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Resumen 

En este ensayo continuamos nuestro trabajo previo en relación a intentar dotar a los estudios multiculturales e interculturales 

de un sólido fundamento topológico y de sistemas dinámicos. En primer lugar, nos aproximamos a las antiguas cosmovisiones 

taoístas y platónicas para mostrar que a pesar de sus diferencias, ambas comparte una estructura topológica común, a saber, 

{𝑋, Φ, 𝐴, 𝐵}, donde 𝐴⋃𝐵 = 𝑋 y 𝐴⋂𝐵 = Φ. Más allá de argumentos metafísicos, este tipo de completitud disjunta es la es-

tructura topológica básica que soporta al dualismo y a los abordajes dualistas de toda clase de fenómenos y problemas en 

ciencias y humanidades. El dualismo, además, conduce de forma natural a formular los modelos más sencillos de sistemas 

dinámicos multidimensionales no triviales. Luego de mostrar, a través de ejemplos y casos de estudio, que las topologías 

pueden ser pensadas como herramientas tanto de análisis como de diseño, procedemos a revisar algunos fundamentos de 

topología y sistemas dinámicos para darle soporte a la construcción de mapas de clasificación topológica para sistemas diná-

micos de segundo orden, nuestra herramienta básica para modelar y clasificar los patrones de comportamiento cualitativos no 

equivalentes que un sistema dinámico dual, es decir, de segundo orden, puede exhibir. Hacia el final del ensayo regresamos 

al libro de leyendas de la Hermandad de los Monjes Azules y la Tribu de los Guerreros Escarlata, tomamos prestada de la 

biofísica la dinámica de las ecuaciones de Fitzhugh, y las utilizamos para mostrar todas las dinámicas genéricas locales que 

una tal sociedad bicultural Azul-Escarlata podría tener. 

Palabras claves: Matemáticas, Topología, Sistemas Dinámicos, Modelos, Metáforas, Multiculturalismo, Interculturalismo.  

 

Abstract 

 

In this work we continue our previous work on essaying giving multicultural and intercultural studies some sound topological 

and dynamical systems foundation. We first approach ancient Taoist and Platonist cosmovisions to show that despite their 

differences both share a common topology, namely, {𝑋, Φ, 𝐴, 𝐵} with 𝐴⋃𝐵 = 𝑋, and 𝐴⋂𝐵 = Φ. Metaphysical arguments 

aside, this kind of disjoint completeness is the basic topological structure supporting dualism and dualist approaches in every 

sort of phenomena and problems in sciences and humanities. Dualism, moreover, naturally leads to formulate the simplest 

models for nontrivial multidimensional dynamical systems. After showing, through examples and case studies, that topologies 

may be thought of both as analysis or design tools, we proceed to review some basics of topology and dynamical systems to 

support the construction of topological classification maps for second-order dynamical systems, our basic tool for modeling 

and classifying all non-equivalent qualitative patterns of behavior a dual, that is to say, a second-order, dynamical system, 

may exhibit. Towards the end of the essay we go back to the book of legends of the ancient Brotherhood of the Blue Monks 

and the Tribe of the Red Knights, borrow Fitzhugh equations dynamics from biophysics, and uses it to show all the local 

generic dynamics such a Blue-Red bicultural society might have. 

Keywords: Mathematics, Topology, Dynamical Systems, Models, Metaphors, Multiculturalism, Interculturalism.  
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1 Introduction 

In the first part of this essay (Rodríguez-Millán 2020) we ap-

proached the problem of multicultural system through a se-

quence of examples and case studies chosen to show that de-

spite deep cultural and historical differences Taoist and 

Platonist cosmovisions share a common topological struc-

ture, that wars can be designed to transform multicultural so-

cieties with richer topologies into bicultural societies with 

poorer topologies, or that failures in public services can trans-

form efficient bicultural commerce systems into very ineffi-

cient multicultural commerce systems. In all this cases topol-

ogy provides a first model of compartmentalization of 

societies into sets of disjoint subsets of equivalent citizens 

according to some kind of equivalence criterion. These intu-

itive ideas were afterwards formalized through the introduc-

tion of the concepts of equivalence relation, equivalence 

class, partition, topological space, quotient map, quotient to-

pology, and quotient space. In plane words, however, this en-

tire mathematical technicality just serves the purpose of iden-

tifying, in a precise way, the cast of the comedy we are 

interested either in deciphering or putting into scene. In the 

second part of this essay we will focus our attention into the 

interactions of representatives of the equivalence classes a 

multicultural system consists of. Metaphorically speaking we 

are now going to concentrate ourselves into the drama of 

multicultural systems, and will study in detail all possible 

real dynamics of the bicultural system of the brotherhood of 

the blue monks and the tribe of the red knights. We will leave 

the study of their complex dynamics for a next paper. 

2 Topology, Linear Algebra, and Dynamical Systems 

Reviewing the equivalence relation literature (Dugundji 

1976, Kelley 1955, Munkres 1972) evidence that the appli-

cation 𝑝: 𝑋 → 𝑋/𝑅, which sends an element 𝑥 ∈ 𝑋 into its 

equivalence class [𝑥], receives different names: the projec-

tion, the quotient map, the identification map, while the space 

𝑋/𝑅 may be called the quotient space of 𝑋 with respect to 𝑅 

(or modulo 𝑅), the decomposition space of 𝑋, or the identifi-

cation space of 𝑋. According to (Munkres 1972) some math-

ematician call 𝑋/𝑅 the identification space of 𝑋 “for they 

think of 𝑋/𝑅 as having been obtained by identifying all the 

elements in each partition class to a single point”. Identify-

ing all the elements of an equivalence class to a single repre-

sentative of the equivalence class means that, once the gen-

erating equivalence relation has been defined, topologists 

loose the ability to distinguishing between 𝑅-equivalent ob-

jects, or equivalently, all elements of an equivalence class 

look undistinguishable to them; in consequence, topologists 

just take any single representative of the equivalence class as 

the universal model of all 𝑅-equivalent objects. Consistently 

with this view, Kelley (Kelley 1955) defined topologists this 

way: “A topologist is a man who doesn’t know the difference 

between a doughnut and a coffee cup”. 

From the practical point of view, it is a happy circum-

stance that topologists “think of 𝑋/𝑅 as having been obtained 

by identifying all the elements in each partition class to a sin-

gle point”, because that is exactly the same thing that the 

seller 𝑆 of Case Study 2 (Rodríguez-Millán 2020) does in re-

lation to the set 𝐶 of his clients. Given that before the black-

out all the clients are indistinguishable, the dynamics of the 

system (𝑆, 𝐶) can be identified with the dynamics of the sys-

tem (𝑆, {𝑐}), where the singleton {𝑐} is a single representative 

of the whole set of clients 𝐶. As already explained in Exam-

ple 5 (Rodríguez-Millán 2020), after the blackout, the identi-

fication space of C explode into {𝐶, 𝑀, 𝐸, 𝐹, 𝐺}, and the dy-

namics of the system into the dynamical system 

(𝑆, {𝑒}, {𝑓}, {𝑔}), where the singletons {𝑒}, {𝑓}, {𝑔} are the 

representatives of the identification classes 𝐸, 𝐹, 𝐺, of clients, 

respectively. 

The very foregoing argument can be applied to all pre-

vious examples and cases study … even tough we might be 

accused of topologists, that is to say, of not knowing the dif-

ference between doughnuts and coffee cups. 

2.1 Linear Dynamical Systems 

Even though we could define dynamical systems intrinsically 

as in (Hirsch-Smale 1974, Arnol’d 1982, Bröcker-Jänich 

1982), for the sake of the present work, we will follow the 

traditional approach, and will use linear differential equa-

tions to model linear dynamical systems. 

 

Definition 1. An n-dimensional linear dynamical system is 

any process admitting being modeled by an nth-order linear 

differential equation 

 

�̇� = 𝐴𝑥 + 𝐵𝑢(𝑡), 𝑥(0) =  𝑥0, (1) 

 

where 𝐴 and 𝐵 are real matrices of appropriate dimensions, 

𝑥 ∈ ℝ𝑛, and 𝑢(𝑡) ∈ ℝ𝑚, for every 𝑡 ∈ ℝ. 

 

As it is well known (Hirsch-Smale 1974), the trajecto-

ries of the linear dynamical system (1) are: 

 

𝑥(𝑡) = 𝑒𝐴𝑡𝑥0 + ∫ 𝑒𝐴(𝑡− 𝜎)𝐵𝑢(𝑡)𝑑𝑡 =  𝑥𝑓(𝑡) + 𝑥𝑢(𝑡)
𝑡

0
, (2) 

 

where 𝑥𝑓(𝑡) =  𝑒𝐴𝑡𝑥0, the solution of the homogeneous sys-

tem 

 

�̇� = 𝐴𝑥, 𝑥(0) =  𝑥0, (3) 

 

is called the free dynamics of system (1), and 𝑥𝑢(𝑡) =

∫ 𝑒𝐴(𝑡− 𝜎)𝐵𝑢(𝑡)𝑑𝑡
𝑡

0
, called the forced dynamics of system 

(1), models the action of the external force 𝑢(𝑡) on the dy-

namics of the system. The free dynamics 𝑥𝑓(𝑡) =  𝑒𝐴𝑡𝑥0, can 

be additively decomposed as a linear combination of the fun-
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damental solutions 𝑥𝑓𝑖(𝑡) = 𝑒𝜆𝑖𝑡 of (3), where the parame-

ters 𝜆𝑖 , 1 ≤ 𝑖 ≤ 𝑛, are the roots of the characteristic polyno-

mial 

 

𝑝𝐴(𝜆) =  𝐷𝑒𝑡(𝐴 −  𝜆𝐼), (4) 

 

of matrix 𝐴. The roots 𝜆𝑖 , 1 ≤ 𝑖 ≤ 𝑛, are called the eigen-

values, or the characteristic values, of matrix 𝐴. 

The origin 0 ∈ ℝ2 is a constant solution of �̇� =
𝐴𝑥, 𝑥(0) =  𝑥0, called equilibrium point, which organizes 

the long-run behavior of the set of trajectories. The origin is 

a sink (source) if all the eigenvalues of 𝐴 have negative (pos-

itive) real part, in which case the trajectories converge to (di-

verges from) it. Sinks (sources) are also called stable (unsta-

ble) equilibria. When one eigenvalue is positive and the other 

is negative, the origin is called a saddle point. 

Eigenvalues are algebraic invariants (Hirsch-Smale 

1974) under linear transformations of coordinates, i.e., the set 

of eigenvalues of matrices 𝐴 and QA𝑄−1 are the same, for 

every invertible matrix 𝑄. So, without loosing generality, we 

will assume that systems are given in Jordan canonical forms, 

with respect to the basis of the eigenvectors associated to the 

eigenvalues of matrix 𝐴.  

  

Case Study 1. Linear Second-Order Dynamical Systems. 

Let us consider the second-order homogeneous linear system 

�̇� = 𝐴𝑥, 𝑥(0) =  𝑥0, with 𝐴 =  (
𝑎11 𝑎12

𝑎21 𝑎22
). The characteris-

tic polynomial of the matrix 𝐴 is 

 

𝑝(𝜆) = 𝐷𝑒𝑡(𝐴 −  𝜆𝐼) = 𝜆2 − 𝑇𝑟(𝐴)𝜆 + 𝐷𝑒𝑡(𝐴),  (5) 

 

where 𝑇𝑟(𝐴) = 𝑎11+ 𝑎22, and 𝐷𝑒𝑡(𝐴)  = 𝑎11𝑎22 − 𝑎12𝑎21. 

Then, the eigenvalues of matrix 𝐴 are 

 

𝜆1,2 =  
1

2
 (𝑇𝑟(A)  ± √(𝑇𝑟(A))2 − 4𝐷𝑒𝑡(A)), (6) 

 

which are the very same roots of the second-degree polyno-

mial 𝑝(𝜆) in Example 2 (Rodríguez-Millán 2020), under the 

identification of parameters, 𝑎 =  −𝑇𝑟(𝐴), and 𝑏 = 𝐷𝑒𝑡(𝐴). 

So, the partition of the set of second-degree polynomials in 

Figure 3 also holds for the second-degree characteristic pol-

ynomials of second-order linear systems (3), if we rotate Fig-

ure 3 (Rodríguez-Millán 2020) around the vertical 𝑎-axis or, 

equivalently, if we interchange the red and green compart-

ments in Figure 3 (Rodríguez-Millán 2020). ∎ 

 

To know the eigenvalues of the linear homogeneous 

system (3) allows constructing the topological classification 

map of all possible free dynamics of the system, up to linear 

transformations of coordinates. The equivalent relation sup-

porting the construction of topological classification maps is 

resumed in Table 1, where we have respected the color code 

of the quotient space in Figure 3 (Rodríguez-Millán 2020).  

The identification map associated to this equivalent relation 

permits equipping topological classification maps with the 

quotient topology, transforming them into quotient spaces. 

 
Table 1. Equivalence relation supporting the construction of the topological 

classification map of a second-order linear dynamical systems. 

𝑻𝒓(𝑨) 𝑫𝒆𝒕(𝑨) ∆(𝑨) Topology Code 

 < 𝟎  Saddle (U, S) 

Sources  

> 𝟎 > 𝟎 > 𝟎 Nodes (U, U) 

> 𝟎 > 𝟎 0 Focus (U, U) 

> 𝟎 > 𝟎 0 Improper Nodes (U, U) 

> 𝟎 𝟎 > 𝟎 Degenerated 

Equilibria 

(C, .) 

> 𝟎 > 𝟎 < 𝟎 Spirals (@, U) 

Sinks 

< 𝟎 > 𝟎 > 𝟎 Nodes (S, S) 

< 𝟎 > 𝟎 𝟎 Improper Nodes (S, S) 

< 𝟎 𝟎 > 𝟎 Degenerated 

Equilibria 

(C, .) 

< 𝟎 > 𝟎 < 𝟎 Spirals (@, S) 

𝟎 > 𝟎 < 𝟎 Centers (@, C) 

 

In Table 2 we collect the Jordan canonical form associ-

ated to all different eigenvalue configurations of matrix 𝐴, 

and all possible forms of the state-transition matrix 𝒆𝑨𝒕.  

 
Table 2. Jordan canonical forms of matrix 𝐴, and the associated fundamental 

solutions 𝑒𝐴𝑡. Even thought both A and 𝑒𝐴𝑡 had the same formal structure, 

the red-green color code in the column of the eigenvalues indicates whether 

a given topology represents a sink or a source, consistently with the color 

code in Table 1 above. 

Topology 𝑨 𝒆𝑨𝒕 Eigenval-

ues 

Saddle 
(

𝜆1 0
0 𝜆2

) (𝑒𝜆1𝑡 0
0 𝑒𝜆2𝑡

) 
𝜆1 ∈ ℝ− 

𝜆2 ∈ ℝ+ 

Nodes 
(

𝜆1 0
0 𝜆2

) (𝑒𝜆1𝑡 0
0 𝑒𝜆2𝑡

) 
𝜆1, 𝜆2

∈ ℝ− 

𝜆1, 𝜆2

∈ ℝ+ 

Focus (
𝜆 0
0 𝜆

) (𝑒𝜆𝑡 0
0 𝑒𝜆𝑡

) 
𝜆 ∈ ℝ− 

𝜆 ∈ ℝ+ 

Improper 

Nodes 
(

𝜆 1
0 𝜆

) (𝑒𝜆𝑡 𝑡𝑒𝜆𝑡

0 𝑒𝜆𝑡
) 

𝜆 ∈ ℝ− 

𝜆 ∈ ℝ+ 

Degener-

ated Equi-

librium 

(
𝜆 0
0 0

) (𝑒𝜆𝑡 0
0 𝜅

) 
𝜆 ∈ ℝ− 

𝜆 ∈ ℝ+ 

Spirals (
𝜎 −𝜔
𝜔 𝜎

) 𝑒𝜎𝑡 (
𝑐𝑜𝑠𝜔𝑡 −𝑠𝑖𝑛𝜔𝑡
𝑠𝑖𝑛𝜔𝑡 𝑐𝑜𝑠𝜔𝑡

) 𝜎 ∈ ℝ− 

𝜎 ∈ ℝ+ 

Centers (
0 −𝜔
𝜔 0

) (
𝑐𝑜𝑠𝜔𝑡 −𝑠𝑖𝑛𝜔𝑡
𝑠𝑖𝑛𝜔𝑡 𝑐𝑜𝑠𝜔𝑡

) 𝜎 =  0 

𝜔 ∈ ℝ+ 

2.2 Nonlinear Dynamical Systems 

Definition 2. A smooth n-dimensional nonlinear dynamical 

system (NLDS) is any process admitting being modeled by 

an nth-order nonlinear differential equation 

 

�̇� = 𝑓(𝑥), 𝑥(0) =  𝑥0, (7) 
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where 𝑥 ∈ ℝ𝑛, and 𝑓 ∈ 𝐶1[ℝ𝑛 , ℝ𝑛]. 
 

In definition above we restricted the class of vector-

fields 𝑓 to those of class 𝐶1, to assure the initial-value prob-

lem (7) has a unique solution. Less restrictive definitions of 

NLDS may be given (Coddington-Levinson 1956).  

 

Definition 3. A point 𝑋 ∈ [ℝ, ℝ𝑚] is called an equilibrium 

point of the NLDS (7) if 𝑓(𝑋) = 0. The linear dynamical sys-

tem 

 

�̇� = 𝐷𝑥𝑓(𝑋) (𝑥 − 𝑋), 𝑥(0) =  𝑥0, (8) 

 

is called the linearization of the NLDS (7) around the equi-

librium point 𝑋. If all the eigenvalues of 𝐷𝑥𝑓(𝑋) have non-

zero real parts, 𝑋 is called a hyperbolic equilibrium point. 

 

From the mathematical point of view, the most im-

portant result of the theory of NLDS may surely be the The-

orem of Existence and Uniqueness of Solutions (Coddington-

Levinson 1956, Hirsch-Smale 1974) but, from the point of 

view of the applications of the theory of NLDS, perhaps the 

most important result is Hartman-Grobman theorem (Perko 

1996, Hartman 1982) which assures that as far as the Jaco-

bian matrix 𝐷𝑥𝑓(𝑋) has no eigenvalues with zero real parts, 

the local dynamics of the NLDS (7) and its linearization (8) 

are homeomorphically equivalent in a small enough neigh-

borhood of the equilibrium point 𝑋. So, Hartman-Grobman 

theorem fully supports constructing the topological classifi-

cation map of the linearized system (8) around the hyperbolic 

equilibrium point 𝑋, and then use such results to describe the 

local dynamics of the NLDS (7) around 𝑋, because both dy-

namics are homeomorphically identical in an small enough 

neighborhood of 𝑋. 

 

The exhaustive description of the global dynamics of a 

NLDS may be an extremely difficult and complex task, 

which in most cases easily leads to unanswered mathematical 

questions. Yet, even the longest trip start with a first step, and 

that is precisely what the topological classification of equi-

librium points represents in the analysis of the dynamics of a 

NLDS; we do not even pretend to cross this border in the 

present essay. 

 

Case Study 2. A Cultural Approach to Block Diagrams.  

Systems theory uses several languages to approach system 

analysis from different perspectives: the analytic language of 

differential equations to model deterministic systems; the 

language of geometry and topology to classify the qualitative 

behavior of sets of trajectories; the language of algebra 

providing canonical representations structurally fitted to trap 

properties like stability, controllability, observability; the 

spectral language allowing to think of control systems like 

filters operating on signals; and yet, the language of block 

diagrams showing up the internal wiring of the states of the 

systems, and therefore their patterns of mutual interdepend-

ence and influence. 

From the examination of Jordan canonical form in Ta-

ble 2 it follows that there exist only tree non-equivalent wir-

ing schemes: the perpendicular topology, associated to sad-

dles, nodes, foci and degenerated equilibrium; the circular 

topology, associated to spirals and centers; and the tangential 

topology associated to the improper nodes, which represents 

a kind of transition topology between the perpendicular and 

the circular topologies.  

If we think of the second-order dynamical system (9)  

 

(
 𝑥1̇

 𝑥2̇
) = 𝐴 (

𝑥1

𝑥2
) (9) 

 

as an abstract model of the dynamics of representatives 𝑥1 

and 𝑥2 of two equivalence classes of citizens a society con-

sists of, the block diagrams of Figure 1 clearly establish that 

there are only three canonical types of interrelations between 

citizens 𝑥1 and 𝑥2: (i) the behaviors of 𝑥1 and 𝑥2 are com-

pletely independent from each other: 

 

(
 𝑥1̇

 𝑥2̇
) = (

𝜆1 0
0 𝜆2

) (
𝑥1

𝑥2
), (10) 

 

as in Figure 1-a; (ii) citizen 𝑥2 dominates 𝑥1 unidirection-

ally: 

 

(
 𝑥1̇

 𝑥2̇
) = (

𝜆 1
0 𝜆

) (
𝑥1

𝑥2
), (11) 

 

as in Figure 1-b; and (iii) citizens 𝑥2 and 𝑥1 influence each 

other equipotently: 

 

(
 𝑥1̇

 𝑥2̇
) = (

𝜎 −𝜔
𝜔 𝜎

) (
𝑥1

𝑥2
), (12) 

 

as in Figure 1-c, generating emerging oscillatory patterns of 

behavior with no parallel amongst first-order dynamical sys-

tems. So, we could think of second-order dynamical systems 

(10) to (12) as canonical models of isolationism, unidirec-

tional interventionism, and reciprocal influences, respec-

tively. Isolationism means that, as block diagram of Figure 

1-a suggests and the fundamental matrix 𝑒𝐴𝑡 in Table 2 con-

firms, the trajectories (behaviors) of citizens 𝑥2 and 𝑥1 are 

completely independent of each other. Unidirectional inter-

ventionism means that the behavior of citizen 𝑥2 is independ-

ent of 𝑥1, yet it intervenes and modifies the dynamics of cit-

izen 𝑥1. The counterclockwise closed-loop containing the 

two green blocks in the block-diagram of Figure 1-c is the 

physical implementation of the rotation matrix 𝑒𝐴𝑡 associ-

ated to the centers in Table 2, while the yellow blocks are the 

physical counterparts of the exponential term 𝑒𝜎𝑡 in the fun-

damental matrix 𝑒𝐴𝑡 associated to the spirals in Table 2. 

We close this case study with a final algebraic com-

ment. If eigenvalues 𝜆1, 𝜆2 are the roots of the characteristic 



 A topological approach to designing and constructing -…  127 

 

Revista Ciencia e Ingeniería. Vol. 41, No. 1, diciembre-marzo, 2020. 
 

polynomial of matrix A, then 

 

𝑝(𝜆) = (𝜆 − λ1)(𝜆 − 𝜆2) = 𝜆2 + (λ1+λ2)𝜆 + 𝜆1𝜆2. (13) 

 

If we compare this model of the characteristic polynomial 

with its previous expression in (5), it comes out that: 

 

𝐷𝑒𝑡(𝐴) = 𝜆1𝜆2 (14) 

 

𝑇𝑟(𝐴) = 𝜆1 + 𝜆2 (15) 

 

Δ(𝐴) = (𝜆1 − 𝜆2)2, (16) 

 

three algebraic invariants for linear second-order dynamical 

systems. When the eigenvalues 𝜆1, 𝜆2 are equal, Δ(𝐴) = 0, 

and this is precisely the frontier separating the isolationist 

systems of Figure 1-a, from the systems of reciprocal influ-

ences of Figure 1-c. Δ(𝐴) = 0 characterizes the unidirec-

tional interventionist systems of Figure 1-c. ∎ 

3 Case Study 3. Blues Monks vs. Reds Knights  

Up until now we have developed a few elements of the lan-

guages of topology, linear dynamical systems, and block di-

agrams needed to model and describe the dynamics of multi-

cultural systems. So, we count now on first-order linear 

dynamical systems to model the behavior of individuals, and 

second-order linear dynamical systems to model the interac-

tions between pairs of individuals. Table 2 collects and clas-

sifies all possible patterns of interaction between individuals. 

Moreover, Hartman-Grobman theorem allows using linear 

dynamical systems as local models of nonlinear dynamical 

systems, around hyperbolic equilibrium points. In this sec-

tion we will go back to the model of the first bicultural soci-

ety ever, consisting of two equivalence classes: the Brother-

hood of the Blue Monks, and the Tribe of the Red Knights. 

For academic purposes we will suppose the interactions be-

tween the Blue Monks and the Red Knights (Rodríguez-Mil-

lán et al 2019) are governed by Fitzhugh equations, a well-

known biophysical model for the generation of electrical sig-

nals in electrically excitable cells. Fitzhugh’s model is kind 

of an innocent, helpless looking system, yet it possesses a 

rich, and complex dynamics, with several types of bifurca-

tions and nontrivial periodic orbits. 

We will assume (Rodríguez-Millán 1992) that Fitzhugh 

equations are given as: 

 

�̇� = 𝐼 + 𝑥 + 𝑦 −
1

3
𝑥3  (17-a) 

�̇� =  𝜇(𝑎 − 𝑥 − 𝑏𝑦). (17-b) 
 

Let 𝑧 = 𝐼 + 𝑦 and 𝜑 = 𝑎 + 𝑏𝐼. In this coordinates the Fitz-

hugh equations become 

 

�̇� = 𝑦 + 𝑥 −
1

3
𝑥3  (18-a) 

�̇� =  𝜇(𝜑 − 𝑥 − 𝑏𝑦). (18-b) 

 

If 𝑏 ∈ [0,1], Fitzhugh equations have a unique equilibrium 

point 𝑥0(𝜑) for every 𝐼 ∈ (−∞, ∞). This unique equilibrium 

point is the solution of the third-degree polynomial 
1

3
𝑥3 +

(
1

𝑏
− 1) 𝑥 −

1

𝑏
𝜑 = 0. The linearization of equations (18) 

around the unique equilibrium point 𝑥0(𝜑) is: 

 

(
�̇�
�̇�

) = (
1 − 𝑥0

2(𝜑) 1
−𝜇 −𝑏𝜇

) (
𝑥
𝑦) = 𝐾 (

𝑥
𝑦)  ⟹,  (19) 

 

𝑇𝑟(𝐾) =  0 ⟺ 𝜇 =
1

𝑏
(1 − 𝑥0

2). (20) 

𝐷𝑒𝑡(𝐾) =  0 ⟺   𝜇 = 0   𝑜𝑟  𝑥0
2 = 1 − 

1

𝑏
 (21) 

Δ(𝐾) = 0 ⟺ 𝜇 =
2 − 𝑏(1−𝑥0

2) ± 2√1 − 𝑏(1−𝑥0
2)

𝑏2 . (22) 

 

 

(
𝜆1 0
0 𝜆2

) 

Diagonal 

Jordan ca-

nonical 

form corre-

sponding to 

real eigen-

values. The 

first-order 

subsystems 

are perpen-

dicular.  

Figure 1-a. Block diagram of all diagonalizable second-order linear dynam-

ical systems with real eigenvalues, including the diagonalizable non-generic 

case of multiplicity 2 eigenvalues 𝜆1= 𝜆2. 
 

 

Let us define the following two functions:  

 

𝜇−(𝑏, 𝑥0) =
1

𝑏2 (2 − 𝑏(1 − 𝑥0
2) − 2√1 − 𝑏(1 − 𝑥0

2)) (23) 

 

𝜇+(𝑏, 𝑥0) =
1

𝑏2 (2 − 𝑏(1 − 𝑥0
2) + 2√1 − 𝑏(1 − 𝑥0

2)). (24) 

 

The zero-level curves (20), (21), and (23-24), of the trace, the 

determinant, and the discriminant, respectively, are the con-

ceptual elements we need to construct the topological classi-

fication map of the linear dynamical system (19). This map 

will provided an exhaustive description of the local dynamics 

of the Fitzhugh equations around its unique equilibrium point 

located at the origin, when 𝑏 ∈ [0,1]. 
 

 



128 Rodríguez-Millán 

Revista Ciencia e Ingeniería. Vol. 41, No. 1, diciembre-marzo, 2020. 
 

 

(
𝜆 1
0 𝜆

) 

Jordan canon-

ical form cor-

responding to 

a double real 

eigenvalue 

with nontriv-

ial nilpotent 

component, 

which de-

stroys the per-

pendicularity 

of the two 

first order 

subsystems.  

 
Figure 1-b. Block diagram representation of a second-order dynamical sys-

tem with a double real eigenvalue, and nilpotent component. The entry “1” 
that destroys diagonality, also destroy the orthogonal intersection of the two 

one-dimensional subsystems. Nilpotency does not depends at all on the 

value on the entry “1” in the Jordan canonical form. Any other value would 
also perform well. 

 

(
𝜎 −𝜔
𝜔 𝜎

) 

Jordan canon-

ical form as-

sociated to a 

pair of com-

plex conju-

gate eigenval-

ues, 

generating a 

loop in the 

block dia-

gram. 

 
Figure 1-c. Block diagram of a second-order dynamical system with a pair 

of complex conjugate eigenvalues. If we compare this block diagram with 

the two previous ones, we could think of the three of them as a sequence of 
systems evolving out of a state of asymmetric disconnection, into another 

state of full symmetric connection. The two first-order subsystems in Figure 

1-a are disconnected with 𝜆1 ≠ 𝜆2, while in the two first-order subsystems 

in Figure 1-b, 𝜆1 = 𝜆2, but the upper subsystem unidirectionally influence 
the behavior of the lower subsystem. A second backwards interconnection 

appears in the complex conjugate case shown in this figure, destroying the 
unidirectionality of influences, and permitting the mutual equilibrated inter-

dependence of the behaviors of the two first-order subsystems. 

 
 

 

Figure 2-a shows the signs classification map for 𝑇𝑟(𝐾) 

in (20). As 𝑇𝑟(𝐾) > 0 in the yellow zone, the associated fun-

damental solutions grow as 𝑡 → ∞. 

Figure 2-b shows the zero-level curve of the determi-

nant function 𝐷𝑒𝑡(𝐾), and its map of signs. 𝐷𝑒𝑡(𝐾) is nega-

tive in the cyan zone, and therefore for all pairs (𝑥0, 𝜇) in this 

zone the equilibrium point is a saddle point. Given that 

𝐷𝑒𝑡(𝐾) is positive in the terracotta zone, the topology of the 

equilibrium point is manifold depending on the values of 

𝑇𝑟(𝐾) and Δ(𝐾). 

 

 

 

 
Figure 2-a. Zero-level curve of 𝑇𝑟(𝐾), for 𝑏 =  

1

10
, 1, in the natural order. 

The yellow (purple) zones correspond to positive (negative) values of the 

trace. So, for ordered pairs (𝑥0, 𝜇) of values of the parameters in the yellow 
(purple) zone, the fundamental solutions diverge from (converge to) the 

equilibrium point. Then, for all values of the parameters 𝑥0 and 𝜇 in the yel-

low (purple) zone the origin is an unstable (stable) equilibrium point. 

 
 

In Figure 2-c we show the zero-level curves of the dis-

criminant and the associated map of signs. In this case the 

discriminant function has two zero-level curves: the lower 

curve 𝜇−(𝑏, 𝑥0) and the upper curve 𝜇+(𝑏, 𝑥0), defined as in 

(23) and (24), respectively, making the sign map a bit more 

complicated. The upper zero-level curve 𝜇+(𝑏, 𝑥0) is very 

sensitive to perturbations of the parameter 𝑏 ∈ [0,1]: for 

𝑏 ⟶ 0, the curve 𝜇+(𝑏, 𝑥0) moves upwards and its mini-

mum 𝜇+(𝑏, 0) ⟶ ∞. Reversely, as 𝑏 ⟶ 1, 𝜇+(𝑏, 𝑥0) 

moves downwards while 𝜇−(𝑏, 𝑥0) moves upwards, inter-

secting each other at the point 𝜇+(1, 0) = 𝜇−(1, 0) = 1, 

when 𝑏 = 1 
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Figure 2-b. Zero-level curve of 𝐷𝑒𝑡(𝐾), which is invariant for every 𝑏 ∈
[0,1]. The cyan zone corresponds to negative values of 𝐷𝑒𝑡(𝐾), and there-
fore the system has a saddle equilibrium point at the origin. For pairs of val-

ues of the parameters (𝑥0, 𝜇) in the terracotta zone 𝐷𝑒𝑡(𝐾) > 0, and the 
equilibrium point may have different topological structures, depending on 

the values of the trace, the determinant, and the discriminant. 
 

 

 

With all the required elements at hand, let us proceed to 

construct the topological classification map of the equilib-

rium point of the second-order system of the Blue Monks and 

the Red Knights. We will think of the topological classifica-

tion map as a b-parameterized image, because Figures 2-a 

and 2-c clearly show that the maps of signs of 𝑇𝑟(𝐾) and 

Δ(𝐾) are b-parameterized, then the topological classification 

map also. We construct first the topological classification 

map for 𝑏 =
1

2
, and proceed then to run a stop-motion video 

for 𝑏 ∈ [0,1].  
 

Step 1: Saddles. When 𝜇 < 0, 𝐷𝑒𝑡(𝐾) < 0, and the 

equilibrium point is a saddle. We may forget about the upper 

half of Figure 2-b. 

 

 Step 2: Spirals. According to Table 1, for every (𝑥0, 𝜇) 

belonging to the yellow (purple) zone of the map of signs of 

𝑇𝑟(𝐾), the equilibrium point is a source (sink), while accord-

ing to Figure 2-c the green zone corresponds to spirals and 

the pink zone to nodes. So, yellow spirals are repelling spi-

rals, while purple spirals are attracting spirals. We will pre-

serve the yellow (green) color for the repelling (attracting) 

spirals.  

 

Step 3: Nodes. Pink zone in Figure 2 represent nodes, 

while purple zone in Figure 2 represents sinks. So, purple 

nodes are attracting nodes, while yellow nodes are repelling 

nodes. We preserve the pink color for the attracting nodes, 

and introduce the orange color for the repelling nodes. 

 

 

   

 
 

 

 

 

 
Figure 2-c. Zero-level curves of Δ(𝐾), for 𝑏 =  

3

10
,

6

10
, 1. The discriminant 

Δ(𝐾) is negative in the green zone, wherefrom the equilibrium point is either 

a center or a spiral for each pair (𝑥0, 𝜇) of parameters in this zone. In the 

pink zone Δ(𝐾) > 0, then for every (𝑥0, 𝜇) in the pink zone, the equilibrium 
point is a node. The blue zero-level curves are the boundaries between the 

subsets of systems with real eigenvalues and complex conjugate eigenval-
ues, being then associated to the improper nodes of Table 2, and the block-

diagrams of Figure 2-b. 

 

The topological classification map of the equilibrium 

point of the second-order dynamical system modeling the so-

ciety of the Blue Monks and the Red Knights, with the bor-

rowed academic dynamics of Fitzhugh equations (18-19), is 

shown in Figure 3. The topological classification map 

changes for different values of 𝑏 ∈ [0,1]. These changes are 

collected in the stop-motion of Figure 4. 
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Figure 3. Topological classification map of the equilibrium point of Fitz-

hugh equations, for 𝑏 =
1

2
. According to the color code stablished in the 

three-steps algorithm above the topological classification map should be 
read as follows: yellow = repelling spirals, green = attracting spirals, orange 

= repelling nodes, pink = attracting nodes, cyan = saddles.  

Figure 4. b-parameterized topological classification map of Fitzhugh equa-

tion, for 𝑏 ∈ {
1

10
,

2

10
, … , 1}. 

 

In the Art Gallery of Figure 5, we show some of the 

local generic dynamics around the unique equilibrium point 

of Fitzhugh equation, when 𝑏 ∈ [0,1]. Each image in Figure 

5 is a representative of the equivalence class of the dynamics 

associated to one compartment of the topological classifica-

tion map of Figure 3, as indicated in the legends of each im-

age. The plotting times were chosen long enough to exhibit 

the asymptotic behaviors, yet short enough to generate visu-

ally appealing images.  

 

Strictly speaking, the sequence of images below de-

scribes the behavior of the trajectories of the linearization 

(19) of Fitzhugh equation, around the origin. Yet, according 

to Hartman-Grobman theorem, these images are locally qual-

itatively (homeomorphically) identical to the set of trajecto-

ries of the nonlinear Fitzhugh equations (18) around their 

unique equilibrium point 𝑥0(𝜑). 

 

Given that it may be inadequate and polemic to speak 

about “interactions” between the Blue Monks and the Red 

Knights in connection to the topological classification map 

of Figure 3, it would be perhaps more convenient to think of 

the topological classification map as a kind of map of “envi-

ronmental conditions” that determine the simultaneous evo-

lution of both groups. If we approach the problem this way, 

the topological classification map would tell us under what 

conditions both Blue Monks and Red Knights will grow, un-

der what conditions both groups will decay, what are the con-

ditions that would propitiate the growth of one group and the 

decay of the other, and, moreover, will also provided us in-

formation about the temporal patterns of growth or decay. In 

general, but very particularly in systems with several equilib-

rium points, grow and decay should in general be understood 

as to diverge from or converge to an equilibrium point. In the 

case of the Blue Monks and the Red Knights, for instance, 

the environmental conditions of the yellow and orange com-

partments propitiate the simultaneous “growth” to both Reds 

and Blues, conditions in compartments green and pink favor 

the “decay” of both groups, and the “cultural climate” of the 

cyan compartment favour the blooming of Blue culture and 

the stagnation of the Red culture, or vice versa. Yet, orange 

and yellow growth are different, for orange is kind of a linear 

growth, while yellow growth is kind of up and down or “os-

cillatory”. Likewise for the pink and the green compartments, 

respectively. Even though the case study of the Blue Monks 

and the Red Knights is a pure academic example, supported 

by the Fitzhugh equations, it clearly suggests that it would be 

possible to model the qualitative dynamical behavior of non-

physical soft systems. Going deeper into modeling particular 

human systems would of course require a detail modeling 

work, which is out of the scope of the present work.  
 

 
Figure 5-a. Attracting Node associated to the (𝑏, 𝑥0, 𝜇) = (

1

2
, −4, 1). Ac-

cording to the topological classification map of Figure 3, this point is located 

in the left pink compartment, wherefrom it is an attracting node. 
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Figure 5-b. Repelling Node associated to (𝑏, 𝑥0, 𝜇) = (
1

2
, 0,

1

3
). In the topo-

logical classification map, this point is localized in the small orange central  

open compartment, the equivalence class of the repelling nodes. 

 

Figure 5-c. Saddle point associated to (𝑏, 𝑥0, 𝜇) = (
1

2
, 0, −

1

3
). This point be-

longs to the lower cyan compartment, the open set of the quotient topology 

associated to the saddle points. 

 

Figure 5-d. Repelling spiral associated to (𝑏, 𝑥0, 𝜇) = (
1

2
, −

1

2
, 1). This 

point belongs to the yellow compartment of the topological classification 

map of Figure 3, corresponding to counterclockwise repelling spirals. 

 

 
Figure 5-e. Attracting spiral associated to (𝑏, 𝑥0, 𝜇) = (

1

2
,

3

2
, 1). This point 

is located in the green compartment of the topological classification map, 

associated to clockwise attracting spirals. 

 

4 Conclusions 

4.1 Dualism, Multiculturalism, and Topologies 

Metaphysical arguments aside, dualism has historically 

proved to be a very efficient tool to describe and model all 

those systems whose dynamics essentially depends on two 

actors. The success of dualism is topological associated to 

equipping the supporting space 𝑋 of the studied phenomena 

with a topology 𝔍 = {𝐴, 𝐶, 𝑋, Φ} consisting of two open sets 

𝐴 and 𝐶, such that 𝐴⋃𝐶 = 𝑋, and 𝐴⋂𝐶 = Φ. The disjoint 

partition {𝐴, 𝐶} is the simple most topological structure capa-

ble to support the “dialog” between representatives of 𝐴 and 

𝐶, as equivalence classes, where a “dialog” is nothing but the 

most primitive formulation of what in contemporary mathe-

matical language is called a second order dynamical system. 

Dialog pursues agreements, that is to say, permanent settle 

downs, i.e., equilibrium points, among actors in conflict. In 

modern notation, the first model for the dynamics of a sec-

ond-order system is a linear second-order dynamical system, 

whose study sooner or later converges to the exhaustive anal-

ysis of its characteristic polynomial, which eventually leads 

to construct, either implicitly or explicitly, the topological 

classification map of the system, describing all possible dif-

ferent qualitative dynamics. 

It is crystal clear that not every phenomenon admits be-

ing modeled as a second-order dynamical system, what leads 

to introduce bigger topologies with more open sets, higher 

order associated dynamical systems to model the dynamics 

of the systems, and higher degree polynomials to generate all 

the fundamental solutions of the systems. The complexity of 

this problem increases enormously with the number of equiv-

alence classes of the systems and the order of the associated 

dynamical system. This is the world of multiculturality, 

where single cultures coexist but do not intermingle. Topo-

logical partitions lead to quotient topologies and quotient 

spaces, but impede interculturality. 



132 Rodríguez-Millán 

Revista Ciencia e Ingeniería. Vol. 41, No. 1, diciembre-marzo, 2020. 
 

For interculturality to emerge, the topology of 𝑋 must 

contain open sets with non-trivial intersections. This would 

also obviously lead to richer “dialogs” and “forms of dialog”, 

or equivalently, to more complex dynamical systems, neces-

sarily defined on topological spaces with richer topological 

structures. So, at least from the strictly mathematical point of 

view, it is natural to expect that multicultural structures 

would be preferred to intercultural structures, even if it were 

just for complexity reasons, not to mention the required lev-

els of intellectual sophistication required to approach inter-

culturalism interculturally. This is a very interesting topic de-

serving deeper effort and study. 

4.2 A Teaching Corollary 

From the dualist, yet complementary, understanding vs. cal-

culating or qualitative vs. quantitative paradigms, one may 

derive an important practical academic consequence, which 

is the permanent need to conceptually separate, and yet keep 

conscious of the interconnections between, the topological, 

the dynamical, the analytical, the algebraic, and the wiring 

approaches involved in the study of systems dynamics, be-

cause each one of these approaches traps different aspects of 

the structure and the dynamics of complex systems. 

4.3 Order Increase, Complexity and Symmetries 

Since the Big-Bang, the Universe has permanently been 

producing more and more complex structures (Harari 2017), 

which in many cases can be modeled through dynamical sys-

tems of increasing order and complexity. New emerging dy-

namics use to be associated to evolving towards more orga-

nized and symmetric structures. The sequence of block-

diagrams of Figure 1 is an abstract elementary example of 

this evolutionary process. The study of Jordan canonical 

forms (Hirsch and Smale 1974) and the step-by-step con-

struction of the associated block-diagrams is an interesting 

exercise in this respect, with an additional clear aesthetic 

component. The harmonic complementarity of behavioral, 

geometric, topologic, algebraic, and block diagram lan-

guages of system theory is, in my view, a beautiful example 

of harmony in nature. Well-done work is rewarded through 

the perfect matching of the pieces in the puzzle of the Uni-

verse. 

4.4 Topological Explosions, Failures, and Perestroikas 

In engineering applications, failures and structural changes 

are sometimes approached through their effects or manifes-

tations in the dynamics or the frequency response of the sys-

tems. Yet, it would seem to be that the structural changes, 

failures, and perestroikas could be traced back to changes in 

the topological structure of the systems, which in turn modify 

the order and the structure of the associated dynamical sys-

tems representation of the studied phenomenon. This alterna-

tive view of failures deserves deeper attention and thought. 

4.5 Art, Humanities, Sciences and Engineering 

Art and humanities have a lot to offer to the modeling of com-

plex systems because of their complementary mental and in-

tellectual paradigms, and the additional degrees of freedom 

they have with respect to the rigidity of physics and mathe-

matics. However, arts and humanities on the one hand, and 

sciences and engineering on the other hand, are a good rep-

resentative of unfortunate academic topological partition. 

The boundaries preserving this status quo should be bored to 

promote cross-fertilization and mutual support between arts, 

sciences, humanities, and engineering. Much multicultural 

and intercultural work should be done in this direction at the 

universities and art academies around the world. 
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