Mostrar el registro sencillo del ítem
MODELO DE APARIENCIA DISCRIMINATORIO PARA UN SÓLIDO SEGUIMIENTO EN LÍNEA DE MÚLTIPLES OBJETIVOS
dc.contributor.author | Altaf Osman, Mulani | |
dc.contributor.author | Rajesh, Maharudra Patil | |
dc.contributor.author | Kazi Kutubuddi, Sayyad Liyakat | |
dc.date.accessioned | 2023-10-30T14:36:23Z | |
dc.date.available | 2023-10-30T14:36:23Z | |
dc.date.issued | 2023-07-13 | |
dc.identifier.govdoc | ppx 200002ZU2142 | |
dc.identifier.issn | 1856-4194 | |
dc.identifier.uri | http://bdigital2.ula.ve:8080/xmlui/654321/11843 | |
dc.description.abstract | El algoritmo de seguimiento de múltiples objetivos enfrenta desafíos de oclusión, detención, fusión y división de los objetos en movimiento. El cambio de apariencia de los objetivos en movimiento complica el rastreador. Por lo tanto, el modelo de apariencia discriminativa es necesario para el seguimiento robusto de objetivos múltiples. Este documento incorpora el enfoque de seguimiento por detección junto con el modelo de movimiento basado en el filtro de Kalman. La apariencia del objetivo propuesto en este documento se modela en función de las características de textura del objeto. La congruencia de fase derivada de la matriz de coocurrencia de nivel de gris (GLCM) constituye el modelo de apariencia del objeto en movimiento. Por lo tanto, el rastreador propuesto es invariable a la iluminación de la imagen y la variación del contraste. La asociación de datos basada en la confianza ayuda a la gestión de seguimiento en este documento. El rastreador propuesto se evalúa en los conjuntos de datos de referencia estándar, a saber, CAVIAR, PETS2009 y ETH. Los resultados experimentales del rastreador propuesto demuestran cero errores en la coincidencia de identidad cuando se prueban en el conjunto de datos ETH. | en_US |
dc.description.abstract | Multiple target tracking algorithm faces challenges of occlusion, halt, merge and split of the moving objects. The change in appearance of the moving targets complicates the tracker. Hence the discriminative appearance model is needed for the robust multiple target tracking. This paper incorporates tracking-by-detection approach along with Kalman filter based motion model. The appearance of the target proposed in this paper is modeled based on object's texture features. Phase congruency derived by gray level co-occurrence matrix (GLCM) constitutes the appearance model of the moving object. Thus the proposed tracker is invariant to image illumination and contrast variation. Confidence based data association helps for track management in this paper. The proposed tracker is evaluated on the standard benchmark datasets namely CAVIAR, PETS2009 and ETH. The experimental results of the proposed tracker demonstrate zero error in identity matching when tested on ETH dataset. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Universidad Dr. Rafael Belloso Chacín | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ve/ | en_US |
dc.subject | seguimiento de objetivos múltiples | en_US |
dc.subject | filtro de Kalman | en_US |
dc.subject | congruencia de fase | en_US |
dc.subject | modelo de apariencia | en_US |
dc.subject | asociación de datos | en_US |
dc.subject | Multiple target tracking | en_US |
dc.subject | Kalman filter | en_US |
dc.subject | phase congruency | en_US |
dc.subject | appearance model | en_US |
dc.subject | data association | en_US |
dc.title | MODELO DE APARIENCIA DISCRIMINATORIO PARA UN SÓLIDO SEGUIMIENTO EN LÍNEA DE MÚLTIPLES OBJETIVOS | en_US |
dc.title.alternative | DISCRIMINATIVE APPEARANCE MODEL FOR ROBUST ONLINE MULTIPLE TARGET TRACKING | en_US |
dc.type | Article | en_US |