0,1,1,1,1,0) = X
fo(1,0,0,1,1,1) = X
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f5(0,1,1,0,0,0) =0
£(1,0,0,0,0,1) = 1
£5(1,0,0,0,1,0) = 1
/5(1,0,0,1,0,0) = 1
£5(1,0,1,0,0,0) = 1
f5(1,1,0,0,0,0) = 1
£5(0,0,0,0,0,1) = X
£5(0,0,0,0,1,0) = X
£5(0,0,0,1,0,0) = X
/5(0,0,1,0,0,0) = X
£5(0,1,0,0,0,0) = 0
£(1,0,0,0,0,0) = 1
£5(0,0,0,0,0,0) = X

Haciendo una inspeccion extensiva, vemos que el preorden total <ge, estd total-
mente determinado por la definicién de f y la trasitividad de la igualdad (Notemos
que la funcion toma valor X en las situaciones imposibles). Lo cual quiere decir que
la asignacion uno-gradual asociada al operador ® es modular, luego, el operado de
uno-mejoramiento es un operador modular.

Analogamente, observando la tabla y calculando los valores que toma la funcién
booleana [y, : {0,1}% — {0,1} definida como:
Jo(w' <v " w" <y ' o N Ng= 0, o] N Ny = 0,0 € [[o], " € [[a]) =

w/ S\IIQQ u)II.

donde, w',w" € N, U N, 1, w € Wy <y es el preorden asociado a un estado
epistémico W por la asignacion medio-gradual correspondiente al operador .

fo(1,1,1,1,1,1
[o(1,1,1,1,1,0) = X
f0(1,1,1,1,0,1) = X
fo(1,1,1,0,1,1) = 1
[o(1,1,0,1,1,1) = 1
[o(1,0,1,1,1,1) = X
[5(0,1,1,1,1,1) = X
[5(0,0,1,1,1,1) = X
[0(0,1,0,1,1,1) = X
f0(0,1,1,0,1,1) = X
15(0,1,1,1,0,1) = X

1)=X



CAPITULO 3. OPERADORES DE MEJORAMIENTO

68

L | T e e e e e e

P e e s N N

Ol11011010(\111011010011010010001101001
11101101010110110101010101001001010100
e T S s QI Sy QNS S I o e I e R R G e G B O e S B O e S R e S )
e R e QS R . N e S o i s SR QS S e QU S D S e O o SR A e Sl o SN R I
10000111111000011111100000011110000001
01111111111000000000011111111110000000

/I\/I\((((({.\(\/I\/I\/I\/.\((((((((((((((((\(((((((((

NN N I e N N N N N IR e D I N IR I N N P



CAPITULO 3. OPERADORES DE MEJORAMIENTO

69

£5(0,1,0,0,1,0) = 1
£5(0,1,0,1,0,0) =0
£5(0,1,1,0,0,0) =0
/5(1,0,0,0,0,1) =1
f(i)(1>070703 170) =1
f5(1,0,0,1,0,0) = 1
f5(1,0,1,0,0,0) = 1
[(1,1,0,0,0,0) = 1
£5(0,0,0,0,0,1) = X
15(0,0,0,0,1,0) = X
£5(0,0,0,1,0,0) = X
£5(0,0,1,0,0,0) = X
15(0,1,0,0,0,0) = 0
£5(1,0,0,0,0,0) = 1
£5(0,0,0,0,0,0) = X

Obtenemos que el preorden total <y, estd completamente definido por f,
y la transitividad de la igualdad lo que quiere decir que el operador de medio-
mejoramiento es un operador modular.

Por otra parte, observando cuidadosamente la tabla nos damos cuenta que en
las columnas 2 v 3 encontramos todos los comportamiento posibles de un operador
suave y modular en cada una de las situaciones que refleja la columna uno. Luego,
los operadores de uno-mejoramiento y medio-mejoramiento, son los tinico operadores
de mejoramiento suave y modular.

3.5. Mejor Mejoramiento Suave

Ya sabiendo que la clase de los operadores de mejoramiento suave y modular
estd compuesta por exactamente el operador de uno-mejoramiento y el operador
de medio-mejoramiento, Pino y Konieczny definieron un operador de mejoramiento
suave que no satisface la propiedad de modularidad.

Para poder representar este operador introdujeron el concepto de férmulas sepa-
radas en un estado epistemico.

Definicién 3.16 p es separada in W st VE(B(V x 3)F p d B(V % () F —pu).
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La separacion de una formula en un estado espitémico significa que de la revisiéon
(v de cada mejoramiento) de este estado epistémico por cualquier nueva informacién
siempre resultardn estados epistémicos que estén informados sobre esta {Grmula (i.e
la férmula o su negacién podran ser inferidos).

Definicion 3.17 Un operador de mejoramiento suave que satisface los siguientes
dos postulados es llamado un operador de mejor mejoramiento

(B1) Sip esseparado en W, B(Uxa) b —py a <y aAp, entonces B((Wou)xa) K
=

(B2) Sipno es separado en W y B(V % ) F =y, entonces B((V o 1) * ) b =g

El postulado (B1) se asemeja a los postulados (H1) e (I11), sin embargo, este se
cumple sélo cuando la férmula es separada en el estado epistémico.

El postulado (B2) establece que cuando la férmula no es separada en el estado
epistémico (que es el caso mas comun) el cambio es el mismo que ocurre con el pos-
tulado (H2).

Pino y Konieczny dieron las contrapartes semanticas de estos postulados y definie-
ron a la asignaciones mejor-graduales.

Definicién 3.18 1 es s-separado en <y sii Awy | p, wo = —p tales que wy ~g wy.

Definicién 3.19 Sea o un operador de mejoramiento suave y W — <y su correspon-
diente asignacion gradualmente suave. La asignacion serd llamada una asignacion
mejor-gradual si satisface las siguientes propiedades

(SB1) Sip es s-separado en <y, w = p, W' = op y o <y w, entonces w <gop, W'
(SB2) Sip no es s-separado en <, w = p1, W' = op yw' <y w, entonces w' <oy, w.

Lema 3.2 Sea o un operador de mejoramiento débil. Entonces, v es separado en W
si1 es s-separado en <g.

Demostracion: Supongamos que p es s-separado en <y. Supongamos por reduc-
cion al absurdo que g no es separado en <y. Asi, podemos encontrar una férmula 3
tal que B(U«0) t/ pand B(Uxf) I/ —p, esto es, existen modelos wy,ws € [B(¥ * §)]
tales que w; € [[p]] and wy € [[—p]]. Pero el hecho de que wy, ws € [[B(V % B)]] implica,
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por el teorema 3.6 que wy >~y ws, lo que contradice nuestra hipdtesis.

De manera contraria, supongamos que /. es separado en <y. Supongamos por
reduccién al absurdo que p no es s-separado en <g. Entonces, podemos conseguir
modelos wy,wy tales que wy =~y wy | 1y wy ~o wo. Pongamos = @y, -
Por la hipétesis, min([[f]], <¢) = {w1,ws}. Asi, por el Teorema 3.6, B(\V * 3) I/ 1y
B(V % 3) Y = contradiciendo la separabilidad de p en <y. '

De esta manera estamos en condiciones de enunciar un teorema de representacion
para los operadores de mejor mejoramiento.

Teorema 3.14 Un operador de cambio o es un mejor mejoramiento si, y solo si,
existe una mejor asignacion gradual tal que

[B(T x )] = min([«], <v)

Demostracién: (=) Sea o un operador de mejor-mejoramiento, 7.e. un operador
de mejoramiento suave que satisface (B1) y (B2). Queremos demostrar que o y su
respectiva asignacion gradual suave satisfacen las condiciones (SB1) and (SB2).

(SB1): Sea w € [[u], ' € [-p] tal que o' <y w. Ademds, supongamos que j
es s-separado en W. Queremos mostrar que w <y w'. Consideremos & = p,, .. Co-
mo w' <g w, min(fla]], <g) = {w'}. Asi, por ¢l teorema 3.6, B(V x o) - —=p. Como
aAplt/ Ly {w} =mn([aA u], <¢), por el Corolario 3.3, a <<y a A u. Més ain,
por el Lema 3.2, i1 es separado en U. De esta manera las hipdtesis de (B1) se cumplen
y podemos concluir que B((V o ) * ) b —p. Luego, por el Teorema 3.6 obtenemos
que min([[a]], S\IJO/J) Z L, e w S\I/op W'

(SB2): Supongamos que g es no s-separado en V. Ademds, supongamos que
wkE e E opy o <y w. Queremos mostrar que ' <yo, w. Consideremos
a = @, . Como W' <y w, se tiene que min([[a]], <y) = {w'}. Asi, por el Teorema
3.6, B(W*«) F . Por el Lema 3.2, tenemos que i no es separado en ¥. Entonces,
por (B2), B((W o p) * o) b —p. Asi, por el Teorema 3.6, w ¢ min([[af], <go,), y como
por (I3) sabemos que min([[af}, <yo,) # 0, concluimos que W' <yo, w.

(<) Por el Teorema 3.6 sabemos que o es un operador de mejoramiento suave.
Nos queda demostrar que o satisface (B1) y (B2).
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(B1) Supongamos que p es separado en ¥, que B(Uxa) F -y que o <<y @A p.
Queremos mostrar que B((V o u) x o) b —p.
Sea w € min([[a]], <y ). Por el Teorema 3.6, w = —y. Por hipétesis y el Corolario 3.3,
existe w’ € [la A p]] tal que w <y w'. Entonces, por (SB1), w' <gop, w.
De hecho, tenemos que w' 22y, w. Notemos que después de un mejoramiento suave
por 4. los elementos minimales de [[(JJa) respecto a <go, estdn en el nivel de w. Por
lo tanto, w’ € min({[ee]), <yo,). Luego, por el Teorema 3.6, B({(V o ) x ) ¥ —pu.

(B2) Supongamos que o no es separado en Wy B(U x o) F —p. Queremos
ver que B((V o u) * «) F —pu. Por reduccion al absurdo supongamos que existe
W e [B((Popu)*a)|N[u]. Delahipdtesis y el Teorema 3.6, min([[of], <v) C [-4].
Asi w' & min([[af], <g¢). Sea w un modelos en min(f[o], <g¢). Entonces, w <y w'.
Como, por el Lema 3.2, i no es separado en <y, por (SB2) tenemos que w <yo, W'

lo que contradice la minimalidad de w' € [[a]] respecto a <go,. '

Asi como lo hicieramos para los operadores de uno-mejoramiento y medio-mejora-
miento, se demostrd que existe un 1nico operador de mejor mejoramiento.

Proposicion 3.5 Una vez que el preorden asociado al primer estado epistémico es
fijado, existe un 1nico mejor mejoramiento. Denotamos a este operador con .

Ejemplo 3.15 Considerando p,q,r,a, V y <y como en el ejemplo 3.7 tenemos que
st aplicando el operador de mejor-mejoramiento sobre W a la luz de o obtendremos
que el preorden total <yg, asociado a W B a luce de la siguiente manera:

(0,0,0)
)
(0.0.0) (1,0,0) (0,1,0)
[} O O
(1,0,0)  (0,0,1) (0,1,0) 0,0,1)
o) [ ] @] ®
0,1,1)  (1,1,0) O,L1)y (1,1,0)
O O O O
(1,0,1y  (1,1,1) (L,o,1) (1,11
o) o le) o

Podemos observar que como « no es una formula separada en U el operador
de mejor-mejorariento mejora un poco la plausibilidad de sdlo los modelos de la
nueva mformacion « que comparten nivel con no modelos. Si volviésemos a aplicar
el operador de mejor-mejoramiento ahora sobre el nuevo estado epistémico W & a
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obtendriamos que el preorden <ygama @sociado al estado epistémico resultante W @
o @« luce de la siguiente forma:

(0,0,0)
®
(1,0,0) (0,1,0)
O O
(0,0,1) (1,000 (0,00) (0,1,0)
) ] ® @)
O,1,1)  (1,1,0) ©o,,n (01 (1,10
O @] O ® O
(1,o,1) (1,11} (1Lo,1y (1L,L,Y
O (@] O O
S\Ileaa S\I’@(y@a

Por lo tanto, si el operador de mejor-mejoramiento es aplicado sobre un estado
epistemico a luz de una formula separada en dicho estado epistémico, en este caso o,
tenemos que los modelos de o« mejoran exactamente un nivel en plausibilidad respecto
al preorden asociado al estado epistémico anterior (note que en este caso el operador
de mejor-mejoramiento se comporta de manera modular).

3.6.  Mapa de los operadores de mejoramiento

La figura a continuacién, muestra un mapa de todos los operadores de cambio
conocidos hasta ahora. Cada regién estd enumerada por un nimero natural, y dare-
mos un ejemplo de operador en cada una de estas regiones.
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Opceradorcs de Cambio Modulares D 1

Mejoramiento Débil

4
Mejoramiento Débil Modular 3
Revision
AGM O fl S
Mejoramiento 10
Revision 11
Iterada
AGM-DP Mejoramiento Mcjoramicnto Suave
Suave Modular No Modular
®©
7 8 9 %, @

Para cada uno de los ejemplos a continuacion representaremos a los estados
epistémicos como preordenes totales tales que las creecias de los estados epistémicos
seran los elementos minimales del preorden total respectivo que los representa.

(Regién 1) Operador de cambio no modular que no es de mejoramiento
débil.

Ejemplo: Sea o un operador de cambio tal que para cada estado epistémico <y
se satisfacen las siguientes condiciones:
(i) Tr[/ax(élflo(y) = m/];n([[a]], S\p).

(ii) Siw,w" & min([a]), <v) entonces, w <goq W & w <y w'.

Dicho en palabras este operador se comporta como la Revision Natural al
revés(Ver Teorema 2.3), es decir, los minimales de la nueva informacién no
bajan a ser lo minimales del estado epistemico después de la revision sino
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que suben a ser los maximales. Y el resto del estado epistémico se mantiene
inmovil.

Este operador claramente no satisface la propiedad (I1) i.e. no es de mejo-
ramiento débil y también es claro que este operador tampoco es modular.

S\I’ S\Iloa

(Region 2) Operador de cambio modular que no es de mejoramiento débil.

Ejemplo: Sea o un operador de cambio tal que para cada estado epistémico <y
se satiface las siguientes condiciones:

(i) Siw ay W [ —~a, entonces W' <goq w.
(ii) Si w w' € [[af} entonces; w <y Wl S W <pa W

(iii) Siw,w’ € [-a] entonces, w <y W' W <yoy W

Dicho en palabras el operador o se comporta como la Revisién Lexicogréfica al
revés (Ver Teorema 2.5), es decir, los modelos de la nueva informacion suben
en bloque por encima de los no modelos después de la operacion.

Este operador es modular (por el mismo argumento que la revisién lexicografica
es modular) y claramente no puede satisfacer el postulado (I1) i.e. o no es de
mejoramiento débil.
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(Regién 3) Operador de mejoramiento débil no modular que no es de re-
visién y no es de mejoramiento.

Ejemplo: Sea o un operador de cambio tal que para cada estado epistémico <y
se satisfacen las siguientes condiciones:

(i) Si para todo w’ € [[-a] se tiene que {w € min([af], <y) : W’ =y w} =0,
entonces, wi Myon We Sl wy Ky wi, wy € min([af], <¢) v wa € [a].

(ii) Si {w € min([o]], <v) : W =y w} # O para algin o’ € [[af entonces,
w1 Lyoq wo sl wy € man(flaf], <v) v wa g wy.

(iii) Para todo w,w’ € [[af\min([[o], <v). Sl w <y W’ = W' <ypou w.

(iv) Para todo w,w’” € [[-a] entonces, w <y W & w <gon W'

Dicho en palabras el operador o mejora lo menos posible la plausibilidad de los
modelos minimales de la nueva inforacion, invierte el orden de los modelos de
la nueva informacién que no son minimales y lo demas lo deja igual.

Este operador claramente no es modular y satisface (I1), no es de revisién y no
satisface el postulado (I7), es decir, no hay rigidez en los modelos de la nueva
informacién, por lo tanto, no es un operador de mejoramiento.

(Regién 4) Operador de mejoramiento débil modular que no es de re-
visién y no es de mejoramiento.

Ejemplo: Sea o un operador de cambio tal que para cada cstado epistémico <y
se satisfacen las siguientes condiciones:

(1) SiwkEay W E-a, entonces w <gon W'
(ii) Siwy,ws € [[@f] y w1 <y wy entonces wy <yon Wi.

(iii) Si wy,wy € [[af entonces, wy <y w2 < Wi <woq Wo.
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Dicho en palabras el opeador o se comporta como la Revision Lexicografica
salvo que invierte el orden entre los modelos de la nueva informacién después
de la iteracién. De esta mancra los modelos minimales de la nueva informa-
cién en el estado epistémico inicial no son las creencias del estado epistémico
resultante ya que pasan a ser los modelos maximales entre los modelos de la
nueva informacion en el estado epistémico resultante. Por lo tanto o no es de
revision y claramente o tampoco es de mejoramiento ya que no existe rigidez
entre los modelos de la nueva informacion i.e. (I7) no se satisface. Sin embargo,
claramente el postulado (I1) se satisface y ademas es modular por la naturaleza
lexicografica del operador.

(Region 5) Operador de mejoramiento débil modular y de revisién AGM

que no es de mejoramiento.

Ejemplo: Sea o un operador de cambio tal que para cada estado epistémico <y
se satisfacen las siguientes condiciones:

(1) SiwkEayw = —a, entonces w <goq W'

(i1) Siw,w’ € [a]\min([af,<¢) y w <y ' entonces, w’ <goq w.

(iii) Si w,w’ € min([[af], <y¢) entonces w <y W' & W <yon W'

(iv) Para todo w,w’ € [a] entonces, w <y W' & W Cyoq W'

Dicho en palabras el operador o se comporta como la revisién lexicografica
salvo que invierte el orden en los modelos de la nueva informacién en el esta-
do epistémico resultante que no son minimales en el estado epistémico inicial.
De esta manera el operador es claramente de revision AGM y por lo tanto
de mejoramiento débil, es modular por su naturaleza lexicografica y no es de
mejoramiento porque claramente no satisface (I7).
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(Region 6) Operador de mejoramiento débil y de revision AGM que no
es modular y no es de mejoramiento.

Ejemplo: La revisién natural es un operador de revision AGM (y por lo tanto
de mejoramiento débil) que no es modular y que no satisface la condicién (19),
ya que para el caso de un estado epistémico <y donde modelos y no modelos
compartan nivel puede pasar que después de la revision la relacion entre estos
se mantenga igual (Ver figura del Teorema 2.3).

(Regién 7) Operador de mejoramiento y de revisién iterada DP que no
es modular.

Ejemplo: La revision restringida-es un operador derevision iterada DP que
satisface (I7), (I8) e (19) (Ver Definicién 2.9) i.e. es un operador de mejo-
ramiento. Y claramente no es modular.

(Regién 8) Operador de mejoramiento modular y de revision AGM.

Ejemplo: La revision Lexicografica es un operador de revision AGM que satis-
face (I7), (I8) e (I9) i.e. de mejoramiento y sabemos que es un operador de
cambio modular (Ver Ejemplo 2.3).

(Region 9) Operador de mejoramiento Suave y modular que no es de re-
visién.

Ejemplo: Los operador de uno-mejoramiento y medio-mejoramiento son opera-
dores de mejoramiento suaves y modulares que no son de revision.
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Uno-mejoramiento

(Regién 10) Operador de mejoramiento que no es suave, no es modular y
no es de revision.

Ejemplo: Sea o un operador de cambio tal que para cada estado epistémico <y
se satisfacen las siguientes condiciones:

(1) w <won W' sl wy Ky wy, w € min(flaf], <y) y o' € [naf.
(ii) Siw,w’ € [[o] entonces, wy <y wy & W) <yoa Wa.

(iii) Siw,w’ € [[~a] entonces, w <y we < W1 <ypoq Wo.

Dicho en palabras, el operador o mejora estrictamente a los modelos minimales
de la nueva informacién respecto a los no modelos inmediatamente por debajo
y deja igual el resto del preorden. Este operador claramente no es de revisién.
Claramente satisface (I1) i.e. es de mejoramiento, no es modular y no satisface
el postulado (110) ya que los modelos minimales mejoran mds de un nivel, por
lo tanto no es un operador de mejoramiento suave.
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(Regién 11) Operador de mejoramiento suave no modular que no es de
revision.

Ejemplo: El operador de mejor-mejoramiento es un operador de mejoramiento
suave que no es modular y que no es de revisién (Ver Ejemplo 3.15).



Capitulo 4

Minimalidad

En el capitulo 1 vimos que uno de los principios fundamentales de los operadores
de revision en marco el AGM es el del cambio minimal, el cual se refiere, a grosso
modo, a minimizar los cambios entre los conjuntos de férmulas que representan los
conjuntos de creencias antes y después de la revisién. Sin embargo, existen otras
interpretaciones para el cambio minimal. Los operadores de cambio definidos por
Pino y Konicezny (def 3.1) en donde el perfil de un agente esta representado por un
estado epistémico ¥ (Revision DP, Revision DP-BM, Mejoramiento) también estén
fundamentados en el cambio minimal y esta traslacion de conjuntos de creencias a
estados espistémicos acepta que el cambio rainimal pueda pensarse en términos de
la menor cantidad posible de cambios sobre el preorden de plausibilidad asociado
<y. Es decir, dado un estado epistémico ¥ y una nueva informacion p, el cambio
minimal en la revision se logra haciendo a los predrdenes totales <y y <yo, dados
por la respectiva representacién lo més similares posible.

Con ésta interpretacion semdantica del cambio minimal podemos saber, de manera
intuitiva, con una mirada a las gréaficas qué operador de cambio es més conservatido
que otro. Por ejemplo, segin la grifica del operador de revisién natural pareciera ser
el mds conservativo entre todos los operadores de Darwiche-Pearl vistos hasta ahora.
Lo contrario pasa si vemos la grafica de la revisién lexicografica: parece el operador
menos conservativo de los operadores Darwiche-Pearl, mientras que las graficas de los
operadores de mejoramiento nos dicen claramente que el mejoramiento es en general
mucho mas conservativo que la revision.

Pino y Konieczny mostraron que existe una medida muy natural para estudiar el
cambio entre un preorden y otro. La distacia de Kemeny [7] entre el preorden inicial
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(el preorden asociado al estado epistémico inicial) y el preorden resultante luego de
aplicar el operador de cambio.

Definicion 4.1 La Distancia de Kemeny es la funcion
dx  Preorden Total x Preorden Total — IN

definida como:

dados <y,<o dos preordenes totales, di(<y,<s) es el cardinal de la diferencia
stméltrica de los prerdenes, i.e. el niimero de elementos en <; que no estan en <s
mas el numero de elementos en <o que no estan en <i. En simbolos tenemos

A (<1, <o) = (50 \ S2) U (2 \ <))

Definicion 4.2 Sean oy y oy dos operadores de cambio. Decimos que oy produce
menos cambio que oy si para cualquier estado epistémico V y cualquier formula pu:

dr(<w, <worn) < dr(Sw,y <wosp)
Veamos ejemplos de cémo funciona esta distancia sobre operadores de cambio:

Ejemplo 4.1 Consideremos el conjunto de mundos W = {wy,ws,ws, wy,ws}. Y con-
sidere dos operadores de cambio oy yoy. Donde oy es el operador de Boutilier (Re-
vision Natural) y oy es un operador de mejoramiento débil que satisface la propiedad
(I1) para un n > 1. Sea VU un estado epistémico con <y su preorden total asociado
por la asignacion fuerte y fiel (ver figura mds abajo). Sea p una formula tal que
[1]) = {ws,wa,ws}. Suponga que los presrdenes <yo,u Yy Swoyy son los resultados de
la revision nalural oy y el mejoramiento oy de W por ji respectivamente.

ws
®
Wy ws wq ws wq
e ® ® [ ]
w3y wo wo w2
e ® [ [
wy w3y
1 e e
[ ]
w3y w1
® ®

<\_’[} S\:I?Olu S\J/ozu
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Viendo a los predrdenes como conjuntos de pares ordenados, tenemos que

<u= {{(wi,wa), (wi,ws), (wi,w),
(wl’w5)’ (C‘)Q’ w3)7 (w2>w4)7 (L‘)Qu WS);
(w?n w2)7 <w3? w‘])v (w37w5>7 (W/-l: W5),
(ws,wa)}

S\.[loluz {(w1,7w2)) (wl.aw4>7 ((U],OJ5),
(wa, wy), (wa, ws), (w3, w1), (ws, WQ);
((.4}3, U)(l), ((“')33 WS), (W/l)wﬁ)a (U)S, 0}4)}

Swop= {(wr1,wa), (Wi, ws), (Wi, wa),
(wJ ) WS)v (w% w4)7 ((‘)27 w5)> (w?n w2)7
(w37 “‘)4)’ (w3’ u)5>7 (w47 w5)}

De esta manera tenemos que di(<wy, <wo,pn) = 3 ¥ dr(<y, <wo,u) = 2. Por
lo tanto, en este ejemplo, es decir, para este estado epistémico ¥ el operador de
mejoramiento débil oy produce menos cambio que el operador de revision naturel de
Boutilier.

Ejemplo 4.2 Considere el conjunto de mundos W = {wy,ws,ws,ws}. Sea ¥ un
estado epistémico donde <y es su respectivo preorden dado por la asignacion gradual
(ver la figura mds abajo). Sea ji una formula tal que (1] = {ws, wa}. Analizaremos
los preordenes <ye, Y Swou respectivos a los estados epistémicos resultantes W © p
y Vo u del uno-mejoramiento y el medio-mejoramiento de U por p respectivamente.

Wy wo Wy

® @ ®
wo w3 w2 wy w3y
@ [ ] ® ® ®
w1 w1 w3y w1
[ ® e ®

S\]/ S‘I’@[L S\D@p

Viendo a los elementos de los predrdenes como pares ordenados, tenemos que:
<o= {{wi,w2), (wi,ws), (w1, wa), (wo,ws), (W, W), (ws, wa), (W3, w4) }
<voup= {(wl,, wa), (w1, w3), (W1, wa), (W2, ws), (Wi, w2), (w3, w1), (W3, wa), (w3, wa)}

<vou= {(wl,,wz), (wl,w3), (W17w4), (WQ,W4), (w4, w2), (ws,w2)7 (w3,w4)}
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De esta manera tenemos que di(<y, <wou) = 3 ¥ dx(<w, <wg,) = 2. Por lo
tanto, en este ejemnplo, es decir, para este estado epistémico U el operador @ produce
menos cambio que el operador ©.

Pino y Konieczny demostraron que para cualquiera que sea el estado epistémico
el operador de medio-mejoramiento produce menos cambio que el operador de uno
mejoramiento.

Proposicién 4.1 Sea VU un estado epistémico (un preorden tolal). Entonces para
toda formula 1,

di(<w, <wop) < dr(<w, <vou)

Demostracion: Laidea para demostrar las proposiciones 4.1 y 4.2, viene de analizar
el numero de elementos en la diferencia simétrica entre el estado epistémico viejo y
el estado epistémico nuevo: cada unidad en dx(<y, <go,) estd originada por dos
operaciones: creacion 'y destruccion. La creacion corresponde al hecho de que exista
una nueva pareja en <y, que no estd en <y; la destruccion corresponde al hecho de
que habia un pareja en <g que no esta SLwop-

Més precisamente, diremos que la pareja (w,w’) es creada por un operator o (en el
contexto <y, 1) si w <yo, W'y w Ly W'

Diremos que la pareja (w,w’) es destruida por un operador o (en el contexto <y, )
§l w Lygop 'y w <y W'

El siguiente resultado, cuya demostracion es directa, resume esta discusion:

Lema 4.1 dr (<, <you) €s el nimero de parejas creadas mds el nimero de parejas
destruidas.

Ahora tenemos las herramientas para establecer los resultados claves que nos
permitiran demostrar las proposiciones 4.1 and 4.2.

Lema 4.2 Consideremos el contexto <y y p. Entonces,
(i) Cada pareja creada por o es también creada por o.
(ii) Cada pareja destruida por ¢ es también destruida por o.

Demostracion:

Primero demostraremos la parte (i). Supongamos que la pareja (w,«’) ha sido
creada por g, esto es w <yg, W' y w %y w'. Entonces, por la totalidad de <y,
W' <y w. Necesariamente, w € [[u]), W’ & [[11] v &' <y w. Por lo tanto, w <gg, ',
i.e. la pareja (w,w’) ha sido también creada por o.



85 CAPITULO 4. MINIMALIDAD

Ahora probaremos la parte (ii). Supongamos que la pareja (w,w’) ha sido destruida,
por 2, esto es w Lyg, W'y w <y . Por la totalidad de <y, tenemos que ' <y,
w. Necesariamente, ' € [[p]], w & [[u] v &' ~¢ w. Asi, por (S3), v’ <ge, w. Por la
totalidad de <yey, w Lve, @, t.e. la pareja (w,w’) ha sido también destruida por
(OB B

Lema 4.3 Consideremos el contexto <y y p. Entonces,
(i) Cada pareja creada por ¢ es también creada por o.
(11) Cada pareja destruida por e es también destruida por o.

Demostracion:

Probaremos primero la parte (i). Supongamos que la pareja (w,w’) ha sido creada
por @, esto es, w <yg, W'y w Ly w'. Entonces, por la totalidad de <y, w' <y w.
Entonces, la inica posibilidad de creacion llega cuando o’ <y w, w € [[1]], " & [[1])
y para cualesquiera modelos w; y wy tal que wy € [[u]] y wo & [[-4]], tenemos que
wy %y wo (aplicacién de SB1). En este caso, es claro que podemos aplicar (SH1) y
obtener que w <gyg, ', i.e. la pareja (w,w’) también ha sido creada por o.
Probaremos ahora la parte (ii). Supongamos que la pareja (w,w’) han sido destruidas
por @, esto es, w Lyg, W ¥y w <y w'. Por la totalidad de <yg,, tenemos que
w' <y, w. Necesariamente, o’ € [[u]], w & (1] v o’ ~¢ w. Asi, por (S3), v <y, w.
Por la totalidad de <gp,, w Lug, «', i.e. la pareja (w,w’) ha sido también destruida
por . q

La proposicion 4.1 se obtiene directamente de los Lemas 4.1 y 4.2

De la proposicién 4.1 y el teorema 3.10 obtenemos el siguiente resultado:

Corolario 4.1 FEl operador de medio mejoramiento es el operador minimal dentro
de la clase de operadores de mejoramiento suaves modulares.

Proposicion 4.2 Sea ¥ un estado epistémico (un preorden total). Entonces para
toda formula p,
di (S, <vop) < dr(So, <wou)

Esto es, el operador @& produce menos cambio que el operador ©.

Demostracion: Esta proposiciéon se sigue directamente de los lemas 4.3y 4.1. 4

Como corolario de las proposiciones previas obtenemos el siguiente resultado:

Proposiciéon 4.3 Entre los operadores ®, @ y @, el operador @ es el operador que
produce cambio minimal.



Capitulo 5

Operadores de Mejoramiento
Basico

5.1. Definicion y ejemplos

La familia de operadores de mejoramiento propuesta por Pino y Konieczny estudia-

da en el capitulo anterior apunta a mejorar la plausibilidad de la nueva informacion
sin satisfacer el postulado de éxito AGM. Esto lo expresan mediante la nocion de es-
tados epistémicos y la representacion seméantica de los mismos mediante asignaciones
(debilmente fiel, gradual, uno-gradual,etc). Vimos-también en-el capitulo anterior
coémo se establecieron teoremas de representacion para cada uno de los operadores
de mejoramiento conocidos y ademads se dié una clasificacion de los mismos.
Sin embargo, como vimos en el capitulo 2, Pino y Konieczny imponen una hipotesis
muy fuerte sobre todos los operadores de cambio que consideran en su trabajo. Ellos
asumen que todos los operadores de cambio satisfacen el postulado de éxito itera-
do (postulado (I1)), suposicién que da cierta ambiguedad a los teoremas de repre-
sentacion propuestos, ya que efectivamente en ningin momento representan al pos-
tulado de éxito iterado (I1). De hecho, a continuacién mostraremos un ejemplo que
muestra cuan determinante es esta suposicion para la validez del marco del mejo-
ramiento de creencias.

Ejemplo 5.1 En este ejemplo nos restringiremos a los estados epistémicos como
preordenes totales donde las creencias son los modelos minimales de dichos predrdenes.

Supongamos que eziste una asignacion gradual (Ver definicion 3.6) para un ope-
rador de cambio o del cual no sabemos si satisface o no el postulado (11).
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Consideremos el estado epistémico <y definido sobre W = {wy,wy, w3, wq, ws,ws}
(Ver figura) y supongamos que o = {ws,ws}. Podemos ver que o es separada en <y
en el sentido de la definicion 5.18.

Supongamos que el preorden <goo dado por la asignacion gradual de la hipotesis es
exactamente el mismo estado epistémico <q (Ver figura).

we we
[ [ ]
w4 W5 Wy Ws
O O O
w3 w3
e @
wi w9 w1 w9
O @] O O
S s S Tou

Notemos que el ejemplo 5.1 modela una situacién de asignacién gradual para el
operador o ya que no contradice ninguna de las propiedades de la definicién. Sin
embargo, es claro que este operador no va a satisfacer la propiedad (I1) ya que no
importa cudntas veces iteremos (mejoremos) por « al estado epistémico inicial <y,
sera siempre el mismo, y por lo tanto, los modelos de « nunca alcanzaran el primer
nivel de <y para ningin nimero n € N de iteraciones por a.

De esta manera, hemos demostrado que sin la suposicion de que los operadores de
cambio satisfacen (I1), la representacién precisa de los operadores de mejoramiento,
en el marco actual de Pino y Koniecziy, no es posible.

Notemos que el ejemplo 5.1 muestra también que a pesar que su naturaleza drésti-
ca, el postulado (S3) de la asignacién fiel que corresponde al postulado (P) de Booth
y Meyer no es suficiente para garantizar ¢l éxito iterado en el operador. Necesitamos
entonces sustituir este postulado por otro que pida que la plausibilidad de la nueva
informacién mejore mientras esta no esté en la creencias del agente. Ateniéndonos
al cambio minimal, en lugar de pedir que necesariamente toda la nucva informacion
incremente su plausibilidad después de un paso de mejoramiento, quisiéramos maés
bien un postulado expresando que al menos una parte de la nueva informacién in-
cremente su plausibilidad en cada paso de mejoramiento.

De esta manera propondremos un postulado bdsico sin duda mas fuerte que el
postulado (S1) de la asignacién gradual, ya que pide que en cualquiera de los casos
en que haya algo por mejorar de la nueva informacion exista una parte, no importa
cuan pequena sea, que mejore en cada paso de mejoramiento, pero en ciertos casos
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un poco mas débil ya que no pide que toda la nueva informaciéon que pueda mejorar
mejore en cada iteracion.

Sin embargo, veremos que para que el hecho de que en cada paso de mejoramien-
to “algo” mejora implique (I1), se debe también asegurar que nada desmejora, es
decir, la nueva informacién no puede disminuir su plausibilidad en ningin paso de
mejoramiento bajo ninguna circunstancia. Serd entonces natural incluir dos nuevos
postulados que equivalen a los postulados (CR3) y (CR4) del marco de la revisién
DP, los cuales capturan perfectamenta la idea de que nada desmejora en la nueva
informacién en cada paso de iteracién.

A continuacién mostraremos nuestra lista de postulados propucstos para definir
una nueva clase de operadores que permitirdn la representacién total de los mejo-
ramientos de creencias:

Definicién 5.1 Sea o un operador de cambio. Este serd llamado operador de mejo-
ramiento basico si satisface los siguientes postulados:

(BI1) Eziste n tal que B(\W o™ a) F «

(BI2) Si B(V)A o/l entonces B(Uxa) = B(I) A«

(BI3) Siat/L, entonces B(V x ) /L

(BI4) Para todo entero positivo n si o = 3 para todo 1 < mn y vy = u entonces

B(Woajo---oa,)*xy)=B(VoBio--0pf,)*u)

(BI5) B(¥xa)ABF B(Ux(aApB))

(BI6) Si B(V«a)ApBL, entonces B(Vx(aAB)) = B(Vxa)ApS
(BI7) Siat pentonces B((Vop)xa)= B(¥x«a)

(BI8) Si ok - entonces B((V o ) x a) = B(W )

(BI9) Si B(Voaw) bt p, entonces B((Vopu)*xa)b pu

(BI10) Si B(V o a) b =, entonces B((V o u)xa) i/ —p

(I11) Si existe B tal que 3 es consistente con «, (3 es consistente con —a y B(Ux3) t/
o, entonces al menos una de las siguientes condiciones se cumple:



89 CAPITULO 5. OPERADORES DE MEJORAMIENTO BASICO

(a) Iy tal que B(V ) es consistente con o, B(¥ x7) es consistente con —«
y B{(\V o o) x7y) es inconsistente con - pero consistente con «

(b) v tal que B(V xv) F —a y B((¥ o a) x y) es consistente con a

La mayoria de estos postulados son los mismos postulados requeridos por Pino y
Konieczny para un operador de mejoramiento, antes llamados (In) con n un nimero
natural. Como estamos proponiendo este nuevo marco para operadores de mejo-
ramiento basico, agregando nuevos postulados y quitando otros que estaban en el
marco de operadores de mejoramiento preferimos denominar por (BIn) con n un
numero natural a estos nuevos postulados de mejoramiento basico. Explicaremos a
continuacion su correspondencia con los postulados ya conocidos y sus significados.

Los postulados (BI1), (BI2), (BI3), (BI4), (BI5), (BI6), (BI7), (BI8) son los ex-
actamente los mismos postulados (I1)-(I8) satisfechos por los operadores de mejo-
ramientos, fué necesario mantenerlos para la definicion de los operadores de mejo-
ramiento basico por sus buenas propiedades para representar la iteracién del opera-
dor, heredados del marco AGM y el marco AGM-DP.

Los postulados (BI9) y (BI10) son los postulados correspondientes al hecho de que la
nueva informacion no empeora después de la revisién y corresponden a los postulados
(C3) y (C4) del marco AGM-DP. Estos postulados, como dijimos antes, son nuevos
en el marco de la revisién de creecias y no habian sido considerados en trabajos pre-
vios sobre operadores de revisién porque estos son una consecuencia del postulado
(I9) de ese marco (postulado (P) de AGM-DP).

El postulado (BI11) es nuevo. Este expresa el hecho de que al menos una parte de
la nueva informacién mejora después de un mejoramiento siempre que haya algo por
mejorar. La forma disjuntiva que tiene la conclusion de este postulado se debe a que
corresponde a tipos posibles de mejoramiento. Cabe destacar que este postulado es,
en cierta forma, mas preciso que el postulado (I9) de los operadores de mejoramiento
vistos en el capitulo 2.

La siguiente nocién de asignacioén bdsica serd la clave para comprender semanti-
camente el teorema de representacion de operadores de mejoramiento basico.

Definicion 5.2 Una funcion ¥ —<yg que envia cada estado espistémico ¥ a un
. Sy

preorden total <y sobre los mundos se dice asignacidn basica si, y solo si, se cumplen

las siguientes condiciones:

(BS1) Siw = B(V) yu' = B(V), entonces w ~y '
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(BS2) Siw = B(V) yw' = B(¥), entonces w <y w'

(BS3) Para cualquier entero positivo n si a; = 3; para todo i < n, entonces

SWoa 000 = <Wofi0--0fn
(BS4) Siw,w € [[u] entonces w <y v < w <y, W'
(BS5) Siw,w’ € [[-pu] entonces w <y w' © w <yo,
(BS6) Siwl=p yw = —p entonces w <y w' = w <yo, w'
(BS7) Siwkpyw = -p entonces w <g w' = w <gop 0

(BS8) Siw € [u]] yuw' € [[-u] yu' <y w entonces al menos una de las siguientes
condiciones se cumple:

(i) Fwy,ws tales que wy = 1wy =~y wy g wa Y w1 <goy W

(ii) 3w, wy tales que wy = p wy = g, wo <y wi Y wy Syop wo

Las condiciones (BS1), (BS2), (BS3), (BS4), (BS5) son exactamente las mismas
que las condiciones 1.2,3,(S1),(S2) que satisface las asignaciones graduales de los ope-
radores de mejoramiento. Las condiciones (BS6) y (BS7) expresan que los modelos
de p no empeoran con respecto a los-modelos de =y luego del mejoramiento por
a. Estas corresponden a las condiciones (CR3) y (CR4) del marco AGM-DP. Final-
mente la condicién (BS8) expresa el hecho bésico para poder representar el postulado
de ¢xito iterado que si existe la posibilidad de mejorar algin modelo de p entonces
exisitird algun modelo que mejorara luego de la revisiéon por pu.

A continuacién veremos un ejemplo que ilustra la necesidad que pedir que una
asignacion bésica satisfaga con los postulados (BS6) y (BS7) para segurar el buen
funcionamiento del postulado (BS8)

Ejemplo 5.2 Nos restrigimos nuevamente a los estados epistémicos como predrdenes
totales donde los minimales de dicho preordenes representan a las creencias de dichos
estados epistémicos.

Supongamos que para un operador de cambio o del cual no sabemos si satisface el
postulado de éxito iterado, existe un asignacion que satisface todas las propiedades
de una asignacion gradual (ver definicion 5.2) excepto los postulados (BS6) y (BS7).



91 CAPITULO 5. OPERADORES DE MEJORAMIENTO BASICO

Consideremos al estado epistémico <y sobre W = {wy,wa,ws, w4} como lo mues-
tra la figura y sea o una formula tal que [[af = {wy,ws}.
Supongamos que los estados epistémicos <goa Y <woaon de la asignacion dada por la
hipdtesis son los que muestra la figura.

O
Wq
@
w3
[ ] O ® o
w3 Wy ® w3 Wy
Wi
e O O ® O
w1 w2 w2 w1 w2
S'I‘ S\I/O(y S‘Ifo(yoa

Notemos que esta situacion es compatible con la hipdtesis ya que en <gon, W3 €8
un modelo de a que mejora satisfaciendo al postulado (BS8), sin embargo, wy es un
modelo de o que desmejora, lo cual es posible ya que estamos suponiendo la asig-
nacion no satisface los postulados (BS6) y (BS7).

De forma andloga en <gonoa tenemos ahora que wy mejora pero que ws desmejora,
de lo que se obtiene que <yoqoa=<v.

De esta manera vamos a tener que <g=<y2- para todo n € IN lo que quiere decir
que para ninguna iteracion por o del estado epistémico <y sus modelos minimales
estardn contenidos en los modelos . Luego (11) no se satisface para o.

Veamos a continuacién el Teorema de representacion:
Teorema 5.3 Si o es un operador de mejoramiento bdsico, es decir, que satisface
los postulados (BI1)-(BI11), entonces existe una asignacion bdasica que envia o cada
estado epistémico U en un preorden total <y tal que

[B( » a)] = min([a]], <o) (5.1)

Reciprocamente, supongamos que o es un operador de cambio y supongamos para
el cual existe una asignacion bdsica que envia a cada estado epistémico VU en un
preorden total <y, entonces el operador o es operador de mejoramiento bdsico y la
ecuacion (5.1) se satisface para esta asignacion bdsica.

Antes de demostrar el teorema daremos ejemplos de este tipo de operadores.

Ejemplo 5.4 Los operadores ©, @ y ® estudiados en el capitulo 2 llamados uno-
mejoramiento, medio-mejoramiento y mejor-mejoramiento respectivamente son ope-
radores de mejoramiento bdsico.
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5.2. La demostracion

Empezaremos demostrando el siguiente lema que nos sera muy util en la de-
mostracién principal.

Lema 5.1 Sea o un operador que satisface (Bl1). Y supongamos que existe una
funcion que envia cada estado epistémico ¥ a un preorden total <y sobre W que
satisface las mismas propiedades (BS1), (BS2) y (BS3) de una asignacion bdsica.
Mads ain, supongamos que la ecuacion 5.1 se satisface. Entonces, para toda formula
u y toda formula o consistente, se tiene que, B(¥ x o) & p si, y sdlo si, existe una
valuacion w tal que w € [u A o] yw <g W' para todo W' € [a A —p].

Demostracién: (<) Supongamos que existe w € [[uA af tal que w <y w' para
todo w’ € [[ax A =] Queremos ver que B(W x «) F 11 1o cual por hipdtesis es equiva-
lente a demostrar que min([[a]), <¢) C [[u]. Supongamos por reduccién al absurdo
que existe w’ € min([[af, <¢) y v & [[uf]. Como w € [[a], tenemos que v’ <y w.
Pero o' € [[o] N [=]jz- Lo cual es una contradiccion.

(=) Supongamos que « es consistente y que B(Uxa) - p. Por la hipdtesis tenemos
que min([[a]], <) C [[a]]. Tomemos entonces w € min([[a], <v), asi wmin([af, <v),
asl w € [[a] N [[p]]. Afirmamos que w <y w' para todo ' € [Ja A ~pull. En efecto,
por reduccion al absurdo, supongamos que existe w’ € [[a]] N [[-u]] tal que ' <¢ w.
Ast W' € min({[aly<w). Lo cual es una-contradiccion ya que min([[a]l, <¢) S]]y
w' € [[=p]). "

Continuemos con la demotracion del Teorema 5.3.

Demostracién: (=) Supongamos que un operador satisface los postulados (BI1)-
(BI12) y definimos para cada estado epistémico ¥ una relaciéon correspondiente <g
de la siguiente manera:

w<yw S wlk B« Do)

donde ¢, s denota una férmula tal que [p, .| = {w,w'}. Mostremos que <y es
un preorden total.

Totalidad: Sean w,w’ valuaciones. Como [[¢,, /] # 0 la condicién (BI3) nos dice
que [B(¥ x ¢,.)] # 0 ademés por (BI1) tenemos que [B(V * ¢y )] C [[@wel,
asi o bien w = B(W % ¢, ) 0 bien W' = B(V * ¢, /), t.e. w <y w’ 0 bien w’ <y w.
Lo cual demuestra la totalidad de <y.
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Transitividad: Sean wy, wy,wy valuaciones tales que wy <y wy vy wy <y ws. Quere-
mos ver que w; < Wws. Se consideran tres casos:

(Caso 1) wy |= B(W)
En este caso B(¥) v ¢, ., son mutuamente consistentes ya que comparten el mode-
lo wy, luego por (BI2) tenemos que B(¥ % vy, 0 = B(U) A o, 0. Por lo tanto
w1 ’: B(\I} * Som,wg)a y ast wy <y ws.

(Caso 2) wy & B(V) y wy = B(W)
Por hipétesis tenemos que [B(¥) A ¢u, w,)] = {w2}. Asi por (BI2), tenemos que
[BOY) % 0y, w,l] = {wa}, pero wy <y wy i.e. wy = B(V* ¢, ), lo cual es una con-
tradiccion. Por lo tanto este caso no sucede.

(Caso 3) wy,wy = B(P)
Como [y, wewsl] # @ por (BI3) obtenemos que [B(V * ¢ wyws)] # 0. Por (BI1)
tenemos que [B(V * @y, wy ws)]] C {w1,w2,ws}. Consideramos ahora dos subcasos.

(Caso 3-1> [[B<‘Il * ‘Pwnwz)ws)]] 0 {wb wQ} = 0.
En esta caso necesariamente tenemos que [B(V x ¢, w0, )]] = {ws}. Entonces
[BY % 0y )] O [P s | = {w} # 0. Se sigue de (BI5) y (BI6) que
[[B(\I’ * (uy waws N P 7w3))]] u [{B(\II * Py ,LUQ,WI}) N Py | = [[B(‘Il * ¢w1,w2,w;;)]]m[[90wz,w3]] =
{ws}. Por lo tanto [ B(W* (Yusws))|] ={ws}, esto en particular implica que wy <y wsy
vy we Ly ws, lo cual contradice la hipdtesis incial.

(Ca%0 3.2) [ BT + 9oy pn)] (1 {w1,00} £ 0
En este caso B(V % @y, wyws) ¥ Punwe SON consistentes entre si. Luego, por (BI5)
y (BIG)v tenemos que B(\II * ((pwl,wz‘wa A P 1w2)) = -B(\Ij * (pwl,wz,wg) A Pt ,wa Le.
[B(Y % @uy wo)ll = [BY * 0y op)]] N {wi,w2}. Notemos que por hipdtesis, wy =
B(U % 0oy ), a8t wi = BV % 0y 0y 05) N Pioywn- B1 particular wy = B(Y % @4, wy ws)
asi w € [B(Y % ©uy wo ) N[ Cwnwsl] @6 BOVHPost o ws) ¥ Poy sy SON IMuUtUaMeENte con-
sistentes. De nuevo por (BI5) y (BI6) tenemos que [B(¥ x ¢y, w,)]] = [B(Y * 0y s ws)]I0
{wi,w3}. Como wy = {wy,ws} ¥y wy = B(Wkpy, wyw,) tenemos que wy k= B(V*@y, w,)
i.e. wy <y ws. Como querfamos.

Probaremos ahora que la asignacién ¥ —<y es en efecto una asignacién bésica:

Condicién (BS1): Es suficiente ver que si w = B(¥) entonces w <y w’ para todo
w' € W. Si w es un modelo de B(¥) entonces w = B(¥) A ¢, .. Por (BI2) tenemos
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que B(V %@y, ) = B(U) A gy, asi w = B(U ¢, ) esto es w <y w'.

Condicién (BS2): Supongamos que w | B(U) y que o' ¥ B(V). Quercmos
mostrar que w <y w’. Por (BI2), [B(V * ¢, )] = {w} i.e. w Ly w. Y por la condi-
cién anterior se tiene que w <y w'. Asl, w <y W'

Condicién (BS3): Sea n un entero positivo tal que a; = f; para todo i < n.
Queremos ver que <gon o omm = <Wof o--ofn
Notemos que para cualesquiera valuaciones w y w’ se tiene que

w S\Iloavlou-oa” Cu‘/ W ': B((\II O 00 a'n,) * 9%),&1’)

y que
w S\Iloﬂlo~--oﬂn wl & W i: B((\Ij o [))] ©-:-0 /67'1,) * Sow,w')

Més atn por (BI4) B((Voaj o -om,)*p,w) =B(Vofio--00,)*uuw)
Lo que claramente implica que <yon 0.-00n =<wofi0--0fn
Con lo demostrado hasta ahora podemos demostrar que la ecuacién 5.1 se satis-
face, i.e.
[B(Y * a)]. = min([a]l,<v)

De hecho, si « es inconsistente ambos lados de la igualdad son el conjunto vacio
y por lo tanto se cumple. Supongamos ahora que « es consistente. Para mostrar la
ecnaciéon 5.1 mostremos primero que [[B(V * )] € man([[af], <y). Supongamos por
reduccion al absurdo que dicha contencidn no ocurre, i.e. existe w tal que w = B(Wxaw)
y w & min([[a], <g). Por (BI1) tenemos que w |= « pero w & min([[c]], <v) asi existe
W' = a tal que W <y w. Consideramos dos casos siguientes:

(Caso 1) W' |= B(¥)
Como w' k= a, se tiene que ' = B(¥) A, asi por (BI2) tenemos que w’ |= B(U*a) =
B(V) A . Pero w |= B(¥ % «), por lo tanto w = B(¥). Por la condicién (BS1),
w <y ', lo cual contradice que ' <y w.

(Caso 2) W' = B(W¥)
Como w' <¢ w tenemos que [V * ¢, ]} = {w'}. Notemos que w y w’ son mode-
los de «, por lo tanto, a A @, = @, .. Entonces, por (BI5) y (BI4) tenemos que
BUxa) Ay B BUs(aN@, ) ie [BUxa)]N{w,w'} C[B(Y*@,.)]. Pero
[B(Y % p,.)]] = {w'}, por lo tanto w = [B(V )]}, lo cual es una contradiccién
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con la hipédtesis inicial.

Probemos ahora que min([[a]], <y) € [B(V % a)]. Consideremos w € min([[o]], <¢
). Supongamos por reduccién al absurdo que w = B(V x a). Como a es consis-
tente, tenemos por (BI3) que existe una valuacién ' en [[B(V % «)]]. Por (BI1)
W . Como w,w’ € [[af], tenemos que a A ¢, = @, .. Notemos ademds que
W' € [B(¥ + )| N {w,w'} luego B(¥ xa) A ¢, es consistente. Entonces, por (BI5),
(BI6) y (BI4), se tiene que B(Uxa)Ap, . = B(Uxp, o) t.e. [B(Yx a)]|N{w,w'} =
[B(Y * ¢u )] Como w = B(Uxa) tenemos que {w'} = [B(W % ¢, )], t.6. W' <g w,
contradiciendo la minimalidad de w en [[a respecto a <yg.

Hemos demostrado que la ecuacion 5.1 se cumple. Esta ecuacion nos sera util en
las demostraciones del resto de las condiciones de la asignacién bésica.

Condicién (BS4): Supongamos que w,w’ € [[11]]. Queremos ver que w <y ' &
w <gou w'. Consideremos una férmula o tal que [of) = {w,w’}. Asi a = p. Por (BI7)
tenemos que B((¥ o p) x o) = B(V x ) i.e. min([a]], <won) = [B(Vopu)xal =
[B(Y * )] = min([«], <g). En particular min([[a], <won) = min([a]], <y¢). De es-
ta ecuacién obtenemos facilmente w <g W' © w <y, W'

Condicion (BS5): Esta condicion se demuestra de manera analoga a la condicion

(BS4).

Condicién (BS6): Sean w y w' valuaciones tales que w = 1y w’' = —p. Suponga-
mos que w <y w'. Queremos ver que w <y, w'. Consideremos la férmula proposi-
cional « tal que [[of = {w,w'}. Notemos que w = aAp, w <¢ o'y [[a]][-4] = {w'}.
Luego, por el Lema 5.1, tenemos que B(W * «)  p. Por lo tanto, de (BI9) se sigue
que B((¥ o p) x a) & p. De nuevo, por el Lema 5.1, se tiene que w <y, ', ya que
[aAp] ={wty [aA-u] ={w}. Como queriamos.

Condicién (BST): Notemos que esta condicién es equivalente (bajo la suposicién
de que las relaciones <g son preérdenes totales para cualquier estado epistémico P)
a la siguiente condicion:

(S7) Siw = py W = —p entonces w <go, w = ' <y w.

Para probar (S7’) supongamos que w = p, o' = —py w <y, w'. Queremos ver
que W' <y w. Sea « una férmula tal que [[o] = {w,w’}. Notemos que [[a A p]) = {1}
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y [aA—pll = {w'}. Como o' <go, w, por el Lema 5.1, B((V o p) * ) = —p. Usando
la contrapositiva de (BI10), i.e.

(I10°) Si B((¥ o ) * ) F =y, entonces B(¥ * o) - —p

se tiene que B(W % ) F —pu. Nuevamente por el Lema 5.1, tenemos que v’ <y w,
ya que [[of N [-u] = {o'} y [ N [[p] = {w}.

Condicién (BS8): Supongamos que existen mundos w y ' tales que w = py
w' = p tales que W' <g w. Queremos ver que al menos una de las siguientes condi-
clones se satisface:

(i) Jwy, wy tales que wy }: w2 l: T, W 2y W Y W) <wop W2
(ii) Jwi,ws tales que wy = p wy = -, we <g w1 ¥ w1 <gop W

Consideremos la férmula ¢, ., cuyos tnicos modelos son w,w’. Como w’ <y w
tenemos que W' € min([[ywll, <v). Por la ecuacion (5.1), ' = B(V * ¢y, ). Como
W' i: - se tiene que {[B(\IJ * SOw,w/)]] Z [[,UH e B(W * ‘pw,w’) i . Asi, por (Blll)
una de las siguientes condiciones se satisface:

(a) 3y tal que B(¥ x ) es consistente con u y también es consistente con —pu y
B((¥ o ) * ) es inconsistente con =y pero consistente con f.

(b) vy tal que B(V x~) F —py B((Vou)*7y) es consistente con .

En el caso en que (a) se cumpla, tenemos que Jwy,we tal que w) = py ws E-py
wi,w2 = B(¥ % 7). Por la ecuacién (5.1), wy,wy € min([[7]], <w). Asi, wy >~y ws.
Por la condicién (BST7) tenemos que wy <go, wy. Afirmamos que wy Lyo, Wi
Supongamos razonando por el absurdo que wy <go, wi. Entonces wi ~yo, wo- Co-
mo [B(V o u)*~] = min([[7]], <wen) no contiene modelos de —p, necesariamente
wy & min([[v]), <we,) (de lo contrario wy seria también minimal). Pero B(W o ) %y
es consistente con g, asi existe wy = p tal que ws = man([[v]), <wo,). Por lo tanto
w3 <wop wi. Como wy € min([[7], <y) y ws = 7 tenemos que wy <y ws. Como
wy,ws = 1, por (BS4), wy <o, ws, lo cual es una contradiccion. Asi, wy <goy wa. De
esta manera, hemos visto que (i) se cumple.
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En caso que (b) se cumpla, Jw; tal que wy = gy wi B BU¥ * p) * 7).
Por la ecuacién (5.1), w1 € min([[7]], <won).-Como B(¥ % v) F —pu, se tiene que
min([[7]), <g) C [[-p]. Por lo tanto, existe wy = v A = tal que wy <y w;y. Como
wi € min([y], <won) y we = 7 se tiene que wy <y, wa. Lo cual es exactamente la
condicién (74). Como querfamos.

Hemos concluido entonces la parte sdlo st de la demostracion de Teorema 5.3. g

Antes de continuar con la implicacién que falta en la demostracion del Teorema
5.3 quisiéramos hacer algunos comentarios sobre cémo se desarrollard.
Primero que nada, notemos que esta parte del teorema de representancién es dis-
tinta a como usualmente son los teoremas de representacion vistos hasta ahora. La
diferencia esta en el hecho de que no asumiremos que la ecuacion (5.1) se cumple. De
hecho no podemos asumir esta ecuacion sin antes haber establecido que el operador
* tiene sentido. Para esto necesitamos demostrar que el postulado (BI1) se satis-
face. Asl nuestra primera tarea serd demostrar este postulado y después si podremos
obtener que la ecuacién (5.1) se cumple. Finalmente, con la ayuda de esta ecuacion,
demostraremos al resto de los postulados, i.e. (BI2)-(BIL1).
Con el fin de demostrar que el postulado (BI1) se cumple, desarrollaremos cier-
ta técnicas y estableceremos algunos resultados que serdn muy ttiles para nuestro
proposito. A partir de ahora supondremos que o es un operador para el cual ¥ —<y
es una asignacion basica.
Comenzemos haciendo las siguientes observaciones:

Observacion 5.5 Por iteraciones sucesivas de la condicion (BS4) es facil ver que
para todo i € N si w,w’ = a entonces,

/ /
w<yw Sw _<_\Po'7cz w

De igual manera, por iteraciones sucesivas de (BS5), para todo i € N si w,w' |= ~a
entonces,
w<y W & w <yoin W

Dada una férmula « y un preorden <y definiremos un relacién ~, sobre W de
la siguiente manera.

Definicién 5.3 w ~, ' si, y solo si, w,w' E a yw >~y & o0 bien w, W’ E ~a vy
!
WXy W .
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Esta relacién es claramente de equivalencia ya que por definicion hereda la simetria,

la reflexividad y la transitividad de la relacién ~,. También notemos que cada clase
de equivalencia estd totalmente contenida en [[af] o bien estd totalmente contenida
en [-af ya que, por definicién, un modelo de o nunca esté relacionado (bajo ~q)
con un modelo de —q.
Esta observaciéon nos permite particionar al conjunto de las clases de equivalencia
W/ ~q en dos subconjuntos disjuntos: el conjunto de las clases cuyos elementos son
modelos de «, denotado por C(a) y el conjunto de las clases cuyos elementos son
modelos de =, denotado por C'(—a).

Consideremos la relacion <j sobre W/ ~, definida de la siguiente manera:

W] <5 W] e w <y

Claramente <y define un preorden total sobre W/ ~, ya que hereda la totalidad,
transitividad de <y.

La relacién de indiferencia asociada a <j, serd denotada por ~7.

Observacion 5.6 La relacion <3 restringida o C(a) es un orden lineal.

Demostracion: Sabemos que <y es simétrica, transitiva y total. Bastard demostrar
que <g satisface antisimetria. Sean |[w], [w'] € C'(a). Supongamos que [w] <3 [w'] ¥
[w'] < [w]. Entonces, por definicién, w <y 'y o’ <y w, i.e. w 22y W' Pero w,w’ = a,
o et A . 14

asi W~y W e [w] = W] 5

Con un argumento andlogo al anterior podemos probar lo siguiente:

Observacion 5.7 La relacion <y restringida a C(—a) es un orden lineal.

Asi como lo hicimos en la Definicién 5.3, definiremos una relacién ~,: para cada
entero positivo 7. Especificamente, dada una férmula « y el preorden total <goi,
definiremos una relacién =, sobre W de la siguiente manera.

Definicién 5.4 w ~,i W' si, y sdlo 81, w0 = o yw g, W, 0 bien w,W |
QY W Mg W
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Asi como en la relacién ~,, las relaciones ~: son relaciones de equivalencia ya
que heredan las propiedades de ~y.i,,.

Como lo hecho anteriormente, podemos particionar al conjunto W/ ~i en dos
conjuntos disjuntos definidos como sigue:

Cia) = {]:we [al]
C~a) = {[w]:w € [~af}

Definiremos, como lo hicimos antes, la relacién <7, sobre W/ ~: haciendo

ol

~ / !
[w] S\Ilo"'(,y [(}J] & w S‘I’Oia w
Y nuevamente, usando argumentos similares de los anteriores en el caso de la
relacion <y, podemos ver que <3 ;  es un preorden totq,l sobre W/ ~i y, mas aun,
para cada entero positivo 7 la relacién restringida a C*(«) es un orden lineal y la
relacién restringida a C'(—a) es también un orden lineal.

La relacién de indiferencia asociada a <7 se denotard por ~¢ ;.

Observacién 5.8 Para todo i € N tenemos que ~q=r:. Mds atin, C(a) = C'(a),
C(=a) = Ci(—a), los drdenes lineales (O(a), <3) ¥y (C'(a), <5.,,) coinciden y tam-

bién los ordenes lineales (C(—a), <3) and (C*(—a), <5...) coinciden.

Demostracién: De la definicion de ~, y ~, (Definiciones 5.3 v 5.4) y de la obser-
vacién 5.5, se obtiene directamente que ~g,=~:, C*{a) = C(a) y C(=a) = C*{(—aq)
para todo i € IN.

Y de nuevo por la observacion 5.5, y las definiciones de <y ; 'y < tenemos para
todo [w], [w'] € Ca) que [w] <5y W] € w <goig W © w <y W' & [w] <§ (W] Por

lo tanto <7 ; =<7 sobre C(a).

Usando un razonamiento andlogo al anterior podemos ver que <y, =<y sobre

C(—a). .

La siguiente definicién es muy importante ya que nos permite asociar un peso a
un elemento de C'(«) (alias C*(«)) en la iteracion i.

Definicién 5.5 Si [w] € C(a). Para cada entero positivo 1 € N, definiremos D*([w])
al conjunto de las clases [w'] € C(—a) tales que [W'] <5 ..., [w], es decir,

DY([w]) = {lw] € C(-a) : (W] <Gora [w]}



100 CAPITULO 5. OPERADORES DE MEJORAMIENTO BASICO

Definiremos para cada i € N una funcion o : C(a) — N tal que
a([w]) = | D*([w])]

De hecho, o'([w]) cuenta el nimero de niveles que contienen modelos de —a
comenzando a contar desde el nivel de w hasta nivel minimal en el preorden total
<yoia-

Escencialmente, la siguiente proposicion nos dice que este peso asignado no se incre-
menta a medida que iteramos.

Observacién 5.9 Para cada entero positivo 1 € W, si [w] € C(«), entonces

D ([w]) € DX([w]).

Demostracién: Sea [w'] € D' ([w]). Queremos ver que [w] € D¥(|w]), es de-
cir, queremos ver que [w'] <., [w]. Sabemos por hipétesis que [w'] € C(-a),
[w] € Cla) y [W] <5 oo, [w], POr 1o tanto, de la definicién de < i, , obtenemos que
W Syoirt, w y del contrarreciproco de la condiciéon (BS6) obtenemos que w' <goig w.
Esto por definicién implica que [w'] <7 ;. [w]. Como queriamos. '

Como consecuecia directa de la observacion anterior tenemos el siguiente resul-
tado:

Observacién 5.10 Para cada entero positivo i € N, o' ([w]) < of([w]).

La siguente observacion cs bastante intuitiva. Dice escencialmente que mientras
mas abajo en el preorden total <y, esté el modelo de a, méas bajo serd su peso.

Observacién 5.11 Para cada entero positivo i € N, si [w], [W'] € Cla) y

[w] <Guiy W], entonces oi(jw]) < a([w']).

Demostracién: Si o'(jw]) = 0, entonces o'([w]) < o'([w']). Supondremos entonces
que a'([w]) # 0.

Por lo tanto, tenemos que D*([w]) # 0. Sea entonces [w”] € D¥([w]). Por definicién,
se tiene que [w"] <y ;.. [w], luego por transitividad, tenemos que [w"] <7, [w'] lo
que quiere decir que [w”] € D([w]).

De esta manera hemos probado que D¥([w]) C D¥([w]). Por lo tanto o ([w]) < o#([w']). g
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Sabemos por la observacién 5.6, que <3 es un orden lineal sobre C'(c). Notemos
que |C(a)] es finito pues W es finito. Hagamos m = |C(«a)|. Asi, podemos enumerar
los elementos de C(a) de tal manera que Cla) = {[wi],.. ., [w; ]} ¥ [Wj] <G [w)]
para j € {1,...,m — 1}.

De igual manera, por la observacién 5.7, podemos enumerar los elementos de C(—a) =
{[wi],-- -, [wn]}, donde n = |C(=a)], de tal manera que [w}] <3 [w},,] para
je{l,..,n—1}.

Por el hecho de que los dérdenes lincales entre los elementos de C'(«) coinci-
den para todo <7, (Observaciéon 5.8), tenemos que [wj] <3, [wj,] para todo
j € {l,..,m —1}. Asi, por la Observacién 5.11 tenemos que o'([w}]) < o([w],,])

para todo j € {1,...,m — 1}.

Las dos siguientes observaciones serdn tiles mas adelante.

Observacién 5.12 Para todo 1 € N, min(<j ;) es o bien {[wi]} o bien {{w{]} o
bien {[wi], [wi]}-

Demostracion: Por la Observacion 5.8 existen al menos dos elementos en
min(<3.:,). Y por la misma observacion las inicas posibilidades son {[w]]} 6 {[w{]}

4 / "
6 {[wils fwil}- v
Observacion 5.13 Para todo i € N, min(<yoio) = Umin(<y.,)

Por las observaciones anteriores, para cada i € IN, el vector

(o' ([wi]), o ([wa), - o' ([w],])

es un arreglo ordenado no decreciente de niimeros naturales. Estos vectores seran
decisivos en el resto de la prueba.

Antes de continuar a establecer los resultados que nos llevaran a la demostracion
del postulado (BI1), introduciremos un ejemplo que ilustrara los conceptos y mostrara el
comportamiento que tiene la asignacion bésico en la iteracion.

Ejemplo 5.14 Supongamos |W| = 16. Sea o una férmula tal que |[-af]] = 8 y
l[a]]] = 8. Sea ¥ un estado episiemico el cudl es enviado por el asignamiento bdsico
al preorden total <y sobre W representado en la figura de abajo. Los modelos de
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« estdn representados por circulos negros y los modelos de - estdn representados
por los circulos marcados con r. Mientras mds abajo un modelo esté en esta repre-
sentacion, mds preferido serd. Por lo tanto los modelos minimales de <g son los
cuatro modelos de —a en el nivel del fondo.

® ® ® ®

® [ ] [ [}
<y

® ® ® ®

® ® ® ®

Si consideramos ahora W/ ~ tendremos que las clases de equivalencia estardn
formadas por conjuntos de modelos de o indiferentes entre si (en el mismo nivel en
la figura) y por los conjuntos de modelos de —« que son indiferentes entre si. El

primer conjunto de clases equivalencia es C(a), y el sequndo conjunto de clases de
equivalencia es C'(—a).

La siguiente figura representa el preorden total <y sobre W/ ~,.

[wh] Lt
R Lwé]
=\
[wi] |wy
®

%

De esta figura, usando la Definicién 5.5, tenemos que o°([w]]) = 2, o®([wh]) = 2
y a*([wh]) = 3. Asi, al comienzo del proceso el arreglo es el siguiente

(0 ([wil), o ([wa]), a®([ws])) = (2,2,3)

Supongamos que después de una iteracion el preorden total <., correspondiente

~=Wow

al preorden total <y.. estd representado por la figura de abajo:
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[gé’
$
[u:’z]
< gocy [L‘é‘z]
ey
[wé']

Entonces tenemos que o ([w)]) = 1, o' ([wh]) = 2 y o (|w}]) = 2. Asi, después de
una ileracion el arreglo es el siguiente

1 1
(o ([wi]), o ([ws)), o ([ws])) = (1,2,2)
Supongamos ahora que después de dos iteraciones el preorden total <, . corres-
pondiente al preorden total <y.2, estd representado por la figura a continuacion.:

lws

[u;:’s][%é’]
N L)
—Wolqy lwy
1l

Ast ?([wh]) = 0, o?([wh]) = 1 ya®([ws]) = 2. Por lo tanto, después de dos
iteraciones el arreglo es el siguiente

(o ([wi]), o ([wal), @ ([wa)) = (0, 1,2)

"

Este ejemplo insintia que luego de un cierto niimero k de iteraciones obtendremos

que o (Jw1]) = 0 (en el ejemplo k=2). En ese caso, se demostrard que [B(¥ of a)]] =
[wi] ¥ por lo tanto (BI1) se satisface ya que [w}] C [«

Observacién 5.15 Si existe k € N tal que o*([w]]) = 0 entonces
[B(W o™ ]| = [wi]

Demostracién: Como o*([w}]) = 0 no hay clases en C(—a) que estén por debajo o
al mismo nivel que [w;] respecto al preorden <7, . . Esto nos dice que min(<y . ) =
[wi]. Ast, por definicién de <3, obtenemos que min(<gek,) = [w)]. Pero sabemos

por las condiciones (BS1) y (BS2) que min(<yery) = [B(¥ o* a)]. Por lo tanto,
[B(E o* a)]] = [wn]. "
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Observacién 5.16 Si existe k € N tal que o*([w}]) = 0 entonces el postulado (BI1)
se cumple.

Demostracién: Por la Observacion 5.15, [B(¥ o* )] = [w}]. Notemos que [w}] C
o]l luego [B(¥ o* o)]] ¢ [[a]]. Lo cual implica directamente (BI1). "

Dada la observacién previa, nuestra meta ahora serd demostrar que existe un
entero k tal que a*([w}]) = 0. Para esto, comenzaremos demostrando que nuestros
arreglos eventualmente decrecen con respecto al orden lexicografico.

Proposicién 5.1 Si o'([w]]) # 0, entonces existe j € N tal que
(o ([wf]), - @ ([wp])) >1ea (@ ([wh)), -, & ([w],]))

Demostraremos este crucial resultado haciendo induccién en el nimero de clases
en C'(a) que no son indiferentes a elementos de C(—a) con respecto a <7, . Es-
pecificamente definiremos al conjunto S?, de dichas clases como sigue:

Sy ={lwl € Cla) : Alw'] € C(~a) y W] 5o, [w]}

Cuando una clase de C'(a) estd en S, decimos que estd aislada en el preorden
total <3, . | | |
La induccién sera aplicada sobre la cardinalidad st de este conjunto (!, =[S%|), pero
primero ilustraremos estos conceptos a través de los predrdenes totales del Ejemplo
0.14.

Ejemplo 5.17 Sea o, <y, <3.,, ¥ <Fez, COMO en el Ejemplo 5.14. Tenemos que
$0 =1 ya que [w)] es la tinica clase aislada en <5 ; st = 3 ya que [w], [wh] y [wh] son

o
las clases aisladas en en <3 . Finalmente s> = 2 ya que |/ wh| som las clases
You « ya q 1 ) 2
aisladas en <7

— Vo2

Antes de demostrar esta proposicion necesitaremos algunas observaciones y re-
sultados que mostraremos a continuacién. 5.1.

Observacién 5.18 Si o'([w}]) # 0 entonces al menos una de las siguientes condi-
ciones se satisface:

(I) J[w], (W] tales que [w] € Cla), W] € Cl=a), (W] 5., W]y [w] <goi, W]

~Wola

(IT) Jw], [w'] tales que [w] € Cla) W] € C(-a), W <Gu, W] ¥ [w] <Foiy, W]
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Demostracién: Sabemos por hipétesis que o'(Jwy]) # 0, lo que quiere decir que
‘o / . n o~ . y Cete )
existe [w'] € C(-a) tal que [w] <5 [wi]. Por lo tanto existe w = —a tal que
W' <goiq Wi, tenemos entonces que la condicion (BS8) se satisface. De esta manera,

al menos una de las dos siguientes condiciones se satisface:
(1) Fw,w’ tales que w E a, W @, W Xggin W'Y W <goitiy W

(ii) Jw,w’ tales que w = o, W FE ;W <ggin W Y W Sgoitig W'

Por definicién de las clases de equivalencia y de las relaciones <j , , >~y . 'y

o* Dé Voo -

<Goiq las condiciones previas se traducen facilmente en (I) y (II) respectivamente.
Completando asi la. demostracion. ]

Definicién 5.6 Diremos que (en <y ) ocurre un cambio de tipo (I) si después de
una iteracion mds la condicion (1) se cumple. Diremos que (en <y ) ocurre un
cambio de tipo (1I) si después una iteracion mds la condicion (II) se cumple.

Lema 5.2 Si no ocurre un cambio tipo (1) sobre <3, entonces Sit' C S, y por
lo tanto st < st

Demostracién: Notemos que las clases en S'T' pueden ser particionadas en dos
tipos: las clases de C(«) que estaban en S!, es decir, aquellas clases de C(«) que
no son indiferentes a ninguna clase de C(—a) respecto a <3, 'y contintan siéndolo

—Uo 1
aisladas respecto a <7 ., y las nuevas clases. Note que las nuevas clases eran clases
no aisladas en <7, 'y ahora estdn aisladas. Supongamos que [w] es una de estas

nuevas clases. A517 necesandmente, existe [w'] en C'(—a) tal que [w] ~7 ;  [w'] y como
[w] estd aislado en <y .., tenemos que [w] ity W] 0 (W] <t [w]. Pero la
ultima opcién no puede ocurrir debido a la condicién (BS7). Asi, la inica manera de
que tengamos nuevos elementos en ST es que ocurra un cambio de tipo (I) lo cual
es imposible por hipétesis. De esta manera no existe nuevas clases en St Luego,
sl < gt .

Ahora estamos listos para empezar la demostracién de la proposicion 5.1.

Demostracion de la Proposicion 5.1: Procederemos haciendo induccién sobre
i
st A
Empezaremos con el caso basico de la induccién cuando s, = 0. Esto significa que
no hay elementos aislados en <7 ; | i.e.

—Poin?
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V[w] € C(e), 3w'] € C(=a) tal quelw] 5, W]

Afirmamos que

(@ (i), s @ ([wh)) e (@ ([wr]), - @ ((w],])

Notemos que en virtud de la Observacién 5.18 ocurre o bien un cambio de tipo
(I) o bien un cambio de tipo (II). Por lo tanto, consideraremos dos casos.

Caso 1: Ocurre un cambio de tipo (I).
Sea [w!] la clase de C(a) que produce un cambio de tipo (I) en el nivel mas bajo.
Asi, existe [w"] € (7(—w) tal que [u/] ~oia WY Wl <G, (W] De esto, se sigue
claramente que [w”] € D([w)]) y [w"] € D™ ([wl]). Juntando todo esto y la Obser-
vacién 5.9 tenemos que .D”l([ 1 & D¥([w]). Por lo tanto |D*(w!)] < |D*(wl)],
i.e. & ([w!]) < ai([w!]). Por la Observacién 5.10, tenemos que o ([w;]) < of([wy))
para todo 2 <0 < c.

Luego, necesariamente

(@ (i) - o (W) - @ () >t (@ ([wh]), @™ (W) 5 @ ([w]])

Caso 2: Ocurre un cambio de tipo (II).

Sea [w!] la clase de C(«) en el nivel mds bajo que produce un cambio de tipo (I). Asi,

c que p
existe [w”] € C(-a) tal que, [W"] <j.., (W] y (W] <Goin, [W']. Como S, = 0 se tiene
que existe [w"'} € C(—a) tal que [w] =5, [w"]. Luego, por definicién, w, ~gqiq v
Por hipdtesis tenemos que [w"] <3, [wi] entonces [w"] <yoig [w"]. AS] W <goin W
De esta manera, por la condicién (BS5) tenemos que w” <yoi+1, w”, pero notemos
que wy, <goitia W’ ya que [w)] <G, (W] Luego, por transitividad, tenemos que
W, <goitig W, ast [wl] <G i, [W"]. Por lo tanto ocurre un cambio de tipo (I), pero
ya sabemos que la afirmacion es verdadera en ese caso.
Esto completa la demostracién para el caso s, = 0.

Supongamos ahora que la proposicién es cierto cuando s¢, < k, es decir, si s%, < k
existe 7 € IN tal que

(@ ([wi)), - -y o ([Wh]) >iew (@ ([wi]), -5 0™ ([w,])

Queremos ver que el resultado se cumple cuando s!, = k + 1. Por la Observacién
5.18 sabemos que o bien ocurre un cambio de tipo (I) o bien ocurre un cambio de tipo
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(I1) o ambos. Consideraremos dos casos: Ocurre un cambio de tipo (I) o no ocurre
un cambio de tipo (I).

Caso 1: Ocurre un cambio de tipo (I).
Supongamos que [w.] es la menor clase de C(«) que produce un cambio de tipo (I)
en <3, Mediante un razonamiento andlogo al realizado en el (Caso 1) del caso
bésico obtenemos que o' '([w!]) < a'([w!]). Por la Observacién 5.10, se tiene que
i1, i s O ececaT AT T
o (wy) < of(wy) para todo p < c. Luego, necesariamente

~

(@ (i), oy & ([wel), oy 0 ([a])) >t (@ ([t ]), ooy @ (0]), ooy 07 ([wr]))

Caso 2: No ocurre un cambio de tipo (I).
Por la Observacién 5.18 ocurre un cambio de tipo (II).
Sea [w}] la menor clase de C'(ar) que produce un cambio de tipo (II) en <, . Asi,

Syoia:
existe [w”] € C(—a) tal que (W] <., [wi] v [wh] <o, W] Afirmamos que [wy]
estd aislada en <7, , i.e. no existe [w”] € C(—a) tal que [w"] ~g ., [wi]. Por re-
duccién al absurdo, supongamos que existe [w”] € C(—a) tal que [W"] >3, [wi]-

Asi, (W] <Gu, [W”]. Entonces w” <yoiq w"”. Por la condicién (BS5) tenemos que
W' <goirig w”, lo cual por definicién es equivalente a que [W"] <{ ., [w”]. Por
hipotesis tenemos que |wy] <70, [@”]. De esta manera, por transitividad, tenemos
que [wl] <Gom, [w"]. Porlo tanto w]] produce un cambio de tipo (1), contradiciedo
la hipotesis de que este tipo de cambio no ocurre.
Como [w)] <3 i1, [w”] tenemos que dos posibilidades: O bien [w]] <3 i1, [W"]
or bien [w,] 5 11, [w"]. Las analizeremos por separado.

Caso 2.1: [wy] <G i, (W]
Como [w"] <3, [wi], tenemos que [w”] € D'([w!]). Por hipétesis tenemos que
(Wi} <Goier, W], asi, W"] & D™([wl]). Esto junto a la Observacion 5.9 nos dice
que DF([wl]) € D([w)]), es decir, o' ([w]) < &'([wl]). Por la Observacién 5.10,
tenemos que o' (wy) < of(w}) para todo p < ¢. Asi, necesariamente

(@ (wil), s e ([wil), oy @ () >t (@ (), oy @ ([w]), oy @ (WD)

Caso 2.2: [w] oy i, (W]
Como no ocurre cambio de tipo (I), podemos aplicar el Lema 5.2 y obtener que
serl < gt
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o < k. Para ver esto, notemos que [w/] estd aislado en <j_; . Por

o ~—Wolc"

Afirmamos que s
lo tanto,
we) € S;, = {[w] € Cla) : Blw'] € C(ma) y W] =75 [W]}

Sin embargo, por hipétesis tenemos que [w;] ~7 i1, [w”]. Por lo tanto,

[we] & S5 = {lw] € Cla) : Al'] € C(=a) y [w'] g W]}

De esto y del Lema 5.2, tenemos que St ¢ S%. Entonces s5™ < s, = k+ 1. Por
lo tanto s!, = k + 1 < k. Asi, por hipdtesis de induccién, existe j € IN tal que

(@ (W), U (W))) Bt (@A), 0 (f,)

Por la Observacion 5.10, tenemos que

(@' (fwn]), - @t (wn])) Ziew (@ ([wh]), - 0™ (w))])

Luego, por transitividad de >, tenemos que

(@ ([wil), - o' (lwn]) >tee (@ (), ., @ ([wr,)])

lo enal completa la demostracion de la Proposicion 5.1.
B

Notemos que de las condiciones (BS1) y (BS2) se sigue directamente la siguiente
observacion:

Observacién 5.19 Para todo estados epistemico W, [B(¥)] = min(<y). En par-
ticular, para todo i € N se tiene que [B(V o* )] = min{<goiq)-

Ahora estamos listos para demostrar la implicacién que falta del Teorema 5.3.

Demostraciéon del Teorema 5.3 (<=):

Mostraremos primero que el postulado (BI1) se cumple.
Notemos que por la Observacién 5.16 el postulado (BI1) se satisface siempre y
cuando exista k tal que of([w}]) = 0. Afirmamos que dicho k existe. De lo con-
trario, por la Proposicién 5.1, podemos construir un sucesion infinita de arreglos
(o ([ ]), - ™ (Jwp,])) (donde (7, )nenw €s una sucesién creciente de enteros) tales
que

@ (@A), @ (W) Stee (0 ()0 (W)
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Pero esto contradice el hecho de que el orden lexicogréafico esta bien fundado sobre
la m-uplas de ntimeros naturales.

Ahora mostraremos que la Ecuacién (5.1) se satisface.
Sea k el minimo niimero natural tal que B(Wof o) F a, en particular ¥ xa = U oF a.
Notemos que

k= min{n: B(Vo"a)t o}
= min{n: [B(Vo" a)]] C [[«]}
= min{n : min(<yon,) C [[of }

la ultima igualdad se cumple por la Observacion 5.19. Y por la Observacion 5.13,
se tiene que

min(<yong) = Umm(ggona).

De esto obtenemos que

min(<wona) C o]

Por la Observacion 5.12, la iltima expresion es equivalente a
! ~ R
mln(g\llo”a) - [w]]'

Pero, por definicidn, [wi] es exactamente rmin([[af], <v).
Por lo tanto [B(¥ % )] = mun([[a]l;<w), v.e. la Ecuacion (5.1) se satistace.

Demostraremos ahora los postulados (BI2)-(BI11).

Postulado (BI2):

Supongamos que B(¥) A « es consistente. Queremos ver que B(U *x a) = B(¥ A «).
Por la Ecuacién (5.1) bastard ver que [B(W) A af] = min([o]], <g¢). Para demostrar
esta igualdad, mostraremos primero que [B(¥) A o] € min([[af, <¢). Sea w un el-
emento de [B(¥)]] N [[«]. Por las condiciones (BS1) y (BS2), tenemos que w <y w’
para toda valuacién w’. En particular, w es minimal en [a] respecto a < . Como
queriamos.

Ahora mostremos que min([[of], <g) € [B(¥) A of. Supongamos que w € min([af, <v)
y buscando una contradiccién supongamos que w = B(¥) Aa. Como w = « tenemos
que w B B(¥). Como [B(¥) A a] # 0, existe ' tal que w’ € [B(V) A «f. Por lo
demostrado anteriormente, w’ € min([af, <¢). Como ' |= B(V) y w = B(V), la
condicion (BS2) nos dice que w’ <y w, lo cual contradice la minimalidad de w.
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Postulado (BI3):
Supongamos que o] # 0. Queremos ver que B(¥*«) es consistente. Comoo estamos
en el caso finito, o] es finito. Asi min([a], <) # 0. Luego, por la ecuacién (5.1)
B(U % a) es consistente.

Postulado (BI4):
Sea n un entero positivo y sean «y, 3, vy p férmulas tales que v = p y para todo
1< n a; = 0. Queremos ver que

B((Woayo---oay)xy)=B((Wofio---0f3,)*pu)

Por la condicién (BS3) tenemos que <yon,o-0an=<wopo-op,. 0T hipétesis ten-

emos que [[] = [[1] entonces min([(1], <wossoony) = Min([], <wopro-as) 1o cual
por la Ecuacién (5.1) es equivalente a lo que querfamos probar.

Postulado (BI5):

Queremos ver que B(Vxa)ASE B(¥x(aAf)) o equivalentemente [B(W x a) A S]] C
[B(F* (a A 3))]]- St B(¥*(aAB)) es inconsistente el resultado es obvio. Supongamos
ahora que B(Wxa)A [ es consistente. Tomemos w € [B(W * ) A S]] supongamos por
reduccion al absurdo que w & [[B(V x (a A £))]]. Por la Ecuacién (5.1), w es minimal
de « respecto a <y, w = [ y w no es minimal de aw A  respecto a <y. Por lo tanto,
existe w' € [a] N [[6]], tal que w’ <y w. Pero en particular o’ }= « lo cual contradice
la. minimalidad de w en {[a] respecto a <g.

Postulado (BI6):

Supongamos que B(WU x o) A 3 es consistente. Queremos ver que B(¥ x (o A §)) b
B(¥ % a) A (3. Serd suficiente demostrar la contraparte semantica equivalente de
este postulado: [[B(¥ x (a A 8))]] € [B(V *a) A J]. Supongamos por reduccién al
absurdo que la inclusién no se cumple, i.e. existe w = B(V % (a A ) tal que
w = B(V x «) A B). Por la Ecuacién (5.1), tenemos que w € min([a A f],<¢) y
w ¢ min(a], <¢) N [F]]. Como w = 3, tenemos que w = min([o]], <¢). Como
[B(Y % ) A g]] # 0, existe w' € min([a]], <¢) N |B]]. Como w € min([aAf], <g¢)y
W' = aAG, tenemos que w < W', Pero w’ € min([[a]], < ¥), luego w € min([laf], <v),
la cual es la contradiccidén que buscabamos.

Postulado (BI7):
Supongamos que « - p. Queremos ver que B(U x «) = B((V o p) * «). La condicién
(BS4) nos dice <y y <yo,, coinciden sobre [uz]. Como [[o]] C 2]}, tenemos que

min([[af, <¢) = min([a]l, <pou)
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Entonces, por la Ecuacién (5.1) obtenemos que B(W + o) = B((V o p) * ).

Postulado (BI8):
La demostracion de este postulado es completamente andloga a la demostracién del
postulado anterior.

Postulado (BI9):
Supongamos que B(¥ xa) F pu. Queremos ver que B((V o p)*«) - p. De la hipGtesis
y del Lema 5.1 obtenemos que existe w € [[a] N 1] tal que w <y W’ para todo
w' € [[af] N [-x]]. Asi, por la condicién (BS6) se tiene que w <g., «' para todo
w' € [[a] N [[-x]]. Luego de nuevo por el Lema 5.1 obtenemos que B((Vopu)*a) - a
COmMo queriamos.

Postulado (BI10):
Notemos que el postulado (BI10) es equivalente al siguiente postulado llamado (BI10):
(BI10’) Si B(¥ o p)xa b —pu
Por lo tanto bastara demostrar (BI10%). Notemos que la condicién (BS7) es equiva-
lente a la siguiente condicion:
(ST) Siw = py w = —p, entonces w' <yo, w = W <y w.
Supongamos que B((Vou)xa) b —u. Queremos ver que B(Wxa) F —p. Por el Lema
5.1 tenemos que existe w € [a A -y tal que w <y, w' para todo o’ € Ja A pl]. De
esto y de la condicién (S7’) obtenemos que w <y w' para todow’ € [[a A pll. Luego,
de nuevo por el lema 5.1, tenemos que B(V x o) F —=p. Como queriamos.

Postulado (BI11): .
Supongamos que exite [ consistente con « y consistente con —a tal que B(U«3) F «.
Queremos ver que al menos una de las siguientes condiciones se satisface:

(a) 3y tal que B(W * ) es consistente con a, B(¥ % 7) es consistente con —a y
B((V o a) » y) es inconsistente con —a pero consistente con .

(b) v tal que B(Vx~) F —ay B((Voa)xvy) es consistente con a y con —a.

Por hipétesis tenemos que [ es consistente. Luego, por (BI3) (ya demostra-
do), tenemos que B(U x 3) /L, i.e. [B(¥x )] # 0. Por hipétesis sabemos que
[BY ) & [[a. Ast, Ju' |= B(V % 8) A —a. Luego, por la ecuacion (5.1) se tiene
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que w' € min([[[5]], <¢), por lo tanto, w’ <y w. Luego, las hipétesis de la condicién
(BS8) se satisfacen (tomando « en lugar de p). Por lo tanto al menos una de las
siguientes condiciones se cumple:

(1) Jwy,ws tal que wy = a wy = =, w) ~ Ywy v Wy <gon Wa-
(i) Fwr,ws tal que W = a we = -, w < Yws ¥y wi <o Wa-

Supongamos que la condicién (i) se cumple: Consideramos la férmula ¢y, 4.,
tenemos que min([[¢w v ], <v) = {wi,wa}. De esto, y de la Ecuacién (5.1), se sigue
que B(V % ¢, ) es consistente con « y también consistente con —a. Més atn
MIN[[Pioy e ]l Swoo) = {wi}. Asi) por la Ecuacién (5.1), B((V o a) % ¢, ,) €8 con-
sistente con « y es inconsistente con —. De esta manera y si hacemos v = ¢, w, la
condicién (a) se cumple.

Supongamos que la condicion (ii) se cumple. Considerando nuevamente la férmula
Pun wp tenemos que min([[Yuw, wll, <v) = {w2} C [~al. Asi, por la ecuacion (5.1),
BV % ¢y, w,) F —a. También por Ecuacion (5.1), w € min([[@w, wlls <woa). Asi,
B((¥ o «) * ¢y, ) €s consistente con «. De esta manera haciendo v = ¢, ., se
satisface la condicion (b).

5.3. Aplicaciones

Observacion 5.20 Si para todo 3 consistente con o y con -« se tiene que B(Ux3) F
o, entonces para todo vy se tiene B(W xv) = B((¥ o a)x ) sty solo si, Si para todo
w € [p] yw' € [u] se tiene que w <y W', entonces <g=<yo,,

Demostracién: Supongamos entonces —A, esto es, para todo w € [a] y W' € [a] se
tiene que w <y W'y <F<ypoa-
Afirmamos que para toda férmula § consistente con « y con —a se tiene que

B(U % 8) F ay que 3y tal que B(¥ xv) % B((¥ o a)x7).
En efecto,
Demostremos la primera parte de la afirmacion.

Supongamos que existe una férmula 6 consistente con oy con —a tal que B(Ux0) I/ «
y lleguemos a una contradiccién. Por (I3) y la representacién tenemos que
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min([0], <v) # 0 y ademas que min([f], <¢) € [a] de esta manera existe v’ = -«
tal que w’ € min([0], <y ). Por otra parte como 6 es consistente con a tenemos que
existe w = a A 6. Como en particular w |= F tenemos que o’ <y w. De esta manera
tenemos que w = a, W' = ooy w £y W lo cual contradice la suposicién inicial de
que para todo w € [o] y ' € [ se tiene que w <y W'

Asi; tenemos que para toda féormula [ consistente con o y con —a se tiene que

B(¥ ) F a.

Para la segunda parte de la afirmacipor representacion bastard ver que 3y tal que
min([y], <w) # min([7], <won). Por hipdtesis <y#<yoq de esta manera sin perdida
de generalidad existen valuaciones w, w’ tales que w < V' v w Lo, w'. Considere-
mos la férmula ¢, cuyos Gnicos modelos son w y . Asi, w € min([pw.w], <w)
y w & min([pwuw], <wea). De esta manera min([y], <v) # min([y], <woa) como
queriamos.

Supongamos entonces —A, esto es, para todo § consistente con a y con —a se
tiene que B(W¥ x ) - ay Iy tal que B(V xv) # B((V o) *7)

Sean w,w’ valuaciones cualesquiera tales que w = a y w’ = —a. De nuestra su-
posicion obtenemos que la férmula ¢, ,» cuyos tinicos modelos son w y w' satisface que
B(Wxp, ) F o, este tltimo hecho junto a (I1) implica que [B(Wp,, )] C [0 A@y o)
asi por (I3) tenemos que [B(¥ % p,./)] = {w}, lo que por representaciéon nos dice
que w <g w'.

Pero supusimos ademds que Jv tal que B(U xv) # B((¥ o ) x 7y) esto por repre-
sentacién nos dice que min([7y], <¢) % min([v], <woa) lo cual implica que <gy#<yoq.
]

Recordemos que lo operadores definidos en el capitulo 2 ®, @ y @, son operadores
de mejoramiento basico. Por lo tanto, podemos obtener un teorema de representacion
maés fuerte para estos operadores teniendo en cuenta dos factores:

El primer factor es que la condicién (S3) implica a las condiciones (BS6) y (BST7).

El segundo factor es que el resto de las condiciones de la asignacién para estos
operadores implican la condicién (BSS).

Por lo tanto las asignaciones asociadas a estos operadores (uno-gradual, medio-
gradual y mejor-gradual) son en efecto asignaciones bésicas que satisfacen otras
condiciones especificas. De esta manera tenemos los siguientes tres resultados:
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Teorema 5.21 Si o es un operadores de uno-mejoramiento, es decir, satisface los
postulados (11)-(111), entonces existe una asignacion uno-gradul (una asignacion que
satisface las condiciones 1, 2, 8, S1, 52, 83, S4 and SO) que envia a cada estado
epistémico W en un preorden total <y tal que

[B(Y x )]} = min([afl, <v) (5.2)

Reciprocamente, supongamos que o es un operador de cambio para el cual existe
una asignacion uno-gradual que envia a cada estado espitémico W en un preorden
total <y, entonces el operador o es un operador de mejoramiento y la ecuacidn (5.2)
se satisface para esta asignacion gradual.

Teorema 5.22 Si o es un operador de medio mejoramiento, es decir, satisface los
postulados (11)-(110),(H1),(H2) entonces existe una asignacion medio gradual (una
asignacion que satisface las condiciones 1, 2, 3, S1, 82, 58, S4, SH1 and SH2) que
envia a casa estado epistémico W a un preorden total <y tal que

[B(¥+ )] = min([a], <) (5.3)

Reciprocamente, supongamos que o es un operador de cambio para el cual existe
una asignacion medio-gradual que envia a cada estado epistémico ¥ en-un preorden
total <y, entonces el operador o es un operador de mejoramiento y la ecuacion (5.3)
se sastisface para esta asignacién gradual.

Teorema 5.23 Si o es un operador de mejor mejoramiento, es decir, satisface los
postulados (11)-(11),(B1),(B2) entonces existe una asignacion mejor gradual (una
asignacion que satsiface las condiciones 1, 2, 8, S1, 82, 838, S4, SB1 y SB2) que
envia a cada estado epistémico W en un preorden total <y tal que

[B(V * )] = min([o]], <o) (5.4)

Reciprocamente, supongamos que o es un operador de cambio para el cual existe
una asignacion mejor gradul que envia a cada estado epistémico U en un preorden
total <y, entonces el operador o es un operador de mejoramiento y la ecuacion (5.4)
se cumple para esta asignacion gradual.



Capitulo 6

Observaciones finales y
perspectivas

En este trabajo dimos un resumen sobre el proceso de revision de creencias dentro
del marco AGM [1] rentringiéndonos al caso finito, repasamos los trabajos de Dar-
wiche y Pearl [3] introduciendo la nocién de estados epistémico de un agente y todo
el nuevo marco DP con el que corrigieron varios defectos del marco AGM. También
revisamos el trabajo propuesto por Jin y Thielscher v Booth y Meyer donde realizan
mejorias al marco DP.

Mis adclante, estudiamos una nueva clase de operadores de cambio de creencias
llamados “Operadores de Mejoramiento” propuesto por Pino y Konieczny [10]. Estos
operadores no satisfacen el postulado de éxito que caracteriza a todos los operadores
de mejoramiento hasta ahora conocidos. Como su nombre lo sugiere, en el mejo-
ramiento de creencias, la informacién mejora en mayor o en menor cantidad en cada
iteracién dandonos garantia de que luego de un nimero finito de iteraciones esta
informacion sera finalmente aceptada en las creencias del agente.

Esta nueva clase de operadores obedece mucho mas al principio del cambio min-
imal (desde el punto de vista de Kemeny) que los operadores de revisién. Presen-
tamos y mostramos sus respectivos teoremas de representaciéon de todas las clases
de operadores de mejoramiento, los operadores més generales lamados Operadores
de mejoramiento débil y Operadores de mejoramiento [8]. Luego a los operadores
de mejoramiento suave, los operadores de uno-mejoramiento, medio-mejoramiento y
mejor-mejoramiento. Estudiamos la clasificacién de estos operadores de acuerdo al
cambio minimal notando que el mejor-mejoramiento era el operador que generaba
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menos cambio en las creencias de un agente, seguido por los operadores de uno-
mejoramiento y medio-mejoramiento y notamos que este hecho tiene que ver con que
el operador de mejor-mejoramiento se comporta de manera no-modular, lo contrario
al uno-mejoramiento y al medio-mejoramiento.

Nuestro aporte en este trabajo fué dar un tcorema de representacidén para los
operadores de mejoramiento sin suponer de antemano el postulado de éxito iterado
ya que pareciera ser una hipétesis muy fuerte para una representacion que se basa
escencialmente en ese hecho. Para esto agregamos nuevos postulados a la lista de
postulados de mejoramiento débil y sus correspondientes contrapartes semanticas en
la asignacion fuerte y fiel. A estos operadores los llamados “Operadores de mejo-
ramiento basico”. Con estos operadores como punto de partida pudimos también
demostrar teoremas de representacién para todas las demas clases de operadores de
mejoramiento, teoremas que a nuestro juicio si representan completamente el proceso
de mejoramiento de creencias.

Las perspectivas de este trabajo apuntan a la bisqueda de el operador de mejo-
ramiento que genere el cambio minimal definitivo, es decir, el operador de mejo-
ramiento (bdsico) que genere menos cambio segiin Kemeny respecto a todos los ya
aqui presentados. Tenemos una, idea semintica clara de cémo seria este operador,
este operador serfa un operador de mejoramiento bésico no modular, que tendria
la capacidad de ubicar en el estado epistémico dénde hayan menos modelos y no
modelos en un mismo nivel y mejorar como lo hace el mejor-mejoramiento dicho
nivel. Es decir, este operador mejora solo el nivel que de antemano sabe que pro-
ducird menos cambios al mejorarlo, cumpliendo con esto todos los postulados de
un operador de mejoramiento y ademads asegurando su minimalidad absoluta. El
problema estd en conseguir una representacion sintdctica de estos operadores que
llamariamos de “Mejoramiento Optimal”.
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