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Resumen

La planificacién de proyectos de software, es un problema en el que se intenta
determinar la correcta asignacion de tareas a desarrolladores, para cumplir con los
objetivos propuestos en un lapso de tiempo determinado, sin sobrepasar el
presupuesto del proyecto y garantizando la calidad del producto a desarrollar. El
objetivo de esta investigacion es ofrecer un andlisis de metaheuristicas para permitir
ofrecer una solucién a este problema, el cual fue representado como un problema de
optimizacion combinatoria, y a partir de alli se desarrollaron diversas metaheuristicas
como lo son el recocido simulado (SA), la bisqueda con vecindad variable (VNS) y
los algoritmos genéticos (GA). Las pruebas de dichas metaheuristicas se realizaron
sobre un conjunto de 18 casos de proyectos de software para cada enfoque de la
funcién objetivo: reduccion de costos ¢ reduccion de tiempo asignando o no
desarrolladores expertos. A partir de los resultados obtenidos se formuld un algoritmo
hibrido basado en el VNS y el GA. Los resultados obtenidos por el algoritmo
memético fueron superiores a los arrojados por el GA, sin embargo dichos resultados

son equiparables a los obtenidos a través del VNS.

Palabras clave: Planificacion de proyectos de sofiware, Metaheuristicas, Algoritmos

Meméticos.
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Capitulo 1. Introduccion 1

Capitulo 1. Introduccion

1.1 Introduccion al Problema

La constante busqueda de soluciones a problemas de la vida cotidiana a través
de herramientas computacionales, es una tendencia que a lo largo del tiempo se ha
convertido en el estandar de facto para practicamente cualquier érea de mercado. En
tal sentido, ha sido necesario mejorar las estrategias existentes y disefiar nuevas
estrategias computacionales, en busca de ofrecer las capacidades y opciones
necesarias para dar soporte a problemas de mayor complejidad, que puede estar dada
por el problema en si mismo o por la seleccion de una solucidn entre el universo de
posibles soluciones del problema en cuestion (Marti, 2003), los cuales son conocidos

como problemas de optimizacion combinatoria.

La complejidad de los problemas de optimizaciéon combinatoria (COP) viene
dada por la forma de explorar el universo de posibles soluciones para un problema en
particular dado el amplio nimero de elementos que lo componen (Belén, Moreno, &
Moreno, 2003). Tal universo puede llegar a ser demasiado amplio en un espacio
discreto, por lo que la exploracion para seleccionar una solucion en particular que
cumpla con las condiciones esperadas, es un proceso que requiere del uso de las
estrategias apropiadas (Marti, 2003). Por su parte, las metaheuristicas son entendidas

como la combinacién de diferentes métodos heuristicos a un nivel mas alto para
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conseguir una exploracion del espacio de busqueda eficiente y efectiva (Glover,
1986), requieren la definicion de una serie de parametros y de un conjunto de pasos
segun los cuales es posible recorrer ampliamente un espacio de busqueda sin tener
que evaluar todos y cada uno de sus elementos, por lo que son ampliamente utilizadas
para buscar soluciones a este tipo de problemas (Belén, Moreno, & Moreno, 2003).
Estas estrategias, a diferencia de los métodos exactos no garantizan la obtencién del
6ptimo global, sin embargo, son considerados métodos genéricos que ofrecen

soluciones de buena calidad en un tiempo moderado (Chicano, 2007).

Por su parte, la planificacion de proyectos de software es un problema en el
que se intenta determinar la correcta asignacion de desarrolladores a tareas de
acuerdo con las capacidades requeridas, para cumplir con los objetivos propuestos en
un lapso de tiempo determinado, por lo que puede ser representado como un
problema de COP ---especificamente de planificacion, pues para un mismo proyecto
puede existir una gran cantidad de planificaciones posibles y factibles, cada una con
un costo y duracién asociadas. En investigaciones como la propuesta por Chicano
(2007), se emplean diversas metaheuristicas para abordar la planificacion de
proyectos de software, lo cual constituye un importante punto de referencia para este
proyecto, cuyo principal objetivo es implementar diversas metaheuristicas como: los
algoritmos genéticos (Larrafiaga, Abdelmalik, & Ifaki, 2010), la busqueda de
vecindad variable (Sarasola, Doerner, & Alba, 2012) y el recocido simulado

(Dowsland & Adenso, 2003), para encontrar en un lapso de tiempo razonable
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planificaciones de proyectos de software que busquen emplear los recursos
disponibles para disminuir el tiempo o el costo de ejecucion del proyecto segun sea el
caso, por lo que se enmarca en un area de interés actual, pues aun cuando se han
determinado diversas metodologias y técnicas para mejorar dicho proceso (Biolchini,
Gomes, Cruz, & Horta, 2005), los resultados obtenidos todavia no concuerdan del

todo con los esperados (Mian, Conte, Natali, Biolchini, & Travassos, 2005).

En tal sentido, esta investigacion atiende el desarrollo de algoritmos que
buscan ser mas eficientes para resolver problemas complejos, como lo es la
planificacion de proyectos de software, formulado como un problema de
optimizacion combinatoria, considerando ademas los resultados arrojados por
diversas investigaciones (Marti, 2003) en los que se demuestra que la combinacion de
diversas metaheuristicas permite la creacion de estrategias mas robustas en cuanto a
rendimiento y calidad de las soluciones obtenidas, por lo que también se incluye el
disefio de un mecanismo de hibridacién o algoritmo memético, que permita

implementar y posteriormente evaluar este tipo de estrategias.

1.2 Antecedentes

En el trabajo realizado por Cervantes (2010) se aborda el problema de
planificacion especificamente para escenarios con recursos limitados, buscando
proponer, disefiar y desarrollar nuevos métodos metaheuristicos para obtener una

asignacion optimizada de recursos para dicho caso. Con tal fin se contemplan dos
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versiones del problema de planificacion: la version estandar, también conocida como
version de modo unico (RCPSP), en la que se busca minimizar la duracion del
proyecto cuando las actividades que lo componen no pueden interrumpir su ejecucion
y estan sujetas exclusivamente a relaciones de precedencia de tipo fin-inicio, es decir
tienen un unico modo de ejecucidn, con una duraciéon determinada y un consumo
dado de recursos; y la versiéon multi-modo (MRCPSP), en la que cada una de las
actividades puede presentar distintas posibilidades o modos diferentes de ejecucion y
ademas puede contar con recursos no renovables y doblemente limitados. Para ambas
versiones del problema se implementaron un conjunto de metaheuristicas, con un
enfoque basado en los algoritmos genéticos, debido a que los resultados que se han
reportado en la literatura los muestran como promisorios para hallar soluciones de
alta calidad aiin en problemas de grandes dimensiones. Asimismo, la implementacién
hibrida de los métodos desarrollados ofrecié mejores resultados para los escenarios de

prueba de mayores dimensiones.

En el mismo orden de ideas, existen trabajos en lo que se refiere a
implementacién de metaheuristicas para ofrecer soluciones a la planificacion de
proyectos de software. Tal es el caso del estudio realizado por Chicano (2007),
correspondientes a metaheuristicas e ingenieria del software. En este estudio se
abordan tres problemas de la ingenieria del software: planificacion de proyectos de
software, generacion automatica de casos de prueba y busqueda de violaciones de

propiedades de seguridad en sistemas concurrentes, para cada uno de los cuales se
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evalia la implementacion de diversas metaheuristicas de acuerdo con las
particularidades de cada caso (Chicano, 2007). Especificamente, para la planificacion
de proyectos de software fundamentada en el Project Scheduling Problem ---PSP, se
implement6 un algoritmo genético a partir del cual se generan planificaciones que
buscan reducir la duracién del proyecto. Los aportes obtenidos a partir de esta
implementacién permiten determinar la factibilidad de la utilizacion de esta técnica
para la reéolucién de este tipo de problemas. A partir de las pruebas realizadas con
base en un generador de instancias disefiado por el autor, se determinaron importantes
conclusiones acerca de las posibles relaciones existentes entre las variables
consideradas en las instancias del problema. Sin embargo, resulta importante destacar
que el modelo utilizado en este trabajo se refiere al exacto propuesto a través del PSP,
por lo que claramente el gerente de proyectos posee diversas limitaciones para

gestionar proyectos de la vida real mediante el mismo.

1.3 Justificacion

La planificacion de proyectos de software es una de las actividades que
actualmente representa mayores problemas y a su vez mayor importancia para los
gerentes de proyectos de esta area (Abdel & Madnick, 2001), pues la programacion
de las tareas que se deben cumplir en funcion del tiempo y con los recursos
disponibles, es una labor critica para el éxito de cualquier proyecto de software.

Ciertamente, la realizacion de proyectos de cualquier tipo involucra una fase previa
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de planificacidon que resulta vital para el cumplimiento de los objetivos (Beltran, et
al., 2005). Sin embargo, en lo que a planificacion de proyectos de software se refiere,
vale la pena preguntarse: por qué el comun denominador para dichas planificaciones
es culminar los proyectos después de la fecha pautada originalmente (Abdel &

Madnick, 2001).

El desarrollo de software es un proceso que difiere de otros procesos de
produccién por diversas razones. Por ejemplo, solventar un error de una tarea
determinada, realizada originalmente por un desarrollador “A”, le llevaria 7 veces a
un desarrollador “B” resolverlo, con respecto a lo que le llevaria al mismo
desarrollador “A” (Grompone, 1996). En este sentido, la reasignacion de
desarrolladores para resolver tareas que no han sido tratadas por ellos puede tener
efectos en la duracidn, y por ende en el costo total del proyecto. De la misma manera,
otros factores como: la magnitud del proyecto, el conocimiento de las tecnologias
requeridas, el tipo de tareas y el nivel de informacion que se tiene para realizarlas, los
cambios introducidos o solicitados por el cliente durante su desarrollo, la experiencia
del desarrollador, entre otros, son algunos de los puntos criticos de la planificacion de
proyectos de software, que la hacen un proceso complejo que ademas puede variar de

un proyecto a otro (Abdel & Madnick, 2001).

Dicho en otras palabras, la planificacion de proyectos de software consiste en
definir qué desarrolladores se asignan a cada tarea y cuando ésta deberia llevarse a

cabo (Chicano, 2007), labor que actualmente realiza el gerente de proyectos de una
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manera casi empirica (Junk, 2000), considerando para ello las habilidades y la
disponibilidad de cada empleado, la informacion necesaria para realizar la tarea,
posibles necesidades de recursos extras, etc. (Junk, 2000). Por tanto, el objetivo de
dicha planificacion se enfoca en (i) minimizar la duracion del proyecto con miras a
cumplir con las fechas de entrega pautadas o (ii) minimizar el costo de produccion,
(i11) garantizando de la mejor manera posible en cualquier de los casos la calidad del

producto realizado (Chicano, 2007).

En consecuencia, la planificacion idonea reconcilia estos tres objetivos, sin
embargo, en la realidad suelen ser incluso excluyentes, pues conseguir una buena
combinacién de recursos y tareas en funcidén del tiempo para proyectos de gran
magnitud bajo dichas premisas, requiere de una inversion de tiempo y esfuerzo que
por lo general no es factible para un proyecto de software promedio. En este sentido,
este problema puede ser visto como un problema de optimizacién combinatoria,
especificamente como un problema de planificacion (Beltran, et al., 2005), buscando
que la implementacion de este tipo de herramientas, que mediante el empleo de un
esfuerzo computacional razonable permita obtener una solucién que aunque no sea la

optima, pueda satisfacer las necesidades del gerente de proyectos.

Es importante, destacar que el problema de planificacién abordado puede ser
considerado un caso particular de planificacion dinamica (Pinedo, 1983), donde
deben considerarse que existen sistemas cuya carga de trabajo no es fija, debido a

diferentes elementos como por ejemplo, un entorno es cambiante, tareas se
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crean/destruyen dinamicamente, la aparicion de tareas en rafagas o por la falla de una
parte del sistema falla. Bajo esa perspectiva, la planificacién debe realizar en tiempo
de ejecucion y en funcién de los atributos de las tareas, debido a que no se conoce a
priori las necesidades de tareas (el nimero de tareas no es fijo y sus atributos son
arbitrarios ---uso de recursos, tiempo de computo, plazos de respuesta, relaciones de
precedencia, etc.---), por lo cual la complejidad del problema se hace mayor. Se ha
abordado la planificacion dindmica con diferentes enfoques algoritmicos, como por
ejemplo evolucion diferencial (Liu, 2011), aprendizaje reforzado (Vengerov, 2005),

entre otros.

1.4 Alcance

Esta investigacion abarca la implementacion de un conjunto de
metaheuristicas para dar una posible soluciéon al problema de planificacion de
proyectos de software, formulado como un problema de optimizacién combinatoria a
partir del PSP. Asimismo, contempla la implementacion de un algoritmo hibrido con

base en las metaheuristicas implementadas de acuerdo con los resultados obtenidos.
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1.5

Objetivos

Objetivo General

Implementar metaheuristicas para dar solucion al problema de planificacion

de proyectos de software.

Objetivos Especificos

1.6

Analizar la documentacién disponible acerca de la aplicacion de
metaheuristicas para dar solucion a problemas de planificacion.

Modelar el problema de planificacién de proyectos de software en funcion de
las variables a optimizar.

Seleccionar e implementar las metaheuristicas para dar solucion al problema
de planificacion de proyectos de software.

Realizar pruebas de funcionamiento y rendimiento sobre las metaheuristicas
implementadas.

Evaluar los resultados obtenidos a partir de las metaheuristicas codificadas.

Resultados Esperados

Se espera implementar un conjunto de metaheuristicas para dar solucion al

problema de la planificacién de proyectos de software buscando minimizar el tiempo
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o el costo de un proyecto determinado, asi como también formular un algoritmo

memético con base en los resultados obtenidos.

1.7 Organizacion de la Tesis

Capitulo 1. Introduccion. Incluye la descripcion general del problema y sus
correspondientes antecedentes, justificacion objetivos y alcance. En la descripcion del
problema se denotan los principales factores relacionados con el mismo y el porqué

puede ser abordado como un problema de optimizacién combinatoria.

Capitulo 2. Planificacion de proyectos. En este capitulo se presenta una
breve descripcion de los problemas de optimizacion combinatoria, enfocando
principalmente los problemas de planificacién. Posteriormente, se describen los
principales aspectos relacionados con la planificaciéon de proyectos de software y la

estimacion de esfuerzo en los mismos.

Capitulo 3. Fundamentos de Metaheuristicas. Se realiza una revision de los
aspectos tedricos de las metaheuristicas y su respectiva clasificacion. Posteriormente,
se presenta con detalle la descripcion de las metaheuristicas implementadas en esta

investigacion.

Capitulo 4. Desarrollo. Contiene la descripcion de cada una de las
actividades llevadas a cabo durante la ejecucion de esta investigacion las cuales

obedecen a las fases propuestas por (Talbi, 2009), correspondientes a una
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metodologia aplicada a la optimizacion de modelos orientados a metaheuristicas, la

cual abarca desde la concepcion inicial del problema, hasta su implementacion y

proceso de mejora, de la siguiente manera.

Formulacion del problema: En esta fase se contemplan las actividades
correspondientes al conocimiento del problema, variables asociadas, factores
internos y externos, asi como también la definicién de los objetivos que se
buscan resolver a partir de su planteamiento. Para efectos de esta
investigacion, el problema se formuld a partir de las principales necesidades
de los gerentes de proyectos de software referidas a minimizacién de costos o
duracion de dichos proyectos. Asimismo, se determinaron los posibles

escenarios de prueba.

Modelado del problema: El modelado del problema, referido a la
construccion de un modelo matematico abstracto que describe la situacion
planteada, se realizd a partir del PSP, entendido como un modelo de
descripcion general de problemas de planificacion. A partir del mismo, se
realizaron las adaptaciones necesarias para ajustar el modelo a la planificacion

de proyectos de software especificamente.

Optimizacion del problema: Corresponde a la fase en la que se cotejan los
objetivos determinados en la formulacién del problema con el modelo
matematico generado. Se analiza la funcién objetivo en términos de reduccion

de costos, tiempo de desarrollo y participacion de expertos en el grupo de
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desarrolladores seleccionados, en contraparte con las restricciones del

problema.

e Implementacion de la solucién: a partir de la optimizacion del problema se
procede a la implementacion de las metaheuristicas seleccionadas con base en
el modelo matematico planteado. De esta manera se obtiene una primera
version de los resultados de cada una de ellas, cuya comparacién permitird la
formulacién de una estrategia hibrida para buscar solucion al problema objeto

de estudio.

Capitulo 5. Resultados. Se presentan y analizan los resultados obtenidos a
partir de las metaheuristicas desarrolladas para todos los casos de prueba, asi como
también la formulacion del algoritmo memético disefiado a partir de dichos

resultados.

Capitulo 6. Conclusiones. En el que se presentan las conclusiones obtenidas
a partir del andlisis de resultados obtenidos con respecto a la implementacion de
metaheuristicas para dar solucion al problema de planificacion de proyectos de

software.

Capitulo 7. Trabajo a Futuro. Finalmente en este capitulo se presentan las

propuestas para futuras investigaciones a partir de este trabajo.
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Capitulo 2. Planificacion de Proyectos

En este capitulo, se describen los aspectos mas importantes del problema de
planificacion de proyectos de software visto como un problema de optimizacién
combinatoria, indicando algunas definiciones basicas, asi como también algunas
particularidades de la planificacion de proyectos de software especificamente, como

lo son las técnicas de estimacion de esfuerzo de las fases de planeacion.

2.1 Problemas de Optimizacion Combinatoria

Los problemas de optimizacion combinatoria se refieren al tipo de problemas
cuyo objetivo es encontrar el maximo (o el minimo) de una determinada funcién
sobre un conjunto finito de soluciones, llamado S, el cual estd generalmente
constituido por un nimero de muy elevado de soluciones, por lo que evaluarlos a
todos y cada uno de ellos para tratar de encontrar el mejor resulta en la mayoria de los
casos impracticable (Chicano, 2007). Asi por ejemplo, un tablero de ajedrez que
consta de 64 casillas en las que se colocan las treinta y dos piezas del juego, un
excursionista que quiere llenar su mochila de la forma mas eficaz ain cuando deba
dejar algunos elementos fuera, o la empresa que necesita ejecutar una serie de tareas
de manera tal que puedan ser realizadas en el menor tiempo posible, son algunos
ejemplos de problemas de optimizacion combinatoria, en los cuales se distinguen dos

tipos de elementos comunes a todas las situaciones: (i) un conjunto de objetos, casos,
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personas, etc., que se han de colocar en distintas posiciones y (i1) una familia de

lugares en las que se deben colocar dichos objetos (Garcia, 2000).

De esta manera, la colocacion de objetos en sus lugares se denomina
configuracion, y es equivalente a una solucién al problema abordado. El conjunto de
todas las configuraciones posibles conforman el conjunto S. Intentar encontrar la
mejor configuracion corresponde a un problema de optimizacién combinatoria, el
cual puede ser mono-objetivo cuando sobre el conjunto S se construye una sola
funcidon de valor (o funcién objetivo) y multiobjetivo cuando es necesario optimizar

varios objetivos.

Problemas de Planificacion

Los problemas de planificacion, también conocidos como problemas de
Scheduling, corresponden al area de problemas de optimizacién combinatoria,
especificamente de satisfaccion de restricciones en los que la busqueda de soluciones
debe optimizar determinados criterios de eficiencia (Cervantes, 2010). Por ejemplo,
los problemas relacionados con la asignacion de citas en el sector hospitalario, el
establecimiento de horarios en una universidad o la planificacién de proyectos,

corresponden a instancias de problemas de planificacion.

Especificamente, en el problema de planificacién de proyectos se considera un
conjunto de actividades relacionadas entre si, un conjunto de recursos y un conjunto

de medidas de desempefio, con miras a encontrar la mejor manera de asignar los
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recursos a las actividades, siendo ésta la que maximice las medidas de desempefio
establecidas. Existen diversas variantes de este problema en los que las actividades
tienen asignada una determinada duracion y un determinado consumo de recursos.
Sin embargo, la version de modo tnico (RCPSP) corresponde a aquellos proyectos en
los que sus actividades tienen un Gnico modo de ejecucion, no pueden ser
interrumpidas, y estdn sujetas las precedencias de tipo fin — inicio para poder ser
ejecutadas, mientras que en la version multi-modo (MRCPSP) las actividades de los

proyectos presentan distintas formas de ejecucion (Cervantes, 2010).

Este tipo de problemas pertenece a la clase de problemas NP-duros, por lo que
se ha determinado que encontrar la solucién 6ptima requiere tiempos muy altos para
proyectos de 30 o mds actividades (Blazewicz & Lenstra, 1983), incluso cuando hay
un Unico modo de ejecucién. La formulacién del problema de planificacién de
proyectos se ha adaptado a diversos campos de aplicacion, con base en las diferentes
variantes que puede presentar un tipo de proyecto en particular de acuerdo con su
respectivo proceso de produccion, como los proyectos de manufactura, desarrollo de

software, etc. (Chicano, 2007).

2.2 Planificacion de Proyectos de Software

La planificacion de proyectos de software es una instancia particular del
problema de planificacion de proyectos en la que se busca realizar las adaptaciones

correspondientes a esta area de estudio. En primer lugar, se entiende por proyecto el
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“esfuerzo temporal realizado para crear un producto, servicio o resultado unico”
(Duncan, 2004), dicho en otras palabras, esta definicion corresponde al conjunto de
actividades interdependientes que se deben desarrollar en un lapso de tiempo
determinado para lograr los objetivos propuestos, buscando hacerlo en el menor
tiempo, con el menor costo y la mayor calidad posible. Estos factores: tiempo, costo
y calidad, conforman lo que se ha llamado el tridngulo del proyecto (Ver Figura 1),
cuyos vértices vienen a ser los pilares fundamentales de cualquier proyecto de
software: que (i) debe ser finalizado parcial o completamente antes de una fecha
limite, (ii) no debe sobrepasar un presupuesto determinado y (iii) debe poseer una
calidad minima aceptable en el desarrollo de cada uno de sus requerimientos. La
conciliacion de dichos factores en la realidad es una tarea correspondiente a la gestion
de proyectos (Project Management), es decir, el gerente de proyectos es la persona
encargada de administrar los recursos de manera tal que se pueda culminar todo el
trabajo requerido en el proyecto dentro del alcance, el tiempo y costo definidos,

buscando asegurar ademas la calidad del producto a generar.

Figura 1. Triangulo del Proyecto
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Asimismo, es bien sabido que existen miultiples metodologias para el
desarrollo de proyectos de software (Biolchini, Gomes, Cruz, & Horta, 2005). Sin
embargo, las fases establecidas por la gran mayoria de ellas involucran actividades
correspondientes a la planeacion, planificacidn, ejecucion, control y terminacion del
proyecto, tal como se indica en la Figura 2. En la fase de planificacion de proyectos
especificamente, se realiza la asignacion de recursos a tareas en funcion del tiempo
disponible para realizarlo, actividad que tal como se ha indicado es responsabilidad
del gerente de proyectos. Dicha actividad tiene una gran importancia para la
realizacion exitosa del mismo, pues las decisiones tomadas en este punto pueden
tener repercusiones directas en la duracion, costo y calidad del proyecto tal como se

ha indicado.

‘Gliocicn

Figura 2. Ciclo de Vida del Proyecto

Esta investigacién se enfoca en la fase de planificacion de proyectos de
software, teniendo en cuenta las restricciones particulares de esta area de estudios
descritas mas adelante. Sin embargo, el éxito de esta fase depende de las salidas
generadas en lo que corresponde a la planeacion, particularmente de las estimaciones

realizadas para cada una de las tareas o actividades que se deben llevar a cabo durante
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la ejecucion del proyecto. En tal sentido, a continuacién se describen algunos de los
aspectos mas importantes en cuanto a la estimacion de esfuerzo para proyectos de

software.

Estimacion de esfuerzo en proyectos de software

El proceso de estimacion de esfuerzo en proyectos delsoftware esta sujeto a un
conjunto de dificultades (Kniberg, 2007): informacion imprecisa acerca del proyecto
o de las capacidades de la organizacion que lo desarrollara, caos en el proceso de
desarrollo del producto, cambios en el equipo de desarrollo, etc., por lo que el gerente
de proyectos debe tratar de realizar dichas estimaciones con base en la informacién
disponible, pero permitiendo un margen de error para los posibles cambios que
ocurran. Anteriormente, dicha estimacion se realizaba con base en métricas como la
cantidad de lineas de cddigo estimadas para realizar una funcionalidad determinada,
lo que a su vez influia en la clasificacion del tamafio de los proyectos de software. Sin
embargo, dada las diferencias ofrecidas por los lenguajes de programacion actuales,
esta métrica se considera en desuso, pues si a la empresa A le puede llevar 8 mil
lineas de cddigo resolver un determinado problema en un lenguaje de programacion,
a la empresa B le puede llevar 5 mil lineas para resolver el mismo problema en otro
lenguaje. Es importante destacar que bajo este escenario no es posible afirmar que la
empresa B podra terminar el proyecto antes que la empresa A, pues esto depende

estrictamente de la productividad de sus desarrolladores.
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'Por otra parte, en el proceso tradicional de estimacién de esfuerzo en
proyectos de software (Biolchini, Gomes, Cruz, & Horta, 2005), el gerente o lider del
equipo de desarrollo indica el tiempo disponible para la realizacion de cada actividad,
tomando en cuenta su propia experiencia y la posible experticia de la persona a la que
asignard dicha labor, asi como también la informacion disponible para llevarla a cabo.
Sin embargo, en la actualidad otras técnicas correspondientes a las metodologias
agiles de desarrollo de software proponen la estimacion grupal del esfuerzo que cada
actividad requiere. La estimacién con base en puntos de complejidad] (Duran, 2003)
es un método que permite basarse en los requerimientos propios del usuario, y no en
la tecnologia que se va a utilizar, lo que la convierte en una métrica basada en la
funcionalidad, independiente de la tecnologia, simple y consistente, a partir de la cual
es posible ademés determinar el tamarfio del software tal como se indica en la Tabla 1,
en donde se especifica un ejemplo de las estimaciones de una empresa particular en
comparacion con la industria mundial de software. La informacion se presenta en tres
indicadores: productividad, esfuerzo y duracién, asi por ejemplo la productividad de
los proyectos pequefios para la industria de softwaré se estima en 10.73, lo cual indica
la relacion los puntos de complejidad asignados al proyecto y tiempo invertido en la
conclusion del mismo. Se puede observar que los datos presentados no son lineales

con respecto al comportamiento especifico de una empresa determinada, lo cual

" Un punto de complejidad asociado a una tarea, es un numero entero (i € N*) que indica la
complejidad de la misma con respecto a otras tareas de un mismo proyecto. Los puntos de complejidad
son asignados por uno o varios integrantes del equipo de desarrollo dependiendo de su grado de
experiencia y/o experticia.
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indicaria que esta empresa ha realizado una peor estimacion de los proyectos
medianos y ha conllevado a mayor esfuerzo para la realizacién de los proyectos,
debido a que la planificacion depende del equipo de desarrollo involucrado y de las

estimaciones realizadas por los mismos.

El Poker Planning (Kniberg, 2007) es un ejemplo de estas técnicas, segun la
cual el equipo de desarrollo puede determinar en conjunto el esfuerzo que requiere
cada actividad, realizando diversos procesos de negociacion para tal fin. En este caso,
la estimacion no se realiza directamente en proporcion del tiempo a emplear sino en
funcién de la complejidad de cada tarea expresada en puntos. Cada integrante del
equipo de desarrollo puede expresar su estimacién en cuanto a la complejidad que
cree que tiene cada tarea usando una escala de referencia como la serie de fibonacci,
y posteriormente cotejar su estimacion con la del resto de sus compafieros buscando
establecer un valor de complejidad en consenso del equipo. En las primeras fases de
ejecucion del proyecto el equipo conocerd su capacidad de ejecucion de puntos en un
lapso de tiempp, por lo que podrd mejorar sus habilidades de estimacion con base en

su propia madurez.
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Pequeiio Mediano Grande
Aspecto (<300 PC) (300-600 PC) (>600 PC)
Empresa | Promedio | Empresa | Promedio | Empresa | Promedio
Industria Industria Industria

Productividad 4.69 10.73 7.38 9.27 5.62 6.34
(PC / Esfuerzo)
Esfuerzo 39.73 18.64 72.42 43.15 196.2 126.18
(Meses
Ingeniero)
Duracion 9.62 9 8.5 13 20.83 19
(Meses
Calendario)

Tabla 1. Estimacion de proyectos de software con base en puntos de complejidad (PC)

Sin embargo, considerando que la industria de software en Venezuela es una
industria pequefia que esta en pleno proceso de desarrollo (Rivero, 2007), es de
entender que aun cuando no se cuentan con las estadisticas respectivas al caso las
estimaciones de esfuerzo con puntos de funcidn para cada tipo de proyecto en las
empresas de este pais son notablemente mas bajas que las indicadas en el promedio
de la industria. En tal sentido, los tipos de proyectos utilizados para realizar las
pruebas de esta investigacién se refiere a escenarios diferentes, los cuales son

indicados posteriormente.
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Capitulo 3. Fundamentos de Metaheuristicas

Este capitulo contiene la definicién general de las metaheuristicas y algunas
de sus formas mas comunes de clasificacion. También incluye la definicion de las
estrategias metaheuristicas utilizadas en este trabajo para dar solucion al problema de
planificacién de proyectos de software: recocido simulado, busqueda con vecindad
variable y algoritmos genéticos. Finalmente, presenta los aspectos mds importantes
relacionados con los mecanismos de hibridacién construidos a partir de la

combinacién de los componentes de diversas metaheuristicas.

3.1 Definicion General

Tal como se ha indicado, los problemas de optimizaciéon combinatoria son de
gran importancia para diversos campos de aplicacién. Por tal motivo, a lo largo del
tiempo se han desarrollado diversas estrategias para buscarles una solucion (Chicano,
2007). Dichas estrategias, conocidas como técnicas de optimizaciéon, pueden ser

clasificadas como se indica en la Figura 3.

En primer lugar, las técnicas exactas son aquellas que buscan garantizar la
seleccion de la solucién Optima para un problema determinado en un tiempo acotado
(en caso de ser posible), por lo que su principal inconveniente radica en que el tiempo

necesario para encontrar una solucidén crece exponencialmente con el tamarfio del
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problema, haciendo que en muchos casos estas técnicas resulten inviables. Por su
parte, los algoritmos aproximados buscan encontrar una “buena” solucién, sin que
ésta sea la optima. Finalmente, existen otras técnicas de optimizacion, por ejemplo las
basadas en modelos a partir de funciones probabilisticas, segtn las cuales se busca
seleccionar una solucion de acuerdo con una probabilidad dada por una distribucion

determinada.

_ TECNICAS DE OPTIMIZACION

——  Heuristicas od hoc

Metaheurisiicas 5

Figura 3. Clasificacion de Técnicas de Optimizacion. Fuente: Chicano (2007)

Dentro de los algoritmos aproximados se encuentran los heuristicos
constructivos y los métodos de busqueda local. En los heuristicos constructivos se
construye una soluciéon mediante la incorporacion de componentes, hasta obtener una
solucién completa. La calidad de las soluciones obtenidas por estos métodos por lo
general depende del tipo de problema abordado y de como sea planteado. Por su
parte, los métodos de busqueda local parten de una solucién completa y recorren el

espacio de busqueda a través del concepto de vecindad, hasta encontrar un 6ptimo
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local, el cual es la mejor solucion de su vecindad. Una vecindad es un subconjunto de
soluciones, que se pueden construir aplicando un operador de modificacion a partir de

la solucioén original.

A partir de los resultados obtenidos por los distintas metaheuristicas
implementadas, surge una nueva clase de algoritmos aproximados con los que se
intenta mejorar la exploracion del espacio de busqueda. Estas técnicas se conocen
como metaheuristicas, anteriormente conocidas como heuristicas modernas, cuyo
funcionamiento se basa en la combinacién de diferentes métodos heuristicos a un
nivel mas alto, i.e., son estrategias particulares que guian el proceso de busqueda

buscando hacerlo mas efectivo y eficiente (Glover, 1986).

La implementacion de metaheuristicas permite equilibrar correctamente los
principios de diversificacion e intensificacion. Diversificar se refiere a la evaluacion
de soluciones en regiones distantes del espacio de busqueda, mientras que
intensificar, por el contrario, se refiere a la evaluacidn en regiones acotadas y
pequeiias, centradas en la vecindad de soluciones concretas. El correcto balance de
estos dos principios es fundamental para intensificar rapidamente las regiones
prometedoras del espacio de busqueda global, sin malgastar tiempo en las regiones

que ya han sido exploradas o que no contienen soluciones de alta calidad.

Por otra parte, se debe mencionar que a pesar que la clasificacion de técnicas

de optimizacion planteada por Chicano (2007) es apropiada para introducir las
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técnicas metaheuristicas, existen otras clasificaciones de técnicas de optimizacion

como por ejemplo la planteada por Argonne National Laboratory.

3.2 Clasificacion de las metaheuristicas

Existen multiples formas de clasificar las metaheuristicas segun sus
caracteristicas: basadas en poblaciones o en métodos de trayectoria, con memoria o
sin ella, con una o varias estructuras de vecindades, etc. A continuacion se describen

algunos de las clasificaciones mas comunes (Martinez, 2011).

Basadas en poblaciones o en métodos de trayectoria

Esta clasificacion también es conocida como basada en la naturaleza, dados
los principios que se pueden utilizar para obtener una solucion. En primer lugar se
encuentran los métodos basados en trayectoria, los cuales parten de una solucion y
mediante la exploracién de la vecindad van actualizando la solucién actual, por lo que
son consideradas extensiones de los métodos de busqueda local, exceptuando el
mecanismo con el que cuenfan para escapar de los minimos locales (por ejemplo
definiendo un nimero maximo de iteraciones sin que se obtenga ninguna mejora de la
solucién actual) (Martinez, 2011). Dentro de estos métodos se encuentra el recocido
simulado (SA), la busqueda tabi (TS), el procedimiento de busqueda miope
aleatorizado y adaptativo (GRASP), la busqueda de vecindad variable (VNS), la

busqueda local iterada (ILS), entre otros.
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Por su parte, los métodos basados en poblacion a diferencia de los métodos
basados en trayectoria, se caracterizan por trabajar con un conjunto de soluciones en
cada iteracion, por lo que se aplican un conjunto de reglas para determinar c6mo
generar otras soluciones a partir de dicho conjunto. Dentro de esta categoria se
encuentran los algoritmos genéticos (GA), los algoritmos de estimacion de
distribuciones (EDA), la busqueda dispersa (SS), la optimizacion basada en colonias
de hormigas (ACO), la optimizacion basada en cimulos de particulas (PSO), entre

otros.

De acuerdo con el uso de memoria

Algunas metaheuristicas utilizan diferentes mecanismos de memoria para
registrar la evolucién del proceso de busqueda, para evitar reevaluar espacio del
conjunto S ya visitados. Algunas metaheuristicas que no incorporan mecanismos de
memoria son el VNS, SA y GRASP. Por su parte, el TS y la optimizacion basada en

colonia de hormigas usan mecanismos de memoria de corto y largo plazo.

De acuerdo con la estructura de vecindad

El uso de mdltiples estructuras de vecindades se realiza con el fin de permitir
diversificar la basqueda de soluciones y evitar el estancamiento en dptimos locales.
El VNS usa diferentes estructuras de vecindad, mientras que el SA e ILS usan una

unica estructura.
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A continuacion se describen las metaheuristicas implementadas en esta
investigacién para dar solucion al problema de planificacion de proyectos de

software.

3.3 Recocido Simulado

El recocido simulado (SA por sus siglas en inglés), recibe su nombre porque
su comportamiento se asemeja al proceso de recocido del acero y del vidrio, en donde
inicialmente las particulas se mueven con gran rapidez y de forma desordenada, pero
a medida que disminuye la temperatura buscan ordenarse entre si, siendo los
movimientos mas estructurados y por tanto mas ordenados (Dowsland & Adenso,
2003). Es un algoritmo de busqueda local que parte de una solucién inicial
seleccionada de manera aleatoria. Seguidamente, un vecino de esta solucion es
generado por algiin mecanismo adecuado y el cambio en el costo es calculado. Si el
costo se reduce con respecto a la solucidn actual, ésta es reemplazada por el vecino
generado (dependiendo del valor de la temperatura), de otra manera la solucién se
mantiene. El proceso se repite hasta que no se encuentran mejoras en la vecindad de

la solucién actual (minimo local), 6 cuando se llega a cierta temperatura.

Una de las principales desventajas de esta metaheuristica es que el minimo
local puede estar muy lejos del minimo global. Para ello, el algoritmo busca evitar
caer en el minimo local aceptando en algunas ocasiones vecinos que incrementan la

funcién objetivo, es decir soluciones que son peores que la solucion actual. Esta
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aceptacion ocurre con una probabilidad dada por la funciéon de aceptacion que es

e~ l/T

, en donde I es la diferencia de costo entre la solucién actual y la solucién
generada y T es un parametro de control que es analogo a la temperatura en el

recocido fisico, es decir es el valor actual de la temperatura en el algoritmo.

Para entender con mayor detalle el comportamiento de dicho algoritmo, a
continuacién se presenta el pseudocddigo correspondiente (Ver Figura 4), sus

parametros iniciales son:

e Valor inicial de T: Valor inicial de la temperatura
e Funcion de enfriamiento: funcion que determina en qué medida la temperatura
se va enfriando progresivamente

e Numero de iteraciones N(t): cantidad de iteraciones que se van a ejecutar por

cada temperatura

e Condicion/Criterio de parada para terminar el algoritmo: condicién de salida.
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1 Sy
2 S,;\

3 S

/ Bolucidn inicial

7

£

1 // mejor solucién encomtrada
// solucién actual

4 FUNCTION Simlating Annesling

5 5+ 8,

teCancorareirman Teavrerarone(): // devernina la temperatura

8 // inicial
o while stopping criterion s nof reached do
e . o e S . . » . A
1 S - NeaGuporHOODL(S): /7 La funcidn de vecindad devuelve la mejor
1t /7 solucidn wecina de §.

12| AF e £[S,) — (5%,

12 | if Af < 0 or Rand[0,1) « ¢ then

14 | S+ S#. // actualiza la solucién S

15 end if

16 iff f{8) « £{8;] then

17 I Se - 51 // actualiza la mejor solucién

18 end if

19 Pl POATETEMPERATURE(E]: // actualiza la temperatura

a0 end while
21 return S,

Figura 4. Pseudocédigo del SA

3.4 Busqueda con vecindad variable

La busqueda de vecindad variable (VNS por sus siglas en inglés) fue
originalmente propuesta por Hansen y Mladenovic (2003). ‘En esta metaheuristica se
exploran vecindades distantes de la solucién actual de manera incremental, buscando
moverse a partir de la solucién actual si se ha obtenido alguna mejora en las
vecindades proximas (Martinez, 2011). Basicamente, se fundamenta en un algoritmo
de busqueda local mejorado a partir del cambio dinamico de vecindades, bajo las

siguientes premisas:
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e Un 6ptimo local en una determinada vecindad, no necesariamente lo es en otra
vecindad. Una solucién es k-vecina de otra, si entre si existen k cambios con
respecto a la estructura que las define.

e Un 6ptimo global es un 6ptimo local para todas las estructuras de vecindades.

e Para muchos problemas de optimizacion, los oOptimos locales estan

relativamente entre ellos.
El funcionamiento basico del VNS tiene tres fases:

e Agitacion (Shaking): a partir de la solucion s” (la cual es generada
aleatoriamente) y una estructura de vecindad determinada, se busca generar
una solucién sobre una vecindad k veces mas grande, lo cual conduce a una
busqueda de soluciones estocdstica y donde la siguiente solucion dependera
de la solucion inmediatamente anterior,

e Busqueda Local: se aplican algoritmos de busqueda local en la vecindad
correspondiente a la solucién s”.

e Movimiento (Move): de acuerdo con el resultado de la evaluacion de la
funcion objetivo se decide si cambiar o no de vecindad. Si la nueva solucion
es mejor, se buscara una solucién desde una vecindad mas pequefia con miras
a encontrar otra soluciéon que mantenga buenos atributos del déptimo local (en
la misma vecindad). En caso contrario, se buscard otra soluciéon en una

vecindad més grande.
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7
o 7

S // meior solucidn encontrada
S, // solucidn actual

golucién inicial

4 FUNCTION VarialileNeighbourhoodSearch

5 8+ 8,

6 Dy 24

7 while stopping aitevion is not reached do

8 k+ 1

9 while &k < kypr do

10 S e NuouporaooniS k) // La funcidn de vecindad devuelvs la
it // mejor solucién vecina de 5. Donde &k
12 // indica la k-&sima estructura de

1% /7 verindad

14 if {5}« f{Ss) then

185 S; « S:// actualiza la meior soclucidn

16 k1

17 else

18 ekl

19 end if

20 end while

21 end while
22 refurn 5

Figura 5. Pseudocédigo del VNS

El pseudocodigo del VNS se indica en la Figura 5. Es importante destacar
que para la aplicacion del VNS en el problema de planificacion de proyectos de
software una forma de realizar movimientos en el espacio de soluciones es
cambiando algunos de los elementos que conforman la solucién, lo cual permite
obtener diferentes vecindades cuyo tamafio dependerd de la cantidad de cambios a
realizar en dicha solucion, los cuales pueden estar indicados por ejemplo por quien

debe realizar cual tarea.
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3.5 Algoritmos Genéticos

Los algoritmos genéticos, también conocidos como algoritmos evolutivos, se

pueden definir como:

“Son algoritmos de busqueda basados en la mecdnica de seleccion natural y
de la genética natural. Combinan la supervivencia del mds apto entre
estructuras de secuencias con un intercambio de informacion estructurado,
aunque aleatorizado, para constituir asi un algoritmos de busqueda que tenga

algo de las genialidades de las busquedas humanas” (Goldberg, 1989)

Es decir, para alcanzar la solucién a un problema se parte de un conjunto
inicial de individuos, llamado poblacion, generado de manera aleatoria. Cada uno de
estos individuos representa una posible solucion al problema. La poblacion
evolucionard tomando como base un conjunto de pasos que simulan los esquemas

<
propuestos por Darwin sobre la seleccion natural (Gestal, 2003). Para entender con

mayor detalle el comportamiento de dicho algoritmo, es necesario abordar con mas

detalle cada uno de los pasos o etapas que lo componen (Chicano, 2007):

e Inicializacién. Generacion de los individuos que conforman la poblacion
inicial. Cada individuo representa una posible solucién al problema en
cuestion.

e Evaluacion Inicial. Cada uno de los elementos de la poblacion inicial tienen

un valor con respecto a la funcién objetivo del problema. Este valor sera el
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factor de oportunidad segun el cual el individuo podra ser seleccionado o no
para pasar a la siguiente generacion (en la naturaleza, el equivalente seria una
medida de la eficiencia del individuo en la lucha por los recursos).

Seleccion. Se refiere a la estrategia segtn la cual se seleccionan los elementos
que seran padres de los individuos de la siguiente generacion o pasaran a
formar parte de la misma directamente. Para ello existe un conjunto de
métodos fundamentados en el principio de seleccion natural de Darwin, tal
que se busca que los individuos con las mejores capacidades sean
seleccionados para pasar a las siguientes generaciones. Los elementos mas
aptos tendran entonces mejores valores con respecto a la funcion objetivo. La
seleccion puede ilevarse a cabo de acuerdo a algunos métodos como:

a) Seleccion por ruleta: propuesta por DeJong, se le considera el método
mas utilizado desde el origen de los algoritmos genéticos. También es
conocida como la Seleccion de Montecarlo. A cada uno de los
individuos de la poblacion se le asigna una parte proporcional a su
factor de oportunidad en la ruleta, de tal forma que la suma de todos
los porcentajes sea la unidad. Los mejores individuos recibiran una
porcién de la ruleta mayor que la recibida por los peores. Este método,
aunque sencillo, resulta ineficiente a medida que aumenta el tamafio de

la poblacion, pues la complejidad crece en paralelo a la misma.



Capitulo 3. Fundamentos de Metaheuristicas 34

b) Seleccion por torneo: segun la cual se busca realizar la seleccion con
base a comparaciones directas entre individuos. Puede ser
determinantica o probabilistica. En la primera se seleccionan al azar un
numero p de individuos, y de esa subseleccion se toma el individuo
mas apto para pasarlo a la siguiente generacién. En el caso de la
probabilistica, se realiza el mismo proceso, pero en vez de seleccionar
el elemento més apto, se realiza un calculo de probabilidad para
determinar que elemento tomar ofreciendo mayor peso a los elementos
mas aptos.

e Operadores Genéticos: Existen diversos operadores genéticos en la
literatura, pero los mas utilizados son los de cruce y mutacion:

a) Cruzamiento o Recombinacion: El operador de cruce intercambia
informacion genética en los seres vivos, proceso que puede ser llevado
a cabo mediante:

= Cruce de un punto (SPX — Single Point Crossover): Se cortan
los cromosomas (bits que forman cada una de las cadenas de
los padres) por un punto seleccionado aleatoriamente para
generar dos segmentos diferenciados en cada uno de ellos: la
cabeza y la cola. Se intercambian las colas entre los individuos
para generar los nuevos descendientes. De esta manera, ambos

descendientes heredan informacion genética de los padres. Un
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cruce genera entonces 2 nuevos individuos, de los que pueden
ser tomados 1 o ambos de acuerdo a una probabilidad del 50%
segun sea el caso.
= Cruce de dos puntos (DPX - Double Point Crossover): En este
caso, en vez de realizar un solo corte, se realizan dos,
asegurando que se generen tres segmentos por cada padre. Un
hijo se conforma entonces por el segmento central de uno de
los padres y los segmentos laterales del otro padre.
= Cruce uniforme: establece que cada gen de la descendencia
tiene las mismas probabilidades de pertenecer a uno y otro
padre. Para implementarlo, se puede utilizar una mascara de
cruce de valores binarios. Si en una de las posiciones de la
maéscara hay un 1, el gen situado en esa posicion en uno de los
descendientes se copia del primer padre. Si por el contrario hay
un 0, el gen se.copia del segundo padre. Para producir el
segundo descendiente se intercambian los papeles de los
padres, o bien se intercambia la interpretacion de los unos y
ceros de la mascara de cruce.
b) Mutacion: este operador cambia al azar la informacion genética de los
individuos buscando aumentar la diversidad de la poblacion. Por
ejemplo, intercambiando los valores de dos o mas posiciones de la

cadena que lo conforma ---mejor conocido como mutacion
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permutacional o swap---. Existen diferentes posibilidades para la
implementacién de operadores de mutacion como lo muestra
Larrafiaga (1999). La mutacién permutacional se realiza con una
probabilidad Pm, que por lo general se encuentra entre el 1% y 5%
(Goldberg, 1989).

e Politica de Reemplazo: Se refiere al procedimiento por medio del cual se
realiza el reemplazo de los individuos en la poblacion después del proceso de
seleccion y la aplicacion de los operadores genéticos. Un algoritmo genético
puede ser generacional o de estado estable. De tipo generacional se refiere al
uso de una poblacién temporal conformada por los individuos generados a
partir del cruce de sus padres, o de la mutacion. En este caso, la poblacion
inicial permanece intacta. En el caso de los algoritmos de estado estable se
mantiene una tnica poblacion de individuos, los cuales se van reemplazando a
medida que avanza el algoritmo, segin diversos criterios: eliminar los

individuos menos aptos, eliminarlos aleatoriamente, eliminar a los padres, etc.

Finalmente, la poblacion final bien sea la poblacién temporal o la poblacion
inicial afectada por la politica de reemplazo, contara con elementos que se espera que
sean mds aptos que los originales, por tanto, el elemento con mejor valor de la

funcidn objetivo representara la mejor solucién posible.

Con base en lo anterior, en la Figura 6 se muestra la representacion en

pseudocddigo del algoritmo genético implementado para dar solucién al problema
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objeto de estudio de esta investigacion, el cual es de tipo generacional, la seleccion de

los padres se realizo de acuerdo con el método de la ruleta y el cruzamiento se realizo

por medio de la técnica de cruce de un solo punto.

P // conjunto de scluciones de tamafic N, i.e., {5, 5., ... 5%}
FUNCTION GeneticAlgorithim

P = INITPOPULATION [ )t

Evaruarel irNess
5 - GErbBes

[ P):

SoLuTioN{P):

while stopping criierion is not reachied do
Py

while ¢ € N/2 do

(2 +SELECTPARENTS{(P): // selecciona 2 soluciones candidatas
if Randil, 1} < papssaner then
| @+ Crossover(@Q):
end if
for ¢ € () do

if Randi0, 1} < powreie the
1= Muranonighh:

o

end if
end for
P AunSoneTions (@

end wilile

F = REPLACEPOPULATION{ P,
Ss ¢ Gerhe
end while

STSOLUTON(P, S50

23 veturn S,

Figura 6. Pseudocédigo de un Algoritmo Genético

3.6 Algoritmos Meméticos

La hibridacion de metaheuristicas es una técnica mediante la cual se puede

dotar a las metaheuristicas de nuevas caracteristicas basadas en otras, permitiendo asi

crear nuevas propuestas para el tratamiento de diversos problemas (Martinez, 2011),

¢éstas son conocidas como algoritmos meméticos (AM). Los algoritmos meméticos
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propuestos por Moscato (1989) y son procedimientos basados en poblacidon que se
combinan con esquemas de busqueda local junto con los operadores genéticos como
el cruce y la mutacion. Los AM han mostrado ser una técnica efectiva y rapida para
diversos problemas, ya que logra un equilibrio efectivo entre el proceso de
intensificacion y diversificacion. Ademas, los AM son considerados como
metaheuristica hibrida (Yavuz et al., 2006). En general, las metaheuristicas hibridas
son propuestas apoyadas en la creencia de que la sinergia puede generar algoritmos
de alto rendimiento que exploten y combinen las ventajas de las estrategias puras e
individuales. En ese orden de ideas, estos algoritmos buscan combinar conceptos o
caracteristicas de diversas metaheuristicas, conservando la relacién mas estrecha con
respecto a la estructura de los algoritmos evolutivos. Asi, siendo que un algoritmo
evolutivo se compone de un conjunto bien definido de pasos que obedece a un
proceso de seleccion natural, es posible modificar la forma en que cada uno de dichos
pasos se lleva a cabo, a partir de la combinacién con otras metaheuristicas. En tal
sentido, este algoritmo puede partir al igual que los algoritmos genéticos, de una
poblacion inicial de individuos, en la que cada uno de ellos representa una posible
solucién y a partir de la aplicacion de un conjunto de operadores, se busca la
obtencion de nuevos individuos que posean mejores caracteristicas y por ende que

representen mejores soluciones.

Los algoritmos meméticos fueron explicitamente concebidos como un

paradigma ecléctico y pragmatico, abierto a la integracion de otras técnicas, por lo
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cual proporcionan un marco de trabajo apropiado para integrar en un tnico motor de

busqueda diferentes heuristicas provechosas (Cotta, 2007).

Desde el punto de vista de optimizacion, los algoritmos meméticos han
mostrado ser mas eficientes y efectivos (Chicano, 2007), ya que identifican
soluciones de mejor calidad que los tradicionales algoritmos evolutivos aprovechando
la informacion propia del dominio abordado brindada por los proceso de busqueda
local en concordandia con el teorema de no free lunch (Wolpert et al, 1997). Como
resultado, los MAs han ganado amplia aceptacion, en particular en problemas de
optimizacién combinatoria bien conocidos con grandes instancias han sido resueltas
Optimamente y donde otras metaheuristicas han fallado en la tarea de producir

soluciones de calidad similar (Krasnogor & Smith, 2005).
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Capitulo 4. Desarrollo

Este capitulo contiene la descripcion de las actividades realizadas para llevar a
cabo el proyecto, el cual fue ejecutado de acuerdo con las fases propuestas por la
metodologia de (Talbi, 2009): formulacién, modelado y optimizacion del problema e
implementacion de la solucion. Es importante destacar, que la metodologia descrita
abarca el desarrollo de algoritmos de optimizacién aplicado a diferentes escenarios,
partiendo de un problema del mundo real formulado a través de un modelo
matematico abstracto para el que se buscan implementar un conjunto de soluciones,
cuyos resultados posteriormente serdn comparados, determinando asi si los
algoritmos utilizados son aceptables o si es necesario hacer una revisién del modelo o

en su defecto, de las metaheuristicas utilizadas como tal.

A continuacién se explica la formulacion del problema, concebida a partir del

estudio del area de investigacion.

4.1 Formulacion del Problema

El problema de planificacion de proyectos de software es un problema de
optimizacion combinatoria en el que se desea encontrar una asignacion de recursos
(desarrolladores, analistas, etc.) a tareas para realizar un proyecto en un tiempo

determinado, tratando de disminuir la duracién o el costo del mismo, que aunque
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pueden ser vistos como el mismo objetivo, también pueden ser abordados de manera
independiente para ofrecer mayor flexibilidad al gerente de proyectos con base en las
necesidades que éste pueda tener. Los recursos para la realizacion del proyecto son
las personas involucradas en su desarrollo, cada una de las cuales poseen un conjunto
de habilidades especificas, percibe un salario, y tiene un grado de dedicacion maxima
en cuanto a las actividades a realizar. Por su parte, el proyecto en cuestién posee un
conjunto de tareas, cada una de las cuales requiere de una o mas habilidades y de una
0 mas personas para ser concretada. Asimismo, las tareas de un proyecto poseen un
orden légico en el que deben ser ejecutadas de acuerdo con las precedencias que
existan entre ellas, de manera tal que sea posible abordar problemas con tareas que se
pueden realizar en paralelo o de manera secuencial, segin sea el caso. Para efectos de
esta investigacion, se asume que las actividades de cada proyecto son de tipo
unimodo, es decir, s6lo pueden ser ejecutadas de una misma forma, de manera tal que
los efectos que pueda tener hacer una tarea de una manera u otro no forman parte del

enfoque presentado en este proyecto.

En tal sentido, el problema requiere de dos grandes entradas. En primer lugar,
lo que concierne al equipo de desarrollo: experiencia de cada desarrollador,
disponibilidad y sueldo; y en segundo lugar, el conjunto de tareas que se deben
realizar para concretar el proyecto, de cada una de las cuales se debe conocer su
duracion que puede estar indicada en unidades de tiempo o en puntos de complejidad

(Kniberg, 2007), las habilidades que requiere para ser realizada, y la lista de tareas
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que deben estar completamente hechas para iniciar su ejecucion. La representacion

grafica de dichas entradas se puede observar en la Figura 7y 8.

Por otra parte, un objetivo igualmente importante de la planificacion de
proyectos de software es garantizar la calidad del producto que se debe generar. Aun
cuando no existe un método inequivoco para asegurar tal fin, la asignacion de tareas a
las personas con mayores habilidades, experticia o mejor perfil puede ser una
estrategia que contribuya al cumplimiento de esta meta, por lo que la asignacion de
las personas con las habilidades mas idoneas para realizar una tarea determinada,
también es objeto de estudio de esta investigacion. Es de resaltar, que el problema de
planificacion de proyectos de software por su naturaleza es un problema
multiobjetivo y dindmico, pero por razones de simplicidad y adecuacién al escenario
de prueba se abordé de manera mono-objetivo y con asignacién de tareas de forma

estatica.
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Figura 7. Estructura del equipo de desarrollo
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Figura 8. Estructura de las tareas de un proyecto de software
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4.2 Modelado del Problema

Tal como se ha formulado el problema de planificacion de proyectos de
software, éste puede ser modelado a partir del PSP (Chicano, 2007), a través de un

conjunto de restricciones propias del problema, como se indica a continuacion.

Sea E ={Ey,E,,...,E,} el conjunto de empleados, donde n es el nimero
maximo de empleados y sea H = {H,, H,, ..., H;;,} el conjunto total de habilidades
requeridas por las tareas del proyecto y las propias de cada empleado, donde m es el
nimero maximo de habilidades, tal que V E;, 3d; |d; > 0,i=1,2,...,n , con d;
representando la disponibilidad del i-ésimo empleado (horas/dia) y V E;,3s;|s; >
0, i=1,2,..,n;y donde s; representa el sueldo del i-ésimo empleado medido como
unidad monetaria‘hora. Ademds Y E;, 3Z; | Z; = {H;, Hyy1) -, Heyne1b 1Zil = h
con Hypy, € Hpara p=0,1,..,h—1, donde Z; representa el subconjunto de
habilidades asociadas al empleado E;.

Por otra parte, sea T = {Ty,T,, ..., Tp} el conjunto total de tareas asociadas a
un proyecto, donde p es el nimero maximo de tareas de un proyecto, tal que
VT;,3g;19;>0,j=1,2,..,p donde g; representa la duracion de la j-ésima tarea

(medida en horas). Asi,

gj = Bp; 1)
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Donde p; son los puntos asignados mediante la metodologia poker planning y

p es un indicador de la experticia del equipo de trabajo, asi entre mayor sea f menor

la experticia.

Ademas, VT;,3Z;|Z; = {Hy,Hypyy oo Hospoa b |27 = B con Hpyy €
Hpara u=0,,..,hA" =1 y donde Z’; representa el conjunto de habilidades

requeridas por la tarea T;.

Las tareas y las precedencias existentes entre las tareas se indican mediante un
grafo dirigido (TPG) A =T X T. A partir del recorrido topologico del grafo se
obtienen los niveles del grafo (segiin los cuales es posible conocer cudles tareas deben
ser realizadas antes que ofras para efectos de respetar las precedencias entre las

mismas) definidos como L = {L;,L,,...,Ls}, donde a corresponde al nimero de
niveles del grafo, asi L(pz{Tl,ng, ...,TJ} con ¢=12,..,ay T(;‘,"’ €T, tal que
$=1 Lyl =D
El tiempo méximo por nivel es dependiente tanto de la dedicacion de los
empleados como de las tareas involucradas, por lo tanto, el lapso de tiempo necesario

para llevar a cabo todas las tareas de dicho nivel, se puede definir de la siguiente

mancra:

) gj
S(p .—_max{z.— 1XUQU} Vi,tal que BU: ]/di

=Ty



Capitulo 5. Desarrollo 46

donde i =1,2,...nyd, es el tiempo maximo para el nivel ¢ y X;; es una

matriz E X T tal que:

Y. = {1 si E; hace la tarea T;
U710 deotra forma

(2)

De esta manera, para el calculo del tiempo y costo de la solucién se tiene:

ftiempo = min {22216tp } 3)

Donde VT2, 3Ty | (T, Te € A)congp =1,..,a—1yw=1,..,|Lg|

P n
feosto = min {Z ] Xijgjsi} 4)
j=1 =1

Adicionalmente, el universo de posibles soluciones estard conformado sélo
por soluciones factibles, las cuales son aquellas soluciones que cumplen con las

siguientes restricciones:

Restriccion 1. Cada tarea tiene al menos una persona asignada

Xij > 0, ] = 1,2,...,p (5)
j=1

Restriccion 2: No existen tareas que requieran habilidades que no tenga

ninguno de los empleados disponibles
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Donde [] es el paréntesis Iverson (es decir, [P] = 1, si P es cierta, y [P] =0 en

caso contrario.

Restriccion 3. A ningiin empleado se le asigna mas tiempo de lo que su

dedicacion le permite.

De esta manera, la calidad de una solucidén se obtiene al evaluar en conjunto la
duracion, costo y factibilidad de la planificacién generada con base en la definicion
formal indicada en esta seccion, entendiendo que una solucién es mejor que otra con
base en la medida en que satisfaga las prioridades del gerente de proyectos, ya sea
disminuyendo el costo o la duracién del proyecto en cuestion. Es importante destacar
que el riesgo que puede tener la planificacién de un proyecto de software para
llevarse a cabo, dado por la plataforma de hardware o software necesaria para
concretar las tareas del proyecto o por las relaciones y comunicacion entre los

posibles desarrolladores no es considerado como parte de esta investigacion.

4.3 Optimizacion del Problema

Aln cuando el modelo del PSP representa una base robusta para la
implementacién del problema de planificacion de proyectos de software, resulta
necesario optimizarlo a partir de las particularidades de este caso de estudio en el que

igualmente se cuenta con una cantidad de empleados cada uno de los cuales posee un
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conjunto de habilidades especificas, un sueldo y un grado maximo de dedicacion.
Asimismo, el proyecto de software cuenta con una cantidad de tareas, que requieren
cierto tipo de habilidades y deben ser ejecutadas en un orden determinado para la
consecucién de los objetivos planteados. Sin embargo, las metodologias agiles para el
desarrollo de software y las tendencias actuales para la planificacién de proyectos de
software sugieren que el desglose de tareas debe llevarse a cabo de manera tal que
ninguna tarea requiera mas de 16 horas de trabajo por desarrollador/recurso, asi como
también, que cada tarea debe ser realizada en la medida de lo posible por una sola
persona para evitar los mecanismos de reasignacion de actividades que puedan afectar
el progreso regular del proyecto (Abdel & Madnick, 1983). Ademas, el esfuerzo que
requieren las tareas del proyecto de software puede ser indicado en puntos de

complejidad o directamente en el tiempo proporcional a los mismos.

La estimacion por puntos de complejidad es una técnica propia del campo de
las metodologias agiles para el desarrollo de software, en la que se indica
complejidad de la tarea con respecto al tiempo que se requiere para ejecutarla,
mediante la asignacién de nimero enteros de acuerdo con la estimacion del gerente
de proyectos (Kniberg, 2007) ---en adelante GP, y del equipo de desarrollo. Es decir,
para un GP una tarea de complejidad 5 puede indicar que se requieren 10 horas para
ser resueltas, pero para otro GP indica que se requieren 5 horas. Esta estimacion con
base en puntos se realiza con la finalidad de aumentar la escalabilidad de la

estimacion del gerente de proyectos. Asi, si su estimacion de tiempo es incorrecta,
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solo debe ajustar la proporcion de puntos con respecto al tiempo (a través del
coeficiente  expresado en la ecuacion 1, en nuestro caso f§ = 1), en vez de ajustar el
tiempo de cada tarea, ademas puede indicar tantos grados de complejidad como las
tareas del proyecto lo ameriten. La proporcion de puntos con respecto al tiempo podra

ser mas acertada en la medida en que el equipo de desarrollo sea mas maduro.

Por otra parte, para esta adaptacién del modelo solo se modifica la primera
restriccion: cada tarea debe ser realizada por solo una persona, por la naturaleza de
los proyectos en cuestion. Sin embargo, se cuenta con una restriccion adicional, no
obligatoria, en la que el gerente de proyectos puede indicar si desea 0o no maximizar
la asignacion de tareas a los empleados con mayor experiencia para cada una de ellas,
es decir, los empleados cuyas habilidades estén mds acordes con las requeridas por
cada tarea, buscando utilizar una estrategia que puede tener repercusiones directas en
la calidad del producto a generar. Dicho grado de experticia se define como un factor
particular para cada habilidad, asi para cada Z; se tiene un 9; = {%9;, ..., 9;1p-1} con
0 < ¥,,,<1parar <h-1, donde 9;Z; son los grados de experticia para cada
habilidad del empleado E;. Cada tarea de un proyecto requiere un conjunto minimo
de habilidades ¥; = {9}, ...,9j4p'—1} con 0 < 97, <1 parar <h —1 dado

que Y;Z’j es la habilidad minima requerida para hacer una tarea, entonces

— [z = 77 4 _ 79 -q q
Xy=12= Zinzin 2} =2] A 9] 2 9] (8)

L
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donde Zﬂ' es la q'-ésima habilidad de la tarea T; y [*] es el paréntesis Iverson

(es decir, [P] =1, si P es cierta, y [P] = 0 en caso contrario).

La solucién del problema viene indicada de igual manera por una matriz en la
que se especifica el grado de dedicacion del empleado a cada tarea. Asimismo, la
calidad de la solucién se evaluara con base en la definicion de la funcidén objetivo.
Para este caso particular existen dos factores fundamentales en dicha funcién: la
duracion del proyecto y el costo del mismo. En tal sentido, las metaheuristicas a
implementar para ofrecer soporte al problema de planificacion de proyectos de
software seran desarrolladas de manera tal que el GP pueda seleccionar cual objetivo
desea abordar ¢ ambos en caso de resultar factible, e incluso indicar el grado de
especializacion de cada empleado para cada habilidad requerida, con miras a

diferenciar de esta manera entre desarrolladores expertos y principiantes.

Finalmente, la factibilidad de la solucién no sera considerada como un factor
relacionado con la calidad, pues solo soluciones factibles son consideradas aptas para
ser evaluadas. De esta manera, aquellas soluciones en donde los empleados deban
dedicar mas tiempo que lo que su dedicacion les permita, o en las que una tarea deba
ser realizada por mas de una persona, no forman parte del posible universo de
soluciones. Lo mismo ocurre para aquellas soluciones en las que existan tareas que no

han sido asignadas a ninguna persona.
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4.4 Implementacion de la solucion

A partir del modelado del problema, es posible proceder a la implementacién
de su respectiva solucién la cual fue llevada a cabo a partir de la metodologia de
desarrollo incremental e iterativo (Kniberg, 2007), teniendo en cuenta que cada
iteracion representd la revisién de la version mas reciente del sistema asi como la
implementaciéon de nuevas funcionalidades de acuerdo con los requerimientos
previamente definidos, permitiendo codificar de manera progresiva las diferentes
metaheuristicas seleccionadas asi como también realizar las pruebas necesarias sobre

las mismas.

A continuacion se realiza la explicacion de un ejemplo practico en el que se
busca reducir el tiempo de desarrollo del proyecto, el cual permite observar cada una
de las etapas que se realizan de manera previa a la ejecucién de cada una de las

metaheuristicas a manera de preparacion del entorno de trabajo.

En primer lugar, se presenta la descripcion de las tareas necesarias para
realizar el proyecto (ver la Tabla 2. ), en la que se puede observar la descripcion de
las tareas y su respectiva duracidn, ademas de la lista de las habilidades que cada una
de ellas requiere para ser completada. Esta lista es un subconjunto de la lista de

habilidades generales del proyecto indicada en la Tabla 3.
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Ne Descripcion Duracién Hab. Requerida (Z ;)
D 1|23 ] 4]s5
1 Ejecutar el script de la BD 4 - - - - | Si
7 | Implementar el disefio 4 Si | Si|Si| - -
3 | Validar el inicio de sesion 8 - - - | Si| -
4 | Validar el registro de usuario 1 - - - | Si| -
5 | Validar el médulo de notificaciones 3 - - - | Si| -
¢ | Instalar el sistema en produccién 7 Si | Si|Si| - -

Tabla 2. Lista de tareas T de un proyecto de software

Ne Descripcion
1 Conocimientos de HTML

2 Conocimiento de AJAX

3 Conocimiento de Javascript
4 Programacién en PHP

5 Modelado de bases de datos

Tabla 3. Lista de habilidades H requeridas para hacer un proyecto de software

Seguidamente se encuentra la lista de desarrolladores que conforman el grupo
de desarrollo que se encargara del proyecto. De cada desarrollador se tiene su
respectiva identificacion, disponibilidad y el subconjunto de habilidades que posee,
las cuales igualmente deben estar contenidas en la lista general de habilidades
indicadas en la Tabla 3. La descripcion de los desarrolladores se indica en la Tabla 4.
Tal como se especificé en la formulacion del problema, aquellas soluciones en las

que las tareas requieren habilidades que no se encuentran en la lista general de las
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mismas, se consideran inviables, asi como también las habilidades adicionales que

posean los desarrolladores no representan ningun valor agregado con respecto a las

habilidades requeridas por cada tarea, respectivamente.

N° Nombres y Disponibilidad | Sueldo(s;) | Habilidad que posee (Z;)

1 Pedro Pérez Tiempo 150 Si | Si | Si | Si|[Si
Completo (8)

2 Maria Ramirez Tiempo 50 Si | Si | Si| Si|-
Completo (8)

3 Juan Parra Tiempo 100 Si | Si | Si | Si[Si
Completo (8)

Tabla 4. Lista de integrantes de un equipo de desarrollo E para proyectos de software

Para completar los datos de entrada necesarios para comenzar la busqueda de

una solucidn, solo resta conocer las precedencias entre las tareas que conforman el

proyecto, las cuales vienen dadas por el TPG indicado en la formulacion del

problema tal como se puede observar en la Figura 9.

Figura 9. Grafo de Precedencia de tareas A de un proyecto de software
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Una vez conocidas todas las variables involucradas en la representacion del
problema, el primer paso consiste en determinar la factibilidad de bisqueda de una
solucion, cumpliendo asi con la primera y segunda restriccion del modelo. Para ello,
se realiza una busqueda en la que se indica quién puede realizar cuales tareas, tal
como se indica en la Tabla 5. En el caso en el que exista una tarea que no pueda ser
realizada por ninguno de los integrantes del equipo de desarrollo de acuerdo con las
habilidades que la misma requiere, automaticamente se considera que no es factible
realizar la bisqueda de una solucion determinada. Adicionalmente, a partir de este
procedimiento es posible conocer quiénes pueden llevar a cabo cada una de las tareas,

conformando asi el universo de posibles soluciones.

Tarea que puede realizar
N° Nombres y Apellidos
1 2 3 4 5|6
1 Pedro Pérez 1 1 1 - 1
2 Maria Ramirez - - 1 1 - 1
3 Juan Parra - - - 1 1 1

Tabla 5. Desarrolladores candidatos para cada tarea del proyecto representado por la matriz X;;

Posterior a la verificacion de factibilidad del proyecto a evaluar, es necesario
determinar el orden en el que las tareas pueden ser ejecutadas considerando aquellos
niveles del grafo conformados por tareas que se pueden realizar paralelamente, y que
por ende tendrdn una repercusion directa en la duracién de la solucion a generar. Para

ello, se realiza un recorrido topologico del grafo (ver Anexo A) mediante el cual se
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determina a qué nivel pertenece cada uno de sus nodos, es decir cada una de las tareas

del proyecto.

Finalmente, se procede a generar las respectivas soluciones. Al aplicar la

ecuacion 2 en la solucién S7 indicada en la Tabla 6, se obtiene que se requieren 26

horas para culminar el proyecto, equivalente a 1.08 dias laborales considerando que

todos los desarrolladores involucrados poseen disponibilidad de tiempo completo (se

asume que la jornada laboral dura 8 horas). Por su parte, en la planificacion indicada

en la Tabla 7 correspondientes a una segunda solucion Sz, se requieren 22 horas de

trabajo, valor obtenido a partir de la misma ecuacion,

laborales (Ver Ecuacién 2)

Responsable de Ia tarea
N° Nombres y Apellidos
1 2 3 4 S| 6
1 Pedro Pérez Si | Si| - - | Si| -
2 Maria Ramirez - - | Si|o- - | Si
3 Juan Parra - - - Si| -] -
Tabla 6. Solucién S1 — Planificacién de proyecto de software
Responsable de Ia tarea
Ne Nombres y Apellidos
1 2 3 4 51 6
1 Pedro Pérez 1 1 1 - - | -
2 Maria Ramirez - - - 1 - -
3 Juan Parra - - - - 111

Tabla 7. Solucién S2 - Planificacion de proyecto de software

equivalente a 0.91 dias
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Por otra parte, la implementacion de la solucién de acuerdo con este ejemplo,
ofrecio la flexibilidad necesaria para permitir que el gerente de proyectos indique el
grado en el que cada tarea requiere una determinada habilidad, asi como también el
grado en el que un desarrollador la posee. Este grado se indica como un valor
numérico entre 0 y 1, siendo 1 el limite de mayor experiencia posible de una
habilidad dada. De esta manera se puede obtener un coeficiente que indique qué tan
buen candidato resulta un determinado desarrollador para una tarea en particular, para
efectos de dar respuesta a aquellos casos de planificacion en los que se busca asignar
a los desarrolladores con mayores conocimientos o experticia a cada tarea
respectivamente. Por ejemplo, de acuerdo con la informacion indicada en las Tablas 8
y 9, pueden generarse diversas planificaciones en las por ejemplo el desarrollador 1
resulta mejor candidato que el desarrollador 3 para hacer la tarea 5, mientras que el

desarrollador 2 tiene mejores capacidades para hacer la tarea 4 que el desarrollador 3.

Una vez completado los pasos de evaluacion del proyecto y la factibilidad de
la soluciéon a buscar, se procede a la implementacién de cada una de las
metaheuristicas de acuerdo con la funcién objetivo a evaluar, ya sea de reduccion de
costos o reduccién de tiempo de acuerdo con las variantes de sueldos y
disponibilidades de cada una de los empleados que integran el equipo de desarrollo

como tal.
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Ne Descripcion Duracién Hab. Requerida (Z;)
@) 1|23 4|1
1 Ejecutar el script de la BD 4 - - - - 1
2 | Implementar el disefio 4 0510507 - -
3 | Validar el inicio de sesion 8 - - - 1 -
4 | Validar el registro de usuario 1 - - - 105 -
5 | Validar el modulo de notificaciones 3 - - - 105 -
6 | Instalar el sistema en produccion 7 05 1 (02] - -

Tabla 8. Lista de tareas T de un proyecto de software — Grados por habilidad

N° Nombres y Disponibilidad Sueldo Habilidad que posee (Z;)
ApellidOS (dl) (Si) 1 2 3 4 5
1 Pedro Pérez Tiempo 150 0510505 1 1
Completo (8)
2 Maria Ramirez Tiempo 50 1 105102]05 -
Completo (8)
3 Juan Parra Tiempo 100 1 1 1 01| 05
Completo (8)

Tabla 9. Lista de desarrolladores E— Grados por habilidad

A continuacién se detalla la implementaciéon de cada una de las
metaheuristicas seleccionadas para abordar el problema objeto de investigacion,

correspondientes a métodos sin memoria de trayectoria y de poblacion.



Capitulo 5. Desarrollo 58

4.5 Implementacion del SA

La implementacion del SA se realizd con base en el pseudocddigo indicado en
la Figura 4. La solucidn inicial es generada aleatoriamente de acuerdo con los
posibles candidatos para una tarea determinada. Dicha solucién posee un valor de la
funcién objetivo en cuanto a tiempo o costo de desarrollo, o coeficiente de experticié .
segun sea el objetivo de la planificacion a generar por parte del gerente de proyectos.
La siguiente solucién, nuevamente es generada aleatoriamente, considerando para
todos los casos las restricciones de posibles cambios, y se realiza la comparacion
respectiva entre los valores de la funcion objetivo. En caso de que la nueva solucion
sea mejor que la anterior, ésta pasa a ser la actual, y por ende, el siguiente punto de

comparacion.

Ahora bien, dado que una de las principales desventajas de esta
metaheuristica, es que el minimo local puede estar muy lejos del minimo global, se
establece la posibilidad de aceptar en algunas ocasiones soluciones peores que la
actual, lo cual ocurre con una probabilidad dada por la funcién de aceptacién que es

e=1/T

, en donde I es la diferencia de costo, tiempo o coeficiente de experticia de la
solucién actual y la solucion generada, y T es un pardmetro de control que es analogo

a la temperatura en el recocido fisico, es decir es el valor actual de la temperatura en

el algoritmo.
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4.6 Implementacion del VNS

Para la implementacion del VNS, es necesario en primer lugar conocer las
estructuras de las vecindades que puede tener una instancia del problema en
particular. En el ejemplo indicado en la Tabla 5, la vecindad mas grande que puede
tener la solucion inicial generada de manera aleatoria seria de tamafio 6, pues cada
una de las tareas puede ser desarrollada por mas de una persona. Sin embargo, cuando
se considera el conjunto de habilidades que posee cada desarrollador versus el
conjunto de habilidades que requiere cada tarea, esto no es necesariamente cierto,
pues para aquellos casos en los que una tarea solo pueda ser realizada por una persona
no es posible realizar cambios en dicha asignacion por lo que esa vecindad no es
factible. Por tanto, la vecindad mas grande que puede tener un problema viene dada
por el total de tareas que se tienen, menos aquellas tareas que pueden ser realizadas

solo por una persona.

A partir de este estudio de las estructuras de las vecindades, se procede a
ejecutar el algoritmo tal como se indica en la Figura 5, generando la primera solucién
de manera aleatoria con el respectivo calculo de su fitness en funcién del tiempo o
costo del proyecto segiin sea el caso. Posteriormente, se evaltia otra solucion de la
misma vecindad y se comparan los resultados. En caso de ser mejor se continta en la
misma estructura para intensificar la busqueda, y en caso contrario se pasa a una

estructura mas grande para diversificar la evaluacion del espacio de soluciones. La
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condicion de parada de este algoritmo se indico como maxima cantidad de iteraciones

sin mejora sobre la cantidad maxima de evaluaciones de la funcidn objetivo.

4.7 Implementacion del GA

El algoritmo genético implementado en esta investigacion es de tipo
generacional, la seleccion de los padres se realizé de acuerdo con el método de la
ruleta y el cruzamiento se realizé por medio de la técnica de cruce de un solo punto.
Por su parte, se establecieron tres escenarios del GA a partir de la variacién de su
probabilidad de mutacién indicada como 5, 10y 15% respéctivamente, mientras que
la probabilidad de recombinacion utilizada fue del 100%. EI pseudocodigo

correspondiente a este método se indica en el Figura 6.

Es importante resaltar, que los individuos de la poblacion inicial, 30 en total,
fueron generados de manera aleatoria, calculando para cada uno de ellos su
correspondiente valor en cuanto a duracion y costo de la planificacién generada. Por
cada ejecucion del algoritmo se permite la evolucion de 10 generaciones, siendo la
ultima generada la poblacién que se evalla para seleccionar la solucion definitiva. De
esta manera, para los escenarios de prueba con mayores combinaciones posibles la
evolucion de las generaciones ofrece una mejor estrategia para recorrer el espacio de

busqueda.

Para todas metaheuristicas implementadas en el proyecto, los diferentes

operadores definidos (vecindad, cruce, mutacidn, etc.) manejan solo soluciones
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factibles y se calcula la funcién objetivo de estas soluciones mediante la Ecuacién 3 o
4, segin sea el caso (tiempo o costos). Para la verificacién del cumplimiento de las
restricciones se utiliza una estructura de datos matricial denominada W;;y
equivalente estructuralmente a X;;, donde se indica cuales tareas puede o no realizar
un determinado empleado. Lo anterior se logra mediante la definicion de una funcién
denominada feasible(E,T) al inicio de cada metaheuristica. Asi por ejemplo, para el
caso del SA, el operador para la generacion de una nueva solucion parte de W;; para
generar aleatoriamente una X;;, de forma tal que se logran dos beneficios. El primero,

se garantiza la existencia de soluciones factibles y el segundo, se reduce el esfuerzo

computacional en la busqueda de soluciones factibles.

4.8 Interfaz Grafica de Entrada y Salida

Tal como se ha indicado, los datos de entrada para generar las planificaciones
de los proyectos de software en cuestion se refieren a: la lista de habilidades que
pueden tener los desarrolladores y requerir las tareas, y las listas de tareas y
desarrolladores con sus datos respectivamente, asi como también el grafo de
precedencia de tareas. La interfaz de entrada (ver Figura 10) le permite al usuario
indicar la ruta en donde se encuentran los archivos correspondientes a dichos datos,
asi como también la configuracion de los valores de cada metaheuristica. Los
archivos de entrada son leidos como archivos separados por comas (CSV por sus

siglas en inglés) con la estructura indicada en las figuras 11, 12 y 13. La aplicacion
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fue desarrollada en Java 1.6, utilizando un equipo con un procesador Pentium dual-

core 2.60 GHz, 4 GB de RAM vy sistema operativo de 64 bits para la codificacion y

ejecucion de las pruebas.

- Entradas ; Meg_aheuristicas
Habilidades: Examinar | sA
Fareas; Examinar. |
ITIVUNG
Desarroltadores: Examinar. |
- Salida L CA_
Ruta de Reporte: --Examinar-" | P, Mutacidn -
# Objetivo 7 MA
i (%3 Reduccion de Tiempo P, UNS
M Asignar desarroliadores expertos B |
. E > P. Mutacién '
i1 Reduccion de Costes :

Generar Planificacion

J

Figura 10. interfaz de entrada

: Skils ~gy ;@

.

| ID,Descripcion de la Habilidad, Seniority
1,%eb Programming,l
2,Database Manager,l

Figura 11. Estructura del archivo de entrada de Habilidades

[ Devs.csv

g

L
Ny

Nombre Completo,bisponibilidad,Pago por hora;Hi, H2
,Fedro Perez,1,50,1,

,Maria Ramirez,1,100,0.5,1

Figura 12. Estructura del archivo de entrada de Desarrolladores
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sz csv |

: kD,Descripcion de la Tarea,Duracion de la tare {UT), Precedencias, H1; H2
‘1, Placeholder - Data 20611 - Round 2:1,,1,1

2,% Residents with >= College Degree,1,1,0.5,

3,% Residents with >= HS e4,1,2,%,1

4, "average Total wvoluntesr hours {(in milliions), based on pooled™,£.3,1,1,1

LSRG e ]

L8

L en

:S,Average Volunteers Hours,0.25,4,2.5,1

&, Baby Boomers Median Hours,0.75,31,1,1

7,Baby Boomers Rate,0.75,¢,1,1

8,"Change in Foreclosure Rate, 20G08-200%",0.5,2,1,
‘8, Civic Activity Percentage,0.5,2,8.5,
HlQ,Age Group Median Hours,1.5,3,1,

i

A A

hey

11,ZAge Group Rate,1.5,10,1,1
12,College Students Median Hours,$.5,3,1,1
13,Ccllege Students Rate,(.5;12,0.5,1

14

Figura 13. Estructura del archivo de entrada de Tareas

Por su parte, una vez generada la planificacion del proyecto en cuestion, esta
es mostrada al gerente de proyectos en una pagina web de formato HTML, que

contienen los siguientes componentes:

e Descripcion de la Solucién: en este cuadro se indica el resumen de la
planificacion generada para el proyecto, la cual corresponde a la solucién
definitiva del método utilizado. Se indica duracion del proyecto, costo,
algoritmo utilizado, objetivo seleccionado y el tiempo de ejecucion que se
emplea para generar la planificacion calculado a partir de la diferencia entre la
hora del sistema cuando inici6 y finalizd el método respectivamente (ver
Figura 15).

e Descripcion de la planificacion: corresponde a una tabla detallada en donde

se indica el responsable de cada una de las tareas del proyecto (ver Figura 16)
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Descripcion de la planificacion: corresponde a una tabla detallada en donde
se indica el responsable de cada una de las tareas del proyecto (ver Figura 16)
Grafo de precedencia de tareas: en el cual se expresan graficamente las
precedencias entre las tareas, para permitirle al gerente de proyectos observar
con mayor facilidad los puntos que pueden resultar como cuellos de botella
durante la ejecucion del proyecto. En la Figura 17 se observa una Visté parcial
de un grafo de precedencia de tareas, el cual no se muestra completamente por
motivos de espacio.

Carga de trabajo por desarrollador: es una grafica de barras en donde se
indica la proporcion del trabajo asignado a cada uno de los desarrolladores
involucrados (ver Figura 18)

Costos por desarrollador: de igual manera corresponde a un grafico de
barras que indica la proporcion de costos que genera cada desarrollador de
acuerdo con la planificacién generada Figura 19. Esta grafica en conjunto con
la carga por desarrollador le permite al gerente tener una visién mas clara
acerca de la asignacion de recursos.

Planificacion en funcién del tiempo: es una representacion del cronograma
de actividades durante todo el lapso de tiempo necesario para concretar el
desarrollo del proyecto, en la que se indica por cada unidad de tiempo el

estado de ocupacién de cada desarrollador (ver Figura 20).
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Descripcion del Problema

Figura 14. Interfaz de Salida — Descripcién del Problema

Descripcién de la Solucion

Reduccion de Costos
47.0 seq.

Figura 15. Interfaz de Salida — Descripcién de la Solucién
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Figura 16. Interfaz de Salida — Descripcion de la Planificacion
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Figura 17. Interfaz de Salida — Vista Parcial del Grafo de precedencia de tareas (TPG)
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Carga de Trabajo por Desarrollador {U.T.)

E Uasa

Figura 18. Interfaz de Salida — Carga de trabajo por desarrollador

Costos por Desarrollador {U.M.)

B hasa

Figura 19. Interfaz de Salida — Costos por desarrollador
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Figura 20. Interfaz de Salida — Planificacién en funcién del tiempo
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Capitulo S. Resultados

5.1 Definicion de casos de prueba

Para la verificacion del funcionamiento y rendimiento de las metaheuristicas
implementadas, se realizd un conjunto de pruebas sobre distintos escenarios. Cada
escenario corresponde a un tipo de proyecto de software, los cuales fueron
clasificados de acuerdo a la cantidad de puntos acumulada a través de sus respectivas
tareas, tal como se indica en la Tabla 10, con base en la evaluacion de la magnitud de
los proyectos de software de la empresa Caniatech C. A (Caniatech, 2012),
correspondiente a una empresa local dedicada al desarrollo de diversos tipos de
aplicaciones web. La definiciéon de los tipos de proyectos con base en esta
clasificacion, se realizé en primer lugar por la ausencia de una clasificacion estandar
de esta area en lo que a materia de proyectos de software se refiere, y en segundo
lugar para dar paso a futuras investigaciones relacionadas con la metodologia aqui
desarrollada y cotejarla con los resultados obtenidos por la empresa a partir de las

soluciones propuestas. Los casos de prueba evaluados se indican en la Tabla 11.

Por otra parte, es importante mencionar que si bien existen benchmarks para
problemas de planificacién como por ejemplo OR-LIBRARY, la Unica referencia
sobre potenciales instancias asociadas al problema de planificacion de software fue

dado por Chicano (2007), pero su propuesta estd orientado a la generacion de



Capitulo 6. Resultados 71

G

instancias de prueba y no de benchmark estatico. Por otra parte, se tenfa como meta
probar con instancias del problema brindadas por la experiencia de la compafiia

Caniatech en este rublo.

Tipo Descripcion
Pequefio Menos de 65 puntos de funcién
Mediano Entre 65y 110 puntos de funcion
Grande Mas de 110 puntos de funcién

Tabla 10. Tipos de Proyectos de Software



C

Capitulo 6. Resultados

72

Tipo de ID de Caso N° de Max. Hab / N° de Max. Hab /
Proyecto Tareas Tarea Desarr. Desarr.
Pl 24 2 2 2
P2 24 2 5 2
Pequeiio P3 24 2 2 10
P4 24 2 5 10
PS5 24 10 2 10
P6 24 10 5 10
M1 54 2 2 2
M2 54 2 5 2
Mediano M3 54 2 2 10
M4 54 2 5 10
M5 54 10 2 10
M6 54 10 5 10
Gl 131 2 2 2
G2 131 2 5 2
Grande G3 131 2 2 10
G4 131 2 5 10
G5 131 10 2 10
Go6 131 10 5 10
Tabla 11. Definicion de Casos de Prueba
ID Metaheuristica
SA Recocido Simulado
VNS Busqueda con vecindad variable
AGS5 Algoritmo Genético (Probabilidad de mutacion = 5%)
AG10 Algoritmo Genético (Probabilidad de mutacion = 10%)
AGI15 Algoritmo Genético (Probabilidad de mutacién = 15%)

Tabla 12. Identificacion de las Metaheuristicas
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5.2 Evaluacion de los resultados

La obtencidén de los resultados se llevo a cabo ejecutando cada metaheuristica
(identificadas en la Tabla 12) para cada uno de los casos de prueba 10 veces, tanto
para el caso de reduccion de tiempo (asignando expertos o no) como de costo,
indicados como variantes de la funcion objetivo en la representacion del problema,
conformando asi una muestra pequefia (n<30) sobre la cual realizar las pruebas
respectivas. Es importante destacar que dado que las metaheuristicas son de recorrido
aleatorio, se requiere del conjunto particular de ejecuciones para realizar una
estimacion estadistica a través del andlisis de las medias de las soluciones obtenidas
en cada ejecucion, lo cual permite indicar en primera instancia qué algoritmo se
comporta en general mucho mejor que otro. Los valores correspondientes a las
medias para cada instancia de cada tipo de proyecto obtenidos a partir de dichas

ejecuciones se muestran en las tablas 13-15.

Dado que se desconoce la significacion de los datos obtenidos es fundamental
la realizacién de pruebas no paramétricas, entendidas como aquellas que no
presuponen una distribucién de probabilidad para los datos (Garcia, Molina, Herrera,
& Lozano, 2009). Dichas pruebas permiten determinar sobre un conjunto de datos la
posible relacion que existen entre sus muestras, o en contraparte su independencia,

comprobar si existen diferencias significativas, etc.

En el Anexo C, se indican las desviaciones estandar de los resultados

obtenidos para todos los casos de prueba.
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Caso de Metaheuristica

Prueba SA VNS AG5 AG10 AGI15
Pl 5843.55 4491.85 4709.4 4759.45 471935
P2 4985.27 3424.52 3781.38 3894.364 3828.99
P3 5937.75 4498.23 4710.2 474355 4706.9
P4 5166.22 3368.52 3853.82 3911.31 3869.71
P5 6322 5647 5704.5 5742 5714.5
P6 4729.81 3695.78 3831.81 3641.55 3714.06
Ml 10027.6 8755.9 - 9151.8 9078.1 9062.65
M2 8064.98 6514.52 7207.87 6942.59 7048.99
M3 9981.85 8718.05 9259.3 9188.85 9103.1
M4 8472.18 6608.76 7074.16 7675.16 6866.35
M5 10304.6 9418.35 9730.5 9703 9745.05
M6 7640.92 6223.44 6809.94 6635.83 6770.82
Gl 12562 11557 11557 11910.1 11902.75
G2 9823.2 8276.57 9136.42 9154.92 9199.72
G3 12532.2 11573.5 11977.5 11901.7 11904.75
G4 10285.2 8266.07 9143.52 9138.35 9080.47
G5 12655.5 11658.5 12094.7 12082.5 11951.7
G6 9323.67 8047.92 8604.92 8699.92 8728.92

Tabla 13. Medias de los resultados obtenidos para la reduccion de costos a partir de
metaheuristicas simples
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Caso de Metaheuristica

Prueba SA VNS AG5 AG10 AG15
Pl 60.201 54.5 43.017 55.135 55.035
P2 49.634 44.567 45.517 45.467 45.8
P3 61.136 54.517 55.118 55.268 55.134
P4 50.617 44.55 45601 45.684 45.067
P5 62.469 55.551 56.402 56.484 55.851
P6 50.317 41.317 43017 42.934 42.884
M1 93.58 72.869 78.58 78.336 77.963
M2 68.186 48.377 51415 52.51 51.977
M3 92.856 75.561 78.82 77.496 78.866
M4 63.518 52.269 53.452 53.203 53.485
M5 100.18 82.626 86.394 87.402 85.087
M6 67.494 47.526 52.493 52.743 52.086
Gl 116.81 94.125 102.285 102.61 103.355
G2 68.245 53.945 57.135 56.965 57.895
G3 114.93 114.93 103.08 102.565 101.435
G4 67.33 54.71 57.375 56.74 58.12
G5 116.25 95.691 103.265 102.69 103.285
G6 63.23 44.8 50.97 50.375 50.775

Tabla 14. Medias de los resultados obtenidos para la reduccion de tiempo a partir de
metaheuristicas simples
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Caso de Metaheuristica

Prueba SA VNS AG5 AG10 AGI15
P1 61.306 55.2 43.13 55.205 56.017
P2 50.015 44.630 44.978 46.013 45312
P3 61.756 55.023 55.012 56.301 54.605
P4 52318 44.914 46.702 46.621 45.451
P5 62.9 55.97 56.301 57.861 56.317
P6 50.561 41.869 44.521 43.238 43.628
M1 94.856 72.01 77.63 77.856 77.521
M2 69.85 50.12 52.5 51.68 52.019
M3 93.652 73.25 79.30 77.6 78.941
M4 64.101 50.854 54.5 53.814 55.632
M35 101.01 82.512 86.849 87.68 83.985
M6 67.05 48.62 52.87 53.92 52.478
G1 116:8 94.478 100.56 101.74 103.651
G2 65.902 53.945 55.15 54.95 55.95
G3 115.01 113.02 101.05 105.08 103.5
G4 67.56 55.01 57.89 57.85 59.62
G5 117.56 97.45 101.54 105.56 104.899
G6 65.89 46.8 55.43 50.124 50.536

Tabla 15. Medias de los resultados obtenidos para la reduccién de costos a partir de

metaheuristicas simples asignando desarrolladores expertos

Entre las pruebas no paramétricas, se encuentra la prueba de Friedman

(Garcia, Molina, Herrera, & Lozano, 2009), la cual es equivalente a una prueba

ANOVA? para dos factores y permite determinar si en un conjunto de pruebas existen

2 El analisis de la varianza (denominado ANOVA por su nombre en inglés ---ANalysis Of

VAriance---) es un modelo en el cual la varianza esta representada por una variable cuya variacion




Capitulo 6. Resultados 71

diferencias significativas entre si, y si las mismas se encuentran interrelacionadas. El
calculo se basa en rango, que luego es comparado con una distribucion Chi® con
grados de libertad k-1. A continuacion se describe el procedimiento realizado para el

analisis de datos.

e Evaluacion de la existencia de diferencias significativas. La existencia de
diferencias significativas entre los datos fue determinada a partir del Test de

Friedman, bajo el siguiente escenario:

Ho: No hay diferencia entre los resultados obtenidos

H: Si hay diferencia entre los resultados obtenidos

K: grados de libertad

Prob Chi’: Valor critico de Chi’con k=1 grados de libertad

Valor de Friedman: estadistico calculado del andlisis de varianza por
rangos de Friedman

Si el Valor de Friedman es mayor que el punto critico de la Prob Chi’,
entonces se rechaza He, caso contrario se rechaza H..

Los resultados del Test de Friedman bajo el escenario indicado se muestran en
las Tablas 16-18, en las que se puede observar que dado que el valor obtenido‘de
Friedman es mucho mayor en todos los casos que la probabilidad de Chi?, hay
pruebas estadisticas suficientes para rechazar la hipdtesis nula y concluir que
efectivamente existen diferencias significativas entre los resultados obtenidos por

cada metaheuristica para todos los tipos de proyectos evaluados, indicando de esta

depende de diferentes fuentes (otras variables) y permite ademas, la realizacién de pruebas de
significacion estadistica.
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manera que algunas de las estrategias implementadas resultaron mas efectivas que

otras para el problema evaluado.

l;l; is;egfo F‘; ?;g;i‘; Prob Chi’ K-1 (l:)l:zi(:) Se rechaza
Pequefio 19.36 0.001 4 9.4877 Ho
Mediano 17.12 0.002 4 9.4877 Ho
Grande 15.32 0.004 4 9.4877 Ho

Tabla 16. Resultados de la prueba de Friedman para reduccién de costos aplicando
metaheuristicas simples

Proecto | Friedman’| PP’ | K1 | CHEC | Serechaca
Pequefio 16 0.003 4 9.4877 Ho
Mediano 16 0.003 4 9.4877 Ho
Grande 12.28 0.02 4 9.4877 Ho

Tabla 17. Resultados de la prueba de Friedman para reduccién de tiempo aplicando
metaheuristicas simples

Proyecto | Fricaman | PP CW | K-l | G0 | Serechaza
Pequefio 13.83 0.01 9.4877 Ho
Mediano 19.73 0.001 4 9.4877 Ho
Grande 13.83 0.01 4 9.4877 Ho

Tabla 18. Resultados de la prueba de Friedman para reduccién de tiempo aplicando

metaheuristicas simples asignando desarrolladores expertos
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e Evaluacion de diferencias significativas: una vez comprobada la existencia

de diferencias significativas entre los algoritmos, resta determinar cuéles son.

Para ello, se llevo a cabo el Test de Holm (Garcia, Molina, Herrera, &

Lozano, 2009), a partir del cual se comienza ordenando por rangos los valores

asociados con el estadistico de la prueba (p) y se selecciona el valor mas

pequefio como algoritmo de control. De esta manera, si el valor estadistico es

menor que el valor de comparacién (tenor) se concluye que existen diferencias

significativas. Los resultados del Test de Holm para cada tipo de proyecto y

para cada funcidn objetivo se indican en las tablas 19 — 27.

Algoritmo Tenor Valor JHay Dif.?
AG3 0.05 0.11506967022 No
AG1S 0.025 0.03593031911 No
AGI0 0.016666 | 0.00134989803 Si
SA 0.0125 0.00003167124 Si

Tabla 19. Resultados de la prueba de Holm para reduccién de costos en proyectos
pequeitos aplicando metaheuristicas simples. Algoritmo de Control: VNS

Algoritmo Tenor Valor JHay Dif.?
AGI15 0.05 0.05479929169 No
AGI10 0.025 0.03593031911 No
AGS 0.016666 | 0.00466118802 Si

SA 0.0125 0.00003167124 Si

Tabla 20. Resultados de Ia prueba de Holm para reduccién de costos en proyectos
medianos aplicando metaheuristicas simples. Algoritmo de Control: VNS
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Algoritmo Tenor Valor JHay Dif.?
AG15 0.05 0.05456546275 No
AG10 0.025 0.02871655981 No

AGS 0.016666 | 0.02275013194 No
SA 0.0125 0.00004809634 Si

Tabla 21. Resultados de la prueba de Holm para reduccién de costos en proyectos
grandes aplicando metaheuristicas simples. Algoritmo de Control: VNS

Algoritmo Tenor Valor JHay Dif.?
AGS5 0.05 0.11506967022 No
AG15 0.025 0.05479929169 No
AGI10 0.016666 | 0.00819753592 Si
SA 0.0125 0.00007234804 Si

Tabla 22. Resultados de la prueba de Holm para reduccion de tiempo en proyectos
pequeiios aplicando metaheuristicas simples. Algoritmo de Control: VNS

Algoritmo Tenor Valor JHay Dif.?
AGS5 0.05 0.11506967022 No
AG15 0.025 0.05479929169 No
AG10 0.016666 | 0.00819753592 Si
SA 0.0125 0.00007234804 Si

Tabla 23. Resultados de Ia prueba de Holm para reduccion de tiempo en proyectos
medianos aplicando metaheuristicas simples. Algoritmo de Control: VNS
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Algoritmo Tenor Valor JHay Dif.?
AG10 0.05 0.30853753872 No
AGS 0.025 0.13566606094 No
AGI15 0.016666 | 0.04456546275 No
SA 0.0125 0.00068713793 Si

Tabla 24. Resultados de la prueba de Holm para reduccion de tiempo en proyectos
grandes aplicando metaheuristicas simples. Algoritmo de Control: VNS

Algoritmo Tenor Valor JHay Dif.?
AGS 0.05 0.15524721715 No
AG15 0.025 0.11836178531 No
AG10 0.016666 | 0.031489525607 No
SA 0.0125 0.00019287337 Si

Tabla 25. Resultados de la prueba de Holm para reduccion de tiempo asignando
desarrolladores Expertos en proyectos pequeiios aplicando metaheuristicas simples -
Algoritmo de Control: VNS

Algoritmo Tenor Valor JHay Dif.?
AG1S5 0.05 0.03394457743 Si
AG10 0.025 0.01422986845 Si

AGS 0.016666 | 0.00529356866 Si
SA 0.0125 0.00000588566 Si

Tabla 26. Resultados de la prueba de Holm para reduccion de tiempo asignando
desarrolladores expertos en proyectos medianos aplicando metaheuristicas simples -
Algoritmo de Control: VNS
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Algoritmo Tenor Valor .Hay Dif.?
AG5 0.05 0.15524721715 No
AG10 0.025 0.11836178531 No
AGI15 0.016666 | 0.03148952560 No

SA 0.0125 0.00019287337 Si

Tabla 27. Resultados de la prueba de Holm para reduccion de tiempo asignando
desarrolladores expertos en proyectos grandes aplicando metaheuristicas simples -
Algoritmo de Control: VNS

De acuerdo con los resultados obtenidos y su correspondiente analisis fue
posible determinar que tanto el VNS como el algoritmo genético (con sus distintas
probabilidades de mutacién) arrojaron mejores resultados para todos los escenarios de
prueba que el SA. Para ilustrar podemos tomar como ejemplo la instancia 1 de los
proyectos medianos (M1), donde el GP logré crear una planificacién centrada en la
reduccién de tiempo con una duracion de aproximadamente 80 horas, valor que en
contraste con los resultados reflejados en la Tabla 14 es mejor que el obtenido por el
SA pero inferior a los obtenidos con el VNS y las distintas versiones del AG. Este

resultado es similar para el resto de las instancias.

Analisis de Sensibilidad del Algoritmo Genético

Para efectos de observar la incidencia de los parametros propios del algoritmo
genético en la generacion de las planificaciones, a continuacién se exponen los
resultados de un analisis de sensibilidad llevado a cabo variando la probabilidad de
mutacion y numero de generaciones del AG para reduccion de tiempo, consolidando

los casos de prueba indicados en la Tabla 28, para cada uno de los cuales se mantuvo
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el mismo nimero de evaluaciones. Las medias de los resultados de dichas pruebas se
indican en la Tabla 29, cuyo analisis es representado en el diagrama de cajas y
bigotes de la Figura 21. En particular se observar que los mejores resultados
promedios y con menor desviacién estandar, se obtuvieron a partir del 15% de
probabilidad de mutacién y 40 generaciones. Para determinar el grado de
significacion se realizé el Test Holm —--como se observa en la Tabla 30--- lo que nos
indica que no hay suficientes indicios para aseverar que es la mejor opcion de

configuracion de los parametros del GA.

ID Probabilidad de Mutacion Numero de Generaciones
GA A 10
GA_B 5% 20
GA C 40
GA_D 10
GA_E 10% 20
GA_F 40
GA_G 10
GA_H 15% 20
GA_l 40

Tabla 28. Identificacion de las versiones del Algoritmo Genético para el analisis de sensibilidad
(Reduccion de Tiempo)
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Caso de Algoritmo Genético
Prueba | GA A | GA B|GA C|{GAD|GAE| GAF|GA G|GA H| GA_I
P1 56.23 | 57.51 | 56.02 | 56.07 | 56.13 | 57.79 | 56.65 | 57.49 | 56.07
P2 48.88 | 49.80 | 5028 | 49.88 | 48.60 | 49.62 | 48.73 | 49.34 | 50.30
P3 63.57 | 62.82 | 62.57 | 62.51 | 62.63 | 62.74 | 62.36 | 62.33 | 63.58
P4 51.97 | 52,68 | 51.04 | 51.13 | 51.36 | 51.38 | 51.78 | 51.78 | 50.25
P5 56.88 | 56.72 | 57.54 | 57.24 | 56.83 | 56.96 | 56.95 | 57.13 | 56.75
P6 4452 | 4544 | 4497 | 4522 | 4477 | 44.37 | 45.04 | 44.49 | 44.40
M1 80.49 | 80.35 | 7828 | 81.35 | 77.99 | 77.54 | 77.00 | 80.13 | 79.48
M2 60.25 | 59.15 | 61.06 | 60.61 | 60.01 | 58.43 | 60.14 | 59.46 | 58.94
M3 79.14 | 77.94 | 79.99 | 77.87 | 80.02 | 80.74 | 79.64 | 78.26 | 78.95
M4 69.40 | 6823 | 67.47 | 72.15 | 64.86 | 69.56 | 68.12 | 64.76 | 67.41
MS5 85.99 | 85.77 | 8633 | 8537 | 85.50 | 86.17 | 84.36 | 8598 | 85.47
M6 69.61 | 69.83 | 68.26 | 67.42 | 69.91 | 73.09 | 70.73 | 6755 | 72.88
Gl 101.67 | 102.84 | 104.58 | 102.18 | 100.94 | 101.02 | 102.39 | 102.49 | 100.95
G2 62.97 | 62.69 | 6126 | 62.51 | 59.54 | 63.22 | 63.66 | 6425 | 59.76
G3 | 101.39 | 102.02 | 102.13 | 101.93 | 101.64 | 102.76 | 102.33 | 103.61 | 101.59
G4 58.08 | 61.46 | 61.26 | 61.15 | 62.22 | 61.42 | 62.80 | 58.92 | 63.06
G5 104.34 | 104.33 | 104.77 | 103.42 | 103.52 | 105.18 | 103.33 | 103.23 | 102.39
G6 51.81 | 50.40 | 51.41 | 5139 | 51.42 | 50.75 | 51.90 | 52.82 | 50.61

Tabla 29. Medias de los resultados obtenidos para reduccién de tiempo con distintas versiones
del algoritmo genético (Analisis de Sensibilidad)
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Figura 21. Diagrama de Cajas y Bigotes: Versiones del AG en el analisis de sensibilidad

Algoritmo Tenor Valor ;Hay Dif.?
GA E 0.05 0.3956 No
GA_ D 0.025 0.1577 No
GA_H 0.016 0.118 No
GA G 0.0125 0.0617 No
GA_A 0.01 0.0515 No
GA_B 0.0083 0.0354 No
GA_C 0.0071 0.0271 No
GA_F 0.00625 0.0177 No

Tabla 30. Resultados de la prueba de Holm para reduccién de tiempo con distintas versiones del
algoritmo genético - Algoritmo de Control: GA_I
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5.3 Implementacion de un Algoritmo Memético

Con base en dichos resultados, y considerando las ventajas de la hibridacion
de metaheuristicas expuestas en diversas investigaciones (Martinez, 2011), se
formulé un algoritmo memético clasico tal como se indica en la Figura 22. Este
algoritmo se basa en la estructura de un algoritmo poblacional, que en este caso es el
algoritmo genético, e incluye bajo cierta probabilidad de ocurrencia un mecanismo de
una metaheuristica local o de trayectoria, que en este caso es el VNS el cual se

desarrolla de acuerdo al pseudocddigo especificado en la Figura 5.

Para las pruebas correspondientes al algoritmo memético implementado, se
definieron los escenarios de prueba indicados en la Tabla 31, cada uno de los cuales
tiene una probabilidad de mutacién propia del algoritmo genético asi como también
una probabilidad de ejecucion del VNS para efectos de realizar las comparaciones

correspondientes.

Los valores correspondientes a las medias para cada escenario de prueba,
obtenidos a partir de las ejecuciones del algoritmo memético las cuales se realizaron
de la misma forma que las metaheuristicas simples, se indican en las Tablas 32 — 34,
y su correspondiente interpretacion a través de las pruebas de Friedman y Holm en las
Tablas 35-46. La representacion grafica de las diferencias entre las metaheuristicas

simples y las diferentes versiones del algoritmo memético implementadas se indica en

la Tabla 47.
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16 if Randl, 1) < promiscarcn then

17 Qi) +LocarnlaprovEmENT{Q]): // aplicacién de un

18 // procedimiento de mejora
in end if

20 end for

23 P BEPLACEWORSTINDIVIDUALS( P, Q)

22 end while

23 Se +— GerBrsrSorvTioN( P, Sgit

1 end while
5 return S

(e~

Figura 22. Pseudocédigo del Algoritmo Memético

D Algoritmo Memético
Probabilidad de mutacién Probabilidad de Bisqueda Local
MA M5 _VNSI5 5% 15%
MA_MS VNS30 5% 30%
MA MI10 VNSIS5 10% 15%
MA MI10_VNS30 10% 30%
MA_MI15 _VNSIS 15% 15%
MA M15 VNS30 15% 30%

Tabla 31. Identificacién del Algoritmo Memético
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Caso de Algoritmo Memético
Prueba

w = w < v, <

o P yomd o - e

wn 92 ) ) ) %)

4 7. Z Z Z Z

>| N >| >I >1 >l

v, v = e " w

E E — — —( —(

< | EI EI EI EI

& < « < <

= = s S = S
P1 46853 4676.1 4652.75 4630.25 4646.9 4699.4
P2 3800.02 3823.475 3783.88 3896.93 3763.645 3796.325
P3 4663.6 4640.2 4691.1 4711.05 4744 .4 4671.1
P4 3854.88 3885.525 3698.89 3853.64 3863.33 3778.29
P5 5672 5687 5679.5 5692 5727 5682
P6 3657.55 3708.52 3724.04 3758.8 3798.32 3776.8
Mi1 9036.8 9048.45 9056.85 9131.45 9030.95 9002.2
M2 6898.015 7049.9 7023.995 7082.63 6954.05 6979.675
M3 9146.4 9144.7 9032.25 9176.4 9066 9159.85
M4 7021.5 7027.306 7052.73 7075.05 6837.53 7013.065
M5 9616.75 9643 9637.2 9580.1 9718.85 9625.9
M6 6810.645 6803.305 6714.58 6805.485 6843.785 6785.815
Gl 11927.75 11925 11893.75 11929.25 11942.25 11954.75
G2 9047.125 9147.05 9120.675 9231.34 9175.225 9326.9
G3 11919.75 11921.25 11874.5 11885.75 11917.75 11915.5
G4 9064.525 9246.3 9172.775 9122.25 9167.5 9197.4
G5 12045 12068.25 11947 11006.75 11966.75 12049.5
G6 8609.125 87304 8665.55 8766.775 8645.55 8640.85

Tabla 32. Medias de los resultados obtenidos para la reduccién de costos a partir de la aplicacion
del algoritmo memético
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Caso de Algoritmo Memético
Prueba
w =) ) < ] <
v -~ | o) o o)
wn 2 wn %) 72 %]
Z Z Z. Z Z Z
>| N >| >I >| >|
" ! = =) ‘v "
E w — — i —
gl = = = = =
< § < < < «
> = > >
P1 55.268 54.885 54.884 54.951 55.201 55.118
P2 45.118 45.467 45.267 45.25 45267 45,284
P3 55.301 54.918 55.251 55.068 55.051 55.153
P4 45.2 45.2 45 45.05 45.267 45.184
P5 55.918 55.868 55.834 56.052 55.684 55.818
P6 42?22 42.401 42.801 42.601 42317 42.684
M1 77.33 79.329 77.862 79.154 77.472 77.154
M2 52.243 51.402 51.587 52.386 52.427 52.794
M3 78.818 77.645 77.104 79.005 78.063 78.67
M4 53.428 52.403 51.803 52.042 52.885 51.985
M5 84.561 85.877 85.279 86.012 85.496 85.295
M6 52.352 51.318 52.318 51.32 50.925 51.601
Gl 102.415 104.825 102.805 103.47 101.975 103.155
G2 57.45 57.75 57.54 57.325 58.075 57.615
G3 102.635 102.86 103.62 101.885 103.115 102.885
G4 57.515 57.21 57.505 57.515 58.1 57.385
G5 101.715 103.78 103.15 103.28 102.04 103.01
Go6 51.04 51.375 49.835 51.225 52.165 50.575

Tabla 33. Medias de los resultados obtenidos para la reduccion de tiempo a partir de la
aplicacion del algoritmo memético
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Caso de Algoritmo Memético
Prueba
= 2 7 % 7 %
| ¢ | E | £ | 2| ¢
E o 21 S| 2l ﬁl
< i' il il EI il
= = s s = =
P1 56.352 55.651 55.852 55.902 55.319 55.834
P2 45.767 45.968 45.967 45.834 46.717 45.934
P3 55.868 55.818 56.169 55.585 55.652 55.568
P4 46.068 46.634 46.867 46.601 46.584 45.584
P5 61.602 62.503 62.703 61.303 61.17 61.553
P6 45.651 47.519 46.868 45.685 46.285 46.601
Ml 77.748 78.462 77.205 78.63 77.206 78.222
M2 53.485 55.527 53.194 55.262 54.852 55.052
M3 78.171 78.938 77.588 78.996 78.156 77.905
M4 57.541 53.36 53.211 55.528 52.336 53.862
M5 85.662 87.045 85.594 85.27 85.913 85.602
M6 53.702 54.686 53.177 55.15 55.068 52.61
Gl 102.025 102.83 100.565 101.475 102.2 101.485
G2 58.145 57.96 58.99 57.83 57.26 57.465
G3 102.38 102.77 102.685 101.96 102.495 101.435
G4 56.69 57.875 57.635 59.2 56.355 57.665
G5 105.91 104.61 104.675 104.68 103.92 103.425
G6 523 53.905 54.17 52.02 53.485 54.24

Tabla 34. Medias de los resultados obtenidos para la reduccién de tiempo asignando

desarrolladores expertos a partir de la aplicacion del algoritmo memético
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Tipo de Valor de .2 Punto
Proyecto Friedman Prob Chi K-1 Critico Se rechaza
Pequefio 34.58 0.0001 10 18.3070 Ho
Mediano 34.87 0.0001 10 18.3070 Ho
Grande 29.46 0.0010 10 18.3070 Ho

Tabla 35. Resultados de la prueba de Friedman para reduccion de costos aplicando el algoritmo

memético
Tipo de Valor de .2 Punto
Proyecto Friedman | ©rob Chi K-1 Critico Se rechaza
Pequefio 29.18 0.0012 10 18.3070 Ho
Mediano 27.16 0.0025 10 18.3070 Ho
Grande 22.31 0.0136 10 18.3070 Ho

Tabla 36. Resultados de la prueba de Friedman para reduccion de tiempo aplicando el
algoritmo memético

PTr ?;egteo F‘; i‘e'g:n‘l‘; Prob Chi’ K-1 é’;ﬁ‘f; Se rechaza
Pequefio 31.05 0.001 10 18.3070 Ho
Mediano 30.95 0.0001 10 18.3070 Ho
Grande 24.44 0.007 10 183070 Ho

Tabla 37. Resultados de la prueba de Friedman para reducciéon de tiempo asignando
desarrolladeres expertos aplicando el algoritmo memético
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Algoritmo Tenor Valor JHay Dif.?

MA_M10_VNSI15 0.0500 0.1076 No
MA_MS5 VNSI15 0.0250 0.0431 No
MA_M15 VNS30 0.0167 0.0431 No
MA_M5 VNS30 0.0125 0.0142 No
AGS5 0.0100 0.0086 Si
MA_M10_VNS30 0.0083 0.0086 No
MA_MI15 VNSI5 0.0071 0.0066 Si
AGI15 0.0063 0.0006 Si
AG10 0.0056 0.0000 Si

SA 0.0050 0.0000 Si

Tabla 38. Resultados de la prueba de Holm para reduccion de costos en proyectos
pequeiios aplicando el algoritmo memético. Algoritmo de Control: VNS

Algoritmo Tenor Valor Hay Dif.?

MA_M5_VNS15 0.0500 0.0763 No
MA_MI15 VNSI15 0.0250 0.0763 No
MA_MI15 VNS30 0.0167 0.0525 No
MA_M10_VNS15 0.0125 0.0226 No
MA_MS5_VNS30 0.0100 0.0086 Si
AG15 0.0083 0.0066 Si
AGI10 0.0071 0.0011 Si
MA_MI10_VNS30 0.0063 0.0011 Si
AG5 0.0056 0.0000 Si

SA 0.0050 0.0000 Si

Tabla 39. Resultados de la prueba de Holm para reduccion de costos en proyectos
medianos aplicando el algoritmo memético. Algoritmo de Control: VNS
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Algoritmo Tenor Valor JHay Dif.?

MA M10_VNSI15 0.0500 0.1167 No
AGI15 0.0250 0.0476 No

MA M5 VNSI5 0.0167 0.0389 No
MA_M10_VNS30 0.0125 0.0389 No
AGI10 0.0100 0.0160 No

AGS5 0.0083 0.0086 No
MA M15 VNSIS 0.0071 0.0033 Si
MA_M5_VNS30 0.0063 0.0013 Si
MA_M15 VNS30 0.0056 0.0004 Si
SA 0.0050 0.0000 Si

Tabla 40. Resultados de la prueba de Holm para reduccion de costos en proyectos
grandes aplicando el algoritmo memético. Algoritmo de Control: VNS

Algoritmo Tenor Valor JHay Dif.?
MA M10 VNSI5 0.0500 0.0697 No
MA M10 _VNS30 0.0250 0.0525 No
MA_ M5 VNS30 0.0167 0.0283 No
MA_M15_VNSI15 0.0125 0.0253 No
MA M15 VNS30 0.0100 0.0180 No

AGI15 0.0083 0.0086 No

AGS 0.0071 0.0050 Si
MA_MS_VNSI15 0.0063 0.0025 Si
AG10 0.0056 0.0001 Si

SA 0.0050 0.0000 Si

Tabla 41. Resultados de la prueba de Holm para reduccién de tiempo en proyectos
pequeiios aplicando el algoritmo memético. Algoritmo de Control: VNS
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Algoritmo Tenor Valor JHay Dif.?

MA_MI10_VNS15 0.0500 0.2228 No
MA_MS5_VNSI5 0.0250 0.0525 No
MA_MI15 VNS30 0.0167 0.0431 No
MA_M5_VNS30 0.0125 0.0283 No
MA_MI5_VNSI5 0.0100 0.0226 No
AG15 0.0083 0.0086 No
AGI10 0.0071 0.0038 Si

AGS 0.0063 0.0028 Si
MA_M10_VNS30 0.0056 0.0028 Si
SA 0.0050 0.0000 Si

Tabla 42. Resultados de la prueba de Holm para reduccion de tiempo en proyectos
medianos aplicando el algoritmo memético. Algoritmo de Control: VNS

Algoritmo Tenor Valor Hay Dif.?

AG10 0.0500 |  0.4431 No

MA MS_VNSI5 0.0250 0.2228 No
AG5 0.0167 0.01825 No

| MA_M15_VNS30 |  0.0125 0.0697 No |

MA_M10_VNS30 0.0100 0.0636 No
MA _M15 VNSI5S |  0.0083 0.0476 No
MA_MI10 VNS15 0.0071 0.0389 No
MA_ M5 VNS30 0.0063 0.0202 No
AGIS5 0.0056 0.0160 No

SA 0.0050 0.0001 Si

Tabla 43. Resultados de la prueba de Holm para reduccién de tiempo en proyectos
grandes aplicando el algoritmo memético. Algoritmo de Control: VNS
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Algoritmo Tenor Valor JHay Dif.?

AGS 0.0500 0.2228 No

AGI1S 0.0250 0.1702 No

MA M15 VNS30 0.0167 0.0431 No
MA_M10_VNS30 0.0125 0.0180 No
MA_MI15 VNSI5 0.0100 0.0180 No
AG10 0.0083 0.0086 No
MA_MS5_VNSI15 0.0071 0.0066 _ Si
MA_MS5_VNS30 0.0063 0.0028 Si
MA MI10_VNSI15 0.0056 0.0004 Si
SA 0.0050 0.0000 Si

Tabla 44. Resultados de la prueba de Holm para reduccion de tiempo en proyectos
pequeiios con asignacion de desarrolladores expertos aplicando el algoritmo memético.
Algoritmo de Control: VNS

Algoritmo Tenor Valor JHay Dif.?
MA_M10_VNSI15 0.0500 0.1471 No
o MA_MI15 VNSI15 0.0250 0.0350 No
AG15 0.0167 0.0226 No
AG10 0.0125 0.0180 No
MA_M15_VNS30 0.0100 0.0066 Si
AGS 0.0083 0.0028 Si
MA M5 _VNS15 0.0071 0.0028 Si
MA_M5_VNS30 0.0063 0.0006 Si
MA MI10_VNS30 0.0056 0.0006 Si
SA 0.0050 0.0000 Si

Tabla 45. Resultados de la prueba de Holm para reduccion de tiempo en proyectos
medianos con asignacién de desarrolladores expertos aplicando el algoritmo memético.
Algoritmo de Control: VNS
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Algoritmo Tenor Valor ;Hay Dif.?

AGS5 0.0500 0.4244 No
MA_MI15 _VNS30 |  0.0250 0.2523 No
MA_M15 VNSI5| 0.0167 0.1702 No
MA_MI10_VNS15 | 0.0125 0.0763 No
MA_M10_VNS30 | 0.0100 0.0636 No
AGI10 0.0083 0.0431 No
MA_M5 _VNSIS | 0.0071 0.0350 No
MA_MS5_VNS30 0.0063 ©0.0180 " No
AG15 0.0056 0.0066 No

SA 0.0050 0.0000 Si

Tabla 46. Resultados de la prueba de Holm para reducciéon de tiempo en proyectos
grandes con asignacion de desarrolladores expertos aplicando el algoritmo memético.
Algoritmo de Control: VNS
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Tabla 47. Diagramas de Cajas y Bigotes de los resultados del algoritmo memético para reduccion
de costos y tiempo
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Analisis de sensibilidad del algoritmo memético

En el mismo orden de ideas para efectos de tomar en cuenta los diversos
parametros que juegan un papel importante para los resultados obtenidos en el AM, a
continuacion se detallan algunas pruebas realizadas con 10% de probabilidad de
mutacién (siendo que fue el valor que arrojo los mejores resultados para todos los
casos en general) y distintas probabilidades de busqueda local tal como se indica en la
Tabla 48, con el fin de verificar la incidencia del mecanismo de lamarkismo parcial
dentro del AM. Las medias de los resultados de dichas pruebas, las cuales se
realizaron con el mismo niimero de evaluaciones, se indican en la Tabla 49 los cuales
son representados graficamente en el diagrama de cajas y bigotes de la Figura 23, en
la que se puede observar que con la configuracion de 15% de probabilidad de
aplicacion del método de busqueda local VNS en el memético y con un probabilidad
de mutacion de 10% se obtuvo en 7 de los 18 casos los mejores resultados para el

problema abordado.

ID Probabilidad de Mutacion Probabilidad de Busqueda Local
MA A 5%
MA_B 10%
MA _C 15%
= 10%
MA D 20%
MA_E 25%
MA F 30%

Tabla 48. Identificacion de las versiones del Algoritmo Memético para el
analisis de sensibilidad (Reduccion de Tiempo)
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Caso de Algoritmo Memético

Prueba MA_A MA_B MA_C MA_D MA_E MA_F
Pl 57.04 55.96 57.09 57.43 57.07 56.52
P2 50.33 49.03 48.94 51.02 49.80 50.12
P3 61.72 63.06 61.04 62.50 61.64 61.90
P4 49.80 50.18 52.09 50.86 52.36 50.01
P5 56.80 56.88 57.06 56.93 57.30 56.98
P6 45.32 45.43 44.78 46.02 44.57 4525
M1 80.51 79.80 80.73 81.90 81.36 81.41
M2 58.20 60.13 56.86 59.29 58.34 62.39
M3 81.41 80.77 80.67 80.57 80.50 80.30
M4 66.46 65.66 66.17 64.56 66.73 68.40
M5 87.13 86.99  86.25 86.68 86.75 86.41
M6 66.96 65.08 66.15 66.35 65.56 67.10
Gl 105.09 10521 103.69 104.73 104.88 104.97
G2 65.18 63.74 64.19 63.98 62.50 62.08
G3 104.05 104.18 104.02 104.92 104.28 104.55
G4 62.61 61.23 61.79 59.52 63.31 61.29
G5 105.83 106.17 105.45 105.83 105.89 105.71
G6 54.71 54.22 54.94 53.22 53.58 56.24

Tabla 49. Medias de los resultados obtenidos para reduccién de tiempo con distintas versiones
del algoritmo memético (Analisis de Sensibilidad)
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Figura 23. Diagrama de Cajas y Bigotes: Versiones del AM en el analisis de sensibilidad

5.4 Comparacion General
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A partir de los resultados obtenidos mediante la ejecucion de las pruebas de

las metaheuristicas simples y el algoritmo memético respectivamente, es posible

afirmar el VNS es el algoritmo que arrojé los mejores resultados para todos los casos

de prueba en lo concerniente a reduccion de costo y reduccion de tiempo, con o sin

asignacion de desarrolladores expertos.

Sin embargo, para efectos de realizar una comparacién mas general en la que

se visualice con mayor claridad dicha afirmacion, a continuacién se presenta un

resumen de los resultados obtenidos para reduccion de tiempo a partir de todas las
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metaheuristicas implementadas, especificando las versiones del algoritmo genético y

memético que en general arrojaron mejores resultados para todos los casos de prueba.

En la Tabla 50 se indican las medias de los valores obtenidos por las
estrategias incluidas en este resumen y en las tablas 51 — 54 se indican los resultados
correspondientes a las pruebas de Friedman y Holm de este subconjunto de

ejecuciones.

Adicionalmente, los diagramas de cajas y bigotes indicados en la Tabla 55
corresponden a la representacion grafica de los resultados obtenidos en esta
comparacion general, en los que se puede observar: la poca dispersion de los
resultados del VNS y la simetria de los resultados del algoritmo memético, asi como
también las diferencias significativas que existen con respecto a los resultados

obtenidos a partir del SA.
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Caso de Metaheuristica
Prueba SA VNS AG10 | MA_M10_VNSI5 | MA_M15_VNS15

P 60.201 54.5 55.135 54.884 55.201
P2 49.634 44.567 45.467 45.267 45.267
P3 61.136 54.517 55.268 55.251 55.051
P4 50.617 44.55 45.684 45 45.267
P5 62.469 55.551 56.484 55.834 55.684
P6 50.317 41.317 42.934 42.801 42.317
Ml 93.58 72.869 78.336 77.862 77.472
M2 68.186 48.377 52.51 51.587 52.427
M3 92.856 75.561 77.496 77.104 78.063
M4 63.518 52.269 53.203 51.803 52.885
M5 100.18 82.626 87.402 85.279 85.496
M6 67.494 47.526 52.743 52.318 50.925
Gl 116.81 94.125 10261 102.805 101.975
G2 68.245 53.945 56.965 57.54 58.075
G3 114.93 114.93 102.565 103.62 103.115
G4 67.33 54.71 56.74 57.505 58.1
G5 116.25 95.691 102.69 103.15 102.04
G6 63.23 44.8 50.375 49.835 52.165

Tabla 50. Comparacién de los resultados obtenidos para reduccién de tiempo en la comparacién
de metaheuristicas y el algoritmo memético

I;rr i(?;eg:o I?:' ?;g;:;i Prob Chi’ K-1 é):ltlltc(:) Se rechaza
Pequefio 17.96 0.001 4 9.4877 Ho
Mediano 17.76 0.001 4 9.4877 Ho
Grande 12.28 0.015 4 9.4877 Ho

Tabla 51. Resultados de la prueba de Friedman para reduccion de tiempo en la comparacién de
metaheuristicas y el algoritmo memético
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Algoritmo Tenor Valor JHay Dif.?
MA_MI10_VNSI15 0.05 0.06680720126 No
MA_M15_VNS15 0.025 0.04456546275 No

AGI10 0.016666 | 0.00255513033 Si
SA 0.0125 0.00003167124 Si

Tabla 52. Resultados de la prueba de Holm para reduccién de tiempo (Proyectos
pequeiios) en la comparacion de metaheuristicas y el algoritmo memético. Algoritmo de
Control: VNS

Algoritmo Tenor Valor JHay Dif.?
MA_M10_VNSIS5 0.05 0.21185539858 No
MA_M15_VNSI5 0.025 0.03593031911 No

AG10 0.016666 0.0046618802 Si
SA 0.0125 0.00007234804 Si

Tabla 53. Resultados de la prueba de Holm para reduccion de tiempo (Proyectos
medianos) en la comparacion de metaheuristicas y el algoritmo memético. Algoritmo de

Control: VNS
Algoritmo Tenor Valor (Hay Dif.?
AG10 0.05 0.30853753873 No
MA_M15_VNS15 0.025 0.13566606095 No
MA_MI10_VNS15| 0.016666 | 0.04456546276 No
SA 0.0125 0.00068713794 Si

Tabla 54. Resultados de la prueba de Holm para reduccion de tiempo (Proyectos

grandes) en la comparacién de metaheuristicas y el algoritmo memético. Algoritmo de Control:
VNS
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Proyectos Pequeiios

= |

AGI0 D
MA_M15_YNS15 !— ——]
MA_M10_VNS15 EJ:]

VNS l

Proyectos Medianos

SA !

MA_M15_VNS15 |———————{
MA_MI0_VNS15 I———-[ ———o
VNS D +

SA +

MA_MIO_VNS15
MA_MI5_VNS15 E:]
i [:j N

Tabla 55. Diagramas de Cajas y Bigotes de la comparacién de metaheuristicas y el algoritmo
memético para reduccién de tiempo
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Finalmente, dado que cada uno de los casos de prueba estipulados representan
instancias de un mismo problema, a continuaciéon en la Tabla 56, se muestran los
diagramas de cajas y bigotes de la comparacion de todas las estrategias
implementadas para cada enfoque de la funcién objetivo: reduccién de costos y
reduccion de tiempo (asignando o no desarrolladores expertos), los cuales fueron
obtenidos a partir del resumen de las medias de cadé uno de dichos casos. A partir de
este resumen, ;e puede observar nuevamente al VNS como el algoritmo con mejores
resultados para todas las instancias, y las diferentes versiones del genético con

resultados equiparables al mismo.
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Reduccion de costos

SA I
405 s I——
AGID o e — e ] -3
MA_MI0: VNS30| 1———=— S T I
MA_M15_VNS15 1=~ T R
MA_M5_VNS30 [P | R -
AG15S T U I
MA_M15_VNS30) e M P pp—— -
MAMS VNS | [ = J
MA_M10_VNS15 - T
YNS [+ 4+

4 5 & 10

SA + 1
AGs iy S
AGIO J——— —y
Acts o m oo S —
MA_M15_VNS30 Im -t r
MA_VE_VNS15 B iAW & 8- .
MA_M10_VNS30 =B Rt e
MA_M5_VNS30 == e i
MA_M15_VNS15 [ N I
MA_MI0_VNS15| 1~———~ I I s 4

VNS ] —f— - ' . . 4

Reduccién de tiempo asignando expertos

SA |
MA_M5_VNS30 == -
MA_M10_VNS30 I et I I
MA_MS_VNS15 [ s M B e
MA_M16_VNS15 S |
AGID (. T J— =i
MA_M15_VNS15 (R s SR P ;
MA_M15_VNS30 [ s M R ST

AB1S i M N b
AGS s M SR -
VNS P = 4

Tabla 56. Diagramas de Cajas y Bigotes de comparacion de las estrategias implementadas para

todos los casos de prueba
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Capitulo 6. Conclusiones

En esta investigacion se ha propuesto la implementacién de metaheuristicas
para dar soluciéon al problema de planificacion de proyectos de software. Las
mencionadas metaheuristicas resultaron ser estrategias mediante las cuales
efectivamente es posible ofrecer solucion a dicho problema, el cual fue abordado
como un problema de optimizacién combinatoria a partir de la representacion del
problema de planificacion de proyectos. Los parametros del problema se sustentaron
en informacion suministrada por la compaifiia Caniatech y se estimaron mediante la
aplicacion  metodologias agiles de desarrollo de proyectos de software,
especificamente en cuanto a la indicacion de la duracion de las tareas del proyecto a
través de puntos de complejidad y las restricciones propias de los proyectos de

planificacion de software.

Las metaheuristicas implementadas fueron el recocido simulado (SA), la
busqueda con vecindario variable (VNS) y un algoritmo genético (GA)
respectivamente. Estas fueron seleccionadas como estrategias sin memoria y de tipo
poblacional o de trayectoria, con el objeto de comparar los resultados obtenidos con
métodos cuya exploracién del espacio de busqueda sea diferente entre si. Por otra
parte, para la ejecucion de las pruebas de cada uno de los algoritmos realizados se
definieron un conjunto de escenarios de prueba, los cuales se indican en primer lugar

a partir del tamafio del proyecto de software y en segundo lugar a partir de las
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variantes que puede tener dependiendo de la cantidad de desarrolladores con los que
puede contar el equipo de desarrollo, y las habilidades o experiencia de cada uno de
ellos. Dicho conjunto se conformé en total por 18 casos de prueba, los cuales fueron
evaluados por cada una de las metaheuristicas desarrolladas, para cada enfoque de la
funcién objetivo: reduccion de tiempo, reduccion de costos, o reduccion de tiempo
asignando lo desarrolladores con mas experiencia. para cada térea. Es importante
destacar que los casos de prueba fueron disefiados a partir de proyectos de software

reales, con miras a evaluar posteriormente el progreso de las planificaciones creadas.

Para todos los casos de prueba, el VNS y GA arrojaron resultados
equiparables, debido a que la consideracion de los cambios factibles de
desarrolladores por cada tarea permite realizar un recorrido mas amplio por las
posibles planificaciones de un proyecto determinado. Asimismo, la hibridacion de
metaheuristicas para la implementacion del algoritmo memético estructurado a partir
del algoritmo genético y del VNS permitié comparar los resultados obtenidos con una
estrategia mds robusta con la que se obtuvieron mejores resultados y menos dispersos .

que los obtenidos a través del algoritmo genético.
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Capitulo 7. Trabajo a Futuro

El trabajo a futuro de esta investigacion estd definido principalmente a partir
de dos lineas de accion. En primer lugar, resulta necesario implementar otras
metaheuristicas de diversos tipos para dar solucion a la planificacion de proyectos de
software. La seleccion realizada en esta investigacion se basé en mecanismos sin
memoria, es fundamental realizar la comparacion de los resultados a obtener a partir
de estrategias con memoria o de otras clasificaciones, conformando un abanico mas
amplio de opciones. Asimismo, la inclusién de estas nuevas estrategias permitird

formular diferentes mecanismos de hibridacion.

Por otra parte, la implantacion y seguimiento de las planificaciones generadas
a través de las metaheuristicas implementadas, en empresas de desarrollo de software
permitird determinar la efectividad de dichas planeaciones. De esta manera, serd
posible incluir otros factores que puedan afectar la planificaciéon y que resulten
fundamentales para el éxito del proyecto. Adicionalmente, dado que el problema de
planificacion en general es naturalmente dindmico y multiobjetivo, se requiere definir
nuevas estrategias algoritmicas para abordarlo y extrapolarlo al campo al campo de la
planificaciéon de software, podria abordarse por ejemplo, mediante técnicas de

computacion evolutiva interactiva o programacion dindmica.
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ANEXO A. Recorrido Topologico de un Grafo

Tomado de “Introduccion a la Teoria de Grafos”.
Matematicas Discretas. Chacon, José.

El recorrido u ordenacion topolégica de un grafo G es una ordenacion lineal
de todos los nodos de G que conserva la union entre vértices del grafo G original.
Este tipo de recorridos solo es posible para grafos aciclicos. Es ampliamente utilizado
para la representacion de problemas con relaciones de precedencia, como en el caso

de la planificacion de proyectos.

Grafo “G”

En el ejemplo anterior, existen seis diferentes recorridos topoldgicos cada uno
de los cuales respeta las relaciones de precedencia indicadas a través de los arcos del
grafo. De esta manera, si el grafo “G” representara las precedencias a partir del
recorrido topoldgico es posible determinar el orden en el que pueden ser realizadas
culminando en primer lugar aquellas que anteceden a las tareas subsiguientes.
Adicionalmente este recorrido permite conocer el nivel de profundidad de cada nodo,
indicado por los nodos que se deben recorrer desde el punto de inicio para llevar a él.
Asi, si el nodo no tiene precedentes corresponde al nivel cero, y si es el nodo final del

grafo corresponde al recorrido més largo que se debe recorrer para llegar a éste.
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ANEXO B. Grafos de precedencia de tareas de

los casos de prueba

Anexo B. 1

Grafo de Precedencia de Tareas TPG — Proyectos Pequefios
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Anexo B. 2
Grafo de Precedencia de Tareas TPG — Proyectos Medianos
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Anexo B. 3
Grafo de Precedencia de Tareas TPG — Proyectos Grandes
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Anexo C. 1
Desviacion de estandar para la reduccion de costo con

metaheuristicas simples

Caso de Metaheuristica
Prueba SA VNS AGS5 AG10 AG15

Pl 208.6864 29.6742 195.4143 119.9985 | 207.8982
P2 277.9284 153.5561 151.9984 192.5401 142.8554
P3 194.8174 56.7520 139.1904 159.9676 173.0730
P4 289.0484 57.9221 223.2501 204.7079 | 258.6114
P5 173.9553 10.5409 70.9558 115.4701 102.3678
P6 132.6382 52.0388 129.3906 131.2824 97.0721

Ml 216.6882 151.0778 | 203.9292 169.1657 181.9153
M2 2652837 | 235.2187 164.2677 1102317 | 332.9622
M3 288.3468 99.2655 196.4653 267.2609 133.4603
M4 386.7959 | 319.3844 | 251.0932 | 229.4950 | 262.7010
M5 197.4635 54.1685 191.2718 139.8495 | 207.7472
M6 256.7300 181.4375 | 2329262 | 214.4699 145.9892
Gl 168.9337 83.0136 83.0136 124.5072 136.6385
G2 293.8134 1352382 | 228.6001 179.2135 | 229.0489
G3 203.1264 125.4171 91.1196 120.6927 150.6995
G4 3347044 | 247.0215 158.4076 193.1679 | 208.2528
G5 140.2914 130.0224 113.2932 158.3640 139.9109
G6 135.3420 128.8037 | 208.1190 182.2140 182.2466
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Desviacion de estandar para la reduccion de tiempo con
metaheuristicas simples
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Caso de Metaheuristica
Prueba SA VNS AG5 AG10 AGI15
P1 3.4760 0.01 0.7345 0.6431 0.6849
P2 1.4862 0.1612 0.9920 0.7658 0.8882
P3 1.9549 0.0538 0.5827 0.5515 0.4357
P4 2.4882 0.1581 0.7509 0.8366 0.3703
P5 2.6517 0.0821 1.1094 0.8031 0.3374
P6 3.6491 0.7344 0.7345 0.8834 0.7328
M1 4.2459 1.7217 3.8350 3.2243 2.7676
M2 2.4365 2.0849 2.3623 2.6036 2.0522
M3 24365 2.0849 2.3623 2.6036 2.0522
M4 3.2361 1.6007 3.8602 4.0207 3.2058
M5 42957 1.4568 2.5199 2.8437 1.6474
M6 5.6184 3.3189 3.6787 2.7140 1.9964
Gl 3.0575 2.1822 2.5287 2.0990 2.5184
G2 4.0909 1.1427 3.0116 2.2668 1.8575
G3 13514 1.3514 3.0560 2.7172 3.2302
G4 3.6646 1.4942 1.7820 1.8199 2.2017
G5 4.2358 2.3945 3.2736 2.1001 3.2803
G6 3.7904 1.3530 43166 2.5007 1.7261
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Desviacion de estandar para la reduccidn de tiempo asignando
desarrolladores expertos con metaheuristicas simples
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Caso de Metaheuristica
Prueba SA VNS AGS5 AG10 AG15
P 4.8569 0.0126 0.8950 0.7593 0.6984
P2 1.8569 0.2123 1.0251 0.9685 0.9781
P3 2.3567 0.0689 0.8475 0.6314 0.5123
P4 3.0123 0.2156 0.8569 0.7412 0.5216
P5 2.8561 0.0985 1.0563 0.0756 0.4586
P6 3.8549 0.6521 0.7676 0.9588 0.8012
M1 5.0141 1.6232 3.0456 3.5656 3.0101
M2 2.9687 1.0789 2.5678 2.7456 2.2134
M3 5.654 1.987 2.5678 2.5014 2.0589
M4 3.5621 1.4568 3.9856 4.1542 4.2356
M5 5.0147 1.2306 2.7895 2.6321 1.9854
M6 5.8956 3.5684 3.8989 3.6597 4.5067
Gl 4.0621 2.0156 2.3689 2.5656 2.8964
G2 4.9871 1.0506 3.5151 2.5412 1.9752
G3 1.8956 1.2149 3.6812 2.1525 | 2.8956
G4 4.0521 1.3287 1.9896 1.5674 2.0556
G5 4.6154 2.0163 3.6394 2.0105 3.1056
G6 3.9631 1.1032 3.9863 2.3014 2.2841
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Desviacion de estandar para la reduccidn de costo con el

algoritmo memético

Caso de Algoritmo Memético
Prueba
wn = '] (=] wn (=]
o) " - o~ - o
%) ] ) 12 ) 0
Z Z Z Z Z Z
o > > > ) >
W v = o ", e
E 2 - oy —( Al
< | EI EI EI EI
& < < < <
= = S S s s
P1 109.3900 77.6466 89.2441 86.3492 84.8157 101.2071
P2 151.8270 163.6896 1452877 120.9517 172.6014 128.3305
P3 107.3925 115.1427 134.5593 106.7977 366.0375 75.6974
P4 172.4069 148.3434 159.0049 142.1025 367.0314 86.1143
P5 28.3823 45.3382 44,4878 28.8675 93.6898 33.7474
P6 154.3544 66.7254 115.8889 96.7933 339.7077 140.4059
Ml 163.5450 99.4416 200.2504 139.6564 138.8349 210.1316
M2 223.7573 197.7729 287.7926 241.6706 197.5676 303.5850
M3 110.7948 114.8596 160.3122 136.4917 152.6534 169.2931
M4 340.2554 301.8797 230.7068 227.1602 236.8489 351.5476
MS5 91.7528 136.4741 73.6939 341.7794 157.3874 58.7281
M6 142.3420 228.3268 225.3922 139.0094 178.8516 166.0715
Gl 70.0937 136.2290 107.2267 124.6108 67.8484 119.2770
G2 227.5568 189.8986 212.8279 2248018 249.9504 113.9639
G3 139.9228 137.5240 113.0315 151.0245 136.5927 130.3936
G4 266.1408 157.6646 213.3888 178.5095 240.7952 169.7907
G5 74.2649 86.1447 149.3905 92.1593 137.0323 72.7897
Go6 112.3753 143.3339 136.7607 122.4106 177.5740 131.5584
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Desviacion de estdndar para la reduccion de tiempo con el
algoritmo memético

Caso de Algoritmo Memético
Prueba

w =) w > w >

— - — o Y e

wn 9 wn 12, w 2]

Zz Z, Z Z Z 4

>| > > > > >

" w' o! s v w!

2 E | — - -

< | El EI SI EI

e § < « « <

= = = =
Pl 0.3693 0.3059 0.3611 0.3436 0.5540 0.4974
P2 0.3156 0.4214 0.6295 0.4249 0.4791 0.4084
P3 0.2583 0.2642 0.3538 0.5686 0.4583 0.3376
P4 0.6325 0.4830 0.4714 0.4378 0.5170 0.4471
P5 0.4025 0.3498 0.3515 0.2486 0.5249 0.2778
P6 0.7528 0.5675 0.7521 0.7756 0.4742 0.7916
M1 2.9288 1.9613 2.5924 2.4272 2.3746 2.0647
M2 1.7754 2.6531 2.1200 1.6117 2.6485 1.8201
M3 2.2430 2.4853 24735 2.7998 2.9434 2.0498
M4 1.8039 1.9823 1.9522 1.6148 1.6679 1.5773
M5 1.6592 2.2408 1.8134 2.2180 2.2053 2.0951
M6 1.6796 1.3704 2.4876 1.6833 1.6959 2.3877
Gl 2.0897 1.5451 2.2926 2.9020 3.5083 1.7470
G2 1.4763 1.3898 1.5567 1.4654 1.2601 1.4468
G3 1.8489 2.4966 2.1370 2.4922 1.7148 1.9746
G4 2.2843 1.6670 2.1455 1.3113 1.4823 1.1200
G5 2.0845 2.7194 2.0079 2.4916 29164 1.5050
G6 2.6759 2.4848 22174 1.6765 2.3153 2.6106
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Desviacién de estdndar para la reduccion de costo asignando

desarrolladores expertos con el algoritmo memético

Caso de Algoritmo Memético
Prueba

W =) [7e) <> uwn <

] " o [ap] — )

w 9 »n 1] ) %)

Z Z Z Z Z Z.

>| > >| >| >| >|

wn ! o = " "

E E - — — v

< | EI E' S' EI
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= = s s s s
P1 1.3957 0.7593 0.6964 0.5838 0.6964 0.6483
P2 0.9271 1.3239 0.9876 0.7783 1.6799 1.2792
P3 1.0499 0.6827 0.8139 0.9179 0.4537 0.7796
P4 1.5048 1.3211 2.0847 1.4994 2.1540 0.8095
P5 3.4663 3.0618 2.9955 3.0665 47011 3.6471
P6 1.8421 2.8871 4.0871 2.7655 3.1307 2.7910
M1 2.0796 1.4704 3.3730 1.5921 2.5208 2.2584
M2 2.4097 1.7938 5.4134 3.0594 3.9189 3.2195
M3 3.0001 2.0470 2.5218 3.5453 2.4542 2.1516
M4 3.824(} 2.2062 4.3693 2.1691 2.3555 1.7851
M5 2.2378 2.5419 2.0975 1.7079 1.0337 2.1325
Mé 1.7272 1.3704 2.4876 1.6833 1.6959 2.3877
Gl 2.0897 1.5451 2.2926 2.9020 3.5083 1.7470
G2 1.4763 1.3898 1.5567 1.4654 1.2601 1.4468
G3 1.7543 2.4966 2.1370 2.4922 1.7148 1.9746
G4 2.2843 1.6670 2.1455 2.4241 1.3113 1.1200
G5 2.0845 2.7194 2.0079 2.4916 29164 1.5050
G6 2.6759 2.4848 22174 1.6765 2.3153 2.6106




Desviacion de estandar para la reduccion de tiempo con
diferentes versiones del AG (Analisis de Sensibilidad)

Anexo C. 7
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Caso de Algoritmo Genético
Prueba GA A|GAB|GA C{GAD | GAE|GAF|GA G| GA H| GAI
P1 1.07 2.18 1.08 1.08 0.57 1.82 1.16 2.04 1.06
| 5.39 4.65 4.85 4.87 5.17 4.75 4.97 4.55 4.66
P3 1.43 2.14 1.05 2.02 1.35 1.08 1.58 1.98 0.67
P4 2.66 2.33 2.52 2.23 3.33 3.06 1.73 3.45 2.15
PS5 0.47 1.34 1.34 0.95 1.18 0.60 0.50 0.56 0.42
P6 1.49 3.08 2.13 2.04 0.86 1.50 3.09 2.63 1.70
Mi1 2.86 2.27 3.27 4.94 259 3.53 3.63 4.96 2.98
M2 7.58 9.09 8.96 8.10 7.84 9.17 8.65 5.90 8.98
M3 2.58 3.53 3.87 245 2.86 3.05 3.28 2.21 2.88
M4 4.60 6.50 5.41 5.96 6.76 4.99 6.07 6.41 9.14
M5 1.19 2.23 2.39 2.37 2.51 2.45 3.10 3.24 2.77
M6 6.34 6.26 6.46 4.50 5.28 6.62 6.93 5.93 8.77
Gl 1.88 2.53 3.03 1.64 2.68 1.29 2.68 1.99 2.68
G2 12.67 | 13.97 | 14.18 | 13.48 | 13.50 | 13.12 | 12.75 | 1296 | 13.01
G3 2.47 2.12 2.68 2.50 2.40 1.72 2.60 3.75 2.08
G4 3.75 4.42 4.43 2.47 3.83 4.03 4.53 432 3.75
G5 2.85 2.06 3.31 1.85 293 2.32 2.49 2.98 2.78
G6 4.38 3.95 3.98 4.25 5.08 3.75 4.96 4.78 2.88
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Desviacion de estandar para la reduccién de tiempo con
diferentes versiones del AM (Analisis de Sensibilidad)

Caso de Algoritmo Memético
Prueba MA_A MA_B MA_C MA D MA_E MA_F
P1 1.73 0.79 2.23 1.83 1.46 1.45
P2 4.54 5.11 4.69 5.16 5.60 4.48
P3 1.50 131 1.46 1.50 2.27 1.57
P4 2.33 2.54 2.16 2.87 3.92 2.51
PS 1.05 1.02 0.69 1.17 0.96 0.36
P6 3.17 2.11 2.12 2.77 2.19 1.45
Mi 432 2.58 3.36 3.36 2.94 2.92
M2 8.68 8.39 8.79 8.20 6.82 6.76
M3 2.67 2.36 2.89 2.69 3.88 3.39
M4 5.55 5.10 6.17 6.07 7.85 4.93
M5 2.08 2.09 2.36 2.97 1.74 1.63
M6 4.77 533 4.89 5.46 4.02 5.51
Gl 2.30 2.38 2.06 1.65 1.76 2.01
G2 14.27 13.33 13.89 13.80 14.67 13.65
G3 2.06 2.04 2.54 2.49 1.92 1.16
G4 3.70 2.73 1.65 3.60 3.82 4.14
G5 1.44 2.40 1.60 1.36 2.01 1.77
G6 4.25 4.09 2.89 3.56 4.41 2.80






