Modelo de decisión bayesiano para el diagnóstico de cáncer de mama
Fecha
2016-09-11Autor
Quiroz R., Segundo U.
Rivas M., Belzaira
Metadatos
Mostrar el registro completo del ítemResumen
La presente investigación su objetivo fue, construir un modelo de decisión bayesiano automático para cuantificar el riesgo de cáncer de mama y evaluar las consecuencias de las alternativas del tratamiento, desde el punto de vista de las pérdidas y utilidades de todos los actores en la problemática de la salud del paciente (sistema sanitario, médicos y la propia paciente). El modelo incorpora los resultados de una mamografía, algunas variables históricas y una función de costos para clasificar una paciente en tres categorías mutuamente excluyentes: No Cáncer, Probablemente Cáncer y Si Cáncer. Para cuantificar el riesgo, se desarrolló un modelo de regresión binaria bayesiano con distribuciones a priori de Jeffreys y para la selección del modelo, se usó el Factor de Bayes Medio. El ajuste del modelo se realizó desde el punto de vista de las predicciones y de la clasificación, en vez del método clásico de estimación. La base de datos consta de 328 pacientes con 184 casos positivos, ésta fue suministrada por el Hospital Universitario de Granada, España. Se encontró que el diagnóstico puede cambiar drásticamente según cambie la función de pérdida y además que el modelo de predicción debe ser distinto dependiendo de la edad de la paciente, menor o mayor a 50 años.